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GENERAL SUMMARY 

Work w a s  con t inued  during t h i s  quar te r  on pumper-decanter  e f f i c i ency  s t u d i e s ,  thorium d e c o n -  
t amina t ion ,  so lven t  r ecove ry ,  f luid-bed deni t ra t ion ,  and  f lu id-bed  r educ t ion .  R e s u l t s  a r e  r e -  

ported on t h e  u s e  of t h e  HF-H,O azeo t rope  in green  s a l t  p roduct ion ,  and  on t h e  product ion  of 

d ingot  me ta l  from Canad ian  g reen  s a l t .  

S p e c i f i c  s t u d i e s  a r e  summar ized  as fo l lows  (Roman numeral r e fe r s  t o  t h e  s e c t i o n  on which  t h e  

summary is b a s e d ) :  

I1 n 

111. 

IV. 

V. 

VI. 

VII. 

VIII. 

E f f i c i ency  of t h e  p i lo t  p lan t  pumper-decanters  w a s  g rea t ly  improved by t h e  ma in tenance  of 

i n t e r f a c e s  . 

T h e  low e f f i c i ency  of t h e  D-3 pumper-decanter in  t h e  p lan t  cou ld  b e  s u b s t a n t i a l l y  r a i s e d  by 

a n  in t e r f ace  t o  prevent  backmixing .  

A r ev iew of re f inery  per formance ,  b a s e d  on a co r re l a t ion  of w a s h  r a f f ina t e  d e n s i t y  wi th  e x -  
t r ac t  uranium s a t u r a t i o n ,  showed  tha t  high-thorium product r e s u l t e d  from low e x t r a c t  s a t u -  

ra t ion .  

T r ibu ty l  p h o s p h a t e  r ecove ry  by hexane  s t r ipp ing  of ra f f ina te  c a n  be  g rea t ly  improved through 

t h e  u s e  of a purnper-decanter in p l a c e  of t h e  p re sen t  open  co lumn.  

T h e  pi-lot p lan t  f lu id-bed  deni t ra tor  h a s  been  ope ra t ed  a t  production r a t e s  a s  h igh  a s  500 lb 

UO,/hr-sq ft u s ing  high f eed  concen t r a t ions .  

Cor re l a t ions  of p rev ious  pa r t i c l e  s i z e  and  h e a t  t r ans fe r  d a t a  a r e  p r e s e n t e d .  

A pi lo t  p l an t  f luid-bed r educ t ion  r e a c t o r  wi th  a t a p e r e d  in t e rna l  mandre l  h a s  b e e n  p l a c e d  i n  

s e r v i c e .  T h e  equipment  h a s  performed we l l  in  pre l iminary  r u n s ,  

Equipment  t o  conve r t  low concen t r a t ion  H F  t o  38% H F  by d i s t i l l a t i o n  h a s  b e e n  i n s t a l l e d .  
R u n s  h a v e  b e e n  made  in  t h e  g reen  s a l t  r e a c t o r s  in order t o  s i m u l a t e  t h e  cond i t ions  whereby  
t h e  38% HF wi l l  b e  u t i l i zed .  T h e s e  runs  demons t r a t e  t h e  ab i l i t y  t o  produce  h igh-qual i ty  UF,  

u t i l i z ing  38% H F  to  t h e  "A" r eac to r  t ube .  

Labora to ry  a n a l y s i s  of g reen  s a l t  produced at P o r t  Hope ,  C a n a d a ,  i nd ica t ed  t h e  g reen  s a l t  t o  

b e  approximate ly  comparab le  t o  Weldon Spring ma te r i a l ,  wi th  t h e  e x c e p t i o n  of hydrogen  con-  

t e n t ,  which  w a s  abou t  t w i c e  t h e  l e v e l  found in  Weldon Spr ing  g reen  s a l t .  Metal  from 3300-lb 

d ingo t s ,  p roduced  from t h i s  g reen  s a l t  by t h e  long-soak  t e c h n i q u e ,  had hydrogen l e v e l s  of 

3.9 ppm and  3 . 4  ppm, wh ich  a r e  h igher  t han  is normally found in meta l  p roduced  by t h e  long- 
s o a k  t echn ique ,  

Labora to ry  work for t h i s  quar te r  h a s  been  reported in P a r t  I a s  a s e p a r a t e  volume,  
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P UhIP E R- DECANTER E F  F IC I E N C Y 

J .  T .  Krieg 

D .  A .  Novak 

S .  Simecek 

I. Summary 

A s t u d y  w a s  made  t o  de t e rmine  wha t  cou ld  b e  d o n e  t o  i n c r e a s e  t h e  e f f i c i ency  of t h e  re f inery  
ex t r ac t ion  s y s t e m ,  It w a s  found t h a t  t h e  e f f i c i ency  cou ld  b e  i n c r e a s e d  by a n y  o n e  or com- 
b ina t ion  of t h e  fol lowing modif icat ions:  

1, E s t a b l i s h m e n t  of o rgan ic -aqueous  i n t e r f a c e s  in  a l l  d e c a n t e r s .  
2; Pre t r ea tmen t  of t h e  o rgan ic  f e e d  t o  remove a l l  t r a c e s  of uranium: 

3 .  F i l t r a t i o n  of t h e  a q u e o u s  f e e d .  

T h e  a b o v e  i t e m s  a r e  l i s t e d  in  order  of 

11. In t roduct ion  

i n c r e a s i n g  complex i ty  a n d  e x p e n s e .  

Uranium is e x t r a c t e d  from f e e d  ma te r i a l s  a t  Weldon Spring i n  a s e r i e s  of f i v e  pumper -decan te r s  

u s i n g  a 30 p e r  c e n t  (V/V) T B P - h e x a n e  s o l v e n t .  It h a s  b e e n  shown’ t h a t  t h e  e f f i c i ency  of t h i s  

ope ra t ion  cou ld  b e  improved,  t he reby  r e su l t i ng  in  a r educ t ion  of uranium l o s s  to  t h e  r a f f ina t e  

and  a n  i n c r e a s e  in  product  purity.  ( T h e  l a t t e r  would r e s u l t  from a n  i n c r e a s e  in  t h e  uranium 

s a t u r a t i o n  of t h e  e x t r a c t . )  

It h a s  b e e n  shown’ t h a t  t h e  e s t a b l i s h m e n t  of i n t e r f a c e s  in  t h e  p i lo t  p l an t  d e c a n t e r s  n e a r l y  
doub led  ex t r ac t ion  e f f i c i ency .  However ,  t h e r e  w e r e  s e v e r a l  f e a t u r e s  abou t  t h i s  t e s t  wh ich  

were  un ique .  

s o l i d s .  T h i s  d e v i a t i o n  from p lan t  p r a c t i c e  w a s  m a d e  t o  f a c i l i t a t e  a c c u r a t e  soluble-uranium 

a n a l y s i s  of ra f f ina te .  Second ,  t h e  i n t e r f a c e s  were  manua l ly  con t ro l l ed  

p r a c t i c e  i n t e r f a c e s  would b e  con t ro l l ed  au tomat i ca l ly .  T h i r d ,  i n  t h e  i n t e r f a c e  run ,  e x t r a c t  

from t h e  p rev ious  s t a g e  w a s  introduced i n t o  t h e  d e c a n t e r s  a t  a poin t  immedia t e ly  a b o v e  t h e  

i n t e r f a c e  as  s h o w n  in  F i g u r e  1A (of t h e  cu r ren t  r epor t ) .  T h i s  e n a b l e d  t h e  e x t r a c t  t o  c o n t a c t  

t h e  a q u e o u s  p h a s e  coun te rcu r ren t ly  in  t h e  lower s e c t i o n  of e a c h  d e c a n t e r  r e s u l t i n g  in  wha t  
is refer red  to  a s  “ b o n u s  ex t r ac t ion .  

F i r s t ,  t h e  f e e d  in  bo th  t h e  ” in t e r f ace  run  a n d  t h e  con t ro l  run c o n t a i n e d  no  

In normal  p l an t  

A 
N o v a k ,  D. A. ,  Dametva l ,  F .  B . ,  and K:ieg, J .  T. ,  “Pumper-Decanrr:  E f f i c i e n c y  S t u d i e s , P 9  P r o c e s s  D e v e l o p m e n t  
Quatter!y R e p o i ? ,  Par!  [i, Mal!inckrodr C h e m i c a l  Works, MCW-1426 (Febtua-y  2, 19591,  p 25-40 

N o v a k ,  Damerval ,  arid K:ieg, MCW-1426.  p 36-38 
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A s  a follow-up t o  t h i s  s t u d y ,  runs were made  t h i s  qua r t e r  t o  t e s t  ope ra t ion  us ing  re f inery  
d i g e s t  s lu r ry  f e e d s  a n d  au tomat i c - in t e r f ace  control:  and  t o  de t e rmine  t h e  e f f ec t  of f eed ing  

e x t r a c t  from p r e v i o u s  d e c a n t e r s  i n to  t h e  mixing pump s u c t i o n  i n s t e a d  of in to  t h e  d e c a n t e r s  

d i r ec t ly .  In add i t ion ,  further s t u d i e s  of t h e  refine:y ex t r ac t ion  ope ra t ion  were  made  t o  

de t e rmine  t h e  c a u s e  of the i r  low e f f i c i ency  

he re in .  

T h e  r e s u l t s  of t h e s e  s t u d i e s  a r e  d e s c r i b e d  

111 Exper imen t  a1 

A .  Equipmen t  

T h e  p i lo t  p l an t  ex t r ac t ion  equipment  u s e d  in  t h e s e  s t u d i e s  c o n s i s t e d  of four pumper- 
d e c a n t e r  u n i t s  and  i s  t h e  s a m e  as  t h a t  d e s c r i b e d  p rev ious ly .3  

B. P r o c e d u r e  

1. P i l o t  P l a n t  S t u d i e s  

R u n  54B w a s  a con t ro l  run  s imula t ing  as c l o s e l y  as p o s s i b l e  normal re f inery  ope ra t ion .  

An i n t e r f ace  w a s  he ld  in  t h e  l a s t  d e c a n t e r  on ly  a s  s h o w n  in  F i g u r e  1B .  

f eed /aqueous - feed  

t r a t ion  in t h e  s e c o n d  d e c a n t e r  be tween  50 a n d  60 g/l. T h e  f e e d  w a s  a re f inery  d i g e s t  

blend w h o s e  compos i t ion  i s  shown  in T a b l e  I .  

T h e  o rgan ic -  

f low ra t io  w a s  he ld  c o n s t a n t  by cont ro l l ing  t h e  uranium c o n c e n -  

T a b l e  I 

F e e d  Composi t ion 

F e e d  

P h i l l i p s  
A n a c o n d a  A 
L u c k y  Mac 

Mexican H a t  
S a p i e n s  

New Mexican P a r t n e r s  

Uranium Reduc t ion  

R a r e  Meta l s  
C a n a d i a n  Meta l s  
Monticel lo  

Weight P e r  C e n t  

29.6 
14,1 
11.2 
10,8 
7 1  

6.8 

6.7 

6.6 

4 . 1  
3.0 

100.0  

N o v a k ,  Darner-/ai, a n d  Kzieg ,  MCW-1426 ,  p 26 



T h e  over -a l l  uranium concen t r a t ion  w a s  460 g / l  and  t h e  n i t r i c  a c i d  concen t r a t ion  w a s  
abou t  1 N .  

Run 54A was made  to de te rmine  t h e  e f f ec t  o f  i n t e r f ace  ope ra t ion  in all d e c a n t e r s  as is 

shown  in  F i g u r e  1 C .  T h e  ex t r ac t  f eed  t o  e a c h  decan te r  w a s  f e d  through t h e  mixing 

pumps ( F i g u r e  1C) and i n t e r f a c e s  were  cont ro l led  au tomat i ca l ly .  In o ther  r e s p e c t s  it 

w a s  iden t i ca l  t o  t h e  cont ro l  run. T h e  f e e d  u s e d  in t h i s  run w a s  from t h e  same d i g e s t  

ba t ch  as  t h e  f eed  u s e d  i n  t h e  cont ro l  run. 

Run 4 1  w a s  i d e n t i c a l  t o  t h e  preceding  run (Run 5 4 A )  with  t h e  excep t ion  of t h e  a q u e o u s  

f e e d ,  which  w a s  a s y n t h e t i c ,  so l id - f r ee  so lu t ion  con ta in ing  400 g U / 1 ,  and  w a s  1 N  in  

HNO, and  1 N  in salt n i t r a t e .  T h e  pu rpose  of t h i s  run w a s  t o  compare  ope ra t ions  wi th  
s lur ry  f e e d  and  s y n t h e t i c ,  so l id - f r ee  f e e d  

P l a n t  S t u d i e s  

In order t o  de t e rmine  t y p i c a l  r e f ine ry  per formance .  all s t r e a m s  in  t h e  ex t r ac t ion  oper -  
a t ion  were  s a m p l e d  for uranium o n c e  a day  for a ten-day  per iod .  A f ew s t r e a m s  were  

sampled  hourly for compos i t e  s a m p l e s .  . 

IV. R e s u l t s  and D i s c u s s i o n  

A .  P i l o t  P l a n t  S t u d i e s  - 

T a b l e  I1 is a g e n e r a l  summary of p i lo t  p lan t  ex t r ac t ion -e f f i c i ency  runs .  T h e  r e s u l t s  a r e  

p lo t ted  a s  McCabe-Th ie l e  d i ag rams  in  F igu re  2 .  
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T a b l e  I1 E 
a 
a 

B 

8 
n 

Run Summary 

D-2 Organ ic  Raf f ina t e  D-1E 
Cont ro l  U F e e d  U T o t a l  U Sa tura t ion  P h y s i c a l  

Run No. F e e d  In t e r f aces  g / l  9/1 9/ 1 % Per fo rmance  

Cont ro l  Re f ine ry  L a s t  5 6  0 .044  0.86a 90 - 95 Good 
( 5 4 B )  D i g e s t  d e c a n t e r  

5 4 A b  Ref ine ry  Al lC 64  1 .47a 87 - 92 Good 

4 1 b  Syn the t i c  A l lC  4 3  .04  0036 8 7  - 92 Good 

only  

D i g e s t  d e c a n t e r s  

f eed  d e c a n t e r s  
( n o  s o l i d s )  

a I n s o l u b l e  U .- 0.3 ? 1 g / l .  
E x t r a c t  f e e d s  were  in t roduced  in to  t h e  s u c t i o n  s i d e  of mixing pumps .  
Au tomat i c  con t ro l  C 

1, E f f e c t  of I n t e r f a c e s  

T h e  e f f e c t  of i n t e r f a c e s  in  a l l  d e c a n t e r s  on  ex t r ac t ion  e f f i c i ency  may b e  s e e n  by 
compar ing  Run 5 4 B  (con t ro l  run)  with Run  54A ( in t e r f ace  run) .  Uranium l o s s  t o  t h e  

r a f f ina t e  w a s  r educed  from 0 8 6  g t o t a l  u ran ium/ l  in  t h e  cont ro l  run t o  0 4 7  g / l  i n  

t h e  i n t e r f a c e  run 

in  t h e  s o l u b l e  uranium loss w a s  accompl i shed  
e x t r a c t  a p p e a r s  t o  b e  s l i g h t l y  l e s s  in t h e  in t e r f ace  run a l though  s a t u r a t i o n  of t h e  

s e c o n d  d e c a n t e r  e x t r a c t  w a s  g rea t e r  P h y s i c a l  opera t ion  of t h e  in t e r f ace  con t ro l  
s y s t e m  w a s  q u i t e  s a t i s f a c t o r y .  A s  s h o w n  in  F igu re  2 ,  t h e  uranium concen t r a t ion  in  

t h e  o rgan ic  f e e d  in  both  t h e  in t e r f ace  a n d  cont ro l  r u n s  w a s  neg l ig ib l e  compared  t o  t h e  

uranium concen t r a t ion  in  t h e  ra f f ina te .  

