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ABSTRACT

Several aspects of deep inelastic neutrino scattering are

discussed in the framework of asymptotically free field theories.

We first consider the growth behavior of the total cross sections at

large energies.  Because of the  deviations from strict scaling.which

are characteristic of such theories the growth need not be linear.

However, upper and lower bounds are established which rather closely\

bracket a linear growth.   We next consider· in more detail the expected

pattern of scaling deviation for the structure functions and,

correspondingly, for the differential cross sections. The analysis

here is based on certain speculative assumptions. The focus is on

qualitative effects of scaling  breakdown as they may show up in the

x  and y distributions.    The last section  of the paper deals. with. deviations

from the Callan-Gross relation.
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I.  INTRODUCTION

A considerable theoretical industry has built up around

the idea of Bjorken scaling, which received its first experimental support

1
in the SLAC-MIT experiments on electroproduction .  Subsequent confirmation,

2
in part,.has come from the observation  that the total cross sections for

neutrinos and anti-neutrinos on nucleons appear to grow linearly with energy

beyond a few GeV. A simple and highly successful physical picture of

3
the scaling phenomenon is provided by the well-known parton model.  In

its field theoretic transcription, this model amounts to the assumption

of canonical dimensions for the twist-two operators that appear in the

Wilson expansion of a product of currents.  It has recently become

clear, however, at least in the framework of renormalizable field theory,

that the dimensions can be canonical for all the relevant operators only

in the absence of interactions. Strict scaling, therefore, if it were

to persist, would represent a major theoretical paradox.  On the other habd

departures from scaling, if they develop in a sufficiently patterned way,

could also be informative about tha structure of the underlying theory.

So far, the closest one has come to strict scaling is with a special

class of theories, based on non-Abelian gauge symmetry.  Theories of this

class possess the property of asymptotic freedom4 and lead to certain

567
characteristic patterns of scaling breakdown ' ' .  In the present paper

we discuss some of the observational implications, especially in the context

of neutrino reactions.  One issue concerns the dependence of total neutrino

cross sections on energy.  This is taken up.in Section II, where upper
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and lower bounds are derived on the growth rate.  The arguments employed

in this section involve very little in the way of extra assumptions going

beyond those implied by asymptotic freedom.  It is found that the growth,

while it needn't be exactly linear once strict scaling breaks down, cannot

depart too greatly .from linear.    In the present context, asymptotically

2
free theories make their most definite predictions for the large q

behavior of the moments of the structure functions.  Section III is

concerned with converting this information into predictions about the

2
large q  behavior of the structure functions themselves. Issues of

non-uniformity arise here in going from one to the other, so the discussion

in Section III is based on frankly speculative procedures.  The aim,

however, is to assess qualitatively-how the breakdown of scaling could

8reveal itself in certain aspects  of the differential section.  In

particular, one is led to expect what could be a substantial change with

energy in the shapes of the  x  and  y  distributions.  Section IV

deals with a somewhat different subject, namely, corrections to the

Callan-Gross relation   However this section also provides   a brief review

of  asymptotic freedom, and it contains some comments on the non-uniformity

issues mentioned above. Throughout the entire discussion we ignore

possible deviations from scaling which would arise from the propagator

term of a weak vector boson.  If the mass is very large the effects would

not be noticeable at present energies; but in any case the necessary

modification could easily be made.  In Sections III and IV the discussion

is implicitly restricted to strangeness and charm-conserving neutrino

reactions.
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II. BOUNDS

We focus on the neutrino reactions and their structure functions

Fi(w,q2), i = 1,2,3.  Here  q2  is the negative of the invariant momentum

2
transfer and w = 2mv/q  is the Bjorken scaling variable.  Strict scaling

would imply  that the Fi(w,q2) approach finite limits  as  q2+ 00, for fixed  w.

, ,   However, we are contemplating the possibility of departures from scaling;

and  on present thinking such departures are expected to take on their most

2characteris tic shape when expressed in terms   of the large q behavior  of

the moments Of the structure functions,

00

E.%*)    ==             f  dkT    u- 1'- L      e    (41,   1  *)   .                                 (1)0 0
I

For the asymptotically free theories under discussion the moments are

predicted to display logarithmic deviati6ns from scaling. Namelyj for q2

large enough (how large may in general depend on the order n of the moment)

the predicted asymptotic behavior is

41 69

5=(f)  --    '   l.(, ). (13f           (2)3

where  u  is a scale parameter not specified by the theory.  The

coefficients bn(i) are similarly unspecified; but the exponents an(i)

are de finite and characteristic  o f the underlying theory.     They  can  be

computed explicitly, given the gauge group and the quark content of the

theory.
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Actually, there will in general be several different operators of

spin n+2 in the Wilson expansion, each making a contribution to the right

hand side of Eq. (2), each with its own characteristic coefficient bn(i)

and an(i).  For every n, it is the contribution with the smallest exponent    -

2
that ultimately dominates at large  q , and it is this contribution that

is understood to be represented by the right hand side of Eq. (2).

