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/ ABSTRACT et
The treatment of an earlier report (MURA-406) of particle orbits in
FFAG accelerators with radial magnetic fields in the median plane is extended
to included the effects of magnet spiraling. It is found that a two-way acceler=-
ator with a circumference factor lower than that for conventional fields and with
reasonable focusing properties can be made in this way. Methods of producing

such magnetic fields are not treated. ‘
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I, INTRODUCTION

In an earlier report, * the linear motion in scaling radial sector acceler-
ators without median plane symmetry was discussed. The vertical focusing,
already weak in large radial sector accelerators, was weakened further by the
introduction of radial median plane fields. This report extends the treatment
to the scaling spiral sector case. A reasonable amount of vertical focusing
can be achieved by spiraling, at the expense of complication in magnet con-
struction.

II. FIELDS AND POTENTIALS

The field expansions corresponding to (A 2.1) and (A 2. 3) are written
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where C is the angle of a spiral with respect to a radius.

From the definition of
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EﬁMURA-406,, which will be referred to as A. Equations from A will be referred
to prefixed by A. 2
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so that effectively k is replaced by k, = k - in Z. The recursion relations

corresponding to (A 2.5) are
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For fields of Type I, while the relations corresponding to (A 2. 6) are
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for fields of Type II.
The vector potential components are treated in an analogous way, with
expansion coefficients 50 > Yom n  and L v m for the r, © and z
components respectively. The recursion relations corresponding to (A 2.10)

are
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where (2. 3) and (2. 4) have been used on the right-hand side in each case.

Eqgs. (A 2.11) give the vector potential coefficients in terms of the field

coefficients with k replaced by k, throughout.
3
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III. EQUILIBRIUM ORBIT

Eqgs. (A 4. 4) are replaced by
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Again we choose X so that x = 0. The first approximation for n# 0,

given in (A 4.5),
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2 st (3.2)
is unchanged by the addition of spiraling. This approximation is sufficiently
accurate for the work of later sections. For the case éjpo = O | it is easy
to see that y, = 0. The case §0v=}' ® requires special treatment, which
will not be given here.

The equation determining o . (A 4.7), becomes
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vanishes identically, since the summand is odd and is summed over an even
interval in m. There is therefore no contribution to the value of « from

the magnet spiraling. Then (3. 3) is
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as in A,
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IV. LINEAR OSCILLATIONS ABOUT THE EQUILIBRIUM ORBIT

We make the same approximations as in A, namely we expand the “.;,

we neglect /# compared to unity

only through first order in x £,, 7/ 2
Then the

and we drop many small terms of essentially kinematic origin

equations of motion are (as in (A 5. 8)}
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Expansion of (A 5. 3) and substitution

where the 2, are defined in (A 5. 3).

of (3. 2) yields
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Note that in K, and N, the cross terms in (k = im Z),'fz vanish because
they are odd in m and are summed over an even interval.

We calculate for substitution into (A 5. 15) the quantities
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where we have used mZ //1% in the lastterm.

Then, from (A 5.15), )
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In the conventional case of a one-way accelerator with median plane
symmetry, an accurate solution of (3. 4) is
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2
The quantity g/i , is the flutter, so that L)? contains the usual spiral-
) " g,
ing and Thomas focusing terms. The second terms of y)( and ]/}} are the
@

"A.G." terms of the smooth approximationl (the usual factor 1/2 is hidden in
=0 and,

G% and F?).
For a two-way accelerator with median plane symmetry i;a

by using (3. 6) for £ ,
o
R
) . * _,_L- 'LI’ ,”', b ZZ) (4.7)
) g5, Sl 'G_z" \ )
/
&

\v
which is in agreement with Ohkawa's result.
V. THE TWO-WAY ACCELERATOR

We add spiraling to the special case treated in A. That is, we take
(5.1)
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The circumference factor C given on page 23 of A is not changed by
2 Pl
=0.04 and Z° =5 (5 = 63.259), we calculate

k
spiraling. With k = 200, _ﬁ‘z—
7/, for various values of g/f.
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9



MURA-437

B C 2/ 1 yz
0 i 9.07 : 20 16. 6
: 0.5 f 8.80 19,9 | 16. 4
1 t 8.47 19. 7 16. 2
' 2 8.02 19.5 l' 15.9
o0 { 7.28 19. 4 % 15.8

i |

- )
24 )

C and é/l are unchanged from A. (Note, however, that J“"'l for g/f = <R
was given incorrectly in A.)

The circumference factor can be lowered by the addition of higher
harmonics to the fields. It is believed from digital computer experience that
an improvement of 30% can be achieved while still keeping 2/)1 comfortably
below N/3 (T, = ~T0/3). Thus it appears that a two-way accelerator with a
circumference factor of 5 and reasonable oscillation frequencies can be designed.

By raising k (and therefore raising 2/ above N/3), even lower values of C

1

can be obtained.
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