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A method of abtaining the few-group form of the P, and double-
P, equations is given for slab geometry. Anisotropic scattering
is allowed within specified limitations. The difference equa-
tions and associated recursion relations are discussed; the fea-
tures and restrictions of FLIP are explained, and & detailed
discussion of the input and output is presented. Operating
instructions are given, and a sample problem is included.

FLIP—-AN IBM-704 CODE TO SOLVE THE PL AND DOUBLE-PL
EQUATIONS IN SLAB GEOMETRY

B. L. Anderson, J. A. Davis, E. M. Gelbard, and P. H. Jarvis

INTRODUCTION

FLIP, a reactor design code for the IBM-704 computer, uses the PL and double-PL approxima-
tions to solve the one-velocity, one-dimensional transport equation in slab geometry. The following
approximations are available in FLIP: P3, PS’ P7, double'-Pl, double-PZ, 'and‘double-P3. For all
approximations, flux components are computed over a mesh of, at most, 500 intervals, distributed
through a slab containing no more than 50 homogeneous regions. The source function is assumed to
be isotropic, but it may vary from mesh point to mesh point. Anisotropic scattering is permitted
within limitations which will be clarified in the following sections.

DEVELOPMENT OF THE METHOD

Conventional PL Approximations

Essentially, FLIP is an extension of the IBM-704 SIMPL codes (Ref 1). The method used to
derive the P, SIMPL equations may be applied directly to the higher PL equations as well. The
resulting second order differential equations can be written in the form (Ref 2)
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Further,
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The coupling parameters

All the FL (the Legendre coefficients of the flux) may be expressed in terms of @
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The source, S, must be isotropic but may vary from point to point.
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All of the previous equations have been written explicitly for a P approx1mat10n Corresponding
relations for a P approximation may be obtained simply by deleting all fourth group parameters.
Py
noted that D; and ¢, are so defined as to guarantee the continuity of

relations remain when both the third and fourth group parameters are suppressed. It should be

%
) i 9x
across interfaces.

FLIP solves Eq (1) by a Gauss-Seidel iterative process. Assume that the kth iteration has been
completed, and that k'h iterates, (p(k), of ¢ are available in all groups. These are inserted into the
right-hand side of Eq (1), and a (k+1)t iterate of 2 is computed. Now (p&kﬂ) and the kth iterates of -
all other ¢'s are inserted into the right-hand side of Eq (1), and ¢ is computed, etc. After each

iteration, the function F( ) is computed at every mesh point n from the relation

(9, M (k-1) (k-1) 48  (k-1)
Fom = #in =3 P+ 13 5 ‘Psn - 105 Pan : (8)
and divided by Fa '), yielding
(k)
F

(k) _ _“On
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The iterative process terminates when

<e€

(k)

[)‘n :lmax -1
(k)

|:)‘n ]min -1

for all mesh boints, and for an € whose value is supplied as input.

and

<e€

0 _ o

It has been found convenient to start the iterative process from a zero guess, ; , in all
groups. The first iterate of the scalar flux, F(ol), is then identical with the P1 solution. With an €’
of 0.00005, which is more than adequate in practice, convergence requires about four to ten itera-

tions in all PL approximationsg.

Extrapolation of the iterative process is available in FLIP, as in the WANDA code (Ref 3), but

because of the rapidity of convergence, its use has never been necessary.

Double-P. Approximations

L

The derivation of the FLIP double-P equations is not completely straightforward and will,
therefore, be discussed in some detail. Amsotropw double-~ P equations have been developed by
Mertens (Ref 4). These will be written, first, for a double- P3 approximation. Equatlons for lower
approximations will be obtained by deleting terms from the double- F’3 equations.

In double-P3, then,
2% 3y
1% 1 W B 1 3 7 11 15 o
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* The word '"group' is used in this report in an artificial sense.
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Here, the scattering cross section is truncated at 257. The Y's and x's are the usual half-range

moments of the flux,

1
(18)

0 _
xp )= [ Pl 0P G df

while F, and f; are double-P, expressions for the full-range moments:
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The symbol fL denotes-a full-range moment which cannot be represented exactly in a given half-

range approximation.

The double-P eduétions may be obtained by deleting all terms containing scattering components
beyond Z} 3 and moments beyond 1}/1 and x, from Eqs (10) through (17) and from Eqs (19) through
(26). These may be wrltten in terms of the approximate full -range moments:
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When the odd full-range moments are eliminated, the result is two, coupled, second-order

equations of the form of Eq (1), where
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o S IR P Sl v AR b 2P S (35)
1 =1 .
M =3z Dy =153 ¢ (36)
\ 3
_3 =3 .
VTG By ¥ T Ey (37)
A =1, A, =-> (38)
1 v By

and

3 3 3
Fo=@),~T9¢2 » =59 (39)
1
357 D9,

Second order double-I—’Z equations may, of.course, be derived in a number of ways. For
practical reasons, however, it is convenient to work with equations which are as simple as possible,
and which are formally similar to the few-group equations. For these reasons, two conditions are
imposed on the second-order equations. First, it is required that they have the form of Eq (1) and



second, the quantities

b
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are required to be continuous across interfaces. To meet these conditions, it is necessary to
neglect all scattering components beyond ZSZ' This has been done in both the double-P2 and double-
P3 equations, with the result that the scattering cross section is represented with the same dggree
of precision as the RDR 4 (Ref 5). It should be noted that no such difficulties arise in the conven-
tional PL approximation for any value of L.

