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ABSTRACT
Several aépects.of deep inelastic neutrino scatteringvare

discussed in the framework of asymptotically free field theories.

We first consider the grow;h behavior of ‘the total cross sections at
large energies. Decause of the deviations from strict scaling.which
are characteristic of such theories the growth need not be iinearf
However, upper and lower bounds are established which rather closely
bracket a linear.growth.: We next consider. in more detail the expected
~ pattern of scaling deviation for the structure functions and,
correspondingly, for the differential cross sections. The analysis
ﬁere is based on certain speculative assumptions. The focus is on
qualitative effects of scaling breakdown as they may show ﬁp‘in the
x and y distributions. The las; section of the paper deals with deviations
from‘the Callan-Gross relation.
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I. INTRODUCTION

A considerable theoretical industry has built up around
the idea of Bjorkem scaling, which received its first experimental support
in the SLAC-MIT experiments én electroproductionl. Subsequent confirmation,
iﬁ part, .has come from the observation2 thatxthé tptal cross sections for
neutrinos and anti-neutrinos on nucleoné'appear to grow linearly with energy
beyond a few Gevf- A simple and highly success ful ﬁhysical picturé of
the scaling phenomenon is provided by the well-known parton model-3 In
its field theoretic transcription, this model amounts to the assumption
of canonicai dimensions for the ﬁwist—two operators that aﬁpéar in the
Wilson expansion of a product of c;rrgnts. It has recently b;come
clear, however, at least in the framework of renormalizable field theory,
that the dimensions can be canonical for'all'the relevant opefators only
in the absencé of imteractions. Strict scaling, therefore, if it were
to persist; would represent a méjor theoretical paradox. On the other hand
.departurés from scaling, if they develop in a suffiéiently patterned way,
could also be informative about the structure of the underlying theory.

So far, the closest one has come to strict scaling is with a special
class of'theories, based on non-Abelian gauge symmetry. Theories of this
class possess the property of:asy'mptotic.freedom4 and lead to certain

5’6’7. In the present paper

characteristic patterns of scaling breakdown
we discuss some of the observational implications, especially in the context
of neutrino reactioms. One issue concerns the dependence of total neutrino

cross sections on energy. This is taken up.in Section II, where upper



and lower bounds are derived on the growth rate. The arguments employed
in this section involve very little in the wéy»of extra assumptions going
beyond those implied by asymptotic freedom. If,is found that the growth,
while it needn't be exactly linear once strict scaling breaks down, cannot
depart too greatly from linear. Iﬁ the present context, asymptotically
free‘theories make their most definite predictipns for the large q2

) ’ ' !
behavior of the moments qf the structure functions. Section III is
concerned with converting this information into predictions about the
large q2 behavior of the structure fpnctionsvthemselves. Issues of
non-uniformity arise here iﬁ gping frqm one to. the other; so the discussion
in Section III is based on frankly speculative procédures: The aim,
however, is to assess qualitatively how the breakdown of scéling could
‘reveal itself in certa'i‘n,aspects8 of‘the_differential section. In
particular, one is‘led to expecf what could be a substantial change with
energy in the shapes of the x and ¥y distributions. Section IV
deals with a somewh;t different subject, nameiy, corrections to the
Callan-Gross relation? However this section aléo provideé'a Erief review
of asymptotic freedom, and it contains some comments on the non-uniformity
issues mentioned above. Throughoqt the entire discussion we ignore
possible deviations from scaling which would arise from the propagator
term of a weak vector boson. If the mass is very large the effects would
not be noticeable at present energies; but in any case the necessary
modificatgon could eaéily Ee made. .In Sections III and IV the discussion
is implicitly restricted. to strangeness and charm—conserving neutrino

reactions.



II. BOUNDS

We focus on the neutrino reactions and their structure functions

»Fi(w,qz), i=1,2,3.. Here q2 is the negative of the invariant momentum

transfer and w = zm\)/q2 is the Bjorken scaling variable. Strict scaling
would imply that the Fi(w,qz)_approéch finite limits as q2+ o fgr fixed w.
However, we are contemplating the possibility of departures from scaling;
and on present thinking such departures'are expectéd,to take on their most
characteristic shape when ‘expressed in terms of the large q2 behavior of

the moments of the structure functions,

(24 .
: 5@)(32) = fdkf w " F (a/,g )., W

For the asymptotically free theories. under discussion the moments are
predicted to dispiay logarithmic deviations from scaling. Namely, for q2

large enough (how large may in general depend on the order n of the moment)

the predicted asymptotic behavior is
, _ Qn(i
f) — éa)(//g ") (2

where u 1is a scale parameter not specified by the theory. The
coefficients bn(i) are similarly unspecified; but the exponents an(i)
are definite and characteristic of the undetlying theory. They can be

computed explicitly, given the gauge group and the quark content of the

theory.>




Actually, there will in general be several different operators of
'spin n+2 in the Wilson expansion, each making a contribution to the right
hand side of Eq. (2), each with its own characteristic coefficient bn(i)'
and an(i). For every n, it is the contribution with the smallest exponent
that ultimately dominates at large q2, and it is this contribution that
is understood to be represenfed by the right hand side of Eq.A(Z).