S i n c e  0.3 i 1 g uran ium/ l  w a s  in so lub le ,  a c o n s i d e r a b l e  r educ t ion  
Uranium sa tu ra t ion  in  t h e  o rgan ic  

2 .  E f f e c t  of Slurry F e e d s  

T h e  e f f e c t  of s lur ry  f e e d s  on  ex t r ac t ion  per formance  i s  b e s t  i l l u s t r a t e d  in F i g u r e  2 
compar ing  t h e  syn the t i c - f eed  run wi th  s lur ry- feed  runs .  

brium d i s t r ibu t ion  of s o l u b l e  uranium w a s  nea r ly  t h e  s a m e  for both t y p e s  of r u n s ,  

much more uranium w a s  e x t r a c t e d  from t h e  s y n t h e t i c  f eed .  .So lub le  uranium l o s s  t o  

t h e  r a f f ina t e  w a s  r educed  by a f a c t o r  of t e n  or more by t h e  u s e  of so l id - f r ee  f e e d .  

Uranium sa tu ra t ion  of t h e  e x t r a c t  w a s  abou t  t h e  same in t h e  s lur ry- feed  and  t h e  

s y n t h e t i c - f e e d  run ( R u n s  4 1  and  5 4 A ,  r e s p e c t i v e l y )  

Al though t h e  p h a s e  equ i l i -  
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T h e  s t a g e  e f f i c i e n c i e s  diagrammed in F i g u r e  2 for t h e  syn the t i c - f eed  in t e r f ace  run, 

a l though  good ,  were  not a s  ou t s t and ing  a s  p rev ious ly  reported'  for a very  s imi l a r  run 

( F i g u r e  3 of t h e  cur ren t  repor t )  in which  t h e  i n t e r f a c e s  were  cont ro l led  very  low in  t h e  

d e c a n t e r  s o  as to encourage  bonus  ex t r ac t ion ,  T h e  l a t t e r  opera t ion  is d e p i c t e d  

s c h e m a t i c a l l y  by F igu re  1A. 

3 .  E f f e c t  of Uranium Concen t ra t ion  of t h e  Organ ic  F e e d  

T h e  e f f e c t  of uranium in  t h e  organic  f eed  on  ex t r ac t ion  per formance  i s  s h o w n  by com- 

pa r ing  F i g u r e  2 (Run 41)  with F igu re  3 (Run  38 from a p rev ious  repor t5) .  Al though 
poorer s t a g e  e f f i c i e n c i e s  were  ob ta ined  in Run 41 ( F i g u r e  2) ,  uranium loss t o  t h e  

r a f f ina t e  w a s  lower by s e v e r a l  o rders  of magni tude  when t h e  o rgan ic  f eed  c o n t a i n e d  
l e s s  uranium. 

B.  P l a n t  S t u d i e s  

T h e  ope ra t ion  of t h e  re f inery  ex t r ac t ion  s y s t e m ,  a s  de termined  by t h e  p l an t  s ampl ing  

program, is d iagrammed in  F i g u r e  4 .  T h e  per formance  of t h e  fif th d e c a n t e r  (D-5) is not 

d iagrammed b e c a u s e  i t  w a s  i n c o n s i s t e n t  from d a y  t o  d a y  probably  d u e  t o  t h e  d a i l y  

va r i a t ion  of i n s o l u b l e  uranium a n d  con taminan t s  in f eed  ma te r i a l s .  In spec t ion  of F i g u r e  

4 s h o w s  t h e  third d e c a n t e r  (D-3)  to  b e  c o n s p i c u o u s  by i t s  c o n s i s t e n t l y  poor per formance ,  

P o t e n t i a l  c a u s e s  fo r  t h i s  de f i c i ency ,  as  i l l u s t r a t e d  in F i g u r e  '5, a re :  

1 Backmixing  of o rgan ic  from D-2. 
2 .  Short  c i r cu i t i ng  of ex t r ac t  through t h e  decan te r .  
3. Not  enough  r e c y c l e  r a t e  d u e  to ,  

a. P o o r  pump e f f i c i ency .  
b.  

4.  B a c k  f low of D-5E t o  D-3 bottom. 
T o o  much r e s i s t a n c e  i n  D-3 r e c y c l e  l i n e  and  v a l v e s .  

In order  t o  d i a g n o s e  t h e  problem,  hourly c o m p o s i t e  s a m p l e s  were  t aken  around D-3 dur ing  

o n e  s h i f t  of ope ra t ion .  T h e  s a m p l e  r e s u l t s  a r e  s h o w n  in  F i g u r e  6. 

S i n c e  t h e  o rgan ic  p h a s e  i n  D-3 bot toms c o n t a i n s  a h ighe r  concen t r a t ion  of uranium than  

e i t h e r  D-3E or  D-4E,  i t  a p p e a r s  ev iden t  t h a t  t h i s  l iqu id  is composed  in  par t  of o rgan ic  
from t h e  d i s c h a r g e  of t h e  D-3 mixing pump. T h i s  f low of o rgan ic  is in  t h e  wrong d i r ec t ion  

(backmix ing)  and  is de t r imen ta l  t o  ex t r ac t ion  per formance .  
aqueous -o rgan ic  i n t e r f a c e  in  t h e  lower  half of D-3 would c i rcumvent  t h i s  problem by con-  

T h e  e s t a b l i s h m e n t  of an  

' N o v a k .  Darnerval,  a n d  K t i e g ,  MCW-1426, p 2 5 - 4 0  

N o v a k ,  Darnerval,  and K r i e g ,  MCW-1426 ,  p 3 7  
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ver t ing  D-3 bot toms t o  s t r a i g h t  a q u e o u s  p h a s e .  S i n c e  t h e  uranium concen t r a t ion  in D-3E 
is nea r ly  t h e  s a m e  as in  D-3R, t h e r e  a p p e a r s  t o  b e  very l i t t l e  sho r t  c i rcu i t ing  of D-4E 

through D-3. T h i s  a p p e a r s  t o  b e  only a minor problem which  cou ld  b e  s o l v e d  by f eed ing  

D-4E d i rec t ly  to t h e  D-3 mixing pump and  would b e  d o n e  anyway i f  i n t e r f a c e s  were  in- 

s t a l l e d  in a l l  d e c a n t e r s .  

T h e r e  is no e v i d e n c e  of D-5E b a c k i n g  up through D-3 bot toms.  

V. C o n c l u s i o n s  

1. Backmixing  in  t h e  ref inery ex t r ac t ion  s y s t e m  is par t ia l ly  r e s p o n s i b l e  for  poor ex t r ac t ion  
performance,  T h e  e s t a b l i s h m e n t  of aqueous -o rgan ic  i n t e r f a c e s  in a l l  ref inery d e c a n t e r s  

shou ld  e l imina te  backmixing.  

2. T h e  e s t a b l i s h m e n t  of au tomat i ca l ly -con t ro l l ed  i n t e r f a c e s  in all t h e  p i lo t  p l an t  d e c a n t e r s  

improved e x t r a c t i o n  performance,  r educ ing  s o l u b l e  uranium loss from s lur ry  f e e d s  by a 
fac tor  of t w o  or m o r e .  

3. Ext rac t ion  pe r fo rmance  w a s  a l s o  improved by  r educ ing  t h e  t r a c e  uranium concen t r a t ion  i n  

o rgan ic  f e e d  and  by u s i n g  so l id- f ree  a q u e o u s  f e e d .  
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THORIUM DE C 0 N T A MI N AT ION 

by 

J .  T .  Kr ieg  

Summary 

An inves t iga t ion  w a s  made  t o  de te rmine  t h e  c a u s e  of o c c a s i o n a l  thorium contaminat ion  i n  Weldon 
Spring o range  oxide .  It w a s  found t h a t  a l l  high-thorium orange  oxide  occurred  during pe r iods  

when  t h e  e x t r a c t  uranium sa tu ra t ion  w a s  less than  88%. 

s a t u r a t i o n  w a s  l e s s  than  88% for more than  one  d a y ' s  dura t ion ,  t h e  o range  ox ide  con ta ined  ,>SO 

ppm thorium. 

Conver se ly ,  whenever  t h e  ex t r ac t  

It w a s  a l s o  found tha t  t h e  d e n s i t y  of t h e  w a s h  raffinate 
con t inuous ly  monitoring the  e x t r a c t  s a tu ra t ion :  

In t roduct ion  

s t ream is a use fu l  parameter  for 

Thorium decon tamina t ion  in  t h e  Weldon Spring refinery ..as u s u a l l y  b e e n  a c c e p t a b l e ,  bu t  on th ree  
occ ; rs ions  h igh  thorium l e v e l s  h a v e  occur red  in  the  o range  oxide  (>SO ppm, U b a s i s ) .  

An inves t iga t ion  w a s  conduc ted  to de te rmine  t h e  c a u s e  of t h e  h igh  thorium contaminat ion  and  to  

recommend prevent ive  m e a s u r e s  to  minimize t h e  c h a n c e s  of a re -occurrence ,  T h e  r e s u l t s  of t h i s  
i nves t iga t ion  a r e  repor ted  he re in ,  

R e s u l t s  a n d  D i s c u s s i o n  

It h a s  b e e n  shown in  theo re t i ca l  ca l cu la t ions"2  tha t  t h e  re f inery  canno t  decon tamina te  thorium- 
bea r ing  f e e d s  when t h e  uranium s a t u r a t i o n  of pregnant  s o l v e n t  is s ign i f i can t ly  be low 90%. 
Satura t ion  is l i k e  a dam b lock ing  t h e  flow of thorium in to  t h e  washed  e x t r a c t  and  back ing  i t  up 

i n t o  t h e  ra f f ina te .  If t h e  dam is r a i s e d  (uranium sa tu ra t ion  i n c r e a s e d ) ,  s e v e r a l  d a y s  a r e  requi red  

b e f o r e  a s t e a d y - s t a t e  thorium inventory  is accumula t ed  in  the  ex t r ac t ion  equipment ,  If 
s a tu ra t ion  is s u d d e n l y  d e c r e a s e d ,  however ,  thorium is b led  in to  t h e  w a s h e d  ex t r ac t  a t  a rap id  
r a t e  un t i l  t h e  thorium rese rvo i r  is - lowered ,  

' Weidman, S. W . ,  Krieg ,  J .  T . ,  and L a n g ,  G.  P . ,  "The E f f e c t  o f  Uranium Ref inery  P r o c e s s  V a r i a b l e s  on P r e d i c t e d  
Thorium D e c o n t a m i n a t i o n , u  P r o c e s s  D e v e l o p m e n t  Quarre- ly  Repor t .  Par t  1; Mallinckrodt C h e m i c a l  Works, 
M C W - 1 4 1 5  ( J u l y  1, 19581, p 3 5 - 6 1  

L a n g ,  G.  P . ,  and Krieg ,  J .  T . ,  ."The E f f e c t  of Uranium Saturation on the Extract ion of E l e m e n t s  Other than 
Uranium into  Triburyl  P h o s p h a t e , "  hlal l inckrodt C h e m i c a l  Works; 0 paper p r e s e n t e d  by  Mr.  G. P .  Lang ar t h e  
American L n e m i c a l  b o c i e t y  NUClear I eChnOlOgy hymposlum a: B o s i o n ,  M a s s a c h u s e t t s ,  o n  April 5 ,  1959 
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T o  de te rmine  the  c a u s e  of t h e  high-thorium orange oxide o c c a s i o n a l l y  produced  in  t h e  refinery 
during t h e  p a s t ,  a con t inuous  record of e x t r a c t  s a tu ra t ion  is n e c e s s a r y o  Di rec t  measu remen t s  of 
s a tu ra t ion  a r e  not a v a i l a b l e  in ref inery r e c o r d s  b e c a u s e  they  were  never  made  on a rout ine b a s i s ,  
A co r re l a t ion  of s a t u r a t i o n  with some  e a s i l y  measu red  property is required. .  T h e  d e n s i t y  of the  

w a s h  ra f f ina te  is s u c h  a parameter ,  a s  is demons t r a t ed  in the  append ix ,  and  is rout inely measured  
in  regular  ref inery operat ion.  

With t h i s  new t o o l  t h e  thorium con tamina t ion  record in  ref inery o range  w a s  re -examined  a s  far  

back  a s  thorium reco rds  a r e  a v a i l a b l e  (15 months) ,  T h e  record is p r e s e n t e d  in F i g u r e  1 a long  
with a record of t h e  w a s h  ra f f ina te  dens i ty . .  It is i n d i c a t e d  in F i g u r e  1 t h a t  e a c h  period of high- 
thorium orange o x i d e  (>SO ppm) w a s  accompan ied  by a n  e x t r a c t  uranium s a t u r a t i o n  of l e s s  t han  

88% (30' Baume' wash  ra f f ina te ) ,  C o n v e r s e l y ,  during e a c h  period when t h e  e x t r a c t  s a tu ra t ion  w a s  
less than  88% for more t h a n  one  d a y ,  high-thorium orange oxide w a s  produced,  

It shou ld  a l s o  be noted in F i g u r e  1 t h a t  during December, ,  J a n u a r y ,  and  Februa ry  of 1959 f i v e  l o t s  

of P o r t e r  Bro the r s  ( a v e r a g e  T h  = 8%, U,O, b a s i s )  were  p r o c e s s e d  in t h e  ref inery with no rise in 
thorium c o n t e n t  of t h e  o range  ox ide -  

ma in ta ined  (93% 
c o n c e n t r a t i o n s  were  p r o c e s s e d  during a s h o r t  per iod in  April  when s a t u r a t i o n s  w e r e  as  low a s  
72%. During t h i s  per iod t h e  o range  ox ide  w a s  very high in  thorium. 

During this period high uranium s a t u r a t i o n s  were  be ing  

96%). In c o n t r a s t ,  four l o t s  of Po r t e r  Bro the r s  f eed  wi th  s imi l a r  thorium 

C o n c l u s i o n s  and  Recommenda t ions  

1. L o w  uranium sa tu ra t ion  of t h e  ex t r ac t  a p p e a r s  to b e  t h e  c a u s e  of t h e  high-thorium o range  ox ide  
produced  in  t h e  ref inery.  

2, It is recommended tha t  t h e  i e f fne ry  u s e  
of e x t r a c t  s a t u r a t i o n ,  T h e  recommended ope ra t ing  r ange  is be tween  35' and  40" Baumd 

( r ep resen t ing  92 t o  96% s a t u r a t i o n ) ,  

t h e  d e n s i t y  of t h e  w a s h  ra f f ina te  s t r eam as a m e a s u r e  
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APPENDIX 

n 

As s h o w n  be low,  t h e  d e n s i t y  of t h e  w a s h  ra f f ina te  i s  a parameter  for e x t r a c t  uranium s a t u r a t i o n  

in  p r a c t i c e  as w e l l  as in  theory ,  S i n c e  t h e  w a s h  r a f f ina t e  is e s s e n t i a l l y  in  equi l ibr ium with t h e  

pumper-decanter  e x t r a c t ,  a s m a l l  d i f f e rence  in  sa tu ra t ion  s h o w s  up as a l a r g e  d i f f e rence  in  

wash-raff inate  uranium concen t r a t ion ,  as  shown  in  F i g u r e  2 ,  

T h e  TBP i n  t h e  e x t r a c t  not complexed  by  uranium is complexed  by n i t r i c  a c i d  as  HNO, .TBP.  
O n  w a s h i n g ,  t h e  complex  b r e a k s  down a n d  t h e  a c i d  is t r ans fe r r ed  t o  t h e  w a s h  ra f f ina te .  T h u s , a  

high uranium a n d  low n i t r i c  a c i d  l e v e l  i n  t h e  w a s h  ra f f ina te  i n d i c a t e  h igh  uranium s a t u r a t i o n  of 

t h e  e x t r a c t ,  w h i l e  low uranium a n d  high n i t r i c  a c i d  i n d i c a t e  low e x t r a c t  s a t u r a t i o n ,  S i n c e  
uranium a n d  n i t r i c  a c i d  c o n c e n t r a t i o n s  i n  w a s h  ra f f ina te  a r e  r e l a t e d  as s h o w n  i n  F i g u r e  3,  a 

d e n s i t y  measu remen t  of t h e  w a s h  r a f f ina t e  wi l l  i n d i c a t e  t h e s e  c o n c e n t r a t i o n s ,  a n d  h e n c e  t h e  
uranium s a t u r a t i o n  l e v e l  of t h e  ex t r ac t .  