Having neglected higher scattering components, one may write the double-P2 equations in the

form
. , , .
F +Z F,= S' , (40)
2F +ilF 4z -z )F =0
372 370 T sl 1 ! (41)
3¢ tEF = =0
St e F (B - B, F,=0 . (42)
17 ! 27 '
T2f4 ' ge T Spfym 0 (43)
16 .+ 31 -
—5f5+ 0f3+2Tf4-0 , 144)
and
5 ! 9 ' f =0
128 f4 "256 F2 * 2pfs =0 - (45)
Here the F''s and f's are defined by Eqs (19) through (24) with appropriate deletions. From the
definitions
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When the odd FL's and fL's are eliminated from Egs (40) through (45), three, coupled, second-
order equations in ¢ result. In the notation of Eq (1), '

Zrp =%, : (53)
Zr2 © 9_56 Z:a + 82_5"1 (ZSO B Zsz) E . (54)
z:T3 =$_3g za + 37TSE'>56 (Zso B %2576 Zsz) ; (55)
Ap=g Azz'%' A3=3_51; ; (56)
e R R A $57)
%31 =--i_;-za ' -al3 =-1_14_752:5. ; | (58)
and
%32 © 7_(5)8 Z, - %@ (Zs0 +1_85é§ Z2) o 9y, =';_7 z .t 58(;%(280 -z, ' (59)

The Di's have already been defined by Eqs (50) through (52).

The procedure used to derive the double—Pl and double-P2 FLIP equations may be summarized
as follows: one writes the double-PL equations in terms of the full-range moments and uses the
derivative terms in alternate equations to define group variables. For instance, from Eqgs {41),
(43), and (45),

Fo+2F,=¢, {60)
21F, +34f, =9, , (61)

and
10 f4 -9 FZ = @3 in double-P2. (62)

'Next, D's are defined in such a way as to yield- analogues to Fick's law (see Eq (49) for example),
and the odd full-range moments are eliminated.

In terms of the full-range moments, the double-P3 equations take the form

1 -
Fl+EaF0=S . (63)
Zg' 4 Llp =0 ' 6
SF,+3Fy +I,F, = . (64)
3,2 _
5F3+5F1+>:?_F2-0 s . {(65)
4. 3 -
T+ F, + T F =0 (66)
83 . 85 _ 5
156 15 ¥ 19z F3 + Zpfy =156 17 (67)
340 320 i
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S =Ly : | 6
gl tgtg+ 2ot =57ty ‘ (69)



and
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If second-order equations are derived from Egs {63) through (70), the resulting Zrs3 will be
negative. It can be shown, in consequence, that the Gauss-Seidel process will not converge for
certain types of problems. This difficulty may be circimvented by reformulating thé equations

in terms of new independent variables:

Hy=gsF4 (71)
=L st
Hy =55 (83 F; = 5F,) (72)
H =—=F, +F (73)
685 FatFg
and
G., - F‘5 + F., . {74)
One then finds that
1 . .
F +ZFy =S . '75)
2.0 L Ll s 6
FE 3 Fe+ 2 F =0, 176
3p!l 4 2F ZIF‘-O : 7
sF3+gF) +Z;F, = , (77)
340 1 3 )
539 Hy +7 Fp + ZpFy =0 (78)
77 0 77 S ‘
320 Hs * 79z F3 * Zpll, =0, (79)
876 ' . 881 ..'
— _— > =
Tei By *ggHg ¥ BH, 20 (R0)
5 3 o
N 340 U7 t3g0 Hs * ZpHg =0 (81)
and
1 X
2 M, +3TH, + 2. G =0 . (82)

924 "6 924 4

Of course, substitutions, Egs (71) through (74), are somewhat arbitrary. They are, however,
designed to bring the double-P3 equations into a form similar to that of the P.7 equations, since the

P7 version of FLIP is rapidly convergent.

In Eqgs (75) through (82) one unsatisfactory feature remains. It is implied in Eq (80) that

93« 876 H6+8'81 H4 , (83)

while, from Eq (82),

(p4oc 3418 H,

6 + 309 H4 . ‘ (84)

So defined, @3 and ¢4 are nearly proportional to each other. Perhaps for this reason, convergence
of a double-P, FLIP, based on Eqs (75) through (82), is rather slow. One additional transformation

eliminates convergence problems.

LY
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- 881 -
H; =309 G; - Hy

The double-P3 equations now take the final form

F +ZaF0 s ,
2 o' ) _
?F2+3Fo+21F1-0 .
3p' .24 .
5F3+5F1+22F2—0 ,

27 0 77 )
340 Hg * 79z F3 + ZpH, =0
876 ..' 881 ' )

924 He T924 Hy t ZpH =0,

309 ' 7227 _
3524 117 Y 74885 Hs + ZpHy =

and

272
2163 H + ZpHy =

The resulting second-order equations have the form of Eq (1) with

Zpy 72, L
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T cRZ t2I,
Sz 25 (g5 4z +535.)+432 3
T3 1463616 a 2 T ;
1 91003 ,
ZT4 = T62624 [73(42:,1*522“ 73 ZT] ;
] 1
D, = — , D, =—
1733 2°7TT,
D. = — 25549 D - 88 .
37 7764608 T, D4 T 14839440 T, ;
- .2 -85 = . L .
Ayl BAy=-5 ., Ag=33 o, Ag=-op
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2 145 73
®2%3Z%; + Y37 75082%a ' 471694 Za
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21°3%, 1 %3 c 30491 vy 10164
- .85 -85 13 ;
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where
and

Also,

~ 2 145 73
Fo=¢) -39, *5082 Y3 " T693 P4 i

1. _145 L 13 ‘
27392 " 10162 %3 * 3388 ¥4 -

fy= 1_;2—2—2 $3 - ngla% Py
te = - 233184 93+ 51505 P4
SRR | b (101)
Fg=- Dz‘P;.
fg = ’%(ZJ‘% D4 '%%D‘;‘P;
:
Hy = - D3,
fy = 32306 P33 '%é;(% Doy
H, = -3fE 0,

—

Convergence of the double-P3 version of FLIP, baéed on Eqgs (86) through (101), is rapid. In this
final form the double-P, FLIP is operational as a production code.