Equation (2) describes. the leading term in an expansion in
inverse po&ers of log q2 and q2. It would be tempting to try to re-
construct the full strﬁcture function Fi(w,qz), for large q2, by supposing
that the correction terms in each moment are uniformly small, for all n,
when q2 exceeds some n-independent value. We shall in fact succumb to
this temptation later on, but it is cléar‘th;t anf such procedure is
highly speculativé. At the present sfage of theoretical understanding
the only firm predictions that follow from the ideas of-asymptotic freedom
are thosé embodied in Eq. (2). Thus a sﬁarp,test df asymptotic freedOﬂ
requires the difficult experimentation involved in extracting from the
data the individual momenfs, as functions of q2. A more modest experimental
objectiVe is the study of total neﬁfrinoAand antingﬁtrino cross sectioﬁq
éé;a function of engrgy. As is well known, strict scaling implies a liﬁear
growth with energy, at large energies, and indeed this kind of behavior
is what is indicated by exisfing data. The question arises as to the growth

properties that are to be expected for theories of the sort under present

discussion. This is our first toplc. We will see that both upper and lower
bounds can be set on the growth rate, on the basis of the moment properties
discussed above. It turns out that the bounds rather closely bracket a

linear growth behavior.



The integral in Eq. (1) is presumed to converge for all n > C.

(n)

It thérefore defines the Fj as functions of complex n,.regular for
Re n > 0. For the présent discuséion we shall adopt the one additional
assumption that the analytically continued moment functions are regular
for al} Re n > “ns where no'is some small, but'non vanishing positive number,

(n)

iﬁdependent of q2. For given n, at large enough q?, the-Fi are given by
Eq. (2). The exponent function; an(i) that 6ccur in that equation can be explicitly
computed and turn out to be regular for all Re n > -1. We are assuming

that the coefficients functiop bn(i) are also regular, at leaét for Re n > -n_.
In the following discussion we will be concerned with reai values of n in

the vicinity of n = 0.

Let us now turn to the cross section bounds for

Vi N —>/u'+X

and the corresponding antinuetrino reaction. Dropping at the outset cettain kinematic

corrections of order m/e, wée have for the differential cross section

o0 Gt 2 £ v
— = Z_ -yr2)E - 5 = yYO-Y
?xazl AEX ( )/*2. ) 2 2 y ~ Y Y )7« 'EB {J (3)

t

where the upper sign in the last term refers to the neutrino reactions, the. lower

sign to the antineutrino reactions; and where

9!=w"= Zz/-l);ﬂl, g= Zz/.imxf:) '/L;: /L.; -2 6 ) @



To sufficient accuracy for our present purposes, we note the inequalities
Rz Rxh 3 ALYD ()

(1) Upper Bound: —

Using the inequalities of Eq (as), together with the inequality
l-y+ y‘/2 <1 for 0 <y <1, we see that the total cross section

(for the V or )/ reactions) is bounded according to

2 améE€ /
< & d’gl ‘ﬁ" /7:52) 6
I
o 2
g/.:ms

Now introduce a positive parameter Y 5 in the. range 0 <y < no, and

observe that

d”‘ a?mf ‘
[ < /gxy g o

72»)8

an inequality that follows from the positiv1ty of F2 According to Eq. (2),

for all q2 > 0 and all n >,--no we have the bound

frsme o cslyiz]



where the B(n) are unknown constants, independent of qz; and where the parameter az,
-2 - 2 . . - ‘
with q > y~, has been supplied to guarantee that the moment exists for

all qz > 0. Define
Flm) = = n. . - ©®

then i)

< £ 3(3)/4 /’””g)'” [@/Z——i)]

Flx)

5/3).97»6 [/&g(”_’gif}] ' 10)

for all y in the interval 0 < vy < n . We now invoke the result that

the leading spin two (n = 0) opérator in the Wilson expansion is the
stress tensor, an SU(3) singlet with canonical dimensions. This implies
that a, vanishés at n = 0 and becomes negative for n < 0. For the range of
Y'involved in Eq. (10), this means that f(y') is positive. However f(y).
can be made arbitrarily small by allowing vy to appréach zero as closely
as one wishes. We therefore conclude that‘ ag/& grows with energy

§
less rapidly that (i’)‘lf) , for (S positive but arbitrarily small.

(i1i) Lower Bound: -

From the inequalities of Eq. (5) we see that A
AMméE / .
¢’ 2 dy : :
> 2 | 4 — (1-y) /ﬁ'(x,;). (11
z x
e f%mz



The expression on the right hand side can in turn be bounded from below
if we shrink the range of integration. 1In particular, let us, say, double

the lower limit on the x integral, so that (1—y)2> 1/4. Moreover_, let

us replace the upper limit on the q2 integral by JME /{/u E/m) Y)

where b/ is some positive parameter. Next observe that

/ /
Vg/;/wix’z >'/:

i/ms

&x _ zﬂ//dx
{7 4%2)0&726?

