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I. INTRODUCTION

This report is essentially Appendices II and III of a thesis entitled '"Angular
Distributions in the Elastic Scattering of Protons by Light Nuclei'" submitted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy to
the Graduate School, California Institute of Technology, in 1949. Because of
recent interest in the tables presented here, it was felt that it would be worth

while to issue this report at this time.

Although M. E. Rose1 and his collaborators2 3 at Oak Ridge National Labora-
tory have published extensive tables of Clebsch-Gordan and Racah coefficients,
those tables suffer from the disadvantage that the coefficients are given in deci-
mal form rather than fractional form. For calculations with large digital com-
puting machines, the decimal form is more convenient, but for elementary
calculations and for an understanding of the structure of the coefficients, it is

felt that the form given here has at least some merits.



II. THE CLEBSCH-GORDAN SERIES

The Clebsch-Gordan series is the decomposition of a direct product of repre-
sentations of the rotation group into a sum of representations. Since the 2/ + 1
wave functions of angular momentum / induce a representation of the rotation
group, the series allows us to decompose the product of wave function into a sum
of wave functions and hence becomes the mathematical basis for the vector model

of the a4t-om. 4.5,6

A wave function AJl of a Hamiltonian which is invariant to rotation of coordin-

ates can be represented in its transformation properties by the monomial
(2j)! (-iy-mg+mr,i-m {1)
/¢ +m)! (- m!

a'-m b>+m
where (£ ) is a spinor. This is just the coefficient of @ ... - in the
. . . /(/ + m)/(5 - m)!
spinor-invariant

(-ary + b£)2 --(2)

where (a, b)) is a constant spinor. We are interested in evaluating the coefficients

in the expansion

K -3

jm

or, since the transformation can be taken to be real and unitary, in the expansion

(D)
JAV



We form an invariant

S = MY + BX)Z «.(5)
where (<4, B) is a constant spinor and Y) an arbitrary spinor. The terms
x>+m yi-m of the expansion of ¢ transform like the wave functions xfj™

We also write $ in the form

D = (Ar, + BONAY' + BZ) -+ : --(6)

The spinor (£ ~ shall be associated with the wave functions <" , and the spinor

(£'77") with the wave functions

We must obviously have « + fi = 2j , since in the form (5) , $ is a homo-
geneous polynomial of degree 2/ in 4 and B, while in the form (6) it is a homo-
geneous polynomial of degree « + 3. We shall not yet specify the values of

a, {I, y any more completely.

Expanding the two expressions for 1 and equating them we have

(-D)i-m(2j)! X"+mY>-m

Z £j-m fij+m
(+m!{d-m!
(7
a /3
al p! y! (-)P+1+rvP+'Y-r£;a-P+Til+r g'P-q+y-r
- P SV bt B viPpg
o pl@-pfe @-q!ry-n
p=0 g=o r-o
Identifying coefficients of like powers of Ai~m B’ +m , we have
ptq=j~m at P -2, ...(8)



and since we want to identify the monomial jp+7 r€£a p+’with the wave function

and the monomial 77'9+r*'* _9+y~r with the wave function we also have
ady-=2 a-y-2p-1=2
...(9)
P+y=2s ty-2q+r=2v

Since (5) and (6) must be finite polynomials, a, /Z y must be integers and /

can be only integer or half integer; hence

a=j7+1-s q=s-vtr
P=j+s5-1 m-ip+tvy ..(10)
y=1+s-j p=j-p-str

We see from this that/, s, j must each be integral, or one integral and the two

others half-integral.

This gives us

-D/-m/)/y/+m y/-m

(/+m!( - m!