Gray RBoundary Conditiong

The code described in the preceding sections is now referred to as FLIP 1. In FLIP1,
either the directional flux or the current must vanish at each boundary. FLIP 2 is a modified
' form of FLIP 1, with gray boundary conditions applicable at left- and/or right-hand boundaries.

Only the double-P

require that

1 approximation is available in FLIP 2. In this approximation, one may

Yo =2310X0 * 011X - g
(102)
Yy =aXxetbypX)

and/or that

Xp =8 g%y t P ¥
(103)
X} = 8;p¥, +bp¥,)

Here the subscripts L. and R denote the left- and right-hand boundaries, respectively. The a's and
b's, which must be supplied as input to FLIP 2, may be derived from the blackness theory (Ref 6).
At a black boundary all the a's and b's are zero. At a reflecting boundary, a, = 1, b, =-1, and

a2=b1=0.

2
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NUMERICAL SOLUTION

Difference Equations and Associated Recursion Relations

All the approximations discussed previously lead to equations of the form

. . . - . k .
-v- [Dl(x) vq;l(x)] + ZlT(x)(pl(x) = Alsix) + ), aij(x)(p'](x)
=1
(j%#i) i=1
where k takes on values as follows:
k=2 (P3, double-P‘l)
k =3 (P double-PZ)
k =4 (P double-Pj;)
These may be expressed as difference equations and solved by well-known methods (Ref 7). In
brief, one finds for points interior to a region that

i i
i_‘pn+l+Bn‘

n- e ' (104)
n
° . sl 2
i n-1l h™ i _ 3
6{1-11,'6i +Di zT,n'an'l . (105)
n-1 n
. g .
Bl=—DBb oyl (106)
1+6
n=1
and
2 k
i_n |, j
c, = Di A Sn + Z aij,n(pn . (107)
n j=1
(j#i)

Introduction of the variable 6:1 in place of a; is a device which has long been used in the WANDA.
code (Ref 3) to minimize roundoff error.

At interfaces,

5l 2
i 1) % 1w ih' ot
by =71 el T2 5l ZrtY o Zr,D ' (108)
Y B-1 B B
gl
. i L
; By =+ % +3 (ck + vie) , (109)
y 1+
B-1
'
Dln
1 .
P’ (110)
.Dph :
2 k :
i_h® i j k
¢y Di ASB+Z aij,Bq’B , . (111)
B i=1
(j#1)
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and

. h'Z . k ' .
i_ i : J
¢g =" 1 ASB+§ %, BY B .
D
B —
j=1
(G#i) .

where the primed variables represent the right-hand region.

\112)

At the left- and right-hand boundaries, either the flux or the gradient of its even moments may

be forced to zero. The related equations are summarized below. At the origin (n

1) Zero Flux

i _ i
By =¢)
and
2 .
i h 5
=1+ % Zp,
1
2) Zero Gradient
k i
2 [
h i ! 0
By = A's, + g @ =
07 oo 02 ij, 09, 2
0 J=1
(j#1)
and
i h2 i
6§, == X
0 i °T,0
ZDO
Al the vuler boundary (n = N):
1) Zero Flux '
i_
¢N =0
2) Zero Gradient
i i
c B
2N + N‘;l
(pi ) .1 + 6N-l
N 2 . 5
h si + N-1
i T, M i
eDy L +6y
where
k
. 2 .
i _h” [l i
°NTT [ A8 z , %, NPN
N j=1
(1)

Gray Boundary Conditions

The relationship of the a's and b's of Eqs (102) and (103) to the basic equations will now be

(113)

(114)

(115)

(116)

(117

(118)

(119)

shown. Consider a slab with gray (or black) conditions applied at the left-hand boundary. The use
of Eq (102) to substitute for zpo and wl in Eqs (31) and (33), respectively, gives two simultancous

linear equations in Xg and Xy When these are éolved it is found that

12
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(b, - 1) Fy - 3b11f,

Xg = —
0 " fayp, + by - 1) -a, by

and

4
3la v+ D, -3, Fy

Xy = - -
1 (alL+l)(b2L 1) aZLblL

Let these be written as

Xo = A1LFo * BLf,
and
F0 +B

X; = AL aufz

(120)

(121)

(122)

(123)

where the definitions of AIL’ B A B are evident from Eqs (120) and {121). Substitution of

1L’ ""2L' 2L
Eq (102) into Egs (32) and (34) gives

1 _ .
F =3 [(alL tayp slxg + by, tbyy # l)xlil

and

_1 - -
f3°3% [“ ajp, t3aXg # 3 -byp * 3sz)X1:|

which, by means of Eqs (122) and (123), can be written
=1 - :
Fy =2 I:AlL(alL+aZL b +A2L(b1L+b2L+l)] Fo

- ‘
+ [BIL(alL + aZL 1) + BZL‘blL + bZL + 1)] f?_

and

-
"