T h e  r e l a t i o n s h i p  b e t w e e n  e x t r a c t  uranium s a t u r a t i o n  a n d  w a s h  r a f f ina t e  d e n s i t y  is s h o w n  in  

F i g u r e  4; which w a s  de r ived  from t h e  d a t a  of F i g u r e  3 and  t h e  TBP-uran ium-n i t r i c  acid-water  

equi l ibr ium da ta .  T h e  p o i n t s  a r e  a n a l y t i c a l  c h e c k s  of t h e  e x t r a c t  s a t u r a t i o n  a t  s e v e r a l  w a s h  
r a f f ina t e  d e n s i t i e s .  



Figure 2 

THE EFFECT OF ORGANIC-PHASE URANIUM SATURATION ON THE CONCENTRATION 
OF AQUEOUS-PHASE URANIUM AT EQUILIBRIUM 
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Figure 3 

CORRELATION BETWEEN URANIUM AND NITRIC ACID CONCENTRATIONS IN REFINERY WASH RAFFINATE 
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Figure 4 

THE EFFECT OF D - 1 E  URANIUM SATURATION ON WASH RAFFINATE DENSITY 

D - 1 E  U r a n i u m  Saturation, ’$ 
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FURTHER STUDIES ON IMPROVING RECOVERY O F  TRIBUTYL PHOSPHATE 
FROM PUMPER-DECANTER RAFFINATE 

S. Simecek  

J .  T ,  Krieg 

Sum m a r  y 

F u r t h e r  p i lo t  p l an t  s t u d i e s  i n d i c a t e  tha t  more e f f i c i en t  t r ibu ty l  phospha te  r ecove ry  from pumper- 
d e c a n t e r  r a f f ina t e  c a n  b e  a c h i e v e d  by con tac t ing  a q u e o u s  ra f f ina te  with h e x a n e  in  a mixing pump. 

D a t a  a r e  p re sen ted  for ra f f ina te  sc rubb ing  us ing  countercur ren t  w a s h  column ope ra t ion ,  mix-pump 

column ope ra t ion ,  and  pumper-decanter opera t ion .  Pumper-decanter  opera t ion  a p p e a r s  t o  be t h e  

most  e f f ec t ive .  

In t roduct ion  

P r e v i o u s l y  repor ted  p i lo t  p l an t  s t u d i e s '  i nd ica t ed  tha t  t h e  Weldon Spring re f inery  cou ld  a c h i e v e  

more e f f ec t ive  t r ibu ty l  phospha te  ( T B P )  removal  from pumper-decanter  ra f f ina te  by  modifying t h e  

e x i s t i n g  s y s t e m  t o  a s e r i e s  w a s h  opera t ion .  Fo l lowing  in s t a l l a t ion  and  opera t ion  of a s e r i e s  
w a s h  column s y s t e m ,  i t  w a s  found tha t  t h e  T B P  l o s s e s  were  s t i l l  cons ide rab le .  An a n a l y t i c a l  

c h e c k  of t h e  h e x a n e  e f f luent  from both  co lumns  show.ed tha t  t h e  T B P  removed from t h e  r a f f ina t e  

by t h e  s e c o n d  column w a s  e q u a l  t o  t h e  amount removed in  t h e  f i r s t  column. T h u s , r e c o v e r y  had  

b e e n  doub led ,  but t h e  T B P  l o s s  w a s  s t i l l  t o o  h igh  to b e  neg lec t ed .  I t  shou ld  b e  noted  t h a t  

fo l lowing  t h e  p i lo t  p lan t  s t u d y ,  re f inery  r a t e s  were  i n c r e a s e d ,  s u g g e s t i n g  t h e  p o s s i b i l i t y  t h a t  
pe rhaps  t h e  s c r u b  co lumns  were  f looding  a t  t h e  i n c r e a s e d  r a t e s .  An a l t e r n a t i v e  w a s  t h a t  

e f f i c i en t  aqueous -o rgan ic  con tac t ing  may h a v e  b e e n  l o s t  in  t h e  sca l e -up  of p i lo t  p lan t  d a t a .  

With t h e s e  two f a c t o r s  i n  mind, fur ther  s t u d y ' w a s  in i t i a t ed  in t h e  p i lo t  p l an t ,  wi th  t h e  fo l lowing  
ob jec t ives :  

1. Determine  t h e  e f f e c t s  of more v igo rous  c o n t a c t i n g  of a q u e o u s  and  organic .  

2. Ob ta in  c a p a c i t y  d a t a  for va r ious  t y p e s  of equipment  opera t ion .  

S i m e c e k .  S., ,Improving R e m o v a l  of Triboty l  P h o s p h a t e  from Pumper-Decanter  R a f f i n a i e  b y  S e r i e s  Washing, '  
Process D e v e l o p m e n t  Q u a r f e r l y  Repor t .  P u t t  11: Mallinckrodt C h e m i c a l  Works, MCW-1429 (May 1. 1959), p 1 5 - 2 1  



Exper imen ta l  

A s c h e m a t i c  diagram of the  p i lo t  p l an t  column is shown  in  F i g u r e  1. T h e  equipment  shown  is 

t h a t  d e s c r i b e d  ear l ie r , '  modified s o  tha t  hexane  w a s  i n j e c t e d  i n t o  t h e  ra f f ina te  l ine ,  i n s t e a d  of 

of t h e  bottom of t h e  co lumn as in  normal operat ion.  T h e  hexane  and  ra f f ina te  were  t h e n  mixed in 

a pump as  in  pumper-decanter  operat ion.  T h e  mixture w a s  pumped t o  t h e  top of t h e  s c r u b  column,  

where  s e p a r a t i o n  took p l a c e  w i t h  t h e  ra f f ina te  s e t t l i n g  t o  t h e  bottom of t h e  column, and  t h e  
h e x a n e  overf lowing from t h e  top tol be  r ecyc led .  

Two  runs  were  made: a con t ro l  run us ing  a s imple  coun te rcu r ren t  w a s h  column ope ra t ion  and a 

run us ing  t h e  equipment  d e p i c t e d  in F i g u r e  1. Due t o  t h e  l imi t a t ions  of the  flow meter ing 

equipment ,  ref inery r a t e s  cou ld  not  b e  s imula t ed  in  t h e  pi lot  p l an t  mix-pump column equipment ,  
A ra f f ina te  flow r a t e  of 20 g a l l o n s  per  minute  w a s  u s e d  with a n  o r g a n i c - a q u e o u s  volume ra t io  

(O/A) of 5/1, w h e r e a s  t h e  p l a n t  co lumns  a r e  cu r ren t ly  handl ing 30 g a l l o n s  pe r  minute ,  L a t e r  
s t u d i e s  showed  t h a t  had  i t  b e e n  p o s s i b l e  t o  run a t  ref inery r a t e s  u s ing  t h e  mix-pump column,  

f looding of t h e  co lumn would have  occurred.  Countercurrent  w a s h  column ope ra t ion  appea red  t o  

b e  s t a b l e  a t  ref inery r a t e s .  

I 

B e c a u s e  of t h e  l imi t a t ions  of t h e  co lumn a c c e s s o r i e s ,  s t u d i e s  were  con t inued  us ing  t h e  p i lo t  
p l an t  pumper-decanters .  A s c h e m a t i c  d iagram of t h i s  s y s t e m  is shown  in  F i g u r e  2,, When us ing  

t h e  pumper-decanter  equ ipmen t ,  i t  w a s  p o s s i b l e  t o  b l e e d  f r e s h  h e x a n e  in to  t h e  s y s t e m  s imula t ing  
a proposed  con t inuous  ref inery sc rubb ing  operat ion.  

T h e  ra f f ina te  u s e d  in  a l l  c a s e s  came  d i rec t ly  from t h e  ref inery pumper -decan te r s ,  

R e s u l t s  and  . D i s c u s s i o n  

T h e  r e s u l t s  of t h e  mix-pump column run compared  t o  coun te rcu r ren t  w a s h  column ope ra t ion  a r e  

shown in  T a b l e  I. F l o w  r a t e s  in  both cases were similar with a volume r a t i o  (O/A) of 5/1. 

Simecek,  MCW-1429, p 16 
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Figure 2 

SCHEMATIC OF PUMPER-DECANTER OPERATION 
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T a b l e  I 

P 

Summary of Ana ly t i ca l  R e s u l t s  for Column Runs 

Control  R u n  (Countercurrent  Column Opera t ion )  

T B P  
Sample % (V/V) 

Raf f ina t e  In 0.08 

Raf f ina t e  O u t  0'07 

H e x a n e  In 5 . 0 6  

H e x a n e  Out  5 . 9 3  

Mix-Pump Column Opera t ion  

T B P  

- 

Sample  % (V/V) - 

Raf f ina t e  In 0,09 

Raf f ina t e  O u t  0,Ol 

H e x a n e  In 4.92  

H e x a n e  Ou t  6.03 

T h e  c o n d i t i o n s  and  t h e  r e s u l t s  for  t h e  pumper-decanter  runs  a r e  shown  i n  T a b l e s  I1 and  111, 
r e s p e c t i v e l y .  T h e  d a t a  underl ined a r e  q u e s t i o n a b l e .  

n 
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T a b l e  I1 

- ~ m m a r y  of Operat ing Cond i t ions  in  Pumper-Decanter  R u n s  

Condit ion 

Raf f ina t e  F e e d  R a t e ,  gph 

Hexane  R e c y c l e  R a t e ,  gph  

Hexane  F e e d  R a t e ,  gph 

Over-al l  O/A Volume R a t i o  (nominal)  

R e c y c l e  O/A Volume R a t i o  

Run  Number 

61A 61B 61C 
- 

43 4 3  22 

24 0 24 0 240 

3,7  1.9  1 , 9  

0.086 0,044 0.086 

5.58 5.58 10 .9  

T a b l e  I11 

A n a l  y t i c a1 R e  s u 1 t sa'$ from P urn per- D e c an t e r R u n s 

- Sample  

Raf f ina t e  in F e e d  Tank  

Raf f ina t e  F e e d  a t  Or i f i ce  
( compos i t e )  

Hexane  in  F e e d  Tank  

H e x a n e  F e e d  a t  F e e d  Pump 
(compos i t e )  

Hexane  . a t  Bubb le  
( compos i t e  

Hexane  Out 
( compos i t e  

Raf f ina t e  Out 

T B P  
% (V/V) 

Run 61A Run 61B Run 61C 

0.80 

0.02 

0 - 2 8  

0 -25  

Oa49 

0-56'  

0.44 

0.28 

0.27 

'> 1.0 

0.56' 

0.17 

0.28 

0.19 

O"89 

0 - 0 9  
( compos i t e )  

0.64 1 ,16  1.16 

0.03 0.01 

U A n a l y s i s  by infrared methods  e x c e p t  a s  noted.  

Underl ined d a t a  a r e  q u e s t i o n a b l e ,  

A n a l y s i s  for " to ta l  o rgan ic"  made by con tac t ing  a q u e o u s  p h a s e  with hexane ,  s e p a r a t i n g  a q u e o u s  
and  o rgan ic  p h a s e s ,  d i s t i l l i n g  off h e x a n e  from o rgan ic  p h a s e ,  and measu r ing  r e s i d u e ,  

C 



n 

T--, 

P 

I t  c a n  b e  s e e n  by compar ing  t h e  d i f f e r e n c e  be tween  t h e  " ra f f ina te  in" and  t h e  " ra f f ina te  out"  
t h a t  be t t e r  s c rubb ing  of t h e  ra f f ina te  w a s  obta ined  us ing  pump mixing ( e i the r  in  t h e  pumper- 

d e c a n t e r  or i n  t h e  pump-mix column s y s t e m )  a s  opposed  t o  open  column opera t ion .  T h i s  

obse rva t ion  i n d i c a t e s  t h a t  poor con tac t ing  i s  a problem i n  the  re f inery ,  e f f i c i en t  c o n t a c t i n g  not 

be ing  a c h i e v e d  in  a n  open  co lumn,  

While ope ra t ing  t h e  d e c a n t e r s  for r a f f i n a t e  sc rubb ing ,  i t  w a s  noted  tha t  f looding occurred  in  t h e  

4-inch-ID s e c t i o n ,  bu t  t ha t  a s t a b l e  in t e r f ace  was main ta ined  in t h e  12- inch  s e c t i o n .  S i n c e  
f looding  in  a pumper ,decan te r  is a func t ion  of O/A volume ra t io  in  t h e  mix pump as we l l  as  

c r o s s - s e c t i o n a l  a r e a ,  O/A r a t io s  varying from 5 /1  t o  30/1 were  t r ied  t o  a s c e r t a i n  whether  a 

s t a b l e  in t e r f ace  cou ld  be  main ta ined  in t h e  4- inch  s e c t i o n  a t  re f inery  flow r a t e s  cor responding  

t o  a 30-gallon-per-minute a q u e o u s  through-put 

showing  tha t  it is imprac t i ca l  for t he  refinery to  con templa t e  mix-pump column operation. wi th  
t h e  e x i s t i n g  co lumns .  

Emuls i f i ca t ion ,  however ,  occur red  i n  all c a s e s ,  

A sca l e -up  of t h e  12-inch-ID s e c t i o n  b a s e d  on flow r a t e  per unit  c r o s s  s e c t i o n  showed  t h a t  a 
pumper-decanter  for s c rubb ing  ra f f ina te  would requi re  a 6.46-foot d iameter  a t  a ra f f ina te  flow 

r a t e  of 30-ga l lons  p e r  minute.  T h i s  f igure  compares  more favorably  w:ith t h e  6-foot d i ame te r  
of t h e  p r e s e n t  re f inery  d e c a n t e r s  t han  with t h e  2-foot-7-inch d iameter  of t h e  s c r u b  column 

d i sengag ing  s e c t i o n ,  

Conc lus ions  

T h e  c o n c l u s i o n s  drawn from t h e  r e s u l t s  ob ta ined  in t h i s  s t u d y  w e r e :  

1. 

2. 

3. 

4 .  

5. 

F lood ing  is not a problem i n  t h e  opera t ion  of a n  open  column a t  re f inery  r a t e s .  

With open  column opera t ion  a t  re f inery  r a t e s ,  t h e  c o n t a c t  n e c e s s a r y  t o  remove e f f ec t ive ly  
TBP from raf f ina te  canno t  b e  a c h i e v e d .  

B e t t e r  con tac t ing  of a q u e o u s  and  o rgan ic  p h a s e s  c a n  b e  accompl i shed  with a mixing pump 

t h a n  wi th  a n  open  co lumn,  

T h e  u s e  of a pump for mixing and  t h e  e x i s t i n g  s c r u b  column for s e t t l i n g  would r e s u l t  i n  

f looding  of t h e  column. 

