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A SECOND MONTE CARLO SAMPLER
by

C. J. Everett and E. D. Cashwell

ABSTRACT

Methods are suggested for sampling many additional
probability densities occurring in practice, as well as
more general forms, of some of those appearing in the
first SAMPLER. Notably, the frequent restriction to
half-integer exponents has been removed. As before, no
claim to priority is intended, the sole object being to
provide a handbook for Monte Carlo practice.

FOREWORD

In all cases, the density to be sampled is followed by a rule (R) for choice
of the wvariable, in terms of random numbers r, uniform on. (0,1), and a justifi-
cation (J) for the method is indicated. The indices (D, C, R) provide '"key words"
which may help in locating a desired density, and usually a reference is given
for further information (see REFERENCES, last page). Some of the basic densi-

ties of the first SAMPLER have been included, with the original numbering, so

that the present handbook is reasonably self-contained.

D-INDEX

Discrete Densities

D2 Ok/k! Poisson (JK1/87)
+k-
D7. L5 ! PSAk Negative binomial, s integral
(JK 1/124)
D17. vVj Log series (JK 1/166)

DI8.  1/(k+1)P+1 Zeta, Zipf-Estoup, word distribution

-NOTICE- (JK 1/240)
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D19.

D21.

D22.

D23.

D24.

D25.

D26.

D27.

D28.

D29.

D30.

D31.

D32.
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Binomial difference (JK 1/55)

Negative hypergeometric (G£ 1/157)

Arfwedson, occupancy (JK 1/251)

Continuous-discrete marginal

p(x) - compounded fX (k) density

Unifonn-compounded Poisson

(K 1/184)

Negative binomial, s real >0, F-
compounded Poisson (JK 1/125)
B-compounded binomial (JK 1/79)

B-compounded negative binomial

Simon, power-compounded geometric

(JK 1/245)

Yule, exponential-compounded geometric

(K 1/245)

Discrete-discrete marginal

p()-compounded fj(k) density

Log series-compounded Poisson

(JK 1/211)



D33.

D34.

D35,

D36.

D37.

D38.

D39.

D40.

DA41.

D2.

R1.

(e Wk!) ~

e-ka A Y an]_kX]J/j!
ji>km Kk
exp - ){Il-pK}; k =0,

) o
A~ e~xgk r(Kji+k)(xpK)j/j'k!rCKj);

1
k>0.

e ; v=20
2 e'ACV : :1(xPK)iq"-Ki/j!
s .

LKj
I=vg

vV =K, K+1,...

¥¢ e'V'Vj! =
"He+1

r6 xke'Xdx/Ok!
JO

(1-1/11+...+(-DN_k/(N-K)!}/k!

(e-1) /(e -1)
N r .k, -) j N+
A B Kp) NI
i=0 ]

Neyman Type A, Contagious, Poisson-

compounded Poisson (JK 1/217)

Poisson-compounded binomial (JK 1/190)

Poisson-compounded negative binomial

(K 1/196)

Generalized Polya-Aeppli (JK 1/197)

Pdlya-Aeppli (JK 1/197)

Poisson tail-end, Poisson's exponential

binomial limit (JK 1/262)

k - coincidences, matching (JK 1/264)

A density for fractions a/b (JK 1/31)

Binomial-compounded Poisson (JK 1/186)

Discrete Densities

pk) = ¢ 9 ek/k! ; k=0,1,2....,000

Vn 0k/k!
—n

Set k = min n’ 5r e



R 2. Set k = -1+min n; ﬂrj ri 2 e ’

J. See Sampler I.
p7. gl = &
R. Setk = -s + {
J. cﬁflk'l Ps-l « p is the probability of exactly s successes

occurring for the first time on the (s+k)-th trial. See Sampler I.
D17. P(G) = AVJLCA); j = 1.2,... ,0<X<1, LX) = - JIn(1-X).

R. Set j = min % 7 44 = QLX)

DIS.  qk) = 1/G+DRT gp+): k = 0,1.2,.... p>o.

k
K;Y 1/(k+DP+l > r?(p+))
¢
0

R. Set kK = min

FA (YT _ _ A A A ;
D19. p&() -V _3 C&&-qM—i_NH( 2u p2u k, MN ~1, - N<k<<M, a = max {O,k},
gla U yK

b = min {M,N+k}, O<p<l, q = 1-p.
R. Set y = number of r,..., rM such that r. < p. Set v = number of 77,..._,

riI\'I such that ri' < p- Set k = y-v.

