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I. INTRODUCTION

This report is essentially Appendices II and III of a thesis entitled "Angular 

Distributions in the Elastic Scattering of Protons by Light Nuclei" submitted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy to 

the Graduate School, California Institute of Technology, in 1949. Because of 

recent interest in the tables presented here, it was felt that it would be worth 

while to issue this report at this time.
1 2 3Although M. E. Rose and his collaborators ’ at Oak Ridge National Labora­

tory have published extensive tables of Clebsch-Gordan and Racah coefficients, 
those tables suffer from the disadvantage that the coefficients are given in deci­
mal form rather than fractional form. For calculations with large digital com­
puting machines, the decimal form is more convenient, but for elementary 

calculations and for an understanding of the structure of the coefficients, it is 

felt that the form given here has at least some merits.
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II. THE CLEBSCH-GORDAN SERIES

The Clebsch-Gordan series is the decomposition of a direct product of repre­
sentations of the rotation group into a sum of representations. Since the 2/ + 1 

wave functions of angular momentum / induce a representation of the rotation 

group, the series allows us to decompose the product of wave function into a sum
of wave functions and hence becomes the mathematical basis for the vector model

, + 4,5,6of the atom.

A wave function iAJ1 of a Hamiltonian which is invariant to rotation of coordin­
ates can be represented in its transformation properties by the monomial

(2j)!(-iy-mg+mr,i-m {1)

/(/ + m)! (/ - m)!

a'-m b>+m
where (£ ??) is a spinor. This is just the coefficient of ................... -

/(/ + m)/(; - m)!
spinor-invariant

in the

(-ary + b£)21 ...(2)

where (a, b) is a constant spinor. We are interested in evaluating the coefficients 

in the expansion

•H-K
jm

...(3)

or, since the transformation can be taken to be real and unitary, in the expansion

JAV
...(4)
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We form an invariant

<5 = MY + BX)Z’ ...(5)

where (<4, B) is a constant spinor and Y) an arbitrary spinor. The terms 
x>+m yi-m of the expansion of <t> transform like the wave functions xfj™

We also write S> in the form

<D = (-Ar, + BO^-At)' + BZ')^-^' + . ...(6)

The spinor ( £> ^ shall be associated with the wave functions </^ , and the spinor 

(£'77') with the wave functions .

We must obviously have a + fi = 2j , since in the form (5) , $ is a homo­
geneous polynomial of degree 2/ in A and B , while in the form (6) it is a homo­
geneous polynomial of degree a + (3 . We shall not yet specify the values of 

a, {1, y any more completely.

Expanding the two expressions for ‘l’ and equating them we have

z
m — -

(-l)i-m(2j)!X'+mY>-m 
(/ + m)! (/ - m)!

£j-m ftj+m

...(7)

a /3 y

‘III
p = o q=o r-o

a! p! y! (-l)P+1+rvP + 'Y-r£;a-P+rTi'(l+r g'P-q + y-r 
p! (a - p)f q! (p - q)! r! (y - r)!

AP+<t b v+P-p-q

Identifying coefficients of like powers of Ai~m B’+m , we have

p + q = j ~ m a + P - 2j , ...(8)
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and since we want to identify the monomial rjp+7 r£a p+'’with the wave function 

and the monomial 7?'9+r^'^_9+'y~r with the wave function we also have

a 4 y = 21 a - y - 2{p - r) = 2fi

P + y = 2s + y - 2{q + r) = 2v

Since (5) and (6) must be finite polynomials, a , ft, y must be integers and / 
can be only integer or half integer; hence

...(9)

s , /

a = j + l - s 

P = j + s - l 

y = l + s - j

q = s - v + r

m ^ p + v ...(10)

p = j - p - s + r

We see from this that / , s, j must each be integral, or one integral and the two 
others half-integral.

This gives us

(-l)/-m(2/)/y/+m y/-m

( / + m)! (/ - m)!

= z z
v=l—j~r r=0

{] + l - s)Uj + s - l)!(l + s - f)!{-l)i->n+r £'S+v r,*-"
(j - p - s + r)!{l + p - r)!(s - v - r)!(j - l + v + r)fr!{l + s - / - r)!

p + v = m ...(11)