T h e  u s e  of a pump for mixing and  a d e c a n t e r  for s e t t l i n g  would r e s u l t  in  s t a b l e  ope ra t ion  
and  most  e f f i c i en t  sc rubbing .  
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FLUID-BED DENITRATION 

I. Summary 

F: B ,  Damerval 

W. T :  T r a s k  

E .  F ,  S a n d e r s  

T h e  f lu id-bed  deni t ra tor  h a s  b e e n  ope ra t ed  a t  r a t e s  up to  500- lb  UO,/hr-sq ft  u t i l i z ing  
uranyl  n i t r a t e  f eed  concen t r a t ions  up t o  11;8 lb U/ga l  with s a t i s f a c t o r y  pa r t i c l e  s i z e  
cont ro l .  H e a t  t r ans fe r  film c o e f f i c i e n t s  from 37  t o  47 Btu/hr-sq ft-OF and appa ren t  v e r t i c a l  

thermal  c o n d u c t i v i t i e s  we l l  in e x c e s s  of 20,000 Btu-ft /hr-sq ft-'F were  c a l c u l a t e d  for r u n s  

made  a t  t h e  a b o v e  cond i t ions ,  

Cor re l a t ions  were  deve loped  ind ica t ing  the  e f f e c t s  of uranyl  n i t r a t e  f eed  concen t r a t ion ,  
ope ra t ing  tempera ture ,  s p r a y  nozz le  air-to-liquid volume r a t i o ,  and  product ion  r a t e  on p a r t i c l e  

s i z e .  Another  co r re l a t ion  w a s  evo lved  which r e l a t e s  t h e  a v e r a g e  p a r t i c l e  s i z e ,  u ranyl  
n i t r a t e  f eed  compos i t ion ,  ope ra t ing  tempera ture  and  product ion  r a t e  t o  t h e  hea t  t r ans fe r  film 

coe f f i c i en t  within t h e  r eac to r ,  

11. In t roduct ion  

Inves t iga t ion  of a f lu id-bed  p r o c e s s  for t he  thermal  decompos i t ion  of re f ined  uranyl  n i t r a t e  

h a s  con t inued  dur ing  t h e  p a s t  21 months  Inc luded  in  t h i s  per iod  i s  t h e  six-month in t e rva l  

which  marked t h e  i n s t a l l a t i o n  of new equipment  at t h e  Weldon Spring s i t e .  O n e  a i m  of 

t h e s e  s t u d i e s  w a s  t h e  generation of chemica l  and  eng inee r ing  d a t a  n e c e s s a r y  for t h e  d e s i g n  
of t h e  optimum produc t ion - sca l e  fluid-bed deni t ra tor  which  would s e r v e  in  p l a c e  of t h e  

fami l ia r  den i t r a t ion  p o t s  with the i r  a s s o c i a t e d  ma in tenance  c o s t s  and  va r i ab le  product .  A 

s e c o n d  o b j e c t i v e  of t h e  fluid-bed den i t r a t ion  program i s  t h e  product ion  of uranium t r iox ide  
wi th  p h y s i c a l  p rope r t i e s  s u i t a b l e  for u s e  in  t h e  p i lo t  p l an t  f luid-bed reduct ion  and  
h ydrof luor ina t ion  u n i t s  , 

Flu id -bed  den i t r a t ion  is a c h i e v e d  by con t inuous ly  a tomiz ing  uranyl n i t r a t e  so lu t ion  into a 

h e a t e d  fluid-bed of uranium t r iox ide  p a r t i c l e s ,  w h e r e  evapora t ion  a n d  thermal  decompos i t ion  

occur .  De ta i l ed  d i s c u s s i o n s  of t h e  o p e r a t i o n s  involved  and  t h e  equipment  employed  h a v e  
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b e e n  p r e s e n t e d  in p rev ious  
a n d  t h e  e f f e c t s  thereof h a v e  a l s o  b e e n  

ope ra t ion  of t h e  deni t ra tor  during t h e  p a s t  quarter  and  a d e t a i l e d  p re sen ta t ion  of t h e  

c o r r e l a t i o n s  evo lved .  

T h e  i n v e s t i g a t i o n  of primary operat ing v a r i a b l e s  
T h i s  report  c o n t a i n s  a desc r ip t ion  of t h e  

111. Expe r imen ta l  

A. Equipment  

T h e  ope ra t ion  of ,  t h e  f luid-bed den i t r a to r  and t h e  equipment  under s t u d y  have  been  
d e s c r i b e d  p rev ious ly .6b7  

B. P rocedure  

Six runs  h a v e  b e e n  made  s i n c e  t h e  l a s t  report . '  T h e  g e n e r a l  ope ra t ing  p rocedure  is a s  

fol lows:  With a i r  p a s s i n g  through t h e  s p r a y  n o z z l e s  and  f lu id iz ing  a i r  d i s t r ibu t ion  

p l a t e ,  t h e  r eac to r  is cha rged  with approximately 300 lb of UO,, T h e  b e d  is h e a t e d  t o  
operating t empera tu re  by t h e  c i r cu la t ion  of molten s a l t  through t h e  in te rna l  bayone t  
h e a t e r s .  When t h e  bed  r e a c h e s  ope ra t ing  t empera tu re ,  water  is in t roduced  in to  t h e  s p r a y  
n o z z l e ,  After  f e e d i n g  water  through t h e  n o z z l e  for  a short  per iod t o  c o o l  i t ,  t h e  flow of 

uranyl  n i t r a t e  s o l u t i o n  is s t a r t e d .  
t o  t h e  d e s i r e d  v a l u e s .  A brief d e s c r i p t i o n  of t h e  comple t ed  runs  is g i v e n  below.  De ta i l ed  

ope ra t ing  c o n d i t i o n s  for  e a c h  run a r e  summar ized  in T a b l e  I. 

T h e  feed r a t e  a n d  a tomiz ing  a i r  f low a r e  then  a d j u s t e d  

~- 
I Sanders ,  E. F. ,  and Robinson ,  S. N., P a o c e s s  D e v e l o p m e n t  Quar ter ly  R e p p t t .  Para 11. Mallinckrodt C h e m i c a l  Works, 

MCW-I409 (November  1, 19571, p 33-39 

1 * Sanders ,  E. F . ,  e t  a l . ,  P r o c e s s  D e v e l o p m e n t  Quar ter ly  R e p o r t .  Par t  11, Mallinckrodt C h e m i c a l  Works, MCW-1411 
(February 1 ,  1958) ,  p 4 9 - 6 1  

Damerval ,  F. B . ,  e t  a l . .  P r o c e s s  D e v e l o p m e n t  Quar ter ly  R e p o r t ,  Pard 11, Mallinckrodt C h e m i c a l  Works, MCW-1421 
(November  1, 1 9 5 8 ) ,  p 67-76  

Dametva l .  F .  B . ,  et al . ,  P v o c e s s  D e v e l o p m e n t  Quar ter ly  R e p a t ,  P a r t  11, Mallinckrodt C h e m i c a l  Works, MCW-1426, 
(February 2, 1959) ,  p 59-65 

Dametva l .  F .  B. ,  e t  a l . ,  P r o c e s s  D e v e l o p m e n t  Quar ter ly  R e p o r t ,  P a r t  11, Mallinckrodt C h e m i c a l  Works, MCW-1429 
(May 1, 1959) ,  p 41-55 
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Damerval ,  e t  a l . .  MCW-1421, p 68-74  
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T a b l e  I 

F lu id-Bed Deni t ra tor  Opera t ing  C o n d i t i o n s  

Run Number 
1 Condition 60 61 62 63 64 65A 65B 65C 

1. UNH Feed  Rate, ga l /hr  

2. Feed Concentration, lb U/gal 

3. Sulfate Added, ppm (U bas is )  

4. Average Production Rate, lb U O h r  

5 Fluidizing Velocity, f t /sec 

6 

7. Average Bed Temperature 

Fluidizing Gas Flow, s td  cu  ft/min 

(a) Heater Area, O F  

7.,4 

9..3 

1500, 

85 ,. 

1.9 

19.: 

7.,8 

9..75 

2500.. 

98.. 

1..9 

20" 

8..4 

9.75 

2500. 

120.. 

1.9 

20 

9.7 

11.7 

2500 

136. 

1.9 

20. 

11.,0 

11.5 

2500. 

152. 

1 ..9 

20.. 

14.0 

11.8 

2500.. 

198. 

1.9 

20.. 

15.4 

11..8 

17..3 

11..8 

2500., 2500.. 

218.. 

1.9 

245 

1.9 

20 I 20 .. 

650. 630. 65 0 I( 605, 608 604 .. 
594" 

603 .. 
592.. 

606.. 
586. (b) Nozzle Area, OF 

Fluidizing Gas Temperature, OF 

Salt Temperature, O F  

Average Salt Temperature Drop; O F  

Salt Flow, gal/min 

Number of Nozzles Used 

Atomizing Air Pressure,  ps ig  

Atomizing Air Flow, std cu  ft/min 

Total Hours of Operation 

Pe r  Cent On-Streaxn 

61 0. 

620. 

605. 

610. 

720. 

14 

24.. 

1 .I 

50,. 

1.0 

24 

100 <, 

615 

61 0. 

800. 

16 

24 I 

1. 

50. 

1.3 

9.5 

100. 

590. 

63 0 

745 

15 I 

23 

1 

50 

3'6 

15, 

100 

595. 

620 

765 I 

21 

23. 

1. 

56.. 

0.8 

23 "5 

100, 

8. 

9. 

10" 

11.. 

12. 

13. 

14.. 

15- 

16* 

620.. 62 0 620.. 

980. 

25. 

800. 

20., 

18.. 

1. 

32. 

817.. 85 0 

24 I 

19. 

1. 

35.. 

26. 

20- 

1. 

42 I 

2. 

60. 

1.4 

3 7. 

76.. 

0..7 0.7 

1.,0 

loo,, 

0..8 

4.0 

100" 

3 "5 

100. 



Run 60 

T h i s  run w a s  made a t  a r e l a t ive ly  h igh  f eed  r a t e  u s ing  98% UNH (9.3 lb U/gal) .  For 
a period of s e v e r a l  hour s  a r a t e  of 130 - 1 4 0  Ib UO,/hr w a s  main ta ined .  T h e  downtime 

e x p e r i e n c e d  and  t h e  even tua l  shutdown were d u e  t o  r epea ted  d u s t  re feed  plugging,  which 

c a u s e d  varying amounts  of bed  caking .  

Run 61  

Run 61  marked t h e  f i r s t  s u c c e s s f u l  u s e  of 100% UNH (9.75 lb  U/gal) as feed  l iquor ,  

Froduct ion w a s  main ta ined  a t  100 lb  UO, per  hour  (200 Ib/hr-sq f t )  for a 24-hour per iod.  

R u n  62 

Run 62 w a s  a con t inua t ion  of Run 61  but  with product ion a t  1 2 0  lb UO,,/hr. T h e  run 
p r o c e e d e d  smooth ly  for n ine  hours ,  a t  which t ime t h e  g a s k e t s  in  t h e  s p r a y  n o z z l e  
f a i l ed ,  forc ing  a shutdown,  

Run 63  

Run  63 w a s  the  f i r s t  of  t h r e e  runs made  with a highly concen t r a t ed  f eed .  T h e  concent ra -  
t ion  w a s  e s t i m a t e d  to b e  11.7 Ib U/gaI from the  boi l ing  point (278 'F)  a n d  t h e  s p e c i f i c  

grav i ty  (2-75) .  T h e  run cont inued  smooth ly  for 15 hours  a t  a f eed  r a t e  c a l c u l a t e d  t o  
p r o d u c e 1 3 6  lb UO,/hr. At t h i s  t ime t h e  uranyl  n i t r a t e  c r y s t a l l i z e d  in t h e  f eed  l i n e  

forc ing  a shutdown.  

Runs 6 4 ' a n d  65 

T h e  feed  employed in t h e s e  runs w a s  t h e  same as  tha t  u s e d  for R u n  63, Opera t ion  a t  

1 5 0  lb UO,/hr p r o c e e d e d  for 23.5 hours  without  inc ident .  Ver t i ca l  h e a t  t ransfer  w a s  

e x c e l l e n t ,  Run  65A w a s  in i t i a t ed  when the  feed  r a t e  w a s  i n c r e a s e d  t o  a n  equ iva len t  

of 2 0 0  Ib UO,/hr, a r a t e  which  w a s  main ta ined  for 3-5 hours .  T h e  r a t e  w a s  then  
i n c r e a s e d  t o  218  lb UO,/hr for a n  add i t iona l  hour (Run 65s). At t h i s  t ime the  r a t e  w a s  
aga in  i n c r e a s e d  t o  250-lb UO\,/hr (500 lb  UO,,/hr-sq-ft) a n d  main ta ined  a t  t h i s  l e v e l  for  

4 hours ,  T h e  v e r t i c a l  h e a t  t r ans fe r  c o n t i n u e d  t o  b e  e x c e l l e n t  un t i l  re feed  plugging 

forced  a shutdown.  

Seve ra l  u n s u c c e s s f u l  a t t empt s  were  t h e n  made  t o  ope ra t e  us ing  a s e t  of metallic f i l t e r  
e l e m e n t s  in t h e  top  of t h e  r eac to r  as a m e a n s  of re turn ing  f i n e s  t o  t h e  bed ,  E x c e s s i v e  

p r e s s u r e s  were  e x p e r i e n c e d  in  the  r eac to r  a n d  e f fo r t s  w e r e  temporar i ly  d iscont inued .  An 
a d e q u a t e  f i l t e r  s y s t e m  is being  d e s i g n e d  a n d  wi l l  b e  i n s t a l l e d  during t h e  next  quarter .  . 

I 
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IV. R e s u l t s  

T h e  chemica l  a n a l y s e s  of t h e  uranium t r iox ide  produced  a r e  found in  T a b l e  11. T h e  over -  

a l l  h e a t  t r ans fe r  coe f f i c i en t s  from t h e  molten s a l t  t o  t h e  fluid bed  and t h e  f i l m  coe f f i c i en t s  

from t h e  molten s a l t  t u b e s  t o  t h e  bed ,  for t h e  r u n s  d e s c r i b e d ,  a r e  summar ized  i n  T a b l e  111, 
A l s o  i nc luded  a r e  appa ren t  ve r t i ca l  thermal conduc t iv i ty  v a l u e s  from t h e  lower portion of  

t h e  r eac to r  t o  t h e  n o z z l e  zone .  T a b l e  IV  c o n t a i n s  a t yp ica l  pa r t i c l e  s i z e  a n a l y s i s  for e a c h  
run d e s c r i b e d .  

T a b l e  I1 

Chemica l  A n a l y s i s  of U03 Produced  in  t h e  F lu id -Bed  Deni t ra tor  

Run Number 
60 61 62 63 

99.48 99.10 99.07 99,06 

Ni t ra t e ,  % ( s a m p l e  b a s i s )  0.78 0.97 0,81 0.95 

H,O, % ( s a m p l e  b a s i s )  0.13 0.16 0.22 0.19 

Sul fa t e ,  ppm ( s a m p l e  b a s i s )  900, 1200. 1250. 1300. 

T a b l e  I11 

Hea t  T rans fe r  D a t a  

Over-All Coefficient, UT Gas  F i l m  Coefficient, ho Vertical  Thermal Conductivity 
Run No. B t u h - s q  ft-OF Btu/hr-sq ft-"F Btu-ft/hr-s q f t-'F 

61 53 -5 70.5 21,000 

62 43.2 53.8 18,000 

63 38.4 47;O 36?000 

64 34,O 43.1 52,000 

65 31.8 39.0 45,000 
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T a b l e  IV 

T y p i c a l  P a r t i c l e  S i z e  A n a l y s e s  of F lu id -Bed  Deni t ra tor  P roduc t  

S i e v e  F r a c t i o n  
mesh  

920, % 

-20 +35, % 

-20 940, % 

-35 950, % 

-40 +70, % 

-50 980, % 

-70 4140, % 

-80 +140, % 

-140 9200, % 

-200 9270, % 

-270 +325, % 

-325 , %  

Run Number 
61 

15.6 

17.9 

__ 

14.1 

9.6 

7.5 

3.1 

4.3 

4.7 

23.1 

62 

11.7 

15.9 

13.6 

10.4 

9 -8  

4.8 

5.7 

3.4 

24.7 

63 

12.2 

- 

16-9 

15.2 

12.0 

4-3 

6.4 

2.1 

30.8 

64 

14.0 

25.2 

19.1 

11.7 

3.8 

5.0 

1.7 

19.4 

V. D i s c u s s i o n  of R e s u l t s  

T h e  h e a t  t r a n s f e r  c o e f f i c i e n t s  and  c h e m i c a l  puri ty  of the  UO, produced  h a v e  con t inued  at 
approximately t h e  s a m e  l e v e l s  p rev ious ly  reported.  E v e n  a t  t h e  very high product ion r a t e s  

appa ren t  v e r t i c a l  thermal  conduc t iv i ty  con t inued  t o  be  high.  
\ 

Major e m p h a s i s  during the  p a s t  qua r t e r  h a s  b e e n  p l a c e d  on deve lop ing  c o r r e l a t i o n s  re la t ing  
r e a c t o r  ope ra t ing  cond i t ions  t o  p a r t i c l e  s i z e  and  h e a t  t ransfer .  T h e s e  c o r r e l a t i o n s ,  b a s e d  
on d a t a  p r e s e n t e d  previously,’  a r e  p r e s e n t e d  in F i g u r e s  1 through 8. 

~ 

D a m e m a l ,  e t  al., MCW-1429,  p 42-47 
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Figure 1 

BULK DENSITY VERSUS U03 PRODUCTION RATE 

- -. 
Circles with brackets are average 
values, with the brackets indicating 
maximum and minimum values. 