J. p(k) is the probability that y-v = k, where y and v have the binomial

densities M qM_u p]F}I and N qw-\) pV respectively. Cf. De.



D20.

D21.

(e

pk) ol Kk k+s—1)(M - st)/(M+N - k-s+1); k = 0, ._.jN, s integral,

1 <s <M MN > 1.

One follows the steps:

Put b-1 #b, v+l >v. Returnto (3).

1. List the integers 1.2,..., MHN.

2. Put 0 -* a, MtN b, 1 > wv.

3. Set I = min = 1,2,...,b)

4. Delete the I-th integer E from the remaining list.
5. If a® <Mgoto (6). If a&# >M go to (7).

6. Put atl + a. If a<s, go to (7).If a = s go to (8).
7.

8.

Exit with k = v-s.

p(k) is the probability of drawing s integers < M from the list 1.2,...,
M.....M+N for the first time on the (s+k)-th drawing (without replacement).
Note that Clg_’\ N M 1 t*e Pr°bability of drawing exactly s-1 of

these in (k+s-1) drawings (Hypergeometric, D12). The "negative hypergeomet-

ric" of D20 is the dependent analogue of the negative binomial (D7).

pk) = C ("D ci (sr)IN; k = min

One follows the steps:

I. Put 0 +n, ,....0 +p", 1| €

2. Set K = min ¢4 k > fr}. Put l+q. ™ n™

3. Ift<N, putt+ 1+ t, return to (2). Ift =N go to (4).

4. Set k = number of positive components q of [n",....n"]

p(k) is the probability of exactly k of f boxes being occupied if N
particles are assigned to f equally likely boxes. This may be seen from

the inclusion-exclusion principle

#(s.u...u sk) #(si) -M(S. s, ) + ...+ (-Dk 1 #(sx..sk)



D22.

D23

D24.

R.

where Si denotes the set of all assignments forbidding the boxes i and
k—+1,....f. Note that p(k) = (1/H)™ « {#S - S™M}, where S is

the set forbidding boxes k—+1,....f.

qk) = Tb dx f (x,k); k = K, K+1,..., f(x,k) density for a<x<b, k = KK+lI,
Jo

Sample the marginal density p(x) = y» f(x,k) for x on (a,b). For this x,
sample the x-dependent discrete k-density "xCk) = f(x>k)/p(x) for k on K,
K+1,...

The probability of choosing the integer k is dx p(x) fx00 = qO).

qk) =Jh dx p(x) fx(k); k = K. K+1,..., p(x) density on (a.b), fx(k)
discrete k-density for each value of a parameter x on (a,b).

Sample p(x) for x on (a.,b). For this x, sample density f (k) for k.

Corollary of D22.

_ A_{l - eboS i
. a\/fk : /1. e-b~~k bVi!
0

qk) = (b-a) ! k- 0.1.2..... 0<a<b

Set x = a+(b-a)r. Sample e Xx*/k! for k by D2.
For p(x) = 1I/(b-a) on (a.,b), and f (k) = e Xxb/k! on {0,1.2,...} one has

lvve -Bx

Jf (b-a) " x®e Xdx/k! = q (x), using the basic formula (F3) Jf/\xll- dx
a o

(n-1) B 1-eBY 21"l (By)1/1! The rule follows from D23.



D25. q(k) = pSq"F(s+k)/r(s)k!; k = O,1,2,...,0<p<l, q = 1-p, s real >0.

R. Sample US "e U/r(s) for u on (0,°°) by C22, C32 or R18. For x = uq/p,

33

sample e Xxk/k! for k on {0O,1,2,...} by D2. (See D7 for s integral.)
For p(x) = (p/gq)S xS "¢ X™/r(s) on (O,0) and fx(k) = e Xx*/k."; k = 0,1,2,

/' “ p(x)f (k)dx = q(k) as given. Moreover,
Sul _ O X
p(x)dx =u e udu/F(s) for x = ug/p. The rule follows from D23.

s ——00  (-8) (-s-1).._(-s-k+1 Ak
Note. | =p (1—q)s—7k_0(s)(sk!) (s )ﬁsc-qj =

IXJ

D26. q(k) = c|J F(atk) F(b+N-k)/B(a,b) F(atb+N); k = 0O0,1,....,N;a,b>0, N integer > 1.