'§\§‘

'(12)

where 0(70, /%>D and o(-l-/@ < M, . We now invoke the

bound in Eq. (8) and require, in the notation of Eq. (9), that
_f/ouﬂ) -Ff@) < A, | (13)

Then it readily follows that

y-F),

ale > (i) / [ ya { /”"/ '(14)

where C(() depends on the parameter ¢ but not on the energy € .
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The inequality of Eq. (14) holds for all positive values of 4 s & , and '/3 s
subjeét to Eq. (13) and to q{+/3 < ooo . We therefore seek to minimize the

quantity

P= r-Fry
. . (15)
within these constraints. From ﬁamiliat inequalities on moments of a positive

function one has that

DF ta 2., .
) >0 23-@) > 0. ~
2d Fu? (16)

Thus, for fixed a{ one minimizes 3‘ within the conStraint of Eq. (13)
by letting /3 approach zero. Then from Eq. (13) it follows that
9/
Y > uc’y

“?—0(—' : an.

It remains therefore to minimize

p[o() = ;;{:f’_") - /)6() | (18)

with respecé to & in the range O <ol ?), - Since in this
section, conservatively, we allow for the possibility that n_ may be
small, we shall simply set of=0. Recalling that f(0)=0, we therefore

have the bound
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0-/5 > C‘onsl-qnf[_éw/g/m)]-);'

where

ﬁ:— 27[/90// ..

d=06 (19)

The function f(x), which is related to the exponent function a_ by Eq. (9),

can be computed explicitly, given the gauge group and quark content of the
underlying theory. For definiteness we adopt the theory of Refs. (5), (6), (7)
based on the color group SU(3)' and containing these quark triplets. For

this theory one finds |

P = /a 35.. (20)

To summarize we find (for neutrinosor antineutrinos) that (Yz
is bracketed at large energies within the limits
heyP <« ofs « LC (4E
3 s < LC =) >
D ( o/ / J‘ . m (21)
where 5‘ is an arbitrarily small positive constant and where P, which
depends on the structure of the underlying theory, is a constant of order
unity; for SU(3)' the value is given by Eq. (20). In deriving these
bounds we have made the mild assumption that the moment function Fz(n)(qé)

can be continued a small, but finite distance to the left of n = 0, for all q2

For the rest the results depend solely on Eq. (2), which represents the
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characteristic prediction of asymptotic freedom. The key technical fact that’

made it'possible to achieve such close béunds is the fact that.an=0 for n=0.
What eherges from all this is that the total cross sections are

pgedicted to. grow asymptoticallyciﬁ a way that cannot be too different

from linear. In this particular respect the departure from strict écaling

(which leads to a linear growth at large energiéé) is expectedltc be

very miid. On the other hand, deviafions from sCéling have a chance

to be more substantial for the structure functions themselﬁes, in their

detailed dependgnces on q2 at each w. To proceed further, however, one

has to introduce new assumptions that go beyond Eq. (2). We shall

introduce these in the following section, and attemptthere to follow out

some of the qualitative implications.

ITII, THE STRUCTURE FUNCTIONS

* The discussion in this section, which is addressed to the properties
of the structure fuﬁcfions at large q2, will be based on a highly specuiative
assumption. Namely, let us suppose that the moments Fi(n)(qz) are weli
represented by the asymptotic expression on the fight hand side of Eq. (2)
once q2 exceeds a certain limit, call it qoz, where qo2 is independent
of n; i.e., let us supﬁose that the asymptotic behavior described in Eq. (2)
is uniform in n. At the present stage of theorétical understanding this
is to be regarded as a frankly phenomenological coﬁjecture}lo‘we‘shall return
to warnings and comments later on. For thé preseﬁt, lef us see what follows.

In genefal, the inverse to Eq. (1) is given by
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L0 +C
Folw, g% = L fa )
AR

where the contour runs to the right of all singularities of Fi(n).

(n)

-2 2
What we are assuming now, for q 2 9, > is that the Fi can be replaced

by the expression on the right hand side of Eq. (2). The exponent functionsé
an(i) can be explicitly computed and are known to be regular for all

Re n > -1. We shall assume that the bn(i) are similarly regular for Re n > -1,
2 (n)

‘Altogether, then, we are assuming for q2 > 4, that Fi is regular in

the region Re n > -1 and well approximated there by the right hand side
of Eq. (2).
If we are given the structure functionsﬁfor some value of the

. ' 2
momentum transfer in the above asymptotic region, say at the value q, »

we could compute the moments F (n)(qOZ) and thereby the coefficients

i
bn(i) in Eq. (2). From our assumptions it then follows for all q2 > qn2
that
&) - ™, , - 4y(i) -
F: (3‘) = F (20) A J (23)
wherek
2 |
:2 ) L
/?= ,&(7}1 &&:_&;
A (24)

In principle the full structure functions Fi(w,qz) can now be computed

for all q2 > qo2 on the basis of Egs. (22) and (23). The practical



implentation of this procedure, even aﬁart from questions about the under-

lying assumption on which it is based, requires the "input" information
Fi(w,qoz); and alsé requires evaluation of the complicated integral of

Eq. (22). The practical difficulty arises, in part, from the fact that

the an(i) are complicated functions of q‘(digamma functions are involved).
There are no issueé of principle here; but the situation cailé for numerical
approximations. Let us first deal with these. Fér definiteness we gake the
underlyipg theory to be based on the‘gauge group SU(3)', Qith three quark
triplets. Moreover, let us concentrate on the structure functions averaged
over proton and neutron targets.