Circles without brackets indicate 
single values. 
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F i g u r e  3 
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Figure 4 

E F F E C T  O F  T H E  NOZZLE A I R - T O - L I Q U I D  
VOLUME R A T I O  ON AVERAGE P A R T I C L E  DIAMETER 
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F i g u r e  5 

EFFECT OF V ( a )  ON THE AVERAGE PARTICLE DIAMETER 
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Figure 8 

EFFECT OF AVERAGE PARTICLE DIAMETER ON 
THE HEAT TRANSFER COEFFICIENT, h, 
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n 

F i g u r e  1 s h o w s  t h e  effect o f  t he  product ion  rate on  t h e  product bu lk  d e n s i t y .  I t  shou ld  b e  

s t r e s s e d  tha t  t h e  d a t a  employed to deve lop  t h i s  cu rve  were  not ga the red  a t  a c o n s t a n t  f eed  

composi t ion ;  dur ing  opera t ion  a t  t h e  higher r a t e s ,  a cons ide rab ly  higher f eed  concen t r a t ion  

w a s  employed  than  a t  t h e  lower r a t e s .  T h e  higher rates and/or  f eed  concen t r a t ions  may 

r e s u l t  i n  i n c r e a s e d  vo idage  within t h e  p a r t i c l e s  produced  and  c o n s e q u e n t l y  a lower.  bulk 
d e n s i t y .  P a r t i c l e  s i z e  d i s t r ibu t ions  were  a lmos t  i den t i ca l  a t  d i f fe ren t  product ion  r a t e s  i n  

a number of cases,  ind ica t ing  tha t  t h e  d is t r ibu t ion  is not a fac tor  i n  t h e  bulk d e n s i t y  c h a n g e ,  

F i g u r e  2 s h o w s  t h e  e f f ec t  of opera t ing  tempera ture  on t h e  a v e r a g e  pa r t i c l e  d iameter  of t h e  

product .  T h e  a v e r a g e  pa r t i c l e  d iameter  is def ined  as ,  

w h e r e n  is t h e  number of f r ac t ions  in to  which  t h e  mater ia l  is s e p a r a t e d ,  W i s  t h e  weight  

f r ac t ion  of ma te r i a l  of nominal d i ame te r  d f ,  and  df  

of t h e  a d j a c e n t  U,S.  S tandard  s i e v e s  ( in  i n c h e s )  u s e d  in  s e p a r a t i n g  t h e  co r re spond ing  

f rac t ion .  q n l y  p a r t i c l e  s i z e  d a t a  for runs  with 72 t o  86% UNH f e e d  were  used  for t h i s  cu rve .  

While ope ra t ion  a t  h igher  f eed  concen t r a t ions  y i e l d s  a product  with a somewhat  la rger  

p a r t i c l e  s i z e ,  i t  is be l i eved  tha t  t h e  t rend  ind ica t ed  by F igu re  2 r ema ins ,  

where  d ,  and  d, a r e  t h e  openings  

T h e  a v e r a g e  pa r t i c l e  d iameter  of t h e  product i s  p lo t ted  a g a i n s t  t h e  uranyl  n i t r a t e  f eed  
compos i t ion  in  F igu re  3. At both t h e  600'F and  7OOcF bed- tempera ture  l e v e l s  a p o s i t i v e  

s l o p e  is ind ica t ed .  

F i g u r e  4 i n d i c a t e s  t h e  e f f e c t  of t h e  air-to-liquid volume ra t io ,  employed  in  t h e  s p r a y  n o z z l e ,  

upon t h e  a v e r a g e  pa r t i c l e  d i ame te r  of t h e  product ,  T h e  d a s h e d  l i n e s  i n d i c a t e  t h e  l imi t  of 
error ( a t  t h e  95% conf idence  l e v e l )  w h i c h  would  be an t i c ipa t ed  for a ser ies  of r u n s  at a 

g iven  n o z z l e  air-to-liquid volume ra t io .  

F i g u r e  5 p r e s e n t s  a co r re l a t ion  of t h e  a v e r a g e  p a r t i c l e  d i ame te r  of t h e  product  wi th  t h e  

- to ta l  g a s  flow and tempera ture  in  t h e  s p r a y  z o n e  as r ep resen ted  by t h e  t o t a l  g a s  flow in t h e  
n o z z l e  a r e a  (a tomiz ing  a i r ,  f l u id i z ing  a i r ,  and  d e n i t r a t i o n g a s )  i n  s t a n d a r d  c u b i c  f e e t  pe r  

minu te  d iv ided  by [the r eac to r  t empera tu re  minus  t h e  UNH decompos i t ion  tempera ture  
(a rb i t ra r i ly  t a k e n  as 300'F)I. T h i s  e x p r e s s i o n ,  d e s i g n a t e d  "Vgifi r e p r e s e n t s  t h e  thermal  
dr iv ing  fo rce  for den i t r a t ion  and  t h e  tu rbu lence  and  void f rac t ion  in  t h e  s p r a y  z o n e ,  S i n c e  

a v e r a g e  p a r t i c l e  d i ame te r  is a f f ec t ed  by  bo th  t h e  n o z z l e  air-to-liquid volume ra t io  and  Vgi  
t h e  s c a t t e r  of po in t s  in F i g u r e s  4 and  5 is somewha t  t o  b e  e x p e c t e d ,  

, 

n 
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T h e  molten s a l t  tube-to-bed h e a t  t ransfer  c o e f f i c i e n t ,  ho,  h a s  been  co r re l a t ed  with ave rage  

par t ic le  d i ame te r  of t h e  product  and  t h e  e x p r e s s i o n  "Vg" t o  g i v e  t h e  equa t ion :  

where  

h, e 54 ,000  Vg - 3 3 4 0 ,  
D av  

ho = o u t s i d e  film coef f ic ien t ,  Btu /hr -sq  ft-OF, 

Dav = a v e r a g e  p a r t i c l e  d i ame te r ,  i n c h e s )  and  

Vg 
T h i s  co r re l a t ion  is shown  in  F i g u r e  6. 

= g a s  f low/temperature  dr iving force ,  s t d  c u  f t  per  min/OF. 

T h e s e  d a t a  h a v e  a l s o  b e e n  e v a l u a t e d  in t e rms  of t h e  N u s s e l t  number t o  y i e ld  t h e  equa t ion :  

N N ~  = 0.0315 VgS 9 0.122,  

N N ~  = N u s s e l t  number = 

a s  shown  in F i g u r e  7, where  
h o  Dav 

k 

Vg 
S 

k e thermal  conduc t iv i ty  of g a s  p h a s e ,  Btu-in,/hr-sq ft-OF 

= 

E 

g a s  f low/temperature  dr iving force ,  s t d  c u  f t  per  rnin/OF, 

p a r t i c l e  s u r f a c e  a r e a  b a s e d  on Dav l  sq f t ,  and  

F i g u r e  8 i l l u s t r a t e s  t h e  r e l a t i o n s h i p  of a v e r a g e  p a r t i c l e  d i ame te r  t o  h e a t  t ransfer .  
r e l a t ionsh ip  w a s  de r ived  from t h e  c o r r e l a t i o n s  shown in  F i g u r e s 5 a n d  6. T h e  cu rve  is inc luded  

t o  i n d i c a t e  t h e  g e n e r a l  e f f e c t  of p a r t i c l e  s i z e  on h e a t  t ransfer .  T h e  n e g a t i v e  s l o p e  of t h e  c u r v e  

a t  t h e  la rger  a v e r a g e  p a r t i c l e  d i a m e t e r s  is in  a c c o r d a n c e  with t h e  f ind ings  of other  i n v e s t i h o r s .  
T h e  p o s i t i v e  s l o p e  with t h e  s m a l l  a v e r a g e  p a r t i c l e  d i a m e t e r s  may b e  a t t r ibu ted  t o  t h e  u s e  of a 
f lu id iz ing  v e l o c i t y  much g rea t e r  t han  t h a t  required for i n c i p i e n t  f lu id iza t ion .  T h i s  e x c e s s  

v e l o c i t y  cou ld  r e s u l t  in a void f rac t ion  g rea t  enough  t o  a f f e c t  a d v e r s e l y  t h e  h e a t  t ransfer ,  

T h i s  

F u t u r e  runs  wi l l  be  made t o  t e s t  t h e  va r ious  c o r r e l a t i o n s  deve loped  for va l id i ty  and  g e n e r a l  

u s e f u l n e s s .  I t  is b e l i e v e d  t h a t  by  t h e  in t roduc t ion  of add i t iona l  equi l ibr ium d a t a  and ref inement  
of the  c o r r e l a t i o n s  evo lved ,  t h e  ope ra t ion  of t h e  fluid-bed den i t r a to r  wi l l  become c a l c u l a b l e  and  

r ep roduc ib le ,  

VI. C o n c l u s i o n s  

T h e  s u c c e s s f u l  ope ra t ion  of the  f luid-bed den i t r a to r  a t  product ion r a t e s  up t o  250  lb  UO,/hr 

(500 Ib UO,/hr-sq f t )  with f eed  c o n c e n t r a t i o n s  of 11,8 lb U/ga l  h a s  g rea t ly  broadened  t h e  
p rev ious ly  c o n c e i v e d  l imi t a t ions  p l a c e d  on f luid-bed den i t r a t ion  equipmente T h e  f a c t  t h a t  t h i s  

r a t e  w a s  a c h i e v e d  with on ly  one s p r a y  n o z z l e  i n d i c a t e s  t h a t  t h e  l imit  for  a s i n g l e  n o z z l e  is as  

y e t  unknown. T h e r e  is no r e a s o n  t o  b e l i e v e  tha t  higher  f eed  concen t r a t ions  cou ld  not  b e  



n 
employed if s u i t a b l e  pumping and  meter ing equipment  were i n s t a l l e d .  

T h e  c o r r e l a t i o n s  p r e s e n t e d  for pa r t i c l e  s i z e  a n d  h e a t  t r ans fe r  h a v e  p l a c e d  t h e  ope ra t ion  of 

t h e  den i t r a to r  on a much s o u n d e r  t h e o r e t i c a l  b a s i s  

ope ra t ing  cond i t ions  which w i l l  y i e ld  a d e s i r e d  product and  a p r e d i c t a b l e  h e a t  t r ans fe r  

coe f f i c i en t  T h e  development  of t h e s e  co r re l a t ions  h a s  a l s o  s e r v e d  to  e x p l a i n  a number 

of puzz l ing  obse rva t ions  made  e a r l i e r .  F o r  example ,  t he  f ac to r i a l  experiment  p rev ious ly  
reported'" i n d i c a t e d  tha t  a n  improved h e a t  t r ans fe r  coe f f i c i en t  w a s  ob ta ined  with more 

d i l u t e  UNH a t  a g iven  uranium feed  r a t e  
examina t ion  of F i g u r e s  3 and  6 now i n d i c i t e s  t ha t  s u c h  a n  e f f e c t  s h o u l d  b e  a n t i c i p a t e d ,  

It shou ld  n o w  b e  p o s s i b l e  t o  select 

S i n c e  t h i s  s i t u a t i o n  involved a va r i a t ion  in  Vg, 

0 

a 

_ _  __-- 

D 
Damecval ,  e. al . ,  MCW-1429, p 48-49  :0 

n 
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P I L O T  P L A N T  FLUID-BED REDUCTION 

S.  N .  Rob inson  
E .  F S a n d e r s  

I. Summary 

n 

n 

A fluid-bed r educ t ion  r eac to r  employing a n  in t e rna l  t ape red  mandrel  h a s  b e e n  insta!led in  t h e  
p i lo t  p l an t .  T o  d a t e  t h r e e  runs  y ie ld ing  use fu l  d a t a  h a v e  b e e n  made ,  

11. In t roduct ion  

A fluid-bed r eac to r  d e s i g n e d  for t h e  r educ t ion  of f lu id-bed-deni t ra ted  UO,  t o  UO; h a s  b e e n  

i n s t a l l e d  in  t h e  p i lo t  p lan t  a n d  is now in  ope ra t ion  
mandrel  d e s i g n e d  acco rd ing  t o  a theory  d e s c r i b e d  in  d e t a i l  e l s e w h e r e ; '  Br ie f ly ,  t h e  mandrel  

is t ape red  t o  provide a c o n s t a n t  supe r f i c i a l  g a s  v e l o c i t y  throughout  a n y  ve r t i ca l  p l a n e  in  t h e  

r eac to r  bed .  B y  v i r tue  of t h e  c o n s t a n t  ve loc i ty ,  provided t h e  ve loc i ty  is not t oo  f a r  a b o v e  

t h a t  requi red  for i nc ip i en t  f l u id i za t ion ,  i t  i s  b e l i e v e d  t h a t  a c l o s e  approach  t o  "p i s ton  flow'' 
of t h e  s o l i d s  c a n  b e  a c h i e v e d .  Y e t ,  s i n c e  t h e  p a r t i c l e s  a r e  f lu id i zed ,  t h e  a d v a n t a g e s  of a 

fluid b e d ,  pa r t i cu la r ly  t h e  a s s e t  of good h e a t  t r ans fe r ,  c a n  s t i l l  b e  maintained.  

T h i s  r eac to r  u t i l i z e s  a n  in t e rna l  t a p e r e d  

'P i s ton  flow" i s  c o n s i d e r e d  a d v a n t a g e o u s  b e c a u s e  it a s s u r e s  t h a t  no p a r t i c l e s  f ed  t o  t h e  

r eac to r  shor t -c i rcu i t  t o  t h e  product  l i n e  before  be ing  comple t e ly  r e d u c e d ,  T h u s ,  a g iven  
product ion r a t e  c a n  b e  a c h i e v e d  in  o n e  p i s t o n  flow reac to r ;  w h e r e a s  s e v e r a l  s t a g e s  would 

b e  r equ i r ed  if conven t iona l ,  well-mixed f lu id  b e d s  were  employed ,  

111. Equipmen t  Desc r ip t ion  

An i s o m e t r i c  v i e w  of t h e  fluid-bed reactor a n d  i t s  a u x i l i a r i e s  is s h o w n  i n  F i g u r e  1, 

r e a c t o r  is a 5- inch  d i ame te r  by  5=foott-9-inch long  s c h e d u l e - 4 0  p ipe  f ab r i ca t ed  of 347 
s t a i n l e s s  s t e e l ,  C e n t e r e d  i n s i d e  t h i s  p i p e  is a t a p e r e d  mandrel ,  53 i n c h e s  long  with a 

bottom d iame te r  of 2.89 i n c h e s  tapexing to a top  d i ame te r  of 0-63 i n c h ,  
s h o w n  i n  F i g u r e  2,  h a s  b e e n  d e s c r i b e d  in  more d e t a i l  i n  a n  e a r l i e r  report.' 

T h e  

T h i s  mandrel .  

" R o b i n s o n ,  S. N . ,  Smith,  W .  J .  S., and Zimmerman. B .  E . .  P - o c e s s  D e v e l o p m e n t  Qua: :er i y  Repo-: ,  P a l .  ! I ,  
Mallinrkrodr C h e m i c a l  Wozks, MCW-1416 ( A u g u s t  1, 1 9 5 8 ) ,  p 1 7 - 2 6  

Damerval ,  F .  B . .  e: ai., P i o c e s s  D e v e l o p m e n t  Qua- t e ' l y  RePo,-t-  Pa-!  !I, Mal!inck:odt C h e m i c a l  Works, 
MCW-1429 (May 1,  1 9 5 9 ) ,  p 4 9  
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FLUID-BED KEDUCTION U N I T  
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F i g u r e  2 

T a p e r e d  Mandrel for F lu id -Bed-Reduc t ion  R e a c t o r  i 
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D i s s o c i a t e d  ammonia (3H, + N,) is metered  into t h e  s p o o l  p i e c e  and through a Metal-Edge 

wire g a s  d is t r ibu t ion  p l a t e  in to  t h e  bottom of the  reac tor .  T h e  d is t r ibu t ion  p l a t e  is 

pictured in  F igu re  3. F i g u r e  4 s h o w s  t h e  va r ious  p a r t s  a s s e m b l e d ,  

T h e  o f f - g a s e s  l e a v e  the  top of t h e  r eac to r  through a 16-inch d i ame te r  by 2-foot-long dis-- 

engag ing  s e c t i o n .  T w o  2Yz-inch diameter  by 8- inch long,  Metal-Edge ' f i l ters  with a t o t a l  
f i l t e r ing  a r e a  of abou t  56 s q u a r e  i n c h e s  a r e  l o c a t e d  in  t h i s  s e c t i o n ,  and  s p a c e  is provided 

for t h e  add i t ion  of a third f i l t e r ,  i f  n e c e s s a r y .  A pneumatical ly-operated three-way va lve  

is provided on top of e a c h  f i l ter .  Powder  en t r a ined  in the  o f f -gases  is c o l l e c t e d  on t h e  
f i l t e r s  and  is pe r iod ica l ly  re turned t o  t h e  bed  by r eve r s ing  t h e  pos i t i on  of one of the  t h r e e -  

way v a l v e s ,  a l lowing  a s u r g e  of ni t rogen t o  flow b a c k  through t h e  f i l t e r .  T h e  top of t h e  
d i sengag ing  s e c t i o n  is shown  in F i g u r e  5. T h e  o f f - g a s e s  then  p a s s  through a propane  pi lot  
f lame for combust ion  of t h e  e x c e s s  hydrogen,  through a bag-type d u s t  c o l l e c t o r ,  and  a r e  

f ina l ly  d i s c h a r g e d  t o  t h e  a tmosphe re .  