R. Sample va *(I-v)"™ */B(a,b) for v on (0,1) by C35 or R19 (b"1), or by Cl13

or CI3A (b=l).
Set k = number of rI,-.-,rl\} such that ro < .

J. For p(v) = va *(1-v)» ~/B(a,b), and fv(k) = vk(1-v)”™ k, one has

JSAv p(W\f (k) = qk). Cf. D23.
JO \

D27. qk) = F(s+k) B (p+s,atk)/E(k! B(p.q): k = 0,1,2,...;p,a,s >

R. Sample p(x) = x*3 | (I-x)a 1/B(p,CT) for x on (0,1) by C35 or R19 if a =f 1,

or by CI3 or CI3A if a = 1. For this x, sample fx(k) = xs(I-x)™ F(stk)/

r(s)k! for k on {0,1,2,...} by D7 or D25 (p=x).

J. For, J dx p(x) fX (k) q(k) as above. (D23)
0



D28.

J1.

R2.

J2.

D29.

R1.

J1.

R2.

J2.

Note. Included are the

special cases: Beta-compounded geometric

(s = 1), power-compounded negative binomial (cr = 1),

compounded geometric (a

qk) = p B(@+Lk+l) = pk!/(p+1)(p+2)...(p+l+k); k = O,

Sample p(x) = px*3 * for

- 1 = s) Cf. D28, 29.

and power-

1,2,...;p > 0.

x on (0,1) by Cl13 or CI3A. For this x,
sample fx00 = x(1I-x)» for k on {0,1,2,...} by D7 (p =

Case a = 1, s = 1 of D27.

Choose any a,b > 0 such that p = a/b. Sample q(k) for

x, s = 1).

k as in D29, RI.

Under the substitutions p = a/b, x = ¢ U one finds that q(k) =

P X Cl-x)™ dx = q(k)
440

as in D29.

Note the case of integral p, e.g., p = 1, gives qk) = 1/(k+1)(k+2);

k = 0,1,2,... (uniform-compounded geometric).
qk) :J]:.) ae (-e du; k = 0,1,2,...; a,b>0.

Sample p(u) = a e au foru = -a * £nr on (0,°0) by CI17.

For this u,

sample fu(k) = e (l-e )™ for k on {0,1,2,...} by D7 (p = e U, s = 1)

For, 7/~ du p(u) f (k) =
JO u

q(k) as above. (D23).

Define p = a/b and sample q(k) for k as in D28, RI

Under the substitution e

= X, one sees that q(k) =

(a/b) B((a/b)+1.K+])



D30.

D31.

D32.

D33.

qk) fGg.k); k = KK+1,...:;f(§ ,k) density for j > J, k > K
f1if]J

\ 00
Sample the marginal density p() :’\\k K fG.k), j > J, for j > J. For

this j, sample the j-dependent k-density fNk) E f(G.k)/p(G) for k > K
Cf. D22.
——j00

qk) = r(g) f. (k); k = KK+1,...,p(G) density for j =J, J+1,...,
AS
j=J J

(k) density for k = K,K+1,..., for each j > J.
Sample p(j) for j > J. For this j, sample (k) for k > K

Corollary of D30. Cf. D23.

L-1(X) (//k3) 2. =1 jk~I k = 0,1,2,... 0<X<1, (*>0,

q()

L(A) = -JIn(1-X).

Sample p(j) = A"™j L(A) for j on {1.,2,...} by DI7. For this j, sample

f k) =e ™ (cJoVk! for k on {O,1,...} by D2.

One has \ rG) £ & = qk (D31).
~ =1 J

qk) = " NMkIN ~Ae VI1il] k = O0,1,...; A, a>0, and
(N.B.) (O)yk E 1 for j = 0, k = 0.
Sample p(G) = e ~ X*jl for j on {0,1.,2,...} by D2. Ifj = 0, set k = 0.