Equation (2) describes. the leading term in an expansion in
2        2

inverse powers of log q  and q . It would be tempting to try to re-

,

construct the full structure function Fi(w,q2), for large q2, by supposing

that the correction terms in each moment are uniformly small, for all n,

2
when q  exceeds some n-independent value.  We shall in fact succumb to

this temptation later on, but it is clear that any such procedure is

highly speculative.  At the present stage of theoretical understanding

the only firm predictions that follow from the ideas of asymptotic freedom

are those embodied in Eq.  (2).   Thus a sharp  test of asymptotic freedom

requires the difficult experimentation involved in extracting from ·the

2
data the individual moments, as functions of q.  A more modest experimental

objective is the study of total neutrino and antineutrino cross sections

as-a function of energy.  As is well known, strict scaling implies a linear

growth with energy, at large energies, and  indeed this kind of behavior

is what is indicated by existing data.  The question arises as to the growth

properties that are to be expected for theories of the sort under present

discussion.  This is our first topic.  We will see that both upper and lower

bounds can be set on the growth rate, on the basis of the moment properties

discussed above. It turns out that the bounds rather closely bracket a

linear growth behavior.
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The integral in Eq. Cl) is presumed to converge for all n 2 0.

It therefore defines the Fi Cn). as functions of complex n, regular  for

Re n > 0. For the present discussion we shall adopt the one additional

assumption that the analytically continued moment functions are regular

for all Re n > -n , where n  is some small, but non vanishing positive number,

independent   of  q2. For given  n, at large enough  q2,   the  Fi (n  are given  by

E<. (2).  The exponent functions an<i) that occur in that equation can be explicitly
'

computed and turn out to be regular for all Re n > -1.  We are assuming

that the coefficients function bnci) are also regular, at least for Re n > -n .

In the following discussion we will be concerned with real values of n in

the vicinity of n = 0.

Let us now turn to the cross section bounds for

\/V+ N -4 2 + A

and the corresponding antinuetrino reaction. Dropping at the outset certain kinematic

corrections of order  m/E, we have for  the differential cross section

3r-
= El  (/-70 1') Fg-  F6 y' -2 y (,- )% F, i. o)gx

33. ar 16

where the upper sign in the last term refers to the neutrino reactions, the lower

sign  to the antineutrino reactions; and where

*  =  lo- '=    f/ah'  p,            =     1 '/amY  E,          li  =     Fa   -   21    15        .                 clo



To sufficient accuracy for our present purposes, we note the inequalities

F         3    2 0 6    3           2/15   /.                                                    (5)

(i) Upper Bound: -

Using the inequalities of Eq. (5), together with the inequality

1-y t y2/2 <1  for  0<y<1,w e see that the total cross section

Cfor the V or F reactions·) is bounded according to

aME             1

G-<  Gz  t a.*
JE )0 ,      f  t    ,; (,)  2, .                    (6)

 ,12 .E
Now introduce a positive parameter   y,i n the. range   0<y< n , and

observe that

/
/

/4- e  \ 1-Y      rF .* F //* /,1 C    
J   0   4    \1- 1                               01

Ti™£
\ 12/ U    0   .  F.·>

an inequality that follows from the positivity of F2.  According to Eq. (2),
2for all  q  >0 and all n >-n  we have the bound

0

)                         i                                             -gk

3   3,   0-9-2  FJ    =     id,   *=  Fa     <     8 At)   [17   (L:-I  ]           »,p        5
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2                        -2where the B(n) are unknown constants, independent of q ; and where the parameter q ,

-2   2
with q  >u, has been supplied to guarantee that the moment exists for

*
2

all q  2 0.  Define

&(-M) = 4.
(9)

f)

Then alnE
2   fck)

6- <
f  8(-,) i,f (25 )'-' I 6%(St)]&,ir

-1 -7  (6
<      f.    66,)   2 78£       F      Jimie Ellitli    j      I                                                  Cio)

OrY L    0\/  /1       ,

for all  y i n the interval 0<y<  n .  We now invoke the result that

the leading spin two (n = 0) operator in the Wilson expansion is the

stress tensor, an  SUC3) singlet with canonical dimensions.  This implies

that a  vanishes at n =. 0 and becomes negative for n < 0.  For the range of

y involved in Eq.  (10) , this means that f(y) is positive. However f(y)

can be made arbitrarily small by allowing  y to approach zero as closely

as one wishes.  We therefore conclude that G-/E grows with energy

less rapidly that CAl£)8 , for   positive but arbitrarily small.

(ii) Lower Bound: -

From the inequalities of Eq. (5) we see that                      v

amE       1

e F
6-  >    -       16  432      - ,             i'     0 -Y)'.     11 (X,  19.        ci'.)aTE

  h n,Z
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The expression on the right hand side can in turn be bounded from below

if we shrink the range of integration.  In particular, let us, say, double

2
the lower limit on the x integral, so that (1-y) > 1/4.  Moreover, let

us   replace   the  upper     limit     on  the  q2   integral  by      2911 E /<f"  Etm  )¥,
where  .3'  is some positive parameter. Next observe that

f'    tfa  >  f'    ls-  a1,/"6     1%#£ r -
/                             /                   (12)

»  4 t< & -  (f'), .f  3 6. ,
)

where  c,( 1 0,   6 > D    and      o  +  9  <   41/  .   We now invoke the

bound in Eq. (8) and require, in the  notation of  Eq. (9), that

 ( *€'-£(#4  2-  '(  , (13)