Orange  ox ide  is d i s c h a r g e d  from a 2000-pound-capac i ty  po r t ab le  hopper in to  t h e  r eac to r  

f eed  hopper  whence  i t  is fed t o  t h e  top of t h e  b e d  by a 2-inch-diameter f eed  s c r e w .  Uranium 
d iox ide  l e a v e s  t h e  bottom of t h e  r eac to r  through th ree  1 , inch-diameter  h o l e s  which  s l a n t  

t owards  t h e  one-inch-diameter  downcomer welded  to t h e  bottom of t h e  mandrel.  T h e  powder 

p a s s e s  from t h e  downcomer through a 2-inch-diameter e x p a n s i o n  b e l l o w s  and  a rotary v a l v e  

t o  a nitrogen-purged coo l ing  s c r e w  and  a drumming s t a t i o n .  (A g a s  s e a l  is provided by t h e  

rotary v a l v e  and  t h e  2-foot head  of powder above  i t ,  A sc rew- type  sample r  is provided a t  

t h e  coo l ing  s c r e w  d i s c h a r g e  for  s ampl ing  t h e  UO, product . )  

Hea t  is s u p p l i e d  t o  t h e  r e a c t o r  by Calrod e l e c t r i c a l  hea t ing  e l e m e n t s  c lamped t o  t h e  r eac to r  

she l l .  T h e s e  e l e m e n t s  supp ly  a t o t a l  of 9 kw t o  t h e  r e a c t o r  and  a r e  d iv ided  in to  f ive  h e a t i n g  
zones :  e a c h  provided with a P o w e r s t a t .  T h e  top two z o n e s  are con t ro l l ed  by one  t empera tu re  

cont ro l le r ,  and  t h e  bottom t h r e e  z o n e s  o p e r a t e  from a s e c o n d  temperature  cont ro l le r ,  T h e  

r eac to r  s h e l l  is e n c a s e d  in  removable  i n s u l a t i o n  c a n s .  

The rmocoup les  a r e  provided i n  t h e  d i s s o c i a t e d  ammonia in le t  t o  t h e  reac tor ,  in  t h e  bottom of 

t h e  reac tor ,  in e a c h  of t h e  f ive  hea t ing  z o n e s ,  in t h e  d i s e n g a g i n g  s e c t i o n ,  and  a t  t h e  hydrogen 

burner.  P r e s s u r e  t a p s  a r e  l o c a t e d  in t h e  g a s  spoo l  p i e c e  be low t h e  reac tor ,  in  t h e  r eac to r  
bed  f ive  i n c h e s  a b o v e  t h e  g a s  d is t r ibu t ion  p l a t e ,  and in  t h e  d i sengag ing  s e c t i o n  above  t h e  bed,  

T h e  p r e s s u r e  t a p s  in  t h e  g a s  e x p a n s i o n  chamber  and  in  t h e  d i sengag ing  s e c t i o n  a r e  connec ted  
to  a d i f fe ren t ia l  p r e s s u r e  cont ro l le r  t h a t  con t ro l s  t h e  s p e e d  of t h e  product rotary valve.  A 

t achomete r  m e a s u r e s  t h e  s p e e d  of t h e  manual ly  s e t  v a r i a b l e  s p e e d  d r ive  on t h e  UO, f eed  sc rew,  

A f l ame  d e t e c t i o n  d e v i c e  a t  t h e  hydrogen burner  s t o p s  hydrogen flow t o  the  r eac to r  in  t h e  

e v e n t  of a flame fa i lure .  
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F i g u r e  3 
Gas Distr ibutor  P l a t e  for. F lu id-Bed-Reduct ion  Reac to r  

Top View 

Bottom View 
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Figure 4 

DETAIL OF BOTTOM OF FLUID-BED REDUCTION REACTOR 
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F i g u r e  5 

F 1 u id- B e d- A e d u c t io n R e a c t o r  
D i sengag ing  Sec t ion  a n d  Off-Gas P ip ing  
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IV. Exper imenta l  P r o c e d u r e  - 

T h r e e  runs  h a v e  b e e n  made  in  t h e  reduct ion  f luid-bed,  T h e  opera t ing  condi t ions  for t h e s e  

runs  a r e  p r e s e n t e d  in  T a b l e  I. T h e  f eed  c o n s i s t e d  of UO,, p roduced  in  t h e  f luid-bed 
deni t ra tor ,  s c r e e n e d  so t ha t  more than  75% of t h e  p a r t i c l e s  were  minus 40 mesh and  p l u s  
70 mesh.  T h e  feed  r a t e  w a s  c h o s e n  t o  a l low a hold-up t ime in  t h e  reac tor  of approximately 
two hours ,  a n d  t h e  d i s s o c i a t e d  ammonia flow w a s  s e t  t o  main ta in ,  as nea r ly  as  p o s s i b l e ,  

i nc ip i en t  f lu id iza t ion .  T h e  h e a t e r s  were  s e t  t o  hold a b e d  tempera ture  of approximate ly  
1000- 1 1 OOOF 

T a b l e  I 

F lu id-Bed Reduct ion  
Opera t ing  D a t a  

Run Number 

Condi t ion  F B R - 2  FBR-4  F B R - 5  

Average  Product ion  R a t e ,  l b s  UO,/hr 

Average  Bed Height ,  i n c h e s  

Average  So l ids  R e s i d e n c e  Time,  h r s  

Average  Cracked  Ammonia F l o w ,  s c f h  

Average  Number x T h e o r y  of H, 

Average  Super f ic ia l  G a s  Ve loc i ty ,  f t / s e c  
Bottom of B e d  

T o p  of Bed  

A v e r a g e  G a s  P r e s s u r e  a t  Bottom of B e d ,  p s i g  

Average  B e d  Tempera ture ,  OF 

R a n g e  of Average  B e d  Tempera ture  
Measurements ,  OF 

T o t a l  Durat ion,  h r s  

Durat ion a t  S t e a d y  S t a t e ,  h r s  

34 

36 

1.7 

153 

2.9 

0.98 

0.96 

3.9 

990 

890- 104 0 

4.8 

.~ .~ " 

41  

39 

1.8 

108 

1-4 

0.80 

0.81 

4.7 

1120 

1090-1 140 

15.25 

10.33' 

35 

46 

2.4 

154 

2 , 5  

1-08 

1.04 

5,3 

1085 

1025-1155 

16 

8' 

a All  a v e r a g e  ope ra t ion  cond i t ions  a r e  c a l c u l a t e d  for s t e a d y - s t a t e  opera t ion .  
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v .  

R u n s  F B R - 4  and  F B R - 5  were  bo th  good r u n s  from t h e  s t andpo in t  of s t a b i l i t y  of equ ipmen t  
performance a n d  c o n s t a n c y  of ope ra t ing  d a t a .  F B R - 2 ,  however ,  had  t o  b e  terminated a f t e r  

a sho r t  pe r iod  of ope ra t ion  d u e  t o  a hydrogen l e a k .  

Expe r imen ta l  R e s u l t s  

T h e  c h e m i c a l  a n d  p h y s i c a l  p rope r t i e s  of t h e  UO, product  are p r e s e n t e d  in T a b l e  11. 

d a t a  a r e  a v e r a g e s  of t h e  a n a l y s e s  of s a m p l e s  t a k e n  dur ing  s t e a d y - s t a t e  ope ra t ion .  

c h e m i c a l  a n a l y s e s  a r e  b a s e d  on t h e  a s s u m p t i o n  t h a t  a l l  t h e  uranium w a s  p r e s e n t  a s  UO,  
or UO,,  a l t hough  t h e  in t e rmed ia t e  U,O, w a s  p r e s e n t  in  t h e  s a m p l e s .  T a b l e  I11 s h o w s  t h e  
LO, c o n t e n t  of t he  product  a t  t h e  va r ious  ope ra t ing  c o n d i t i o n s  of t h e  t h r e e  r u n s .  

T h e s e  

T h e  

T a b l e  I1 

F l u i d - B e d  Reduc t ion  
F e e d  and  P r o d u c t  A n a l y s e s  - _ _ ~ -  

Hun Number 

FBR-2 FBR-4 FBR-5 

Average Bulk Density, g/cc 

Average T a p  Density, g/cc 

Nominal S ieve  Cut, U. S. Mesh 

Mean Par t ic le  Diameter, inches' 

Average UO, in  product, w/o 

Average UO, in product, w/o 

b P r o d u c t  ___ Feed" 

2.97 3 -23 

3.07 3.52 

-40 +70 

0.0095 0.0078 

42.2 

57.4 

Product" ---- Feed" 

3.31 3.43 

3.59 3.63 

-I__ 

-40 t70  

0.0079 0.0072 

34.9 

65.1 

b Feed" Product 

3.16 3.16 

3.34 3.32 

-40 +70 

0.0096 0.0097 

29.7 

70.2 

U All feed material was  produce, in the  pilot plant fluid-bed denitrator. 

' Data a re  averages of ana lyses  of samples taken during s teady-s ta te  operation. 

Mean volume-surface equivalentdiameter  [Damerva l .  F. B.,  e t  ~ l . ,  M C W - 1 4 2 9 ,  p 491. C 
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T a b l e  I11 
_-. 

F l u i d - B e d  Reduc t ion  
Run C o n d i t i o n s  a n d  P r o d u c t  A n a l y s i s  

Run Number 

F R R - 5  __- F B R - 2  F B R - 4  -- 
S o l i d s  R e s i d e n c e  T h e ,  h r s  1.7 1,8 2,4 

F l u i d i z i n g  G a s  V e l o c i t y ,  f t / s e c  0 ,98  0*80 1,08 

A v e r a g e  B e d  Tempera tu re ,  OF 990 1120  1085 

P e r c e n t  UO, 57.4 65.1 70.2 

VI.  D i s c u s s i o n  of R e s u l t s  

T h e  conve r s ion  of UO,  to UO,  a c h i e v e d  i n  all t h r e e  r u n s  is l e s s  t h a n  d e s i r e d ;  however ,  t h e s e  

f i r s t  runs are i n  t h e  n a t u r e  of shake -down  r u n s  a n d  t h e  r e s u l t s  a r e  not n e c e s s a r i l y  r e p r e s e n t a t i v e  

of t h e  u l t i m a t e  e f f i c i e n c y  of t h e  r e a c t o r .  T h e  d a t a  d o  i n d i c a t e  t h e  e f f e c t  of h ighe r  t empera tu re  

a n d  longe r  r e s i d e n c e  t ime  
t h a n  du r ing  F B R - 2 ,  F B R - 4  be ing  c a r r i e d  ou t  a t  a n  a v e r a g e  t empera tu re  of 1120'F v e r s u s  990'F 

for F B R - 2  While higher  r educ t ion  t e m p e r a t u r e s  d o  bene f i t  t h e  c o n v e r s i o n  r a t e ,  t h e y  may h a v e  
a n  a d v e r s e  e f f e c t  o n  t h e  s u b s e q u e n t  hydrofluorinat ion s t e p .  I t  is a l s o  d e s i r e d  t o  make  t h e  

r a n g e  of b e d  t e m p e r a t u r e s  c o n s i d e r a b l y  s m a l l e r .  T h e r e  a r e  r e l a t i v e l y  c o l d  s p o t s  a t  t h e  bottom 
of t h e  bed  a n d  in t h e  midd le  of t h e  r e a c t o r  where  t h e  suppor t  g u s s e t s  a r e  l o c a t e d  E l imina t ion  

of t h e s e  low t empera tu re  s p o t s  s h o u l d  e n h a n c e  t h e  d e g r e e  of c o n v e r s i o n .  

T a b l e  I11 i n d i c a t e s  t h a t  t h e  c o n v e r s i o n  w a s  h ighe r  during F B R - 4  

T h e  nomina l  r e s i d e n c e  t ime  during F B R - 5  w a s  0.6 hour g r e a t e r  t h a n  t h a t  during F B R - 4 ,  with 

c o n s e q u e n t  g r e a t e r  c o n v e r s i o n .  T h e  a v e r a g e  s o l i d s  r e s i d e n c e  t ime may b e  i n c r e a s e d  by 

r a i s i n g  t h e  bed  l e v e l  or by d e c r e a s i n g  t h e  product ion r a t e ,  t h e  l a t t e r  be ing  t h e  less d e s i r a b l e  

method.. 

Attr i t ion of t h e  f e e d  d o e s  not a p p e a r  t o  b e  a problem. F o r  R u n s F B R - 4  a n d  F B R - 5  t h e  mean 

p a r t i c l e  d i a m e t e r s  of t h e  product  a n d  f e e d  w e r e  e s s e n t i a l l y  t h e  same. T h e  d i f f e rence  

de t e rmined  for R u n  F B R - 2  is probably d u e  t o  non- rep resen ta t ive  s a m p l i n g .  
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11. 

THE USE OF THE I-fF-H,O AZEOTROPE I N  GKEEN SALT PRODUCTION 

G .  K e r r  

L .  Weber 

Summary 

E x p e r i m e n t a l  equipment  and  ope ra t ing  cond i t ions  are d e s c r i b e d  for t h e  i n i t i a l  runs  in  which 
g r e e n  s a l t  w a s  produced from UO, by hydrof luor ina t ion  with HF-H,O a z e o t r o p e .  E x c e l l e n t  
r e a c t o r  ope ra t ion  w a s  ob ta ined  when a n  a z e o t r o p e  r a t io  of 0.135 Ib of 38% H F  per  l b  of 

g r e e n  s a l t  w a s  u s e d  a t  a n  ove ra l l  H F  r a t e  of 1 . 2  t i m e s  t h e  s to i ch iomet r i c  amoun t .  

In t roduct ion  

In t h e  p a b t ,  s c r e w  r e a c t o r s  for t h e  product ion of g reen  s a l t  from U O ,  h a v e  ope ra t ed  on t h e  

"70% f l o w s h e e t . "  

a c t o r  to conve r t  t h e  UO, to  UF,, a n d  t h e  H F  in  t h e  d i s c h a r g e  g a s  s t r e a m  formed a 70% a c i d  

s o l u t i o n  with t h e  water  of r eac t ion .  

Under t h i s  p l a n ,  enough  anhydrous  HF w a s  fed  t o  t h e  counter -cur ren t  re -  

It is now p r a c t i c a l  to  o p e r a t e  g reen  s a l t  r e a c t o r s  a t  much lower e x c e s s e s  of HF than  t h e  2 .3  

t i m e s  t h e  t h e o r e t i c a l  amount  which w a s  rout ine ly  u s e d  t o  p roduce  70% H F  in  t h e  o f fgas .  T h e  

c o s t  of HF is hiqh  enough  t o  e n c o u r a g e  t h i s  rou te  for con t inued  product ion u s e .  

l imit  t o  s u c h  r educ t ions  in e x c e s s  of r e a g e n t s  i s  t h e  s to i ch iomet r i c  amount  (1 .0  x t heo ry ) .  

However ,  h igh  qua l i t y  g reen  s a l t  canno t  b e  produced with a n  a b s o l u t e  minimum of r eagen t  i n  

cu r ren t ly  u s e d  indus t r i a l  equ ipmen t .  