[AlL(l -2 + 3a2L) + AZL(3 - blL + 3bZL):| Fo

+ [BIL(I -a Lt 3aZL) + BZL(3 - blL + 3b2L):| fZ

If Eq {39) is used in Eqs {124) and (125) to remove FO and fz, the result is

w
oo

¥, =3 [AIL(aIL tayy m D A, by vyt ”] v

3 :
* 16 [(BIL m2A Mayp tayy - 1)+ (Byp - 28,y by by * l')] )

and

-1 - -
f3=3% [AIL(I ajp t3a ) A, 3 -Dby, 4 3bzr.’] @,

3
84 (PFip
These equations can be written, with the aid of Eq (39), as
\ .
"Dy@y T @) +T9,
and

1
"Dy, =0, + T 0

- ZAIL)(I - alL + 3dZL) + (BZL' ZAZL)(3 - blL + 3b2L) (pa

(124)

(125)

(126)

(127)

(128)

(129)

13



where the definitions of the aL's and TL's are obvious from Eqs (126) and (127). If gray (or black)

conditions are applied at the right-hand boundary, a similar technique is used to find the corre-

sponding agy’ TRl v Apos and TRZ' Consequently, it can be shown that

°R1 ©

Tpy =

QRZ =

TRZ =

It now remains to show how the parameters
' (128) and (129) be written as

S B

-T
Ll (130)
T2

" T

in Eq (130) modify the flux calculations. Let Eqs

=1,2
- Dli-dw; = L(pl + E T}_‘cp‘] ; ) . (131)

Consider the left-hand boundary. At x =0, Eq (131) can be written in difference equation form as

. - k
_1 1 .
o= . , ,
- nf [—‘T‘] = o} o} + E Tiel . (132)
v , =
(j#1)

A three-point difference equation in ¢, obtainable by methods cited in Ref 6, is used to eliminate

(pl_l from Eq (132). Suitable algebraic manipulation, together with the use of Eq (107), allows the

resulting expression to be written as

ol
i 91 th
¢q = T . ' (133)
1 -+60
where
_k «l
S P iy, il _ %o
By = —3 |ASy + (aij,O + tL) ol =7 (134)
2D0
=
(j#i)
e 2 i
o, L
and
i2 .4 :
lL, = hTL (130)

At the right-hand boundary, where x = X Eq (131) is written in difference equation form as

¢’i "pi =
ool | PNeL TN L i E ij
Dy Zh RYN * Tron - (137)
i=1
(3#1)
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Manipulation of Eq (137) in a manner similar to that used with Eq (132) permits it to be written as

1 i
N, ON-d
. 3.
i N-1
PN 5 5i (138)
h' 5l p—N-1_ h i
2pi TN gl p: R
N N-1 N
where
k ) .
L i)
cN -F [A Syt (aij,N - tR) PN (139)
N J=1 .
(j#i)
and
i_2.i '
tR % TR . (140)

At reflecting boundaries (or axes of symmetry),ai, tL and/or af,, 'ti1 are zero. Under these
conditions, Eqs {134) and {135) reduce to Eqs (115) and (116), and/or Eq (138) reduces to Eq {118),

respectively.
A SUMMARY OF FLIP CHARACTERISTICS

Features

Flexible Input

For most problems, the usual procedure is to have the code automatically calculate all the
coefficients of Eq {104). The input required for this is called '"regular' input. However, for special
applications ‘it is possible to specify these coefficients directly. Hence, this kind of input is called
"direct' input. Either regionwise or pointwise external sources can be used with each kind of input,
which makes a total of four possible methods of inpiut presentation.

Choice of Output .
For each input method, a total of four output edits is available. With regular input, these edits

consist of various combinations of the scalar flux, its ‘even moments, and the aij' With direct input,
the appropriate group fluxes are printed out instead of the scalar flux and the even moments, and

the convergenoe criterion is based directly an ¢, instead of Fy .

Stopping after One Iteration

Any problem can be Eet to stop automatically after one iteration. Because of the manner in

which iterations ‘are counted, stopping after the first one will give the P1 golution.

Scaling of External Sources

In certain rare cases, a given FLIP-1 problem, usually a double- P approximation, will fail to
converge because the values being computed for the B ‘are creating an underflow condltlon Such a
condition is caused by the computer's attempting to handle numbers smaller than 10~ (except for
zero). It has been found that underflow may occur in a problem where the external source is con-
stant in a region several mean free paths in width. If such an underflow occurs, FLIP 1 automatic-
ally scales the external sources up by a factor of 104 and repeats the calculation. If the problem
converges after sufficient scaling, the print-out will indicate how many times the external-sources
(and consequently, the fluxes) have been scaled. If, however, a total of three such sca'lings is insuf-
ficient to remedy the situation, the problem is automatically stopped. and the region causing the

15



the difficulty is indicated on the print-out. If such problemsA are to be run successfully, one should
remove excessive mesh points in those parts of cells where the flux remains at an asymptotic value

for several mean free paths.

Extrapblation
An extrapolation technique, using the same extrapolation factor on all fission sources, can be
specified. Suppose that for the kth iteration (ng) (i > 1) has been calculated. Instead of using this

value of (pgk)

relation g
[cp?"] ol ve [rpﬁk’ - ¢§k'l’] <o)

‘new

in the fission term of Eq (104) for the next iteration, it is modified according to the

If extrapolation is specified, FLIP will wait until the third iteration to begin extrapolating.