The implicit condition on the indices is that the factors in the denominator of (11) 
must be factorials of non-negative numbers. (We may allow the indices to run 

over all values if we recognize that the factorial of a negative number is infinite; 

hence terms containing them in the denominator vanish). This condition gives 

us other important relationships:

j + l - s > 0

j + s - l >0 -s ± v <s ...(12)

i + s - / 2i o
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If we now replace the monomials in (11) by wave functions according to (1), 

we have

= C/s//(/ + m)!(j -<m)!
(j + l - s)!(j + s -

(2/)/ (2 s)T
l)!(l + s - /)/

^ Z Z
Al + ~ ix)!(s + v)!(s - v)! \-\)i~l-s+r^~v^

(j - m + - s + r)!{l - m - v - r)! (s - v - r)!(j - l + v + r)!r!(l + s - j - r)!
(13)

where the constant C[s- has been introduced because the set of functions and 
(-iy-m(2/)/ £i+>n r/~m

the monomials —---- ---- are not equal but only have the same trans-
/(/ + m)!(j - m)!

formation properties. That Cls- does not depend on the magnetic quantum numbers

mins can be seen if the identification of monomials with wave functions is made

in Eq. (7), which is a function only of Is/. 

We therefore have

a!s^ = C, . z /(/T^)7T7^mT7TI-r75r(r^~fd7(s-rid7(7^v)7(/ +1 - s)!(/ + s - i)!{i + s - /)/(-!)(
/m Isj 2_, (2/)/(2s)/(/ - m + i/ - s + r)/(Z + m - v - r)/(s - u - r)!(f - l + u + r)!r!{l + s - / - r)!

...(14a)

or

. ^ (-l)r /(/ + m)/(/ - m)!(l + - n)!(s + v)!(s - u)!
A, rLJ/ — ft . \ ------------------------------------------------------------------------------------------------------------------------------------------ -----------------------------------------••

jm Isj ^ (j _ ^ _ s + r)!(j + u _ j ¥ r)/(/ + n - r)!{s - v - r)/r!(l + s - j - r)!
...(146)

H + v = m

the summation over r being taken over all values which do not make the denomin­

ator infinite.
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We must now evaluate the coefficient Bjs/- . To do this we impose the condition 

that the transformation shall be unitary. Since the A's are real, this condi­

tion becomes

z jm

2

= 1 ,..(15)

This is most easily carried out for the case m = j , since then the sum (14) 

reduces to a single term. Since Bl . is independent of m, such a choice will not 

affect the applicability of the solution to cases where m £ j . For m = /' we have 
H = j - v, r = s - v, and

lis/_vv (-1)s-M2/)/U + / - v)!{l - j + v)!i.s + v)!{s - v)!
~ lsi (1 + j- s)/(/- l + s)!(s - V)!{1 - j + v)!

BlsjA2])h-l)s-v

{l + j - s)!(j + s - l)! '
(Z + / - u)!{s + v)!
il - j + iAUs ->v)!

Then (15) becomes

Bfsj(2j)! (I + j - v)!(s + u)! 
[(I + j - s)! {j + s - l)!? - v)!z = 1

We write this as

(Z
B?sjW!____  ^ fz + /-A/ s + , \ = i

+ j - s)!(s + j - l)! £-> \s-vJ\l-j+v/
v=l-j

...(16)

...(17)

...(18)
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where is the coefficient of * in the expansion of (1 + x)a:

a\ «(a - 1) (a - 2) .,, (a -/3 + 1) ^ (/8 - a - 1) (j8 - a - 2).. . (1 - a) (-a)
P! P!

= (-1)^ er) ...(19)

Then the sum in (18) becomes

z
v=H

l + i-U\l s + v 
s-u I \l = y (-i}~1 + vj ii-j

s+i-j A - / - s -
S - 1/ ] \ S - v

(_!)*+/-/(^ 2; 2 l + s + j + \
l + s - jl l l + s - j

...(20)

The summation of the binomial coefficients is verified by identifying the coeffi­
cient of xl+s~i on each side of the identity

(1 + xY-l-’-'(l + xf-’-s-' = (1 + x)-2>-2 ...(21)

Solving (18) for B2s- , we then have

2 (l + s - j)!(s + j - l)!U + s - f)!(2j + 1)

Bls> = U + s+j + l)!
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hence, we now have from (14)

^Istxv _ 
jm

(l + s - ft!{I + j - s)! (s + / - i)/(2/ + 1)
(i + s + / + 1)/

gM+v
m

X z
r

(-l)r nI(; + m)!(j - m)/(/ ^ ^)/(/ - rf!(s + v)!(s - w)/
(/ - - s + r)/(; - l + v + r)!{l + n - r)!(I + jj. - r)/(s - i/ - r)!r!(l + s - j - r)!