For j > I, sample " (k) = ¢ ™~((Jjj3jVk! for k on {0,1.2,...} by D2.



J. For, ™ p(G) OO = q(k) (D31).

j=0

D34. q(k) = e"A pk T qQ™M'Vv /3! k = 0,1,2,...;X>0, O<p<l, q = 1-p,

j > k/n

n positive integer.

R. Sample e ~ A?/j! for j on {0,1.,2,...} by D2. For this j, set k =
number of r, ,..., r . such that r. < F
1 nj 1
3 fGgjk) = ~e ~ A™Njlj (C™ pk qlI* kj is a doubly-discrete density on the

lattice points (G,k) with j = 0,1,2,..., k = O,1,..., nj. Its marginal

densities are

nj
s f(G.k) = qk} as above, and p(G) =" 1(g.k) = e "A"/]!
=k
i~ k=0
Moreover, fj (k) = fG.k)/p(G) = pk ql* . The rule is an obvious

modification of that in D31, and is an analogue of C139.

exp - A"NN-pM; k = 0
D35, qk) = * 00

S j=i (e X gk/k!) F7Kj+kj r/Kj»
k > 1
AK real >0, O<p<l, q = 1-p.
R. Sample the Poisson density ¢ X A”/j! for j on {0,1,...} by D2. 1Ifj = 0,

set k = 0. Ifj > 1, sample the negative binomial density

r(Kj+k) pK* gk/r(Kj)k! for k on {0,1,2,...} by D7 or D25 (with s = Kj).

10



J Define p(G) = e ~ A-'/j!, 3 = 0,1,..., and

I for j =0, k =0
0 for j =0, k> 1
r(Kj+k) pKi gk/r(Kj)k! for j > 1, k > 0.

. X-'00
Then one verifies that /I:I o PQG) f}(k) = q(k) as above and the rule
=

follows as in D31.

Note. If one defines "r(k)/r(0)" = 6" (Kronecker delta) then for all
K

k = 0,1.,2,..., one may formally write q(k) =

A~ (e'r gk/k:) 1 (kjitk) (xp™/i. T K)).

j=0
e_A ;o v=20
D36. q(v) =¢ ) _ . s
X e A £¥J1—1 /> Ky qV I?/I’-
1 <j < VK

X real > 0, K integer =1, O<p<<1, g= 1-p.

B. Sample ¢ A X3/7/ for j on {0O,1,...} by D2. Ifj =0, setv = 0. If
J > 1, sample pk* qV for v on {jK, jK+1,...} by D7 (s = Kj,
set v = jK+k).

7. Define p(Gj) = e A xVj!, j _ 0,1,2,..., and

Il for j =0, v =20
Vv) = 0 forj =0, v>0

v-1 Kj v-Kj . .
CK’j-I Pq for j =0, v > K]

11



the domain of (j,v) being all lattice points with j ~ 0, v > Kj Then

the above q(v) = r(G) Fj(v)' The method is an obvious modification
0<j <vK

of D31, and a discrete analogue of C69.

V=20
D37. q(v) = «
v v eX ¥l Xpe, qv L v= 1.2,...:A real >0, 0<p<l,
~ j=1 J 1
q = i-p-
R. Sample e ~ A™/j! for j on {0O,1,...} by D2. Ifj = 0, set v = 0. If

j > 0, sample jp*qv * for v on {j,j+1l....}+ by D7 (s = 3, set v = j+k).

J. Case K = 1 of D36.
D38. q(k) =§IL e"9 OM1/3! = 9 xke"X dx/Ok.'; k = 0,1,2,...;0>0.
j=k+1-j0

R. For x = rO, sample e xxk/k! for k on {0,1,2,...} by D2.
J. The integral form of the Poisson 'tail-end" density follows from the
formula F3 (See D24.J). Using the marginal method of D30 on f(x,k) =

xke X/Ok!, O<x<0, k = 0,1,2,..., one has {)dex f(x,k) = q(k) as above, and
J

Ppx) =y° filx.k) = 1/0, £ (k) = f(x,y)/p(x) = e"Xxk/k!
Z"o

D39. pk) = (KD~1{1-1/1 + 1/2!.., + (-DN~k/(N-K)!}; k = 0,1,2,....N.

Note p(N-1) = 0.

12



DA40.