- Z Z J+1-U+s - DIA + s = Hl{f-Di->n+r LS4y, *"

) G-p-s+trl{l+p-ris-v-rIG-1+v+rilfl+ts-/-1)!
v=l—j~r =0

ptv=m «(11)

The implicit condition on the indices is that the factors in the denominator of (11)
must be factorials of non-negative numbers. (We may allow the indices to run
over all values if we recognize that the factorial of a negative number is infinite;
hence terms containing them in the denominator vanish). This condition gives

us other important relationships:

jtl-s5>0
Jjts-1>0 -5 v <s «(12)
i ts-/20



If we now replace the monomials in (11) by wave functions according to (1),

we have

G+1-3s)G+s-DII+s -1

= C/s//(/ + m)!( -<m)! @)/ 25T

Al + ~ix)!(s T V)I(s - v)! \-\Di~l-s+r">—v
A Z Z 13)
G-m+ —s+r){l-m-v-r)l(s-v-r)IG-1+v+r)rll+s-j-r)!
where the constant C/s- has been introduced because the set of functions and

(-iy-m(2/)/ £i+>n r/~m
-— are not equal but only have the same trans-

the monomials
/(/+ m)!G - m)!
formation properties. That C/s- does not depend on the magnetic quantum numbers

mins can be seen if the identification of monomials with wave functions is made

in Eq. (7), which is a function only of 7/s/.

We therefore have

ITNYTTT"mTTTI-r75r(r A ~£A7(s-rid7 (7 V)7(/ +1 - s)I(/+ s - DI{i + s - N/(-V)(

A5 = O Z @HI@H =m+ il = s+ DL +m-v-r)/fs —u-D)If-1+u+)lrl{l+s-/-7!
...(14a)
or
PR D/ +m)(/- m!d+ -+ v)!(s - ! (146)
gmo xS G _sAlGru_jED - plfs =v=n)rll+ s -j- )l

H+v=m

the summation over r being taken over all values which do not make the denomin-

ator infinite.



To do this we impose the condition

We must now evaluate the coefficient Bjs/ .
this condi-

shall be unitary. Since the A's are real,

that the transformation

tion becomes

2
,..(15)

Z ,
jm

This is most easily carried out for the case m =j, since then the sum (14)

is independent of m, such a choice will not

reduces to a single term. Since B/ .
affect the applicability of the solution to cases where m £ j For m =/ we have
H=j-v,r=s5 -v and
lis/_vv DS-M2)H/U + /- v -j+v)lis+ v)!{s - v)!
~ Isi (1+j=8)(=-1+s)!(s-VHl-j+v)!
BlsjA2])h-1)s—v C+/-wlfs+v)! 16)
A+ -s)G+s-D! Vil - j+IAUS ->v)!
Then (15) becomes
Bfsj2p! Z I+j-v)s+u! 1 a7
[A+j=-8s)!+s-DI? -v)!
We write this as
B2sjw! AN fzt /=AY s+, \=d
£> \sS—-vI\/—j+\/ «.(18)

@ +/j-38)l(s+j-1)!
v=I[-j
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where is the coefficient of * in the expansion of (1 + x)a:

a\ «(-1D@=-2) .., (a=3+1) A (8-a-1)(8-a-2)... (1 -a)(-a)
P! P!

o er ) . (19)

Then the sum in (18) becomes

Z+i—U\Z stv (lS+l—] A—/—S—
-1}

7 s—ze T\ —|+yj = lyj S—1 7\ S-w
v=H

C O/ 2; 2 [+s+j+)\

.20
I+s—-jl 1 1+s-j 0

The summation of the binomial coefficients is verified by identifying the coeffi-

cient of x/+s~i on each side of the identity

A + xV-1->="(1 + xf-’-s-" = (1 + x)-2>-2 ..(21)

Solving (18) for Bls- , we then have

2 (ts-)DIs+j-DIU+s-HI2j+ 1)
Bls> = U+s+j+ 1!

11



hence, we now have from (14)

(Lts-fil{l+j-s)!(s+/-DIQ/+1) gy

sty
- m

Jjm i+s+/+1)y

DG+ m)!/G - m)/(/ » NI - rfl(s + v)!(s - w) (23)
*Z (/- =s+0)G-1l+v+prl{li+tn-v)!d+tj-0v)(s-V-r)rll+s-j-71)!