T h e  t h e o r e t i c a l  

O p e r a t i o n  of g reen  s a l t  r e a c t o r s  with excesses of 20 - 30% h a s  b e e n  d e m o n s t r a t e d  a t  t h i s  and  
o the r  AEC sites. T o  minimize r eagen t  excesses as  much a s  p o s s i b l e ,  t h e  c o n c e p t  of re- 

cove r ing  a n d  r ecyc l ing  t h e  38% HF-H,O a z e o t r o p e  t o  t h e  r e a c t o r s  w a s  p roposed .  T h e  problem 

of h a n d l i n g ' a n d  r ecove r ing  t h i s  a z e o t r o p e  i s  d i f f icu l t  b e c a u s e  of t h e  very c o r r o s i v e  na tu re  of 

d i l u t e  H F  s o l u t i o n s .  A r ecove ry  s y s t e m  w a s  d e s i g n e d  and  c o n s t r u c t e d ,  and  i t  i s  in  t h e  pre- 

o p e r a t i o n a l  t e s t i n g  p h a s e s .  A fu ture  repor t  w i l l  d e s c r i b e  t h e  s t a r t u p  of t h i s  s y s t e m .  

s c o p e  of t h e  p r e s e n t  repor t  i s  l imi ted  t o  a d e s c r i p t i o n  of expe r imen ta l  ope ra t ion  of a g reen  

s a l t  r eac to r  u s ing  a s imula t ed  r e c y c l e  of 38% H F - H , O  mixture  t o  t h e  upper  tube .  With t h i s  

r e c y c l e  imposed  on t h e  r eac to r ,  i t  i s  e x p e c t e d  tha t  s u c c e s s f u l  ope ra t ion  a t  a n  ove ra l l  H F  

consumpt ion  approach ing  1.0 wil l  b e  both p o s s i b l e  a n d  p r a c t i c a l .  

T h e  

T h e  a z e o t r o p e  r ecove ry  s y s t e m  c o n s i s t s  e s s e n t i a l l y  of a d i s t i l l a t i on  co lumn,  a vapor i ze r ,  and 

a me te r ing  s t a t i o n .  T h e  d i s t i l l a t i on  column will  a c c e p t  mixtures  of H F  and  H,O tha t  are below 
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38% H F  a n d  wi l l  p roduce  38% H F  a n d  water .  T h e  water  is d i s c a r d e d  whi le  t h e  38% H F  is 

recyc led  b a c k  t o  t h e  r eac to r  in t h e  vapor  s t a t e ,  Therefore ,  t h e  of fgas  be ing  fed  t o  t h e  azeo -  

t rope  recovery  s y s t e m  must  n e c e s s a r i l y  b e  below t h e  a z e o t r o p e  composi t ion ,  In t h i s  s y s t e m ,  

t h e  economy of opera t ion  i n c r e a s e s  as t h e  ove ra l l  H F  consumpt ion  is reduced .  

111. Exper imenta l  

A.  R e a c t o r  Opera t ion  Using  a n  Azeot rope  R e c y c l e  Stream 

T h r e e  s c r e w  r e a c t o r s  opera t ing  in  c a s c a d e  a r e  d e s i g n a t e d  as  t h e  r r A P o ,  ' IBCn ,  a n d  ' ' C E d  
r eac to r s .  E a c h  r eac to r  is ag i t a t ed  by a long s c r e w ,  which  is dr iven  a t  o n e  e n d  a n d  d i s -  
c h a r g e s  powder  a t  t h e  o ther  e n d ,  T h e  H F  f lows  countercur ren t  t o  t h e  UO, through a l l  

t h ree  t u b e s .  

UO, is f ed  t o  t h e  dr ive  e n d  of t h e  "A" r eac to r ,  a n d  anhydrous  H F  is fed  t o  t h e  d i s -  
c h a r g e  e n d  of t h e  u r C g n  reac tor .  T h e  azeo t rope  r e c y c l e  s t r eam is fed  to t h e  d i s c h a r g e  

end  of t h e  ' ' A ' J  r eac to r  where i t  m i x e s  with t h e  pa r t i a l ly  r e a c t e d  H F  f lowing from t h e  
" ' B "  r eac to r .  

After t h e  H F  l e a v e s  t h e  ' 'Ao8 r eac to r ,  i t  is f i l t e r ed  t o  remove g r e e n  salt d u s t ,  c o n d e n s e d ,  
and  then  r econcen t r a t ed  to  38% H F  in  a K a r b a t e  d i s t i l l a t i o n  column.  T h i s  r econcen t r a t ed  

a c i d  may t h e n  b e  r ecyc led  t o  t h e  "A" r eac to r .  T h e  o v e r h e a d s  from t h e  s t i l l ,  which  con-  

s i s t  of the  w a t e r  g e n e r a t e d  in  t h e  r eac t ion  of H F  with UO, and a s m a l l  amount  of H F ,  a r e  
neu t r a l i zed  a n d  d i sca rded .  

B.. Method of S imula t ion  of Azeot rope  R e c y c l e  

T o  de termine  t h e  proper  opera t ing  cond i t ions  for running a r eac to r  on azeo t rope  r e c y c l e ,  
it  w a s  n e c e s s a r y  t o  d e v i s e  a way of making t h e  azeo t rope  a r t i f i c i a l ly  a n d  meter ing i t  i n to  

t h e  ]'A'. r eac to r  accu ra t e ly .  By t h e  u s e  of a n  i n s t a l l e d  anhydrous  H F  f lowmeter ,  toge ther  

with i t s  c o n t r o l s ,  a method of meter ing  s t e a m  a n d  mixing t h e  t w o  s t r e a m s  prior t o  en te r ing  

t h e  r eac to r  w a s  provided  t o  s imula t e  t h e  r e c y c l e  of azeo t rope .  T h i s  a r rangement  for 

meter ing H F  a n d  s t e a m  s e p a r a t e l y  provides  g rea t  f lex ib i l i ty  for t e s t i n g  t h e  va r ious  run 
cond i t ions  

IV, D i s c u s s i o n  

A .  C h o i c e  of E x p e r i m e n t a l  C o n d i t i o n s  - 

T h e  c h o i c e  of run cond i t ions  is dependent  on  two fac tors :  c o s t  and product ion 

of h i g h q u a l i t y  UF,. T h e  condi t ion  of minimum c o s t  is not  n e c e s s a r i l y  o n e  of good 

a 
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operab i l i t y ,  T h e  ob jec t ive  of t h i s  work w a s  t o  deve lop  a s e t  of c o n d i t i o n s  under which 

t h e  r eac to r  wil l  ope ra t e  a t  t h e  l o w e s t  p o s s i b l e  c o s t :  T h i s  means  ope ra t ing  with t h e  

l o w e s t  p o s s i b l e  overal l  HF e x c e s s ,  and  s e c o n d a r i l y ,  with t h e  l o w e s t  p o s s i b l e  amount 
of azeo t rope  r e c y c l e .  

B. T h e  R o l e  of HF Concent ra t ion  P ro f i l e  in Operabi l i ty  

T h e  ope rab i l i t y  of a r eac to r  d e p e n d s  on  s e v e r a l  factors :  HF concen t r a t ion  prof i le ,  

t empera ture  p ro f i l e ,  and  t o t a l  volume of g a s  flowing through t h e  r eac to r  s y s t e m .  

T h e  most  p rac t i ca l  p l a c e  t o  c o n s i d e r  HF Concentration is a t  t h e  poin t  where  i t  l e a v e s  

t h e  ‘‘A’.’ r eac to r .  T h i s  is referred t o  as ‘!offgas“ s i n c e  i t  l e a v e s  t h e  r eac to r  s y s t e m  he re .  

Under  cond i t ions  of  1.3 x theory  of HF’  flow t h e  of fgas  composi t ion  wil l  b e  about  40% HF. 
If t h e  o v e r a l l  H F  e x c e s s  is gradua l ly  lowered  from i ;3  t o  1 .0 t h e  o f fgas  compos i t ion  wil l  
d rop  from abou t  40% HF t o  0% H F  ( a s s u m i n g  100% conver s ion ) .  If ,  wh i l e  running a t  a n  
o v e r a l l  HF r a t e  of 1.0 x t heo ry ,  t h e  r e c y c l e  of azeo t rope  is then  s t a r t e d  a t  s o m e  low r a t e  
a n d  g radua l ly  i n c r e a s e d  t o  a r a t e  of 0 .356  pound azeo t rope  per pound UF,, t h e  r eac to r  
o f fgas  concen t r a t ion  wil l  i n c r e a s e  from 0% HF to 28% H F ,  a t  which  point t h e  p r e s s u r e  
drop in  t h e  p re sen t  of fgas  s y s t e m  l imi t s  t h e  opera t ion .  

I t  is p o s s i b l e ,  t heo re t i ca l ly ,  t o  ope ra t e  t h e  r eac to r  with a n y  combina t ion  of HF and  
azeo t rope  f eed  r a t e s  betw.een t h e s e  ex t r emes ;  however ,  not all of t h e s e  combina t ions  a re  

economica l ,  nor a re  a l l  of them p o s s i b l e  under p re sen t  c o n d i t i o n s .  

C .  Of fgas  Volume R e l a t i o n s  

T h e  volume of r eac to r  o f f g a s  v a r i e s  over  a wide  r ange ,  depend ing  on t h e  pa r t i cu la r  com-  

b ina t ion  of ove ra l l  H F  r a t e  and  t h e  azeo t rope  r e c y c l e  r a t e  be ing  f ed  t o  t h e  ”A‘;’ r eac to r .  
If A H F  is fed  t o  t h e  r eac to r  a t  a n  ove ra l l  r a t e  of 1.0 x theory  with no  a z e o t r o p e  r e c y c l e ,  
t h e  r eac to r  o f f g a s  volume wi l l  b e  3.5 f t3 /pound U F ,  (at 400’F a n d  17 p s i a ) .  

t heo ry ,  5 .6  ft3/pound UF, is ob ta ined  under t h e  same cond i t ions .  With azeo t rope  r e c y c l e  
c o n d i t i o n s  of i .0  x theory  A H F  a n d  0 .356  pounds  azeo t rope  per  pound UF,  (28% H F  
o f f g a s ) ,  t h e  volume is 13.8 f t3 /pound UF,. At high a z e o t r o p e  r a t e s ,  t h e  a v a i l a b l e  p r e s s u r e  

drop for o f fgas  f i l t ra t ion a p p e a r s  to l imit  ope ra t ions .  

At 1.3 x 

V. R e s u l t s  

T h e  r e s u l t s  of  r eac to r  opera t ion  u s i n g  a z e o t r o p e  r e c y c l e  into t h e  “A“  r e a c t o r  a r e  shown in 

T a b l e  I. T h e  exper imenta l  work w a s  s t a r t e d  us ing  a 1.0 ove ra l l  A H F  r a t e  with su f f i c i en t  

a z e o t r o p e  flow t o  t h e  “A’? r eac to r  t u b e  t o  produce  a 20% of fgas .  S ince  t h i s  cond i t ion  re-  
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s u l t e d  i n  poor r eac to r  ope ra t ion ,  a t t empt s  were  made  t o  improve r eac to r  ope ra t ion  by inc reas ing  

t h e  amount  of azeo t rope  f low,  T h i s  r e s u l t e d  in  c o n d i t i o n s  under which  r eac to r  ope ra t ion  w a s  

i m p o s s i b l e  b e c a u s e  of t h e  l a rge  volume of o f fgas  a n d  t h e  r e su l t i ng  b a c k  p r e s s u r e ,  At t h i s  time 

a i r  coo l ing  w a s  in s t i t u t ed  on  t h e  'OB'# tube ,  a n d  fur ther  a t t e m p t s  to improve r eac to r  per formance  

were  made  by us ing  s l i g h t l y  more than  t h e  t h e o r e t i c a l  1.0 ove ra l l  HF r a t e  and  by "bypass ing"  
s o m e  anhydrous  HF i n t o  t h e  "A" r eac to r  a long  wi th  t h e  azeo t rope .  

I 
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Azeotrope R e c y c l e  Experiment - 
O f f g a s  F l o w  R a t e  

cfhb Azeotrope Calc. Average  Product  Qual i ty  ________ 
Azeo.  

Recycle  "B" "C" A H F  R a t e  l b s  Offgas  IIA" 
Stoich.  38% H F  Concn. 

Run R a t i o  per  lb  UF,  w/o HF. NO.' A s s a y  _ _ - _ . -  NoU A s s a y  A s s a y  A.O.I. ~ W.S. - ___ Tota l  - AloneC Reactor  Per formance  Comments  - -  
1 1.0 0.135 20 9 33.9 11 87.0 27 96.5 

2 1.0 0.135 20 3 35.5 6 69.9 7 86.2 

3 1.0 0.188 23 4 40.0 5 80.9 7 96.7 

4 1.0 0.356 28 2 35.5 2 86.8 1 96.7 

(Air cool ing of "B" tube  inst i tuted a t  t h i s  t ime.)  
5 1.0 0.239 25 5 23.1 5 78.0 4 95.6 

6 1.1 0.239 30 15 43.1 15 86.3 14 96.7 

'7 1.3 0.135 34 13 44.0 13 88.0 21 96.0 
B y p a s s e d  
0.1 t o  "A' 

B y p a s s e d  
0.1 to  " A "  

8 1.2 0.135 27 .- - 3 86.6 8 97.4 

I n d i c a t e s  number of individual  s a m p l e s  included in  t t e  ai 'erage 

Volumes c a l c u l a t e d  at 400'F 17 p s i a  

' Volumes c a l c u l a t e d  from 38% H F  ra te  assunt ing i t  to p a s s  tiirough the  reactor  unchanged.  
reac t ion  p l u s  any  amount of H F  above s toichiometr ic .  

0.8 2.7 6,260 3320 Overriding of l rBr '  
temperatures  - Severe  
Caking in B and C tubes  

Adjusted "A" 
tube temps.  but  
poor control  

5.3 7.7 6,260 3320 Same as Run 1 

1.3 1.9 7,570 4630 Small improvement 
over Run 1 

0.1 3.2 11,700 8780 Frequent  shutdown of Improved control  
H F  flow a / c  high 
reac tor  in le t  p ressure  " A "  tube  

of temps.  in  

1.3 3.0 8,810 5870 Some shutdowns  of HF 
flow a/c high reac tor  inlet  
p ressure  - large improve- 
ment in operat ion of "B'l 
reactor  - some caking  in 
' ' C tu be  

0.7 2.7 9,390 5870 More frequent  shutdown of 
H F  flow a / c  high reactor  
in le t  p r e s s u r e  - s e v e r e  
caking  in "C" tube  

0.9 2.9 8,000 3320 Good reactor  operation 
comparable  t o  normal 
operat ion with high e x c e s s  H F  

0.4 2.5 7,420 3320 Same a s  Run 7 

Dif fe rence  between :.cto! volume and  this vo1c;r-e r r p r e s e n t s  water of 
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T h e  l a s t  cond i t ion  shown in t h e  t a b l e ,  a n  azeo t rope  r a t i o  of 0,135 I b s  38% H F / l b  UF, and  an 

o v e r a l l  H F  r a t e  of 1.2 t i m e s  t h e  s to i ch iomet r i c  amount,  g a v e  e x c e l l e n t  r eac to r  ope ra t ion ,  

comparable  t o  t h e  normal ope ra t ion  of a r eac to r  on high e x c e s s  H F  ope ra t ion .  

Add i t iona l  work aimed a t  con t inued  good r eac to r  performance,  product ion of high-quality UF, 
and  a d e c r e a s i n g  ove ra l l  H F  consumpt ion  is p lanned .  It is e x p e c t e d  t h a t  t h i s  work wil l  pro- 

c e e d  concur ren t ly  with t h e  i n i t i a l  p r o c e s s  s t a r t u p  of t h e  azeo t rope  r ecove ry  and  r e c y c l e  
equipment .  
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PRODUCTION OF DINGOT METAL FROM CANADIAN G R E E N  S A L T  

R .  W .  Becker  

Summary 

Green  s a l t ,  produced a t  P o r t  H o p e ,  C a n a d a ,  w a s  e v a l u a t e d  in t h e  labora tory  a n d  then  u s e d  in  
p roduc ing  four  3300-pound d i n g o t s  by t h e  long- soak  t e c h n i q u e .  

t h e  g r e e n  s a l t  to  b e  of uniform compos i t ion  a n d  to  b e  approximately comparab le  t o  Weldon Spring 
m a t e r i a l ,  wi th  t h e  excep t ion  of hydrogen c o n t e n t .  T h e  l a t t e r  w a s  abou t  t w i c e  t h e  l e v e l  found in  
Weldon Spring g reen  s a l t .  

t r i ca l ly  ign i t ed  a f t e r  30  hour s  of h e a t i n g .  Metal  from t h e  long- soak  bombs  w a s  a n a l y z e d  and  
found to b e  comparab le  t o  Weldon Spring d i n g o t s  e x c e p t  in hydrogen c o n t e n t .  T h e  hydrogen 
l e v e l s  of 3.9 a n d  3 . 4  ppm were higher  t han  i s  normally found in me ta l  produced by t h e  long-soak 

t e c h n i q u e .  