Problem Running Time

The actual running time for most FLIP problems, with a convergence criterion in the order of
‘0. 00005 and without extrapolation, ranges from less than one-half minute for the smaller P3 and
double-Pl problems to about nine or ten minutes for the largest P., and douhle-P, prohlems. The
number of iterations usually increases with the higher approximations, but it should seldom exceed
fifteen; sometimes, for a P3 or clouble-P1 approximation the number of iterations is as low as four

‘or five.
Restrictions

Geometric Restrictions

A maximum of 500 mesh intervals and 50 homogeneous regions is allowed with FLIP 1. For
FLIP 2 this becomes 250 mesh intervals and 25 homogeneous regions. Only slab geometry can be
used.

Mathematical Restrictions
FLIP 1 handles the P3, PS’ ‘P7', double-Pl, double-PZ, and double-P3 approximations. The

boundary conditions are either zero current or zero flux. FLIP 2 allows any degree of grayness,

from feflecting to blackness, for its boundary conditions. Grayness may be specified at either one
or both boundaries. When it is specified at only one boundary, the conditions at the nther houndary
are specified as in FLIP 1. Only the double-P, approximation is available in FLIP 2.

Computer Restrictions

The minimum computer requirements are a 32,768 word core storage unit, one tape unit, an

on-line card reader, an on-line printer, and an off-line printer. No drums are used.
PREPARATION OF INPUT ‘

FLIP 1 Input Data

Title Card
Columns
02 - 06 FLIP
07 - 72 ' Problem number and any ather information the requestor

wishes to use for identification purposes

Control Card No. 1

Columns
01 - 04 Catjd number (0001)
05 - 08 Type of approximation (0003, 0005, 0097, 0021, 0022, 0023)

16



09 - 12
13 - 16
17 - 20 :
21 - 24
25 - 28
29 - 32
33 - 36

37, 38 - 43, 44, 45

46, 47 - 52, 53, 54

Number of regions < 50

Number of points < 501. This number, which includes the

origin-as point No. 1, must be odd.

Left boundary: symmetric (0001), nonsymmetric (0000)
Right boundary: symmetric (0001), nonsymmetric (0000)
Type of input: regular (0000), direct (0001)

Type of output:
(0000): F,
(0001): FO
(0002): FO’ FZ’ (F4), (F6) at all points
(0003): F FZ' (F4), (Fé) at all points, aij for all

at all points
at all points, aij for all regions

0 ’
regions

Type of source: regionwise (0000), pointwise (0001)
Sign, convergence criterion (floating point), sign, exponent

Sign, extrapolation factor (floating point), sign, exponent

Note: Floating point numbers are written to the base 10. For example, a

convergence criterion of 0.00005 should be written as + 500000 - 4.

Control Card No. 2

This card controls the option to specify fuel regions. If none are to be specified, place zeros in

columns 5 - 6.

Columns
01 - 04

05 - 06

07 - 08
09 - 10

11 - 12

etc.

Geometry

01 - 04
05 - 08
09 - 12
etc.

Mesh Spacing

Columns
01 - 04

05, 06 - 13, 14, 15

16, 17 - 24, 25, 26

Card number (0002)

Total number of fuel regions

Region number(s) of the fuel regions

Card number

_Interface numbers and the outer boundary. These numbers

must be odd, counting the origin as point number one. Use

as many cards as neccssary.

Card number
Sign, mesh width (floating point), sign, exponent

Sign, mesh width (floating point), sign, eiponent

17



27, 28 - 35, 36, 37 Sign, mesh width (floating point), sign, exponent

38, 39 - 46, 47, 48 Sigh, mesh width (floating point), sign, exponent
49, 50 - 57, 58, 59 Sign, mesh width (floating point), sign, exponent
60, 61, 68, 69, 70 Sign, mesh width (floating point), sign, exponent

Use as many cards as necessary.
Source

Sources are listed, using the same format as the mesh spacing. If a regionwise source is

specified, there must be a source for each region.

If a pointwise source is specified, there must be a source for each point and an interface source
for each interface as well as one at the outer boundary. To list the interface sources, start a new
card after all pointwise sources have been listed. Since a double-valued source is not used at the

outer boundary, a zero must be used at this point.
Sigmas
List the sigmés in the same format as the mesh spacing.

a) P, and double—P1 require one card for each region, containing

Card number, Za, Z ., 25 y 2. Z:S

S S
0 1 2 3
b) Double--P? and double-P3 require.one card for each region, containing
Card number, Ea, z ., Z‘.s , = :
So 1 S2

c) P5 requires two cards for each region, containing

Card number, Za, ZS , Z}s y ZZS , Zs
0 1 2 °3
Card number, Z_ , Z
S4. S5 ‘ :

d) P7 requires two cards for each region, containing

Card number, Z, Z_, Z_, Z_, Z_

. 0 1 2 3
Card number, Es , .ES , Es_, =

. 4 5 b v

List all the sigmas for the first region, followed by all the sigmas for the second region, etc.

s

Direct Input

List the data through the sources in the manner described aboyve. ‘However, instead of speci-
fying values for the sigmas, the requestor must supply values for Di' zTi' Ai' and ;..

a) Di: There will be one card for each region, containing
Card number, D,, D,, (D;), (Dy)

If any of the Di do not apply to the approximation, their space on the card may be left blank.

b) Z Use one card for each region, containing

Ti' :
Curd number, £, ., {(Z,.), (2 )
TI T2 T3 : T4
c) Ai: One card, containing
Card number, A, A,, (A,), (A,)

d) R Use either one or two cards per region, depending upon the approximation,

containing

Card number, @ o0 ¥y @3, @310 p3 @3,

Card number, 014, 041, @ygr Qo0 P3gs a43
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One Iteration T T

One- iteration problems may be done by setting the convergence criterion to zero. First group

fluxes will be calculated and printed.

