

BNWL-SA. 5100

CON F-741017-20

CRITICALITY OF HETEROGENEOUS SYSTEMS -
UO₂-PuO₂ SOLIDS IN FISSILE SOLUTION
CONTAINING GADOLINIUM NITRATE

R. C. Lloyd and E. D. Clayton

BATTELLE
Pacific Northwest Laboratories
Richland, Washington 99352

July, 1974

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Paper prepared for oral presentation at the Winter Meeting of the American Nuclear Society, Washington, D. C., October 27 - November 1, 1974.

This paper is based on work performed for the United States Atomic Energy Commission under Contract No. AT(45-1)-1830.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

BB

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SUMMARY

CRITICALITY OF HETEROGENEOUS SYSTEMS - UO₂-PuO₂ SOLIDS IN FISSILE SOLUTION CONTAINING GADOLINIUM NITRATE

R. C. Lloyd and E. D. Clayton

The application of neutron absorbers for criticality prevention in fuel cycle operations can permit the safe handling of large quantities of material with reduced probability of criticality. If, however, soluble poisons are to be considered as either a primary or secondary means of criticality control, their use must be based on a firm knowledge of the effects of the absorber.

To provide confirmatory data, a series of criticality experiments was performed to determine the effectiveness of soluble poison (gadolinium nitrate) on criticality of a heterogeneous assembly of FFTF-type fuel pins in Pu-U nitrate solution. The arrangement simulates the simplest approach to a possible dissolver configuration, wherein during the dissolution process, a heterogeneous system of solids in fissile solution (the partly dissolved fuel) would prevail.

The fuel assembly was composed of a lattice of 301 fuel pins positioned in a 55.5 cm ID stainless steel vessel, as shown schematically in Figure 1. This vessel was in turn contained within a larger cylindrical vessel providing for water reflection as shown. The U-Pu nitrate solution, containing varying amounts of gadolinium, was added to the loaded lattice assembly to obtain criticality through variation on solution height.

The experimental data, together with the fuel pin description and chemical makeup of the solutions are included in Table 1. The gadolinium proved to be very effective in this system. In the absence of the gadolinium poison the lattice-solution assembly became critical at a solution height of only 19.2 cm, whereas, with 1.3 g Gd/l the critical solution height was increased to 68.9 cm. The H/Pu ratio for the fuel pin solution combination was ~ 86.

The results of theory-experiment comparisons utilizing ENDF/B cross sections and the KENO Monte Carlo Code will be presented and discussed.

MASTER

TABLE 1

PreliminaryCRITICALITY OF PINS IN GADOLINIUM-POISONED FISSILE SOLUTION

Experiment Number	Critical Height (cm)	Gadolinium (g/l)
115	19.205	0.0
116	23.066	0.25
117	28.227	0.5
119	45.753	1.0
120	64.506	1.25
123	68.862	1.3

Chemical Composition of Solution

Pu	~ 77.6 g/l
U	~ 181.4
Sp. gr.	1.4685
H ⁺	3.25
NO ₃	374.00

Isotopic Composition of Pu and U in Solution (wt%)

	Plutonium	Uranium
239	93.840	235 0.659
240	5.710	236 0.012
241	0.376	238 99.329
242	0.058	
238	0.016	

Fuel Pin DescriptionFuel Pin Dimensions

	OD (cm)	Length (cm)
Fuel Column	0.495	69.22
Cladding (316-SS)	0.584	72.90

Fuel Per Pin

PuO ₂ -U(NAT)O ₂ :	138.4 ± 1.3 g
Pu:	30.75 ± 0.03 g
U:	91.16 ± 1.03 g
O:	16.49 ± 0.17 g

Fuel Enrichment

25.2 wt% Pu

Isotopic Composition of Pu in Pins

238Pu:	0.04 ± 0.01 at%
239Pu:	86.19 ± 0.06 at%
240Pu:	11.88 ± 0.06 at%
241Pu:	1.73 ± 0.01 at%
242Pu:	0.16 ± 0.01 at%

Fuel Density10.35 ± 0.09 g/cm³
(93.34 ± 0.79% theoretical)