For the structure function F the relevant exponent function

2’
an(2) has the following key properties:5
(1) 1t vaniéhes at n=0, reflecting the fact that the stress
tensor has canonical diménsions.11

ao(2)=0.
(ii) For large n, an(2) grows like

an(2) " ;og n.
(I1I) The exponent function develops a pole12 at n=-1,

a (2) —— —2
n-1 n+l

This can be traced back to the presence of vector gluons in the under-
lying theory.

On the basis of the exact results given in Ref. (5), we adopt the

following approximate expression for an(2):
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4,6)x -1478 %/MH) + 2,07 65(4)'2) (25)

— 01034 — [.333/(m+1) .

For large n the exact an(2) grows like A log n + B+ 0(%). The approximation
adopted in Eq. (25) gets the coefficients A and B right., It also incorporates
the exact residue for the pole at n=-1, and it satisfies ao(2)=0.

The exponent function an(3), relevant for F_, has properties

3,
similar to those of an(Z), though with different numerical coefficients:
a log n growth for large n, a zero at n. = 0, and a pole at n = -1.

The following expression incorporates these key features and represents

~

a reasonable approximation to the exact results:

0

a,3) = 0.5%6 /?('nm) — 0. 1YY — 6.2563 [fni)). (26)

We shall have some comments to make in the next section about the

s

longitudinal structure function F For the purposes of this section,

L
however, we accept that FL/FZ for electroproduction is already small
compared to unity in the q2 region of the SLAC-MIT experiments.

Moreover, the ratio is predicted to vanish as q2 - o, in the model under
discussion as well as in the simple quark-parton model. We shall suppose

that FL/F2 is also already small at modest values of q2 in the case of

the neutrino reactions.
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Our next task, then, is to settle on the input information
Fz(w,qo'z) and F3(w,q02.). To be safely asymptotic we would like to
" have these for 'large enough" qoz. Detailed structure function information
for the neutrino reactionsis however still 1acking. Apart from everything else,
therefore, we cannot'. at preéent proceed in a really quantitativeway.

However, in order to see qualitatively what kinds of effects are to be

expected in the present framework, we adopt the following illustrative
hypotheéis. Let us suppose that qoz;\\; S(GeV)2 is already just sufficiently
asymptotic so that, for electroproduction, we can employ the SLAC-MIT
results for F2 (u}qoz). We may then employ a simple parton model (from

whose predictions we are expecting substantial departures only at much

larger qz) to translate this into the F2 structure function for neutrino
reactions at qoz. The details. of one such approach, and fit, are
discussed for example by Albright and Jarlskogl3. We shall adopt a

" slightly modified‘version14 of their Eq. (3.8c) to represent the
peutrino structure tunction F2, averaged over protons and neutrinos,

at qo2 ’r3 S(GeV)z. Concerning i?3(w,q°2) we make use of the fact that

at CERN energies (where departures‘ from scaling are presumably still
small) the cross section ratio‘?) (’VVJ = 2.0 .'."'.. 0.2, is

fairly close to its upper i)ound, U-V/d—gs 3 . The bound

corresponds to F3=—wF It will simplify matters, and will perhaps not

2
be too misleading for our qualitative purposes, if we accept this

. 2 .
relation at the reference momentum transfer_qo . In any case, asymptotic

freedom implies at very large q2 that 'F3I ) F2 —>» 0, hence that

0"”/6'; —> ‘asi £ @ . our input hypotheses merely helpsus to



" get started on this road. When better starting information becomes

available one will be in a position to do a more serious and qualitative
extrapolation into the asymptotic region than is now possible.

Given the approximations of Eqns.(25) and”(26), which are
reasonably good, a;ld given.the input structure functions, which are perhaps
‘only illustrative, one can now work out the stfuc'ture functions for all
q2 > qo2 on the basis of' Eqns.(22) and (23). This has to'be done
numerically, and a number of technical comments are assembled in the
Appendix. The qualitative behavior of the structure functions at
large q2 can be inferred rather directly from the properties of the
exponent functions, as has already been discussed in the literature.
Consider F2 (x,qz), for example, where for convenience we now work with
the vafiablel % = w-! in place of &) . Since ao(2)=0 it is obvious
that f F2 dx, the area _under the'F2 curve, must become independent of
q2 in the 1Oarge q~ region. Howaever, the shape of the curve changes with
changing qz. The behavior near threshold,15 i.e., near ¥ =1, is clearly
goveme‘d by the large n properties of the exponent function. Since
an(2) grows, logarithmically, with n, it follows for increasing q2

that F, should vanish increasingly rapidly as % -» L. On the other hand,

2
the behavior as X —> () is governed by the pole that an(2) develops at
n=-1. At large q2, this leads to an unbounded growt:hlz’16 as ¥-9,

proportional to exp {9, [G, .(tg) —67 %-I]l/-z} , where a is a constant
2

and 2 is proportional to log q°. The rate of growth as %¥->0
increases with increasing q2. It is obvious that these properties of