Follow the steps:

1. Put 1 AJ,eee, 1o (A" storage positions)

2. Putl >t N->D

3 Set K = min {k; k > Dre k = 1,2,...,D}

4. If K~ D, interchange contents of Ai’( and AUA. Go to (5).
5 If t <N, put t + 1->-t, D-1"-1D, return to (3)

If t = N, one has a random permutation (CH,...C") of 1,....N, C. = content

of A1 Set k = number of 1 for which Ci = 1.

p(k) is the probability of exactly k coincidences. From the inclusion-
exclusion principle, the probability of no coincidence on a random

permutation on any n digits is

I - 1/1! + 1/2! —...+ (-Dn/n!

Hence the probability of exactly k coincidences on 1,....N is

C1-1/1! +..+ (DN V(N-K)!}

p(k) as above.

p(a/b) = (e-1)2/(eatb-1)2; a,b > 1, (a,b) = 1.
al ak k
For m = p, - P define <)(m) = m Hl (1—1/]1).), Euler's cf>-function.
Set: m = min {m; ™ (e -1) ~ r-,/(e-) » £ = 3 =min {ji 3 ™ t™h).

=2

List the integers a® prime to m on {l,...m} as a®, a2,....a”™. Set a = a’,

b = m-a..
3

Classify all fractions a/b according to the sum m = a+b, (am) = 1.
Those belonging to the same m are equally likely, and the probability of
the subset with sum m is

b8 (e-1)2/(eatb-1)2 = (e-1)2 cf)(m)/(em-1)2.

atb = m
13
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D4l.  q(k) =yN (Ok(pe MIgN"’/k!; k = 0,1.,2,..., <p>0, 0<p<l,
~3=0 1]

q=1p, )Pk =1 for j =k = 0.
R. Set j = number of r™,..., r such that r» < p. For this j, sample

e for k on {0,1,2,...} by D2. {dfj = 0, set k = 0)
J. For p(G) =Cj pj gN * on j = O,1,...,N and ' (k) = ¢ ~"G(D)k/k!

N
on k = 0,1,2,..., one has\ p. f.(k) = q(k) above.
I ]
j=0
C-INDEX
Continuous Densities
Cl. P(v) General density, continuous on open
interval, finite or infinite

X aitv)

C3. Sum of positive functions, interpolated
densities, discrete-continuous marginal

C13, T3 um"l Power, m > 0
c1s, 19A. V_m_l Power, m > 0
c17. & Exponential
C22. un 1"e U, n = 1,2,3, Gamma

9 w2
C25. Vv e"v.in=1,273,.. Gauss type, 2n-1 = 1,3,5,...

R ~r2
C26. Re Gauss type (n = 1)

2

c27. eV, (0, Error function



C28.
C209.
C32.

C3s.

C43.

Co62.

C63.

ce3a. -/ dx

Co64.

C65.

C66.

vn_le"V, n

P
Os

“~

(_O0,00)

n

(l-v)_'n_l

PR TS P

os 2n—l8

f(x,y)
p(x) £x(y)

xm'"'3/2 exp(-y2/2bx)

xN e-""2X

YT 2K 2a-p2) X

1/2, 3/2, 5/2,...

1/2, 3/2, 5/2,...

Normal

Gauss type. 2n-1 = 0,2.4._.

Gamma

Beta; myn e {1/2, 1, 3/2, 2

Student’s t

Power series, Butler

Marginal, Composition, Butler

Marginal, Composition, Butler

Romanowski, modulated normal, equi-
normal (m=l), radico-normal (m=3/2),

lineo-normal (m=2). (JK3/276)

Non-central t  (JK3/204)

Sample covariance (JK3/231)



Co67.

Ce68.

C69°

C70.

C71.

C72.

C73.

C74.

C75.

C76.

C77.

C78.

C79.

C80.