FLIP 2 Input Data

The input instructions are identical with those of FLIP 1 except for the following differences:

Title Card Changes

Columns
02 - 06
07 - 72

Control Card No. 1 Changes

Columns
05 - 08
09 -12
13 - 16
17 - 20
21 - 24

FLIP 2

Problem number and any other identification

Type of approximation (0021)
Number of regions < 25

Number of points < 251. This number, which includes the

origin as point No. 1, must be odd.

Left boundary: symmetric (0001), nonsymmetric {(0000),
grayness (0001)

Right boundary: symmetric {(0001), nonsymmetric (0000),
grayness (0001)

All other necessary information regarding. gray boundary conditions appears on additional

cards which must be put at the end of the deck. The numbering of these cards must be

consecutive with the rest of the deck. The order and description of the additional cards

are given below.

Gray Boundary Control Card

Columns
01 - 04
05 --06

Gray Boundary Input Parameters

Card number

Gray boundary conditions: no grayness at either boundary
(00), grayness at right boundary only (01), grayness at left
boundary only (10), grayness at both boundaries (11)

If no grayness is specified the gray boundary control card is the last card in the deck. If gray-

ness is specified at only one boundary, one additional card containing a, bl’ as, bz, is necessary.

If grayness is specified at both boundaries, two more cards are necessary. The first must contain

a), by, 2y,

left boundary.
Columns
01 - 04

05, 06 - 13, 14, 15

16, 17 - 24, 25, 26

bZ for the right boundary, while the secohd must contain these four parameters for the

'

Card number
Sign, a, (floating point), sign, exponent

Sign, lc:1 (floating point). sign. exponent

19



27, 28 - 35, 36, 37 _ Sign, a, (floating point), sign, exponent

38, 39 - 46, 47, 48 Sign, b2 (floating point), sign, exponent

OuUTPUT

Output information will be printed in the following order:

H

2)

3)

4)

5)

6)

7)

8)

A listing is made of the data deck.

The calculated group parameters, DY, Z,lr, and Al, are listed for all the regions for the
first group, followed by all the regions for the second group, etc.

The aij will be printed if requested. The values are read as if they were the columns of a
matrix: L R s T L P Y L etc., and there will be a set of these for each region.

Values of )\ and \__ . will be pfinted after each iteration except the first. These€ values
max min

must approach unity in order for convergence to take place.

If one of the Fon's, which appear in the denominator of the ratio Ay is very small or zero
except at a nonsymmetric boundary), the ratio cannot be computed, and a test for con-
vergence cannot be made. However, a test will be attempted after the next iteration.

Hence, there-may be certain iterations for which no values of Amax and Amin 2F€ printed.

If the underflow condition occurs, the sources will be scaled by a factor of 104, and the-
calculation which caused the underflow will be repeated. Each'time the sources are scaled,
the scaling factor will be printed. After scaling has occurred, the iteration counter will
not be reset, and values of )‘m'ax and )‘min w_ill continue to be calculated and printed. If,
after scaling the sources three times, the underflow condition persists, the problem stops

and prints out an indication of the region which causes the difficulty.

The point number, radius, and fluxes will be printed after convergence has taken place.
For regular input, the Fn'.s.will be printed; for direct input, the (pn's will be printed. If it

was necessary to scale the sources, the fluxes will have been scaled by the same factor.
The width of each region is listed.

T'he following integrals, calculated over each region by means of Simpson's Rule, will be

printed;
a) [z Fjax
b) IFodx

If the requestor wishes, the above integrals will be summed over fuel and non-fuel regions.
This option is under control of input card No. 2. The sums of the integrals will be printed
in the following order:

a), 2_: JlFodx for fuel regions
b) ZJZaFde for fuel regious
¢) Z fFodx for non-fuel regions
d) z f).’:aFde for non-fuel regions

Balance checks are calculated for each region and for each group.

Let the boundaries of a region R be atn and N, as shown in Fig, 1.

20
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where S,lr is the total source (fission + slowing down
+ external). Integrating the right-hand side of Eq

J:, . ‘ o Jll\l (141) across the region R, one may write
1. B~ o B . i 1 .
‘R C TS DR N G (142)
. - _ IS T 4 N
Integrating the left-hand side of Eq (141) in a similar

n n+l N-~I| N manner, one may write
Figure | s ix=N . .
i A A
_5“)1( iR N T P (143)
where
[ i i
. PN - Pl . -
jho=-pt | REL gl Bl ol (144)
and
P! i
. e -@ L
ip=-D %] (ST)rl z}l,¢:1 . (145)
The balance checks are values of (J - J ), which the code calculates by Slmpson s Rule, and of

(_]N - J }, which it calculates with Eqs (144) and (145). A comparison between (JN - ) and (JN ;)
should prov1de some estimate of the adequacy of the mesh spacing for a part1cular problem For

each group, (J . ) is printed out for all the regions and followed by (JN - _] ) for all the regions.

It will be seen, from Eq (49) for example, that the J 's are simply related to the odd moments of

the d1rect1onal flux. The first moment is the current.