F2 are all shared also by the structure function F3.
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We shall not present here the results of our detailed
computetions of the sti‘ucture functions themselves. It will probably

be some time before F2 and F3 can be experimentally determined in detail,

as functions of %' and large q2. Moreover, in particular for F2,

the behavior near X =/ and < = has already been discussed in

the literaturo., Inotocad, wec chall display the . structure functivus
in what are effectively partially integrated froms. Namely we co.nsidef
the partially differential cross sectlons, 90’/8& and 90‘/@:!
obtained by integrating (a d’/axﬁg over one or the other of the two
variables. For given beam energy §& this requires knowledge of the
structure functions for all q2 up to the kinematic limit a2m .
The preceedlng discussion, given the basic assumptlons adopted for this
section, deals only with the asymptotic region q2 > 4, 2, where, ideally, .
should be taken '"large enough'". 1In pra::tlce we are supp051ng that
qo2 somewhere in the SLAC—MIT reglon will do; and we have somewhat
optlmlsplcally taken qo? N S(GeV) . To discuss the differential cross
sections we must also know the cross sections for q2< qoz.A Here we
rely on the observation that scaling seems in fact .to hold well enough
for modest qz, say for q12< q2 < qoz, where ql2 is‘ perhaps of okrder

a (GeV)z. It is stretching things, however, to suppose that the

transition from scaling to asymptotic behavior sets in sharply, for all x,

, 2 .- .
at some particular q, - Nevertheless, we are forced to this assumption.
This introduces certain artifacts in the final results, especially for low

: 2
beam energies € where both the q2 P4 qo' and q2> qo2 regions are




making comparable contributions to the cross section. These effects, however,

become less serious as one goes to large energies. There 1is also the problem

of scaling breakdown at the other end, for q2<f qlz. The low q2 region

(q2<{ qlz) contributes significantly to the cross sections even for &M &

substantially larger than qlz. It has always been something of a puzzle,

therefore, even when strict scaling is assumed to hold beyond q12 ~ (GéV)2

why the total cross sections become sd nearly linear in ' £ already at
a few GeV. These uncertainties about scaliﬁg breakdown at low<'q.'2 make
themselves'felt in our computations here, although the effects become
unimportant for large beam energies. In practice we have simply cut off
all q% integrations below ql2 = 1.0(GeV)2. For all of these reasons
&e resfrict ourselves to large energies E‘ . For the remaining
parameﬁgr, the scale /La, we take /((‘; 0.5 mt where m 1is the
 proton mass. |
(1) The y-distrribution:

From Eqs. (3) and (4), and 'ignoring the longitudinal structure -

function FL’ we have

90”’”)____ Cme (/)»LX) ,L/(EJ) + J(/ _&( ) /<(£g)}

9& A T |

HEy) < /wx ’[3-(?5;5-'27:72]/‘5)1 @n
B 0 v

0

) ' / : )
Kgyg)= — E le % amgqz
ik f"”‘," > (3, amegz)
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- If strict sclaing were to hold, both H and K would be constants and

the total cross sections. 0"” and J'v would grow linearly with

z‘it would follow that H=K, which

energy. Moreover, with )$F3=—F
implies: G'U/J{’; 3 (ad'v/ﬂ ='constant, and 00" v/@g ~ (/—y)z,

Except for the question of scaling breakdown at very small qZ, these are

precisely the results that we are adopting as input for small energies

2. 5.0 m2). As we go up in energy, departures begin to

(2m & < q
o
develop, since we are assuming onset of asymptqtic behavior for
q2 > q02. The functions H and K begin to agquire a dependence on the
argument (Eé}. The behavior at small y still comes exclusively from
the scaling region, whereas the.large y behavior (y-»1) reflects
contributions from q2 in the asymptotic region. With increasing energy
6 the transitién moves increasingly towards small values of y.
Tﬁe functions H and K in this region are sensitive to our assumption that
there gg_a shafp transition from scaling to asymptotic behaﬁior. They
both undergo variations in this region but then become smooth and slowly
varying functions for larger values of y.

To get the total cross sections we have to integrate over all y
in the interval 0-1,.and this iﬁcludés the problematié transition region.
For small energie; the results are sensitive to the choice of cutoff and
to artifacts associated with the transition region. Once large energies
are reached, roughly 5‘£: 50 GeV, the behavior becomes smooth. Indeed,

: v '
to within the numerical accuracy of the computation 0 /& 1is then

essentially constant up to the highest energies ( 22 350 GeV) that we

have considered; and O"y/f rises very slowly toward 0‘”/5 .