Then it readily follows that

-  Y- 4 6( \
e   IE         >     C  G.1       1      il    t.*   (.. t.r:;     1                                                                          t14)

</ , / V   '1

where CCQO depends on the parameter 06 but not on the energy E .
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The inequality  of Eq. (14) holds for all positive values of     ,  4  , and   3,
subject to Eq. (13) and'to o6+ 6 < 410 . We therefore seek to minimize the

quantity

-p=    a-  9 (02,
(15)

within these constraints.  From familiar inequalities on moments of a positive

function one has that

gfid) 12$ 61)
- >03 ->0,
002 90/5 (16)

Thus, for fixed 06'  one minimizes * within the constraint of Eq. (13)

by letting  /3  approach zero.  Then from Eq. (13) it follows that

)·>  €EM . (17)
9 02

It remains therefore to minimize

-   e, - A,23pcd)-
(18)

34

with respect to  Of  in the range   0 <C «' <  9)  . Since in this

section, conservatively, we allow for the possibility that n  may be

small, we shall simply set  o<  0. Recalling that f(0)=0, we therefore

have the bound
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-

61 E > C...'5,«Mt I i (8/*)]  P

where

9    -        31(94   1                 .lol- 6 (19)

The  function  f GO , which is related  to the exponent function  an  by  Eq.   (9),

can be computed explicitly, given the gauge group and quark content of the

underlying theory. For definiteness we adopt the theory  of  Refs.   (5),   (6),   (7)

based on the color group SU(3)' and containing these quark triplets.  For

this theory one finds

-

P                    I. 35-. (20)

To  summarize  we  find (for neutrinos or antineutrinos)   that     r/E

is bracketed at large energies within the limits

D    A    - F  <   C/E  <   1 C   (41£       '
S

&   ,)1,                     S      . Ill/ (21)

where    is an arbitrarily small positive constant and where P, which

depends on the structure of the underlying theory, is a constant of order

unity; for SU(3)' the value is given by Eq. (20).  In deriving  these

bounds we have made the mild assumption that the moment function F2(n)(q2)

2
can be continued a small, but finite distance  to the left of n = 0, for all q

For  the    rest the results depend solely  on  Eq. (2), which represents   the
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characteristic prediction of asymptotic freedom.  The key technical fact that

made it possible to achieve such close bounds is the fact that a =0 for n=0.

What emerges from all this is that the total cross sections are

predicted to grow asymptotically in a way that cannot be too different

from linear.  In this particular respect the departure from strict scaling

(which leads to a linear growth at large energies) is expected to be

very mild.  On the other hand,  deviations from scaling have a chance

to be more substantial for the structure functions themselves, in their

2
detailed dependences on q  at each w.  To proceed further, however, one

has to introduce new assumptions that go  beyond Eq. (2).  We shall

introduce these in the following section, and attemptthere to follow out

some  of the qualitative implications.

III. THE STRUCTURE FUNCTIONS

- The discussion in this section, which is addressed to the properties

2of the structure functions at large q , will be based on a highly speculative

assumption. Namely,  let us suppose that the moments  Fi(Il) (q2)  are well

represented by the asymptotic expression on the right hand side of Eq. (2)

once q 2 exceeds a certain limit, call it q02, where q02 is independent

of n; i.e., let us suppose that the asymptotic behavior described in Eq. (2)

is uniform in n.  At the present stage of theoretical understanding this

10is   to be regarded   as a frankly phenomenological conj ecture ; we shall return

to warnings and comments later on. For the present, let us see what follows.

In general, the inverse to Eq. (1) is given by
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loO +C

Fit'¢,  19=     1.     f    d„'
w1,+/  r-°9   I

r.· ( 9, (22)
aft - 1 00 +C

where the contour runs to the right of all singularities of Fi(n).

What we are assuming now, for q2 2 q02, is that the Fi(n  can be replaced

by the expression on the right hand side of Eq. (2).  The exponent functionG

a (i) can be explicitly computed and are known to be regular for all

Re n > -1.  We shall assume that the bn(i) are similarly regular for Re n > -1.

Altogether, then, we are assuming for q2 2 q02 that F.(n  is regular in
1

the region Re n > -1 and well approximated there by the right hand side

of Eq. (2).

If we are given the structure functions for some value of the

momentum transfer in the above asymptotic region, say at the value q02,

we could compute the moments   Fi (n) (q02) and thereby   the coef ficients

2
b (i) in Eq. (2).   From our  assumptions it then follows for all q2 > qn

that

r. M
4   1,)  =     F»14)   1 -  4 (')  )                               (23)

where

2·=·      1 I  i 4£  .V    ,8 L.... (24)

In principle the full structure functions Fi(w,q2) can now be computed

for all q2 > q02 on the basis of Eqs. (22) and (23).  The practical

-
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implentation of this procedure, even apart from questions about the under-

lying assumption on which it is based, requires the "input" information
2

Fi(w,q  ); and also requires evaluation of the complicated integral of

Eq. (22).  The practical difficulty arises, in part, from the fact that

the a (i) are complicated functions of n (digamma functions are involved).