Labora to ry  a n a l y s i s  i n d i c a t e d  

T w o  of t h e  bombs ign i t ed  prematurely;  !he remaining two  were  e l e c -  

In t roduct ion  

A s  par t  of a n  e x c h a n g e  program b e t w e e n  Mallinckrodt C h e m i c a l  Works a n d  t h e  P o r t  Hope  Ref ine ry ,  

g r e e n  s a l t  p roduced  a t  o n e  s i t e  w a s  e v a l u a t e d  by t h e  o ther .  T h e  o b j e c t i v e  of t h e  program w a s  t o  

compare  t h e  ma te r i a l  on t h e  b a s i s  of c h e m i c a l  and  s c r e e n  a n a l y s i s ,  behav io r  in  !he r educ t ion  re -  

a c t i o n ,  a n d  compos i t ion  and  y i e l d s  of t h e  metal  p roduced .  

E x p e r i m e n t a l  a n d  R e s u l t s  

E n o u g h  g reen  s a l t  to produce four 3300-pound d i n g o t s  w a s  b l ended  a n d  p a c k a g e d  accord ing  t o  
t h e  u s u a l  procedure .  ( T h e  remainder  of t h e  mater ia l  w a s  submi t ted  to  t h e  labora tory  for e v a l u -  

a t i o n  in  s m a l l - s c a l e  bombs . )  A s a m p l e  of t h e  ma te r i a l  t a k e n  during p a c k a g i n g  g a v e  !he a n a l y s i s  
s h o w n  in  T a b l e  I. 
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T a b l e  I 

A n a l y s i s  of Green  Sa l t  P r o d u c e d  by  t h e  P o r t  Hope  Ref inery  

Uranium 75.86% 

UF, 98.96% 
AOI' 0.58% 

U O J ,  0.41% 
Ni 30 PPm 

Fe 35 PP" 

Ammonium O x a l a t e  Inso lub le .  U 

Thie f - samples  were  t aken  from two of t h e  p a c k a g e d  hopper s  and  s u b j e c t e d  t o  a n a l y s i s  for 

hydrogen a n d  for m e s h  s i z e .  T a b l e  I1 g i v e s  t h e  r e s u l t s  of t h e s e  a n a l y s e s .  T h e  number of t h e  

d ingot  produced  from e a c h  hopper  is shown  a t  t h e  t o p  of t h e  co lumns .  

T a b l e  I1 -- I 
Hydrogen and  S c r e e n  A n a l y s e s  of P o r t  Hope  Green  S a l t  

Dingot  Number 

1838 

Hydrogen ,  as H,O 56 6 1  

I_ 

1814 - 

and/or  H F ,  ppm 

+ 20 mesh ,  % 1 .O 0.7 

- 20 + 70, % 5 -9  5.8 

- 70 +100, % 4.4 4.3 

-100 t200, % 12.6 12.8 

-200 +325, 76 14.7 1 4 . 4  

-325, % 60.7 61.2 

L i n e r s  for  t h e  four  bombs  were  jo l ted  on t h e  No. 1 (Hermann)  jo l te r .  T h e y  were  of good qua l i ty  
in both a p p e a r a n c e  a n d  g reen  h a r d n e s s .  T h e  h a r d n e s s  of all four l i n e r s  w a s  of t h e  order  of 85. 

T h e  P o r t  H o p e  q reen  s a l t  appea red  to h e  of lower  d e n s i t y  t h a n  Weldon Spring ma te r i a l ,  f i l l i ng  t h e  

h o p p e r s  comple t e ly  and  f i l l ing  t h e  l ined  s h e l l s  to a l e v e l  h igher  t h a n  normal.  T h e r e  w e r e  n o  
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n 

D 

E 

problems encoun te red  in  charg ing  t h e  ma te r i a l  t o  rhe  b l ende r s  k lending  3 r  in charg ing  t h e  l ined  

s h e l l s  

and  3 inch  c a p s  for t h e  o ther  t h ree  
No 1838 

T h e  c h a r g e s  were  tamped with t h e  c o n c r e t e  vibaator t s  g ive  c 5 - inch  c a p  for o n e  bomb 

!r w a s  n e c e s s a r y  to  remove 42  pounds  of b lend  from cha rge  

T h e  magces ium e x c e s s  w a s  1% for a l l  bombs 

T w o  the rmocoup les  were p l aced  in e a c h  cha rge  o r e  in  t h e  cen te r  of t h e  c h c r g e  and  t h e  other a t  

t h e  r a d i u s  of gyra t ion  i 9  5 i n c h e s  below t h e  t o p  

Al l  four  bombs  were  hea ted  by t h e  long s o a k  fu inace  c y c l e  

I i 5 O e F  6 hou i s  F u r n a c e  bottom and  middle  zone  
F u r n a c e  boitom z o n e  800'F 24 hours  

Bombs  1813  crid 1 8 i 4  fi:ed premature ly  a t  1 6  00 a n d  11 40 h o u r s  r e s p e c r i v e l y c  bombs i 8 3 6  and  
1838 were  ign l ted  elec'rTcc1ly- nf;ei 3G h c c r s  of hea t ing  
bombs  a r e  shown  In F igu re  i 
111 

T h e  c h a r g e  heu i ing  c u r v e s  for t h e  

and  rhe mcrxincm cer. ter t e m r ; e r a t x e s  a t t a i n e d  cre g iven  :n Tab!e 

T h e  hea t ing  c u r v e s  cre Lorriparztle t o  t h o s e  oh ia ined  f c r  Weldon Spring mate::al 

T c b l e  I11 

Hea t ing  cnd Yield  Uc ta  for Dingot Metal Made from C a n a d i a n  Green  Sa l t  

F i r i n g  
Dingot  T i m e  
Number hr -min  

1813 if5 00 
1814 1 i '40 

1836  29,40 
1838 29 .45  

C h a r g e  
Cen te r  

Tempera tu re  
"F 

300 
i 90 

5 60 

5 40 

Tempera tu re  
at Radi;lsa 
uf Gyra t i cn  

'F  

560 
550 

6 70 

6 70 

- - ~  

a E q u i v a l e n t  to t h e  uve rage  c h c r q e  tempera ture .  

O n e  l a r g e  c i rcumferent iu l  f in .  

Seven  per  c e n t  UF, i n  r e c c t i o n  s l a g .  C 

Crude  
Yie ld  ' f i e ld  Hydrogen 

% % PPm 

9 7  4b  82.0  5 6  

hl a c h i Red 

90 9" 70  8 5 0  

89  7 76  4 3 9  
95 6 8 0  3 3 4  

Al l  four d i n g o t s  s e p o r a t e d  c l e a n l y  from t h e  r e a c t i o n  s l a g  on breakour ,  hcwever  th ree  of them 

had  very  rough s u r f a c e s  and  t h e  four rh  had  a l a rge  c i i cumfe ren t i a l  f in  in { h e  c e n t e r ,  
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n 

P 

il 

P 

P 

T w o  of t h e  d i n g o t s  had low c r u d e  y i e l d s ,  and  o n e  of t h e s e  hcd a dc rk  r e a c t i o n  s l a g ,  wh ich ,  upon 

a n a l y s i s ,  w a s  found t o  con ta in  abou t  7% UF, 
d e f i c i e n c y  in  t h e  cha rge .  Crude and  mach ined  y i e l d s  for t h e  d i n g o t s  ure  s h o w n  in  T a b l e  111. 

T h i s  i n d i c a t e s  t h e  poss ib i l iyy  of a magnes ium 

Dingo t s  1836 and  1838, produced by t h e  long- soak  t echn ique  were  p r e s s - s c a l p e d ,  s iow-coo led ,  

a n d  s h i p p e d  t o  F e r n a l d  for i o l i i ng  as par! of t h e  a d d i t i v e  and  g ra in  s i z e  program However t h e  

e v a l u a t i o n  of t h e  ro l ied  s l u g s  i s  i ncomple t e  T h e  remaining t w o  d i n g o t s  w e r e  k e a t e d  as uormal 

product ion .  

T h e  hydrogen conten!s of d i n g o t s  1836 a n d  1858 were  3 9 a n d  3 4 ppm, r e s p e c t i v e l y .  which i s  

h ighe r  t h a n  normally found in me ta l  produced by t h e  l o n g - s o a k  t e c h n i q u e  

d a t a  foi t h e  two  d i n g o t s  a r e  g iven  in T a b l e  IV.  T h e  a n a l y s e s  Sndicaie t h a t  t h e  l e v e l  of 

impur i r ies  is s imi l a r  t o  t h c t  found in Weldon Spring ma te r i a l  

Oiher a n a l y t i c a l  



T a b l e  IV 

C h e m i c a l  A n a l y s i s  of Dinqot  Metal  P r o d u c e d  from C a n a d i a n  Green  S a l t  

E lcm e n t  1 

Ag 
A1 

AS 

B 

B a  

B e  

B i  
C 
Cd 

c o  
Cr  
c u  
Fe 

H2 

In 
L i  

Mg 
Mn 

Mo 

Na 

Ni 
P 
Pb 
Si 
Sn 
v 
Z n  

< 0.1 
< 10 

< 10 

c 0.1 

< 10 
< 0.1 

< 5  
36 

< 0.10 

c 5  
1 0  

2 
27 
4.1 

< 1  
< 1  

< 10 

< 10 

< s  
< 10 

35 

< 50 

< 5  
17 

< 5  
< 20 
< 20 

U T r i p l i c a t e  a n a l y s e s ,  

bDupl  i c a t  e an  a1 y s es. 

( R e s u l t s  i n  p a r t s  per  mi l l ion)  

Dingot  1836' 

2 
__- - 

< 0.1 
18 

< 10 
< 0.1 

< 10 
< 0 . 1  

< 5  
38 

< 0.1 

< 5  
14 

2 
35 

3.6 
< 1  
< 1  

14 

< 10 

< s  
< 10 

40 

< 50 

< 5  
20 

< 5  
< 20 

21 

3 

< 0.1 
11 

< 10 
< 0.1 

< 10 
< 0.1 

.: 5 
34 

< 0.1 

< 5  
10 
2 

28 

3.9 
< 1  
< l  

10 

< 10 

< 5  
< 10 

35 
< 50 

< 5  
21 

< 5  
< 20 
< 20 

Dinqot  1838' 

2 ____ 1 __ __ 

< 0.1 < 0.1 

18 24 
< 10 12 
< 0.1 < 0.1 

< 10 < 10 
< 0.1 .; 0.1 

< 5  < 5  
32 26 

< 0.1 0.13 

< 5  < 5  
12  14  

4 4 

32 40 

3.1 3.6 
< 1  < I  
< 1  < I  

1 2  
< 1 0  

< 5  
< 10 

42 

< 50 
< 5  

23 
< 5  
< 20 

27 

14 

< 10 

< 5  
< 10 

40 

< 50 

< 5  
24 

< 5  
< 20 

28 
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I 
G3 
G1 
u 

U 
P 
0 

P 

Conclusions 

Green  s a l t  p roduced  a t  t h e  P o r t  Hope  Refinery a p p e a r s  t o  b e  s imi l a r  t o  Weldon Spring ma te r i a l  

e x c e p t  i n  hydrogen con ten t  a n d  dens i ty .  T h e  former i s  h igher  a n d  t h e  l a t t e r  i s  somewha t  lower 
t h a n  is normally found in  Weldon Spring g reen  s a l t .  

Dingot  m e t a l  produced from t h e  C a n a d i a n  g reen  s a l t  by t h e  long- soak  t e c h n i q u e  c o n t a i n e d  more 

hydrogen  t h a n  i s  normally found in me ta l  produced by t h i s  method.  T h e  l e v e l  of o the r  impur i t i e s  
i n  t h e  m e t a l  w a s  comparab le  t o  t h a t  of Weldon Spr ing  meta l .  





p@ 

P 
A 0 1  __ 

b i l l e t  

b l a c k  o x i d e  

- ammonium o x a l a t e  i n so lub le  ( o x i d e s  of uranium) 

- a bar of forged d ingot  uranium s u i t a b l e  for s u b s e q u e n t  ro l l ing  

de rby  

81 

G l o s s a r y  of S p e c i a l i z e d  T e r m s  

brown o x i d e  - uo: 

dingot  

DMFL 

E"A 
ESU - 

- t h e  uranium meta l  product  of t h e  nominal  300. 100 a n d  50- lb  r educ t ion  
bombs  which is s u b s e q u e n t l y  r e c a s t .  

- (d i r ec t  i ngo t )  t h e  uranium meta l  product  of 1400 and 3300 l b  r educ t ion  
b o m b s .  T h i s  metal  not  r e c a s t  

- dingot  magnesium f luo r ide  l iner 

- dis t r ibu t ion-  coe f f i c i en t  (o rgan ic  t o  a q u e o u s )  

- e a s i l y  s o l u b l e  uranium 

E-Z Hollow s l u g  - a hol low f u e l  e l emen t  with approx ima te ly  % - i n c h  w a l l  t h i c k n e s s  8- inch  
- nominal  l e n g t h .  and  nominal  ODs of 2 a n d  3 i n c h e s -  

g r e e n  s a l t  - UF, con ta in ing  s m a l l  amoun t s  of U O J ,  a n d  uranium o x i d e s  

I & E s l u g  - (ho l low)  in t e rna l ly  a n d  ex te rna l ly  c o o l e d  s l u g  

ingot  - r e c a s t  uranium meta l  

MFL - magnes ium*f luo r ide  l iner  

NOK - a uranyl n i t r a t e  s o l u t i o n  ob ta ined  by s t r ipp ing  uranyl  n i t r a t e  from t r ibu ty l  
p h o s p  ha  t e -hexane  s o l v e n t  with w a t er 

OK-liquor - t h e  uranyl  n i t r a t e  liquoi- of h i g h e s t  purity u s e d  a s  a f eed  t.o t he  
_____ den i t r a t ion  p o t s  

o r a n g e  ox ide  - U O ,  

n P - D  - pumper. decan te r  

( con t inued  on next p a g e )  
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G l o s s a r y  ( con t inued)  

pre igni t ion  t ime  

r a f f ina t e  

RMF 

rod - 

s l a g  
__ 

6-4 UF, 

s l u g  - 

s o d a - s a l t  
~. 

UNH 

- t ime  in t e rva l  be tween  p l ac ing  bomb in  hot fu rnace  and  in i t i a t ion  of 
reduct ion  r e a c t i o n  

~' t he  a q u e o u s  r e s i d u e  remain ing  a f t e r  t r ibu ty l  phospha te  ex t r ac t ion  of a 
uranium c o n c e n t r a t e  p rev ious ly  d i g e s t e d  wi th  HNO, 

- r e j e c t  magnes ium f luor ide  

.. cy l ind r i ca l  l ength  of uranium produced  by ro l l ing  or ex t ruding  uranium 
b i l l e t s  a n d  i n g o t s  

' magnes ium f luor ide  formed in t h e  thermi te  bomb reac t ion ;  i t  c o n t a i n s  
s m a l l  q u a n t i t i e s  of uranium a n d  magnesium 

.. UF, produced by reduct ion  of UF, 

~ rods  of uranium machined  t o  s p e c i f i c  d iameter  a n d  l eng ths ,  S lugs ,  when  
c a n n e d ,  a r e  u s e d  as fue l  e l emen t s .  

- sodium d iu rana te ;  u sua l ly  app l i ed  to  raw m a t e r i a l s  of t h a t  compos i t ion  

uranyl  n i t r a t e  hexahydra t e  

wa te r  s o l u b l e  (or W.S.) . UO,F,, t h e  water -so luble  component  of g reen  salt 
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