If at least one of the boundaries is symmetric, the current at each interface may be obtained
from the balance checks by performing a simple hand computation. From Eq {142), it is evident
that if one starts at a symmetric boundary, the current at the nearest interface can be found. Pro-

ceeding in this manner, it is possible to construct, ‘in order, the currents for all interfaces.
OPERATING INSTRUCTIONS '
General

FLIP may be run either from tape or cards, but tape is preferable. The routine WB CTB 2 is
used to prepare the program tape from al-)solut.e binary and correction/transfer cards.
FLIP 1 '

Printer Board-SHARE No. 2

Tapes—Logical No. 1: Program tape (this is not used if the code is being run from binary cards).
Logical No. 2: Blank )

Sense Switches~All normal

Note: FLIP 1 contains a special device, which is under the control of SSW No. 5, that may
be used for on-line monitoring of thé progress:of any problem. With SSW No. 5
depressed, values for Nmax 20 d.)\ i are printed out on-line after each 1terat10n
If the problem is converging, each of these values must be approaching un1ty This
monitor is not meant to be used as a general procedure, but rather only if a problem

seems to be running a long time.
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Console-CLEAR, LOAD TAPE (or LOAD CARDS)

Card Reader~START

Note:

Any number of problem decks may be loaded into the reader. A blank card must be
inserted after each problem deck, and two blank cards should follow the last problem
deck. Note that FLIP 1 does not read the blank card until after the problem is

finished.

Last Problem Ends-With a SELECT on the card reader:
Pressing START on the card reader causes the following:

(1) An end-of-file is written on the output tape.

(2) The end-of-program stop (14776)8 appears on the console.

Print Output Tape-Program Control

Program Stops

All numbers are octal.

1543
7572

19th

11512

11514
11516

11520

11522
11524
11526
1 1‘550
11532
11534
11536
11540
11542
11544
11545
11550
11552
11554
12757
13002
13022
13036
13301
14667
14776

FLIP 2

22

nvachine error

Probably requestor error in specifying interface numbers. Possibly machine

error. Push START on console to read in next problem.

Cards are incorrectly numbered or out of order. If it stops on reading the

hlank card, there are not eAnough.cards in the deck. ‘
‘ Machine error ' A

Machine error -

Machine error

Machine error

Machine error

Machine error

Machine error

Machine error

Machine error

Machiing error

Machine error

Machine error

Machine error

Machine error

Machine error

Marhine error

Machine error

Machine error ]

Inappropriate character encountered in a data field in reading cards

Inappropriate character encountered in a data field in reading cards

lnappropriate character encountered in a data field in reading cards

Non-Hollerith character encoun‘t‘ered in reading card

Echo check in printing. .Press RESET and START to repeat line and continue.

End of file in reading cards . o

End of program

The operating instructions for FLIP 1 apply, with the following exceptions:



Sense Switches—(a) All normal for off-line output
(b) SSW No. 5 down for on-line output (logical tape No. 2'is not needed)

Note: FLIP 2 contains no provision for monitoring the convergence of a problem. It will

write the entire output for a problem either off-line or on-line, but it will not do both.

‘Last Problem Ends-Same as FLIP 1, except that the end-of-program stop is (14153)8.
Program Stops
All numbers are octal.
7271 Machine error ) ) )
7330 Probably requestor error in specifying interface numbers. Possibly machine
error. Push START on console to read in next problem.
7334 Cards are incorrectly numbered or out of order. If it stops on reading the

blank card, there are not enough cards in the deck.

13003 Machine error
13005 'Machine error
13007 Machine error
13011 Machine error
13013 Machine error
13015 Machine error
13017 Machine error
13021 Machine error
13023 Machine error
13025 Machine error
13027 Machine error
13031 Machine error
13033 Machine error
13035 Machine error
13037 Machine error
13041 Machine error |
13043 Machine error
13045 Machine error
13047 Machine error
13051 Machine error
13053 _ Machine error
13055 Muchine error
13057 Machine error
13061 . Machine error
13063 Machine error
13065 Machine error
13067 Machine error
13071 Machine error
13073 Machine error
13075 Machine error
13077 Machine error
13101 Machine error
13103 Machine error
13105 Machine error
13107 Marchine error
13111 Machine error

23



24

13113
13115
14153

14241
14274
14314
14330
14573
16161

Machine error

Machine error.

End of file in reading cards

End of program

Inappropriate character encountered in a data field in reading cards
Inappropriate character encountered.in a data field in i'eading cards
Inappropriate character encountered in a data field in reading cards
Inappropriate character encountered in a data field in reading cards
Non-Hollerith character encountered in reading a card

Echo check in printing; press RESET and START to repeat.line and continue
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FLIP1 SAMPLE PROBLZM FOR INCLUSION IMN WAPD~TM-134
000100230002092300010001000U00V030000+5C0000—4+0G0000+0

000200

00300110023
06806+12700000+0+41C583333+0
0005+00000000+0+1GUa0U0D+1
5606+10000000+1+30020000+0+000UU000+U+I0T000G0+U+000U00UD+0+GIBLCICUO+0

3007+20000000-1+31260000+1+00000000+0+00000000+u+0GS000V00+0+03000000U+0
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FLIP1 SAMPLE PROBLEM FOR INCLUSIOMN 1M WAPD=~TM=-_34

123 2 22 1 1 0 3 0 CedCONGI93 O

2 NeN==N=)=(=0=0=0==0=N=0=0=0~ 0= N=(=li=N=1=3=N=N=0=N=0=0=(=0=0-0=0-0

3 11 23 =€ =0 =0 =0 =0 =0 =0 -0 =3 -0 =p: =0 -0 .~ -0

4 00127000100 0010583333 -0 - =0 “Ne
5 O 100000000 - -3a =0 ~0s
6 1400200600 N430000000 T D O