There are no issues of principle here; but the situation calls for numerical  

approximations. Let us first deal with these. For definiteness we take the

underlying theory to be based on the gauge group SU(3) ', with three quark

triplets.  Moreover, let us concentrate on the structure functions averaged

over proton and neutron targets.

For the structure function F2' the relevant exponent function

an(2) has the following key properties:5

(i) It vanishes at n=0, reflecting the fact that the stress

11
tensor has canonical dimensions.

ao(2)=0.

(ii) For large n, an(2) grows like

an(2) # log n.
12

(III) The exponent function develops a pole at n=-1,

an(2) ...*  -a
n+-1 n+1

This can be traced back to the presence of vector gluons in the under-

lying theory.

On the basis  o f the exact results given  in  Re f.   (5), we adopt  the

following approximate expression for an(2):
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4„6.) -     - 1.478  · /41+0  + 2.07f  1  Cl,Fa)                                   (25)
- 0.1024  - /· 333/(0+1) .

For large   n the exact a (2) grows  like A log n + B+ 0( ). The approximation

adopted in Eq. (25) gets the coefficients A and B right.  It also incorporates,

the exact  residue for the pole at n=-1, and it satisfies a (2)=0.
0

The exponent function an(3), relevant for F3' has properties

similar to those of an(2), though with different numerical coefficients:

a log n growth for large n, a zero at n = 0, and a pole at n = -1.

The following expression incorporates these key features and represents
-

a reasonable approximation to the exact results:

·0

a,n (3) --   0.5<926 ·1 /91+A) - 0. //00    0.2963/ 04-,).  (26)

We shall have some comments to make in the next section about the

longitudinal structure function FL.  For the purposes of this section,

however, we accept that
FL/F2

for electroproduction is already small

2                                                  1compared to unity in the q  region of the SLAC-MIT experiments.

2
Moreover, the ratio is predicted to vanish as q  + -, in the model under

discussion as well as in the simple quark-parton model.  We shall suppose

that
FL/F2

is also already small at modest values of q2 in the case of

the neutrino reactions.

.
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Our next task, then, is to settle on the input information

F2(w,q02) and F3(w,q02).  To be safely asymptotic we would like to

have  these for "large enough" q02. Detailed structure function information

for the neutrino reactions is however still lacking. Apart from everything  else,

therefore, we cannot at present proceed in a really quantitativeway.

However, in order to see qualitatively what kinds of effects are to be

expected in the present framework, we adopt the following illustrative·

hypo thesis.       Let us suppose that q02:23    5 (GeV) 2 is already just sufficiently

asymptotic so that, for electroproduction, we can employ the SLAC-MIT

results  for  F2 (5802).    We  may then employ a simple parton model   (from

whose predictions we are expecting substantial departures only at much

larger q2)  to translate this into the F2 structure function for neutrino

reactions at q02.  The details. of one such approach, and fit, are

13
discussed for example by Albright and Jarlskog  .  We shall adopt a

14
slightly modified version of their Eq. (3.8c) to represent the

neutrino structure function F2' averaged over protons and neutrinos,

at q02 03 5 (GeV) 2.  Concerning F3(w,q02) we make use of the fact that

at CERN energies (where departures from scaling are presumably still

small) the cross section ratio2,  0-1/rp = 2,6 +  0..2,   is
fairly close to its  upper bound, Syc<° 6  3 . The bound

corresponds to F3=-wF2.  It will simplify matters, and will perhaps not

be too misleading for our qualitative purposes, if we accept this

relation at the reference momentum transfer.q02.  In any case, asymptotic

freedom implies  at very large  q2  that    | F3    /4) F2  -> 0, hence  that

  Y  -> ' as E-'00· Our input hypotheses  merely helps us  to
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get started on this road.  When better starting information becomes

available one will be in a  position to do a more serious and qualitative

extrapolation  into the asymptotic region than is now possible.

Given the approximations  of  Eqns. (25) and'.(26), which  are

reasonably good, and given the input structure functions, which are perhaps

only illustrative, one can now work out the structure functions for all

q2 1   q02  on the basis  of  Eqns.(22)  and  (23).    This  has  to  be  done

numerically, and a number of technical comments are assembled in the

Appendix.  The qualitative  behavior of the structure functions at

2
large q  can be inferred rather directly from the properties of the

exponent functions, as has already been discussed in the literature.

2
Consider F2(x,q ), for example, where for convenience we now work with

the variable   %  = W- ' in place of  0 . Since a (2)=0 it is obvious0I
that

   172 dx, the
area under the

F2 curve, must become independent of

2                    2q  in the 1 arge q  region,  However, the ohape of the curve changes with