...(23)

The coefficients are tabulated in the following pages. Since the wave
functions are representations (Darstellungen) of the rotation group, we have 

labeled each table with the heading x Ds • The symbols on the left stand for
the product of any two wave functions with l and s given by the subscripts and 

and v given by the superscripts. The symbols along the top of the table again 

stand for wave functions with subscript / and superscript m . The element 

then stands at the intersection of the row labeled UftV* and the column labeled 

Wp ■ All empty intersections are zero. Each sub-matrix is then an explicit 

example of the general group theoretical formula

+ . ..-(24

The coefficients A may also be thought of as a transformation of coordinate 

axes in function space from one set of orthogonal "base vectors" e^v= ^ 

to another orthogonal set £jm = i/^" .

Algebraic tables are given for D^xDj, D, x Dj , and D,^ x D; . A table for 
D x D, has been given by Condon and Shortley.7 Falkoff eZ aZ. have published

2 l g
a table for D x and recently Melvin and Swamy have filled the gap with 
DJ/ax Dr
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III. SUMMATION FORMULAE INVOLVING CLEBSCH-GORDAN COEFFICIENTS

In Section II, certain sums of matrix elements appear in the equations for the 

scattering cross section. Specifically, we have sums of the type

F. mjmi
m m- m i s m m - m 

/ s

with various conditions on the summed indices. The matrix elements M can be 

written as

m m.ms - 1 a
jsm.m T Im^.n 

A l s A ‘ TATmT AJM

Tm-.

IsThe matrices A are unitary, and hence

F jm .' /
' / m

$/r ...a)

and

F ^Is^v v'
jm1 jm MM ...(2)

which follow directly from the condition that Als is the transformation matrix 

from one orthonormal set of base vectors to another.
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...(3)

We need also the relationship

I Aisn.v Aisn'v ^ x (=iLLis /
jm jm MM 2/ + 1 ^

To prove this we make use of Schurr's lemma^ that if the matrix commutes 

with every matrix of an irreducible representation then Z is a multiple of the 

unit matrix.

We first show that is a scalar (i. e. , thait PRA.l̂ v = , where PR is the

operator which subjects the coordinates of the wave function to a rotation R ):

hence

PoA}^v= (Pr^R jm PrV"

V D^1)* {<}>/ ijiv', HJm') D^i)
L-j M M v v vs ‘ Yj ' m n,
I f Iv m

I
/ / 1fj. v m

o o

Isnv Istx'v' (j)
A.II A- > D 'jo- jm mm

-1 

j'm a cr

(/)* /smv (/) 
s.-s . D ,A.r, D '
jj m a 00- j a mm

D
(/)’

(7CT

(/) /smv Is^lv
D /4. / = /4.am jo- jm

*The evaluation of this sum has been given by Breit and Darling (G. Breit and 
B. T. Darling, "Note on Calculation of Angular Distribution in Resonance 
Reactions," Phys. Rev. 71, 40Z (1947).) 

tSee p 83 of Ref. 4 for a detailed discussion of Schurr's lemma.
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Therefore,

PRX^‘ = Xw' =prYj (^V’ v (^r> ^ }

^ ^ ^M"v'j:/) J/) Js^'v" J^l) n(s)
D i A. / D * D » A - it D m i D aH v v jm rn m mm jm fi fj, v v

n mmv fi i±

Z (0* Isfl'v' lstl!"v' (l)
/>» /to' mV’

/ / /» /// m v i± p

Z(/)*
D /; Y « Z) '

MM mm M M •
// III

M M

HenceA^' commu/tes with the irreducible matrices D^1\r) for any /?, and 

therefore we can conclude that

a:...- = A/s'8
MM MM

The evaluation of A'*®7 is now simple. We simply sum and obtain

Y *MM = (2/ + 1UW

Z lsfMV IsflV _

A’m ^ = £1 = 2) *1 ■ 
fivm m

Hence A-^7 = ^ + ^ . This establishes Eq. (3). We now wish to sum the 
2Z + 1

squares and products of matrix elements appearing in the cross-section formula.
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£
in

i s

I mm:m„ I ; s
Z'r—v 4ismimc TlTnTm2^ aT ^mj, A/M

m m-m T 77i r 1 s

ZV jsmjms Jsmims JlmTm ARlmRm
2_j aTaRATmT ARmR AJU AJM

771771- 771^ TRmjTTl^

from which

V M;W/ 2 V V ft A TlmTm Rim Rm2^ mm/'ns = aT aRbTRbmTmRA ]M AJM
771771.771 1 $ TR 771771 fji 771

...(4)

Another important sum is obtained by summing the same matrix elements over a 

different set of indices:

I MJMl
~77l 771-771 

] J
T lm rji 771

A Tajm

2

2/ + 1 
21 +- 1 .(5)

The third important sum is obtained by squaring the products of matrix 

elements:

I
mm.ms

Mmjms

JMl JMl
M / / Momj m mmjm
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IV. TABLES OF THE CLEBSCH-GORDAN COEFFICIENTS