The coefficients are tabulated in the following pages. Since the wave
functions are representations (Darstellungen) of the rotation group, we have
labeled each table with the heading x Ds * The symbols on the left stand for
the product of any two wave functions with / and s given by the subscripts and
and v given by the superscripts. The symbols along the top of the table again

stand for wave functions with subscript/ and superscript m. The element

then stands at the intersection of the row labeled Ufi/* and the column labeled
Wpi1  All empty intersections are zero. Each sub-matrix is then an explicit

example of the general group theoretical formula

+ . (24

The coefficients 4 may also be thought of as a transformation of coordinate

axes in function space from one set of orthogonal '"base vectors' e*v= -
to another orthogonal set £jm=i"".

Algebraic tables are given for D*xDj, D, x Dj , and D*x D; . A table for
D x D, has been given by Condon and Shortley.7 Falkoff ¢ZaZ. have published

2 ) g
a table for D x and recently Melvin and Swamy have filled the gap with

DJ/ax Dr

12



Ill. SUMMATION FORMULAE INVOLVING CLEBSCH-GORDAN COEFFICIENTS

In Section II, certain sums of matrix elements appear in the equations for the

scattering cross section. Specifically, we have sums of the type

F. MIMI
mm-m mm-m
7S / s

with various conditions on the summed indices. The matrix elements ¥/ can be

written as

- 7 jsm.m  Tlm"n
m m.ms a7dTmt S dom

Tm-.

The matrices 4 are unitary, and hence

F im $/r a)
and

N sV v’
F m im MM Q)

which follow directly from the condition that A/s is the transformation matrix

from one orthonormal set of base vectors to another.

13



We need also the relationship

I Aisnv disn'v N x  (=iLLis |/ ...(3)

jm jm MM 2/ + 1 -~

To prove this we make use of Schurr's lemma” that if the matrix commutes

with every matrix of an irreducible representation then Z is a multiple of the
unit matrix.
We first show that is a scalar (i. e., thait PRAF > = , where PR is the

operator which subjects the coordinates of the wave function to a rotation R )

hence

Rodirv= (P> prp

v DY 1<p>/ ijiv', Him') D)
L-J MM vv vs Y " mo,
I 1
vim
Isnv  IstxVv' ()
AJl 4- > !
oo JO- Jm
ﬁ./ vim'
— 7 * /smv (/)'
SJI_Sm‘aDU()-’ -0 Pmm
Jj'm acr

Yy /) /smv Is'Ly
D D() 4, | = /4

am ' jo- Jm

(7cr

*The evaluation of this sum has been given by Breit and Darling (G. Breit and
B. T. Darling, '"Note on Calculation of Angular Distribution in Resonance

Reactions,"” Phys. Rev. 71, 40Z (1947).)
tSee p 83 of Ref. 4 for a detailed discussion of Schurr's lemma.

14



Therefore,

PRXN = Xw' =PRYJ (2~V ~r (Ar> A )

~ 9~ COAM™YY, I JsAVTIN) n(s)
H Dvlv A]% brn ‘m gm);n /ajm lt éﬁm/jl Dvav

n. m

mv  fi it

©* IsfIv' Istl!™' (D)

Z />» /TO' MV’

HenceA”' commu/tes with the irreducible matrices D"/ \rR) for any /?, and

therefore we can conclude that
Ai...- = A/sS'8
MM MM

The evaluation of A*®7 is now simple. We simply sum and obtain

Y MM = (2/ + TUW

MV IsflV
ZA’;%M R e T
Sivm m
Hence A~ =~ + % . This establishes Eq. (3). We now wish to sum the

2L+ 1
squares and products of matrix elements appearing in the cross-section formula.