2                                 15
changing q  . The behavior near threshold,     i.e., near %  =1, is clearly

governed by the large  n  properties of the exponent function.  Since

2
a (2) grows, logarithmically, with n, it follows  for increasing q

that F2 should vanish increasingly rapidly  as    2  -9  1  .    On the other  hand,

the behavior as    -1 0 is governed by  the pole  that a (2) develops  at

2                                   12,16n=-1. At large q , this leads to an unbounded growth as 7-90,

proportional   to  exp  < 2  Id,  ler
d A   .t % -,1,/4

j , where a is a constant

and     is proportional to log q .  The rate of growth as        7 ->0
2

increases with increasing q .  It is obvious that these properties of

F2 are all shared also by the structure function F3.
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We shall not present here the results of our detailed

computations of the structure functions themselves.  It will probably

be some time before F2 and F3 can be experimentally determined in detail,

2
as functions of  * and large q . Moreover, in particular for F2'

the  behavior  near   F= /    and      12  =0 has already been discussed  in

the literature. Inotoad, wc ohall display the structure fuucliuus

in what are effectively partially integrated froms.  Namely we Consider

the partially differential cross sections, 86-/8   and      03-/9 X
obtained by integrating

91r/ax,3(a
over one or the other of the two

variables.  For given beam energy E this requires knowledge of the

2structure functions for all q  up to the kinematic limit 1 111 E .

The preceeding discussion, given the basic assumptions adopted for this

section, deals only with the asymptotic region q2 1 qQ2, where, ideally,

2q   should be taken "large enough". In practice we are supposing that0
2'

q   somewhere in the SLAC-MIT region will do; and we have somewhat
22

optimistically taken q   61  5 (GeV) .  To discuss the differential cross

sections  we  must  also  know the cross sections  for  q2 <   q02.    Here we

rely on the observation that scaling seems in fact.to hold well enough

2                 222              2for modest q , say for ql < q<q o, where ql is perhaps of order

2
a (GeV) .  It is stretching things, however, to suppose that the

transition from scaling to asymptotic behavior  sets in sharply,  for  all % 5

at some particular q02.  Nevertheless, we are forced to this assumption.

This introduces certain artifacts in the final results, especially for low

7 2beam energies 2  where both the  q2 < qo- and q2 > q    regions are
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making comparable contributions to the cross section.  These effects, however,

become less serious  as' one  goes to large energies. There  is  also the problem

of scaling breakdown at the other end, for q245  ql2.  The low q 2 region

(q2,f q12) contributes significantly  to the cross sections  even  for   2111 E

substantially larger than  q12.  It has always been something of a puzzle,

therefore,  even when strict scaling is assumed  to hold beyond  q12   -   (GeV) 2,

why the total cross sections become so nearly linear in E  already at

2
a few GeV.  These uncertainties about scaling breakdown at low q  make

themselves felt in our computations here, although the effects become

unimportant for large beam energies. In practice we have simply cut off             i

all q  integrations below  ql2 = 1.0(GeV)2.  For all of these reasons

we restrict ourselves to large energies  E .  For the  remaining

parameter, the scale
 6,2 ,  we  take          t  0, S 1,1

&
where   m    is  the

proton mass.

(i) The y-distribution:

From Eqs. (3) and (4), and ignoring the longitudinal structure

function FL' we have

19, U)                       1

91   =  69  f(17.2) 11(23) t 2(1-1 )1<CE4)1,Pa   .L
t

11(Ej)=    f d«  fic,5 zz   *syx),              07)
rl

k(El) 9   -  .1   «  0  F, (*, f=2,•£3*>.

=1
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If strict sclaing were to hold, both H and K would be constants and

the total cross sections. £1- v  and   £T P
would grow linearly with

energy.  Moreover, with
*F3=-F2 it would follow that H=K, which

implies:       6- 76 5  3,00-703         -constant,   and     ga-  ,/t,   4,  4-j)20
Except for the question of scaling breakdown at very small q , these are

precisely the results that we are adopting as input for small energies

(2m E' <  q 2= 5.0  m2).  As we go up in energy, departures begin to               I
0

develop, since we are assuming onset of asymptotic behavior for

 2      q 2. The functions  H  and K begin to acquire a dependence   on  the

argument   E  . The behavior at small y still comes exclusively  from

the scaling region, whereas the large y behavior (y-11) reflects
2

contributions from q  in the asymptotic region.  With increasing energy

E  the transition moves increasingly towards small values of y.

The functions H and K in this region are sensitive to our assumption that

there is· a sharp transition from scaling to asymptotic behavior.  They

both undergo variations in this region but then become smooth and slowly

varying functions for larger values of  y.

To get  the total cross sections we have to integrate over all y

in the interval 0-1,.and this includes the problematic transition region.

For small energies the results are sensitive to the choice of cutoff and

to artifacts associated with the transition region.  Once large energies

are reached, roughly   8 A   50  GeV, the behavior becomes smooth. Indeed,

to within the numerical accuracy of the computation 59/ E is then

essentially constant up to the highest energies ( rv 350 GeV) that we

have considered; and (WIE rises very slowly toward e' /£      0

Eventually,   as      E -* 60, (IMIGF must approach unity - on the

l
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present model but also in fact. for any interacting field theory.  This

is because the singlet operators in the Wilson expansion must have

smaller dimensions than the corresponding non-singlet operators, owing

to positivity.  However, for asymptotically free theories the approach

to unity is very slow, reflecting the fact that departures from scaling
-

are only logarithmic.     Thus,   we   find   that the ratio rvi G v ,
which was equal to three in the scaling region, has dropped only by

about 10 percent at  E = 200 GeV. Because of the transition region

artifacts, however, we can't be too precise about this number.  What

is less sensitive, at large energies, are the differential cross sections

00-v/93      and       '300 v//B 
at large values   o f   y. For E = 200 m and

1/2   Ly<l       these  are  displayed  in  Figs.   1  and  2. For ery/VJ
2

in particular, we  show for comparison the input curve (1-y)  which

obtains  at low energies. The changed behavior reflects  the  fact  that

H and K, though they are slowly varying in y away from the small y

region,.  are no longer equal in magnitude  away from small  y.