Eventually, as E—bw) O—v/d'y must approach unity - on the
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present model but also in fact for any interacting field theory. This
is becéuse the singlet" 'operators in the Wilson expansion must have
smaller dimensions than the corresponding non-singlet operators, owing
to positivity. Howéver, for a_s;ymptotically free theories the approach
to unity is very slow,: réflecting thé fact that departures from scaling
are only logarithmic. Thus, we find that the ratio O’V/O'g,

which was equal to three in tﬁe scaling region, has dropped only by
about 10 percent at E '= 200 GeV. Because of the transition region
artifacts, however, we can't be too precise about this number. What

is less sensitive, at large energies, are the differential cross sections
90“’)/95' and @0*5/85_ at large values of y. For £ = 200 n and
1/2 ¢« y<« 1 these are displayeci in Figs. 1 and 2. For fao‘g/QJ

in particular, we show. for comparison the input curve (l—y)2 which
ob‘tains at low energies. The changed behavior reflects the fact that

H and K, though they are slowly varying in y away from the small y
region, alle no longer equal in magnitude away from small y.

(ii) The x-distribution:

As was discussed earlier,- with increasing values of q2 we

expect the structure functions to fall o‘:;f increasingly rapidly as

% —> ] , and to grow increasingly rapidly as % =0 . For

large energies (& , ;v‘nich allow for contributions from large values
6f q2, something of this comes through in the % - distributions
@fv/éy | and 90“;/9)’. This 1s especially the case so far as

the % - | behavior is concerned. Unfortunately, since for given %,
'q2 cannot exceed 2w Ex , thé small % effécts in the structure functions
-are somewhat . washed out in the cross sections 90"/8,'( . Nevertheless,
for large energies the effects are visible. The results are shown in

Figs. 3 and 4, for &€ =50 and 250 - m.
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IV.. CORRECTIONS TO THE CALLAN-GROSS RELATION

In our discussion of the differential cross sections we have

ignored possible contributions from the longitudinal structure function

FL=F2—2%F1. For electroproduction the ratio FL/F2 is known to be

small already in the SLAC-MIT region. Moreover, both for electroproduction'h'
and for the neutrino reactions,‘asymptbtically free field tbéories and

the quark-parton model both agfee that fhis ratio must go to zero as

qz-—a @ : this is the Callan~Gross relation.9 However, although the

effects arising from F. may indeed be small, it is nevertheless interesting

L
to try to detect its contributions experimentally. Owing to the absence
of the photon propagator this may be'easiér to do at large qz.in the
neutrino reaction than in electroproduction. In this section we shallA
cohsider thé large q2 properties of the ratio FL/F2 in the context
review some of the ideas of asymptotic freedom.]f7

| Let us firsf recall how parton model relations among structure
functions are partially recovered in an'asymptotibally free theory. We'

adhere closely to the notations of Ref. (5); and for simplicity we

restrict ourselves at first to SU(3) non-singlet structure functions.

The analysis presented in Ref. (5), which is based on the work18 of

Wilson, Callan and Symanzik, leads to relations of the form:

| " F(y, gt .:.: C(m)(j_l) : 28
g:cﬂx'x 3 ) e é}) A4m ! | @8
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‘where F 1is a generic structure function, Mn is the matrix element of the
operator of spin n+2 appearing in the Wilson expansion, and Cn is the Fourier

transform of the €oefficient of this operator. The parameter _# is

7/

a reference momentum at which the coupling constant g is defined.

(n)

The function C satisfies- a renormalization group equation

5 d m :
/‘/Lg;—qu/%g)gj %fa)JC”’ =0, (29)

whose solution is j% g;-
C”’)(i ) - cn )“P{ f)m 9[7:])&« .

(30)

The effective coupling constant é(x) is defined through

ﬁ /9/9@0)
g/o) .

In an asymptotically free theory g(,a«_z ) - O as q2—-9 co

(31)

so that on the right hand side of Eq. (31) the Wilson coefficient

C(n)(l,é) apﬁroaches its free-field value, In this sense one recovers
the algebraic relations of the parton model, such as the Callan-Gross
relation F2-2¢T1=FL=0~ Deviations from scaling, which formed the subject

of the previous sections, come of course from the exponential factor

in Eq. (31).



By evaluating C(n)(l,é)
theory one obtains corrections to

calculation involving the graphs
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to the next order in perturbation
the parton model relations. A simple
of Fig. 5 (in fact only 5a gives a

to the (quark operator) result

non-vanishing contribution) leads

. (:fn?yoaré)

Cfv (¢ 7uar£_)

[
B

where C2(R) is the quadratic Casimir operator for the representation of

the quarks. For the colored quark model we have C2(R)=4/3. It should

be emphasized again that Eq. (32) refers. to the SU(3) non-singlet combinations
of structure functions, e.g., the proton-neutron difference. The

left hand side of Eq. (32) is an experimentally defined quantity and
prpvides a direct determination of the gffectivé coupling constant &8 a
function of q2; The smallness of g is required for self consistency of
our expansions, in the large q2 region that we'are considering. One

can now invert Eq. (32), at fikequz, to obtain

4C,(r) _3__ A

w .
P [du’w’ F_.;/w_,’;y) (33)
7t ! |

filu,g)=

o -/
where we have switched to &= % . In this way we see that

) - 2 .
'CL/N)g) S KI /g_,_ , w-—)@)
r - '

Fils, ).