15



Sg

in mm-m TTlir
i s Is

Vv ; ; Tm ARImR
—— 2 azarATRS s AT 4RmRm

771771-T1IN TRy TTIN
from which
‘/7\ M'W/' ) V V ft A TimTm RimRm
2 mm/ns = al aRbTRbmTmRA M AIM
L TR 77T

Another important sum is obtained by summing the same matrix elements
different set of indices:

Tl i 711 2

2/ + 1
21 + 1

The third important sum is obtained by squaring the products of matrix

elements:

JMI JMI
I M/ M .
omj'm mmjm
mm.ms
Mmgms

16

(4)

over a

(%)



/ o

4

N v

Y
0L Qo

c.—m:






IV. TABLES OF THE CLEBSCH-GORDAN COEFFICIENTS



TABLE 1

IPI”
17+4

I —-71+ Vi

f/mt+l4 V=%
> 2+ 1

l+m+/j

14 > W+ 1

TABLE 1I

Wen

(-m+ 1)L -m)

mm
Wi-%

It m*vi

> 21+ 1

I —m+ 12

> 21t 1

S (I=THEZ+ M+ 1) C+myL+m+ 1)
/ - QL + 1) + 2) 10L + 2) I epyez+1y
0 20+m+D)d-m+1) 20 -m)(d+m
ur-y, (21 + 1)(21 +2) MZ(Z+ 1) J QDQL + n
Z4 m+ 1)(Z+ m) (Z+ m)Z -'m + 1) Z-m)d-m+1
z/f%1 Fl

N VZ+ 1)(2Z+2)

1 102+

< 2D+



v

wi+"i

U-m=%(-m+%)(1-m+ 12
@/ + 1)(2i +2) 2/ +3)

3((+m+ (< + 1) -m+ V)
Q/+ 1) (21 + 2)2Z +3)

30+ m+ U +m+ ViMZ +m + °f)
QZ+DQR2Z + 2)2Z + 3)

(d+m+ift(l+m+ N)Z+ m - Vj)
(QZ +1)(2Z + 2) 2Z + 3)

TABLE III

Ji_xJ2wa

i-%

3 -m=- %) -m+ il +m+ )
(21 +3)21 + 1) (2D

BU-m+2)d-m+ (-m-\)
(01 -1) Q1+ 1)Q2(+2)

N, T d-m ] Z+m+2)
TEANQENCZ gy Umm r ypre ez Y
/(@ 4 i T-m+\2

(Z-3m+ /f) / Crmtd) -(Z + 3m y (t-m )

QZ +3)QZ + 1) (2Z)

3(1+m=-V2)A+m+ Vj)Z - m+ *)

(21 +3)QZ + 1)(22) (21 -2)QZ +2) (21 + 2

/3Z-m+ NZ-m+ ) +m- %)

A+m-%)A+m+ 121 +m+
2/ - DEDEZ + 1)

BZ-m-*)I+m-)z+m+ H)
0Z - 1)Q2)QL + 1)

BZ-m-A)Z-m+ W)Z+m-T)

(I-m=12)A -m+ Va)Z - m + ¥))
2Z-1)(2Z)(2Z+ 1)



77

TABLE IV

Dy,2LA
1"0 ™0
1
T n-
42 472
T IT
42 42
TABLE V
P,J<JDy,



w

TABLE YI

Dy2L. Py2

W I® W

23



24

u?

72

TABLE VII



(o Ky

1/-

TABLE VIII

n

T BT T D

Fob-
nr nr
v IS

iy

o)

25
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TABLE X
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r-Hl <N

(ML €O

H| V0

r\j



= ME

TAE
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)

0

N
N
X .
T
o
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X
TN
£ lr-yleo
T e
TS —rEas
—
=i C—lm
-u
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o — — —
N N — N N N
D o >

lr—1tho

i—OoIIr

1<

| -1

-

| =109
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o NIl
I FHNO THIAN

[ e N ~

| solus  |[—1K
o — _

UL A

| orran

| o1 mv
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TABLE XII

Dv, x Ds/

N20 N4 N 20

20 "4

29



U’

30

TABLE XIII
-Paii-Dy,



TABLE XIV

31
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TABLE XV
D

I IT 11

35 N 35

IrIr

7 J35



TABLE XVI
£»4%J?ya



TABLE XVII
0a- D.

28 412 J2

v
28 412 421



TABLE XVIII
D.. x D;,k

5 “l14 51 10

1 "1

35
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[14 -lO

TABLE XIX
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