(ii) The x-distribution:

2
As was discussed earlier, with increasing values of q  we

expect the structure functions to fall off increasingly rapidly as

7 -9 /   , and to grow increasingly rapidly as 2 -4 0  ·   For

large energies 6 , which allow for  contributions from large values

2
of q , something of this comes through in the 9.-dis tributions

erv/,3, and 96'F/€r. This is especially the case so far as

the 1 -> / behavior is cconcerned. Unfortunately, since for given  AL

2q cannot exceed    0411 E*  , the small * effects in the structure functions

are somewhat washed out in  the cross sections 96 /00 · Nevertheless,

for large energies the effects are visible.  The results are shown in

Figs. 3 and  4, for E = 50 and 250 · m.
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IV. CORRECTIONS TO THE CALLAN-GROSS RELATION

In our discussion of the differential cross sections we have

ignored possible contributions from the longitudinal structure function

FL=F2-2yfl.   For electroproduction the ratio
FL/F2 is known to be

small al.ready in the SLAC-MIT region. Moreover, both for electroproduction

and for the neutrino reactions, asymptotically free field theories and

the quark-parton model both agree that this ratio must go to zero as

2                                                         9
q -*cO: this is the Callan-Gross relation. However, although the

effects arising from FL may indeed be small, it is nevertheless interesting

to try to detect its contributions experimentally.  Owing to the absence

2
of the photon propagator this may be easier to do at large q .in  the

neutrino reaction than in electroproduction. In this section we shall

2
consider the large q  properties of the.ratio FL/F2 in

the context               W

of asymptotic freedom.  This will also provide an opportunity to briefly .,4

review some of the ideas of asymptotic freedom.

Let us first recall how parton model relations  among  structure

functions are partially recovered in  an asymptotically free theory.  We

adhere closely to the notations  of Ref. (5); and for simplicity we

restrict ourselves at first to SU(3) non-singlet structure functions.

18
The analysis presented in Ref. (5), which is based on the work   of

Wilson, Callan and Symanzik, leads to relations of the form:

<  4 0" E-(*,19  =   091', 3·) Mm,            (28)0                                  /2-

1
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-where     F    is a generic structure function,  M   is the matrix element  of   the

operator of spin n+2 appearing in the Wilson expansion, and  C  is the Fouriern

trans form  of the toefficient   of this operator. The parameter    /4   is

a reference momentum at which the coupling constant g is defined.

The function C(n) satisfies· a renormalization group equation

r 3 2   .
1 ,£ - + 94)

- -

4  1 )   ]     Ce'J     =      0,                          (29)
1      84'09

whose solution is

CM)(f ,  3)   =   C,44('.i)  *F   {-t  t.(9[*l)  6'  1  0 (30)

The effective coupling constant g(x) is defined through

drE  1  83(13(7,) . (31)

13(A =   3 ·
In an asymptotically .free thdory ic«) -9 0 as q -900 ,

2

so that on the right hand side of Eq. (31) the Wilson coefficient

C(n (1,2) approaches its free-field value.  In this sense  one recovers

the algebraic  relations of the parton model, such as the Callan-Gross

relation F2-2*Fl=F =O.  Deviations from scaling, which formed the subject

of the previous sections, come of course from the exponential factor

in Eq. (31).
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By evaluating C (n)(1,2) to the next order in perturbation

theory one obtains corrections to the parton model relations.  A simple

calculation  involvin.g the graphs of Fig. 5 (in fact only 5a gives a

non-vanishing contribution) leads to the (quark operator) result

00, A \

CL (9*Ark)
FL-/(19

-2
- 3 - r, i  4

=            .-9          ,   La  (R/ .     -        2

C')(1uark)
FiE'Ic'z)

161r,- 91+3
(32)

where  C2(R) is the quadratic Casimir operator for the representation of

the quarks.  For the colored quark model we have C2(R)=4/3.  It should

be emphasized again that Eq. (32) refers to the SU(3) non-singlet combinations

of structure functions, e.g.,  the proton-neutron difference.  The

left hand side of Eq. (32) is an experimentally defined quantity and

provides a direct determination of the effective coupling constant as a

function of q2.  The smallness of g is required for self consistency of

·                                                                                                                                 2

our expansions, in the large q  region that we'are considering.  One

2
can now invert Eq. (32), at fixed q , to obtain

W

FL (w,p =  4 C,(R) . .   t f  do'w' FJC,«C 29.5 (33)

/6/Z.2

1
where  we have switched  to   W =  1.-.     In  this  way  we  see  that

F399 , R, .i, 6.) -40 ,
g«79 /6/r L

,
(34)

11("ll?   .4  k* Cw-I) I , W-4/ )

/5 /W, 7 v /&TIL
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where Kl and K2 are constants which may be computed from Eq. (33) if we

know the growth properties of F2 as a function of A) .  For instance if

F2 -, to-'kas   tu-*1 as expected from Regge arguments   for the proton-

neutron difference, then  Kl =8C2(R)/3(Kl=32/9  for the colored quark

model).    If  F2  (W -1) as    41 9/,   then    X2  =  4C2(R)/(P+1).     For
P(q2)

2                                           2q    in the region of several (GeV) experiment suggests   that  P -43.    With

more reliable input data one could try a global fit based on Eq. (33).