(34)
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" where Ky and K2 are constants which may be compute& from Eq. (33) if we
kno& the growth properties éf F2 asAa function of 4) . For instance if
Fz—?w‘.'&as w—-?aj as expected from Regge arguments for the proton-

‘ neutron difference, then K1 =802(R)/3(K1=32/9 for the colored quark

2
model). If F, (w RISl

as =/, then K, = 4C2(R)/(P+l). For

‘q2 in the'region of several (GeV)2 experiment Shggests that P;s 3. With

more reliable input data one could try a global fit based on Eq. (33).
The q2 dependence of FL((J,qZ)/FZ(LJ,qZ) is of course also

determined by Eq. (33). Once q2 is large.enough so that §2/8E;2 is

small compared to unity we expect
-2 - 2 y—/
—> /)(%_2)
N e g (35)

where the constant A is computable. For the colored quark model A=8Kf79.
Since g is an experimental quantity, Eq; (35) therefore permits an
experimental determination of the parameter /ALZ. In the renormalization
group formalism /A‘z is- of course an'arbitrary parameter, but we
might. conventionally définé it by requiring a good fit to Eqs. (34) and (35).
Defined in this way, ;/xz is a fundamental parameter, whiéh describes
the rate at which the strong interactions 'turn off'" in the deep Euclidean
region,

In our previous discussion of the asymptotic inversion assumptions
we had to express strong caveats | about the uniformity in n of the
onset- of asymptotic behavior for the moments. Tbe qﬁestion boiled down

to whether one can trust perturbation theory for the anomalous dimensions

%%}, especially with respect to the growth at large n and the
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singularity at n=-1. Concerning the former in particular, there is the .
danger that higher order terms in perturbation theory lead to corrections
which increase with n. In the present context we must ask whether we

. ' (@), (n) '
can trust perturbation theory for CL /C2 . Here we believe that we 2re on
firmer ground, for the following reasons:

(a) In each order of perturbation theory the leading contribution to

(n)

as n — @ 1is given by vertex correction graphs, as displayed

(n)

in Fig. 6a. These give no contributions to C However, the graphs

of Fig. 6b, down by exactly one power of n as n —> & , do contribute

(n)

to CL . There is no obvious non uniformity, thergfore, apd the r > =
behavior in Eq. (32) may therefore be realistic even beyond lowest
ordér in perturbatioﬁ theory,

(b) Graphs involving exchange of two gluons do not contribute to the

(n)/C(n)

ratlo . Order by order in perturbation theory, therefore, it

seems that there are no singularities to/the right of n=—2.‘ Even 1if
the sum over all orders produces a moving singularity (as.q2 varies),
since the effective coupling constant at large q2 is small, such a
singularity should not move much to the right of ﬁ=—2. This is

)

relevant because Regge arguments suggest that F has a singularity
“at n=-3/2 (for the non singlet case under discussion). Thercfore,

the %-> ¢ behavior of FL(x,qz), obtained from the inversion of
l » % ! ” 2 <°/%5/2?(4)
dr ¥ FL(‘P’)Z )= Jdv F.;(X‘;j ) G T, ke
[/ 0 ‘
will be domlnated by the singularity of F(n). This means that the behavior
predicted by Eq. (34) is not sensitive to the singularity structure of

(n) ,.(n)
oy /C2

and should therefore be reliable.
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For SU(3) singlet structure functions the analysis is more
compliéated,5 and the results are weaker., Here one has contributions
from the gluon operators in the light cone expansion. Their céefficients
vanish to zeroth ofder in g, but in order éz we have to consider the

.graphs of Fig. 7. It turns out that only graph 7a gives a non vanishing

contrihution to c{“)

. In fact, the gluon contribution leads to

™) R
(qlvow 2
C;_ g )' _ -2%— ‘ (21(2;) | A .
C_‘f”) (3uark) lor* i3 (miif)

We see that for large n the giuon contributions are negligible compared
to the purely quark contributions, Eq. (32). Thus the {y-»/ prediction
of Eq. (34) applies for the singlet as well as the non singlet case.

Tﬂe y - o0 - prediction is also unchanged, in form, but the

coefficient Kl is no longer determined. -

V. CONCLUSIONS

Our discussion of deviatibns from scaling, for deep inelastic
neutrino reactions in the context of asymbtotically free theories, has been
at two levels. Concerniné the growth properties of the total )} and i?
cross sections, wé could set lower .and upper bounds without recourse to
serious assumptions going beyond the basic features of ;symptotic freedom.

The bounds closely bracket a linear growth, so that in this respect deviations
.from scaling are predicfed‘to be small.

In order to treat the structure functions in more detail, and

thereby the differential crosssections, we had to invoke uniformity
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assumptions of a speculative character. Given these, we ére let‘to
expect substantial deviations from scaling in the structure functions at
largequ. The effects are somewhat washed out in the partially:integrated
cross sections but ‘are still visible there, especially for the x
distributions as they change.shape with beam energy.