$\text{UO}_2\text{-PuO}_2$ SOLIDS IN FISSILE SOLUTION CONTAINING GADOLINIUM

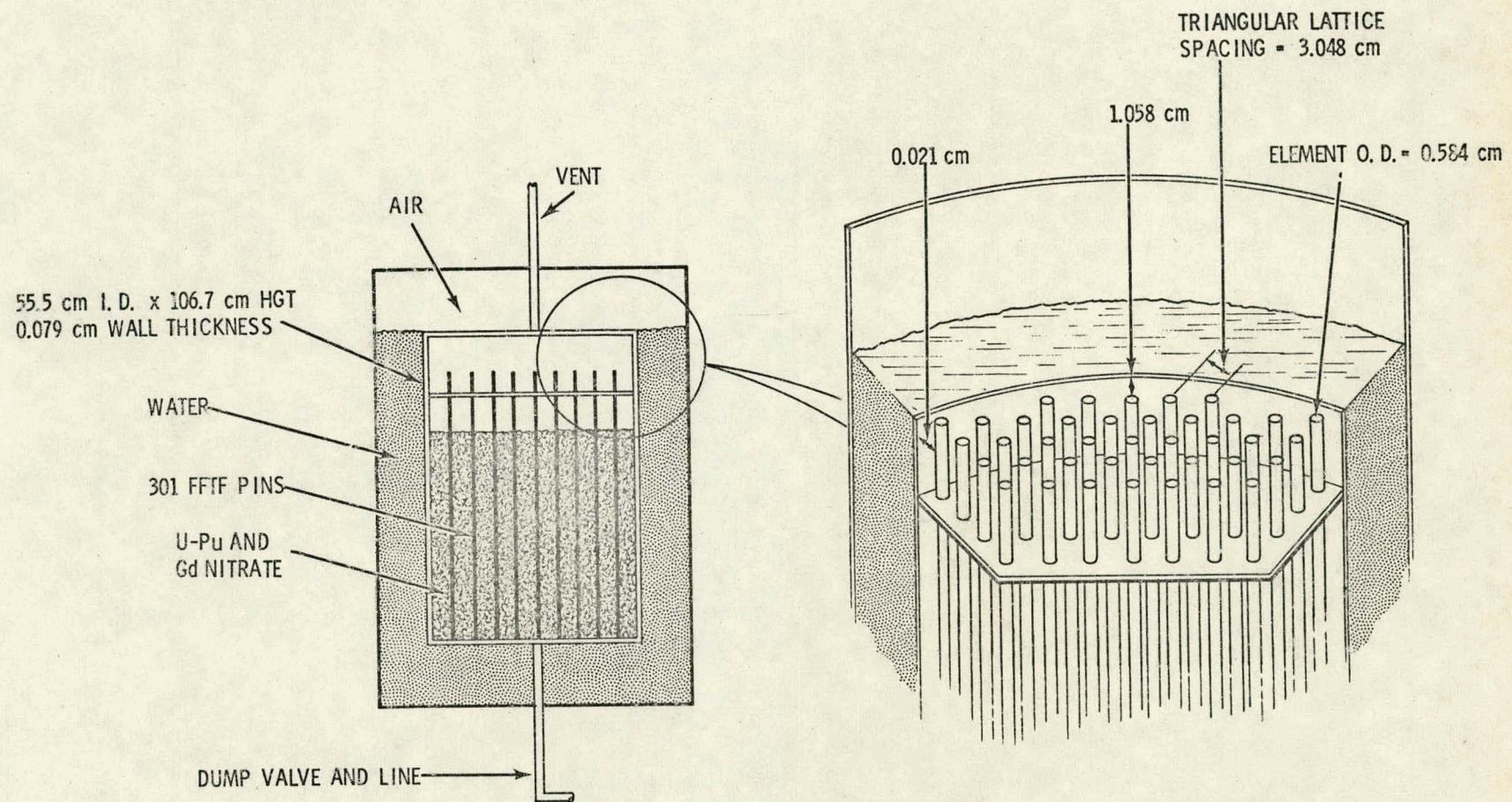


FIGURE 1