The q2 dependence of
FL( J ,q2)/F2(£''t,q2) is of course also

determined by Eq. (33).  Once 42 is large enough so that 22/8 E 2 is

small compared to unity we expect

-        2 \-1

2'   =         A    (413
L

)   )        (35)

Z
where  the  cons tant  A is computable.     For the colored quark model A=8727/9.

Since g is an experimental quantity, Eq. (35) therefore permits an

experimental determination  o f the parameter   U 2.     In the renormalization

group formalism   ,UZ is·of course an arbitrary parameter, but  we

might. conventionally define it by requiring a good fit to Eqh. (34) and (35).

Defined in this way,  UZ is a fundamental parameter, which describes

the rate at which the strong interactions "turn off" in the deep Euclidean

region.

In our previous discussion of the asymptotic inversion  assumptions

we had to express strong caveats about the uniformity in n of the

onset. of asymptotic behavior  for the moments. The question boiled    down

to whether one can trust perturbation theory for the anomalous dimensions

3;n , especially with respect to the growth at large n and the
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singularity at n=-1.  Concerning the former in particular, there is the.

danger that higher order terms in perturbation theory lead to corrections

which increase with n.'  In the present context we must ask whether we

can trust perturbation theory  for  CL (n) /C2 (n)
.  Here we believe that we are on

firmer ground, for the following reasons:

(a) In each order of perturbation theory the leading contribution to
(n)

(2   as n --9 CD  is given by vertex correction graphs, as displayed

(n)
in Fig. 6a.  These give no  contributions to CL .  However, the graphs

of Fig. 6b, down by exactly one power of n as n -> CO  , do contribute
(n)

to CL     There is no obvious non uniformity, therefore, and the r + co

behavior in Eq. (32) may therefore be realistic even beyond lowest

order in perturbation theory.

(b) Graphs involving exchange of two gluons do not contribute to the

(n) -(n)
ratio  CL /62 Order by order in perturbation theory, therefore, it
seems that there are no singularities to the right of n=-2.  Even if

!
2the   sum  over all orders produces a moving singularity   (as .q varies),

2since the effective coupling constant at large q  is small, such a

singularity should not move much to the right of n=-2.  This is

4 (n)
relevant because Regge arguments suggest that F2   has a singularity

at n=-3/2 (for the non singlet case under discussion).  Therefore,

the      t-) 0 behavior of FL(x,q2), obtained from the inversion of

. 1

 4   FLC"f) =    ,61 9'. FJ(x,i') C:·)/C:.,) ,  (36)

n)will be dominated by the singularity of F   . This means that the behavior

predicted by Eq. (34) is not sensitive to the singularity structure of

C n /C n  and should therefore be reliable.
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For SU(3) singlet structure functions the analysis is more

5
complicated,  and the results are weaker.  Here one has contributions

from the gluon operators in the light cone expansion.  Their coefficients

-               -2
vanish to zeroth order in g, but in order g we have to consider the

graphs of Fig. 7.  It turns out that only graph 7a gives a non vanishing

contribution to C n).  In fact, the gluon contribution leads to

C.'791'.,f             f' .  C,LCG)
'6

.-'

C') (lvark)
/6e 61+3)(11+4)

We see  that for large n  the gluon contributions are negligible compared

to the purely quark contributions,  Eq.   (32).    Thus  the   Al-, / prediction

of Eq. (34) applies for the singlet as well as the non singlet case.

The 41 -PO prediction is also unchanged, in form, but the

coefficient Kl  is no longer determined.

V.  CONCLUSIONS

Our discussion of deviations from scaling, for deep inelastic

neutrino reactions  in the context of asymptotically  free 'theories,  has been

at two levels. Concerning the growth properties  o f the total   ))     and     F

cross sections, we could set lower and upper bounds without recourse to

serious assumptions going beyond the basic features of asymptotic freedom.

The bounds closely bracket a linear growth, so that in this respect deviations

from scaling are predicted to be small.

In order to treat the structure functions in more detail, and

thereby the differential cross sections, we had to invoke uniformity
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assumptions of a speculative character. Given these, we are let to

expect substantial deviations from scaling in the structure functions at
2

large q .  The effects are somewhat washed out in the partially integrated

cross sections but are still visible there, especially for the x

distributions as they change shape with beam energy.

It is natural to Ask how these results compare with expectations

for other possible mechanisms of scaling breakdown. In this connection

it is especially interesting to contemplate a situation where the strong

interactions are governed by an abelian rather than a non abelian

19
gauge theory. Of course abelian theories are not asymptotically free.