It is natural‘to ask how these resdlts‘ compare with expectations
for other possible mechanisms of scaling breakdown. In this connection
it is especially interesting to contemplate a situation where the sfrong
idteractiops afe governed by an abelian rather than a non abelian
gauge theory.19 Of course abelian theories are not asymptotically free.
That is, if there is a fix§d point it is not at the origin of céupling
constant space. The anomalous'dimensions,‘which are determined at the
fixed point, cannot therefore be reliaﬁly gotten by perturbation theory -
even if we.knew where.the fixed point is located. Just %or érientation;
however, suppose.that the effective coupling cénstant at the fixed point is
Qery small, so that lowest order perturbation theory can be used. 1In
that cas; the anomalous dimensionS\vpuld have the same general properties
as in the non-abelian case. The chief diffefence is that the analog of
Eq. (2) would contain qz/u2 in place of log.(qz/uz) -
the scaling deviations, that is, would go like inverse powers of (qZ/uz)

rather than inverse powers of log q2/u2. For the structure functions and

differential cross sections, therefore, the general trends would resemble those

L3

of the non-abelian case, but theveffects‘would'ﬁe greatly magnified.
'There is another mechanism of possible scaling breakdown for

néutrino processes that has been discussed in the literature.zo The

idea here is to modifj the parton model solely through endowing the

- partons with form factors. The trends can be seen‘iﬁ the paper by Barger.2
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APPENDIX

We present here some of the details of our procedure for

extrapolating the structure functions from one wvalue of q2 to higher

values of q2. This involves 'ihversion of the moments, Eq. (23), with

the a, given by Eq. (25) or Eq. (26). Let us quote three relevant

theorems on Mellin transforms: o W
(a) 1If
©
&w
[ S hwrs goom)
I W
then

agmfz

‘ | td’d‘d, - T
h o 4
fudss SRR
(b) If k>0, Y>S¢ , then

iuc:i)“ (%L) &W) (» +/y 7%

J
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" where Iy | is the modified Bessel function of index Y-/ .

(c) If f(1) = 0 and fQD)/Lgn+1-9 0 as - Co then

3

f c{m‘ia w‘“*"{i W) = (muu)f a(’zd Jc )

The moment problem that we encounter is

Fn (37) = £ G) 2_%;

(A.1)

where, with the approximations that have been adoﬁted, a has the form

Gm:_,cg%Sf‘dn{' + /92 /9;%(’”1—%4—/)4' Nl )

(A.2)

Our coefficients C§3 are positive. If all the ek . were similarly
positive we could invert ;3_ m by repeated convolutions, using (a) and
(b). One further convolution would then yield F(a),qz). Actually, the g%

are not all positive. However, if a given gg is negative we can use

(c) to write

Fn (j,,’) = G, /Zaz; a//a) (A.3)
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whereﬁ
” bt § o
G‘M'( A /JN M‘/w‘_w”/‘_ﬂd :
(o3 ) W A ) o (A.4)

is known from the input data (which satisfies the requirement that °

F(l,q02)=0). In this way we are 1ed to. consider the moment pfoblem
Fali) = Gulgap) 3™
’"5 70/0%

where ' : N

b, = G, + (422)_/. |

The new problem has exactly the same structure as the original one,

2 2
with  F (q )—>6 (g3

a% ) and a — Bn‘ By repeated use,of this
trick we can arrange (over some range of A which is big enough for
our needs) that the modified (;Q are all positive. Indeed, with
sufficient repetition Qe-can arrang; that the index 3/ encountered in
(b) is always greater fhan'unity. This last allows uslto avoid modified

Bessel functions of negative index. The latter are singular at the

origin and would be a nuisance for numerical work,
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FIGURE CAPTIONS

-

T 14g”
Figure 1 A plot of C—E—) Edy for E = 200 n (solid line). For
Gm

comparison we have plotted (dotted line) the function 0.50
-~ y

(l—y)2 which is what (—540 1Ldo
G2m E dy

with the structure function given by Aibright and Jarlskog

would be if scaling held

(Ref. 13 and 14)

Figure 2 A plot of (—3—0 1 %ﬁzvfor E = 200 m. Note the suppressed
¢'m B v
zero. We see that Edy is practically a constant from
y = 1/2 to %’which is what scaling would predict.
v
Figure 3 A plot of ( ;f ) do;iE) as a function of x for two different
G mE
energies (E—SO m and E=250 m. )
Figure 4 A plot of ( 5 ) dd;iE) as a function of x for two

G mE
different energies (E=50 m and E=250 m).

Figure 5 Feynman diagrams contributing cbrrections to the Wilson
coefficients for fermion operators. The graphs (b) do not
modify the Callan-Groés relation.

Figure 6 Representative high order.Feynman diagrams controlling the n
behavior of corrections to the Wilson expansion. (a) A

@,

This graph gives no

(n)

typical leading contribution to C
contribution to C(n) (b) A 1leading contribution to C
The bubbles represent radiatively corrected vertices.

Figure 7 Feynman diagrams contributing correctioné to the Wilson coefficients
for gluon operators. The graphs (b) do not modify the Callan-

Gross relation.
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