7 0402700000 3411999697 De s Os
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GROUP PARAMETERS

[
Me256410E=N0
re109390E=NN
NeT710EBLE=02

NDe456E82E=04

SIGMA TOTAL
N4100000F 01
Ds1166875 01
Ts144057F=N0

De146T37E=01

A
041000908 21

ALPHA({T,J)

n

e
“(1¢285321€£~-01

cl
=Ce570641E=03

Ne1N8157E~0N
Ne454959E-01
04294314E-02

041890736034

D20200000E~01
0:175333F 01
Ne267768E=N1

04311526E=01

~Neb66657F OFC

1)

Ns118056F N1 ~042166675=01

Ceb65657E DO «Na118056E D1

044993)11E~01
0e133333g~N1
0e750394E=01

O
-0¢236111E-01
Ne

Get1¢667E=01
04£08437F=02
0e£33333E-03
0eS43300E-52

NebeBEETE 0O O

04630533E=~01 =047541325~01

0¢133232E=21 0,

0s261355E-03 =Na113935E-01

04206597 01 =0e729167E~01
0e217576E=00 O
Ne3104B6E 01 =Ns1N9583E-00
0e403657E~00 Qo
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ITERATION
ITERATION
1TERATION
ITEIATION
ITERATION
TTERATION
ITERATION
ITERATION
ITERATION
ITERATION

POINT NUMBER

-

ey D@ 1O I

MAXsLAMDA= 1418599050 MINsLAMDA=
MAXeLAMDA= 1401316142 HMINJLAMDA=
MAXeLAMDA= 1400449115 MINJLAMDA=

© MAX2LAMDA= 1400131807 MINsLAMDA=

MAXsLAMDA= 1400024803 MINeLAMDA=
MAXeLAMDA= 1400018603 MINJLAMDAS=
MAXeLAMDA= 1400029315 MINeLAMDA=
MAXoLAMDA= 1,00016854 MINJLAMDA=
MAXeLAMDA=" 1400009735 MINJLAMDA=
MAXe LAMDA= 1400004533 MINeLAMDA=

RADIUS

O .
041270000JE=00
0625359599E=00
0038099999E~C0
0050799999 00
00634999932 00
0476199598E 00
0488899S598E 00
0s10159959€ 01
0e114299S9E 01
0s126999S9E 01
04137583%2E 01
0014816666E 01
0e1587499SE 01
0416933332 01
0e17991665E 01
0619049998E 01
0420108332E 01
0621166655 01
0422224938 01
0423283331E 01

"0424341663E 01

0025399993E 01

7o .
0440992952E=00
0¢41887802FE=00
0ets4531242E=00
0e49407287E=00
Na56548587E 30
0466531014E 0O
0480301062 NO

0198922962E 00

0,12448351E 01
0.16171027E 01
0.23006754E 01
0436557463E 01
0446336315E 0
0,55758391€ 01
0»63478401E 01
0s70172437E 01
Ca75906590F O
(e80718863E O

(48463279BE OL

0s87663814F 0

-CeB9822233E 0L

Ce91114756€ OL
C491545185E 01

0491486744
0493454427
0498420712
0499431303
0499897350
499991928
£e99591538
499994268
499996679
495998210

F2
0414727695E=00
0614924917E=00
0415515279E~00
0416433060E=00
0+17842150F~=00
0419524218E-00
0421456551E~00
0423463550E=00
0425113507E~00
0024843492E-0C
04146095263E=0C

~0417311437E=01

“0463380176E=01

~0484418596E=01

=0494725899E=0"
~0499792038E-0"

-0410221548E=00

~0+10329124E-00

=0410368863E=09

~0410376567E=0)
=0+10371871E-03
~0s10365503E-07
=0410362836E=0D)

7%
09521123776=23
0045€882397=31
00258527772=D2

~0488693934E03

~0161572082E=02
~0112520667E~0L
~02225562659E-01
=0426755811E-01
~0452821651E=01
~04649782826~01
~0¢18360290E-01

0e28315676E=00.

00243254705€=~C1
0e17765163E=C1
Cel2e4787TE-CL
Ce35077415E=C2
0e57133918E-C2
0e37857959E=(2
0e24863559E =02

"0s1€351038E=02

0al1)53237E=02

. e81393493E=03

De72793411E=C3

Fé
~0441895228E-02
=0041762618E=02
=0040944359E-02
=0e38063686E=02
“0030391946E~02
=0413103072E~02

0021913470E-02
0e87287277E-02
0019679661E-01
0432051197€-01
0e24726263E-02
=0¢16009320€E~01
~0467821943E=02
=0022331306E=02
=0e464308313E-03
0617392222E-03
0432895885€=03
0421955788E-03
0¢26481593E=03
0420914961E~03
0016699158E=03
0414170130E-03
0013334854E<03
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REGION WINDTHS
"¢ 1270008 01

Na127000E 21

INTEGRAL OF (SIAHA A3 FLUX )

T108247F N1

INTEGRAL OF FLUX

re108247E 91
BALAMCE CHECKS
GRrOUP 1

~24108247E N1
-7a1092208 01

GECUP 2

"e184€TTE~D0
De195€668E5~00

GROUP 3

~Da190577E~00
~74215559E~00

CRDUP 4

D04 0T038E=N2
N4528856£-02

0e178079E~GO

Me890293E €1

04109192E M
04109220 03

~04183318E-0
~04195658E-0

De183899F-00
0,215559F=00

~04370959E=07
—04528864F=0%

ACROSS SACH RIGION
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