That is, if there is a fixed point it is not. at the origin of coupling

constant space.  The anomalous dimensions, which are determined at the

fixed point, cannot therefore be reliably gotten by perturbation theory -

even if we knew where the fixed point is. located.  Just for orientation,

however, suppose that the effective coupling constant at the fixed point is

very small, so that lowest order perturbation theory can be used.  In

that  case the anomalous dimensions would have  the same general properties

as in the non-abelian case.  The chief difference is that the analog of

2 2 2   2Eq. (2) would contain q /u  in place of log (q /u ) -

2   2the scaling deviations, that is, would go like inverse powers of (q /0 )

2  2rather than inverse powers of log q /u .  For the structure functions and

differential cross sections, therefore, the general trends would resemble those

of  the non-abelian Case, but the effects would be greatly magnified.

There is another mechanism of possible scaling breakdown for

20neutrino processes that has been discussed in the literature. The

idea here is to modify the parton model solely through endowing the

20partons with form factors.  The trends can be seen in the paper by Barger.
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APPENDIX

We present here some of the details of our procedure for

2extrapolating the structure functions from one  value of q  to higher

values of q2. This involves inversion of the moments, Eq, (23), with

the an given by Eq. (25) or Eq. (26).  Let us quote three relevant

theorems on Mellin transforms: -

,

(a)  If

00

r   &,0    0

3    -=*4  1-1. ('01 =      1£(47)  ,110

then

f.

f *i
i     4,11.2                    2

 94 f     =      1, ('n)    *(0)  ,

where

6,<Si= 1 _     *'(u')  £2(63  # 63'     .
r /6  & M,   A

1     to,

(b )                  If      k   >   0,           P  >  C      ,    then

7-1                                           -12

("   19_    /1...,0    r                                                          '9 '0"" (-'t Ivi(A   fiT   load)
= -6

(9)+iky
6 11+1

J
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where I is the modified Bessel function of index  V - / .9-1

(c)   If  f(1) = 0 and f go) I LO -9   0         as       W 1   CO      ,          then

n+1

CA

('- €SL-   u- 1+1   i _toi  & co)  =       (0+4+ 1)    f    €i    f (w) .
4           4, SM.

A &0 |   11)1'+2

The moment problem that we encounter is

15   (19     =          1%   69    1
-74,

(A.1)P

where, with the approximations that have been adopted,  an has the form

-*- 1
(10  ».Coy, 91-d»t    +         (Ca  111 (0+06'"1 tn,4,+1 '1.

(A.2)

Our coefficients  <
are positive.  If all the (  were similarly

positive we could invert by repeated convolutions, using (a) and9-GA,

(b).    One further convolution would  then yield F(u,q2). Actually,  the   ( 
are not all positive.  However, if a given C is.negative we can use

0,

(c) to write

F=(li)  =  .   1            (AM  ( 0 L& ;  ap ) (A. 3)

11+0 +1
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where
6

f &<A -01   + 1      k           d

(2#  9;  4)  =     J    =,   w    t'       23   w  '    Fc,4,70)1
W (A.4)

is known from the input data (which satisfies the requirement that -

F(1,q02)=0).  In this way we are led to  consider the moment problem

a /%9.   Gl *34)  2 - 4

where                           1

6.'    =       4+    092)-/

The new problem has exactly the same structure  as the original one,

with    Fn(q02)--4 Gn(qo2; 0 6 )  and an -7* bn. By repeated use of this

trick we can arrange (over some range of 2 which is big enough for

our  needs)   that the
modified  C     are

all positive. Indeed,  with

sufficient repetition we can arrange that the index  V encountered in

(b) is always greater than unity.  This last allows us to avoid modified

Bessel functions of negative index.  The latter are singular at the

origin and would be a nuisance for numerical work.

1
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FIGURE CAPTIONS

-

T              Y1 dd-
Figure 1 A plot  of  (-)  - -   for  E =  200 m (solid  line).    For

2   E dyGm
comparison we have plotted (dotted line) the function 0.50

2                                   F     1  d d  5
(1-y)  which is what (-) - -  would be if scaling held

2   E dyGm
with the structure function given by Albright and Jarlskog

(Ref. 13 and 14).

r     d 6-
V·

Figure 2   A plot of (-2-) 1 - for E = 200 m.  Note the suppressed
G m E dy

ldG-9
zero. We see that -- is practically a constant from

E dy

y = 1/2 to l,which is what scaling would predict.
9

Figure 3   A plot of (2--9 as a function of x for two differentr .  dF (E)
dx

G mE

energies (E=50 m and E=250 m.)

r       daf E)Figure 4   A plot of (-2-) as a function of x for two
dx

G mE

different energies (E=50 m and  E=250 m).

Figure 5 Feynman diagrams contributing corrections to the Wilson

coefficients for fermion operators.  The graphs (b) do not

- modify the Callan-Gross relation.

Figure 6 Representative high order Feynman diagrams controlling the n

behavior of corrections to the Wilson expansion. (a) A

(n)typical leading contribution to (2 ..  This graph gives no
(n)

contribution to CL  .   (b)  A  leading contribution to C n).

The bubbles represent radiatively corrected vertices.

Figure 7 Feynman diagrams contributing corrections to the Wilson coefficients

for gluon operators.  The graphs (b) do not modify the Callan-

Gross relation.
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