TABLE I

IP'”rZ+!4
mm
Wl-%

f/m+14 V~% l - 71 + Vi l + m + Vi

> 21 + 1 > 21 + 1

l + m + /j l - m + V2

'4 > 2Z + 1 > 21 + 1

TABLE II

wmWU\

Uj”*' V~'

ur v,°

(l - m + 1) (Z - m)
(2Z + 1)(2Z + 2)

2(1 + m + 1) (l - m + 1) 
(21 + 1)(21 + 2)

(l — 77l) (Z + /7l + 1)
Z(2Z + 2)

n1Z(Z+ 1)

Z/f'1 F1
(Z 4- m + 1) (Z + m) 

n v2Z + 1) (2Z + 2)

(Z + m)(Z -'m + 1)
1 Z (2Z + 2)

(Z + m) (Z + m + 1)
J (2Z) (2Z + 1)

2(Z - m) (l + m)
J (2Z)(2Z + 1)

(Z - m)(l - /7I + 1)
< (21) (21 + 1)



TABLE III

Ji_xJ2va

wi+'/i i-%

m 4-s4 %11 VUl \ (2/ + l)(2i + 2) (2/ + 3)

U - m - %) (l - m +%)(l - m + l/2) 3{l - m - %)(l - m + '/2) il + m + '/]) /3U - m + l/2) (l - m + (l - m - \) (l + m - %)(l + m + l/2) (l + m +
(21 + 3) (21 + 1) (2D (21 - 1) (2/ + 1)(2( + 2) (2/ - 1)(2D(2Z + 1)

m + .Vj -V2 
“i v%

m-% %
Ul

3(( + m + s/2)((-'fn + !/,)(/ - m + Vj) ^ Q , I (l - m + \ 
(2/+ l) (21 + 2)(2Z + 3) + '7‘ + ^ v(2( + 3)(2Z + 1)

Vj)
l)(2i) -(/ - 3m -

3(J + m + *4)U + m + VjMZ + m + ’,£) / (Z + m + ‘4)
(Z - 3m + /£) /——.. -(Z + 3m

(2Z+l)(2Z + 2)(2Z + 3)

1 (Z + m + v2) Z3(Z - m - *4)(Z + m - V2)(z + m + *4)
(2Z - 1) (21 + I) (2Z + 2) '\/ (2Z - 1) (2Z) (2Z + 1)

j (l - m + V2) ^3(Z - m - ‘4)(Z - m + V2)(Z + m - V2)
(2Z + 3) (2Z + 1) (2Z)

ul y%
(l + m + lft(l + m + */2)(Z + m - Vj) 3(1 + m - l/2)(l + m + l/j)(Z - m + *4) / 3(Z - m + ‘/^(Z - m + '/)(l + m - %) (l - m - l/2)(l - m + Va)(Z - m + s/2)

(2Z +1) (2Z + 2) (2Z + 3) (21 + 3) (2Z + 1) (2Z) (21 - 2) (2Z +2) (21 + 2) (2Z-1)(2Z)(2Z+ 1)



TABLE IV

Dy,2L^

1^0 ^-0

V VI//2 F4v2 v2
1

V -Vu2 v 2 v2 v2
_y v1/ 4 F4
V2 V2

t n- 
4 2 4 2

t _rr
4 2 4 2

-V -Vu 2 v 2 % v2
1

TABLE V
P,J<JDy,

ZZ



TABLE YI
Dy2L_Py2

IT® WW' W
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TABLE VII

U? V,
'J 2 'I

24



TABLE VIII

n

H5/J Vj v211/ 11/w% w% R/ /j IT /s (f/-^ 1)7 /3% Va if'' 3 n1”/j ^4 V2 W%
1/

1

(/’ F /j uz Kya

FT” [i-N 5 N 5
nr nr

nI 5 'IS

3 _nr
5 4 5

4 1
'5 'is

I/-

I/- %
%

1
5

4
n 5

1
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TABLE XII

Dv, x Ds/

n 20 n 4 n 20

20 ^ 4

29



TABLE XIII

-Paii-Dy,

U' V,

30



TABLE XIV
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TABLE XV

D

r_rr ri

r rr
35 n 35

7 J 35

32



TABLE XVI

£»4*J?ya



TABLE XVII

Oa- D.

x rr n

28 4 12 J 21

U° V'
28 4 12 4 21



TABLE XVIII

D.. X D;'k

5 “>J 14 >1 10

112 '121

35



TABLE XIX

w; *

vi V'

u' v;

[14 -llO

v:' v;

u° y”

t rr

36
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