16

(e-W - e"Nj/y

exp "-ayl™nj- exp (-by

.-i/n

TYdx f(x.y)

172 ~g(w) + g(-w)j
$(w-p)e + $C-w-p)e(iW

ei(a/ct))2 x

z-? z-C

1/(1+Bx)

(1+0x) exp ~x+10%x2j

Il # e

exp _[X + OAXJreNX —1

-Cz-?)/e -(z-C)/0|

X exp -
o TPV exp f—lge -t/a\
b -bx
+ f)a e

,UXnJrl eb/X

Exponential marginal (n = 1)

Exponential marginal (n =f 1)

Triangular marginal, composition

Symmetric sum

Compound Laplace (JK3/32)

3-parameter compound Laplace

Truncated Type VI, Bradford (JK3/89)

Linear failure rate, life-times

(JK3/268)

Life-times (JK3/268)

Extreme wvalue (JK2/277)

2-parameter extreme value (JK2/277).

Gompertz (JK3/271)

Transition Type III (EJ/78)

Transition Type V (EJ/81)



C81.

C82.

C83.

C84.

C8s5.

C85A

C86.

C87.

1+m

exp -1 y +

(rDH"l a -

exp -1y *+

exp

(x-0) X

-0z

Ssinh

6 Jin

g+A-x

A= Jn® uj

exp j- |Jin(x-0) - g|™/2bj

exp

- >
exp Z. xi
gx) + g(-x)
cosh
exp

Y45 %

y2"U22

Sy curves (EJ/126)

Sg curves (EJ/130)

Pseudo log-normal

3-parameter log-normal,

Cobb, Douglas (JK2/113).

General 2-variable normal.

n-variable normal

Folded density

Normal symmetric sum (JK3/136)

17



C88.

C89.

C90.

Co1.

Co2.

C93.

C94.

C9s.

Coe6.

C97.

C98.

C99.

C100.

C101.

18

cosh (£x/a”) X

exp - (X2 + C2)/2212

1/(5X + b+ C“X), be(—2,2)

17X 4 %)

i/(ex + 2+ e_X\

17X + b + eX), b > 2
1//X + cosh a(y~y0’\\
1/t

eX/(— ¥ exm—

e-y/1 + B'le->)mtl

(x-a)’l-1 (b-x)>"l

(x-b)/(x-a)q
CM-1 ./ M
E dl +NE

1/(ex/2 a e"x/2)2m

e-mx/a/(1 + pe"x/a)m+n

Folded normal (JK3/136)

Symmetric exponential I (JK3/15)

Hyperbolic secant (JK3/15)

Logistic, sech-square, growth-curve,

symmetric exponential ITI (JK2/244).

(JK3/3)

Symmetric exponential III(JK3/15)

Champemowne, income. Perks (JK2/242)

Champemowne, income (JK2/243).

Generalized logistic 1 (JK3/17)

Generalized logistic II (JK3/17)

Pearson Types I, II, general Beta
(JK3/37)

Pearson type VI (JK2/13), (JK3/87)

Square root of Snedecor's F, rms/rms

Logistic power, power of sech-square

(JK3/5,17)

4-parameter generalized logistic
JK3/271)



C102.

C103.

C104.

C105.

C106.

C107.

C108.

C1009.

C110.

C11.

Cl12.

C113.

Cl14.

Cl115.

. -mx/a @ -x/ a)\n—l

- pe

2 n-1
| X

2

a
xm 1/(1 + x)

x(x-a)m 1 (b-x)n
xn,—1(1-x)n-1/(x+a)m+n
(a+x)m 1 (a-x)n *
F(x) + x-2 F(x-1)

/ m-1 n-1\

.m+
X + X J/ﬂ+x)m t

i/[c2 ¥ (c-2..)2

* CDED2

t2+¢2

-1

C-00.00)

) fz+02\ 712 -02'%

A A

2 X Cl12 on (0,°°)

1/[1 + Ix-0il/m mtn
I A |

4-parameter generalized exponential

(JK3/271)

Transition Type II (EJ/74)

Restricted Beta (0 < m < 1)

x-Beta

Modified Beta

Centered Beta

Reflected density

Reflected Beta

Pearson Type VII (JK2/13), (JK3/114)

2-parameter Cauchy (JK2/154)

Cauchy symmetric sum (JK2/163)

Folded Cauchy (JK2/163)

Generalized Cauchy, Rider (JK2/162)

General order statistics

19



Cl16.

C117.

Cl118.

Cl1109.

C120.

Cl121.

C122.

C123.

C124.

C12s.

20

IN-1 N-1
- P()J p(x), P (x) p(),

[d - P(x) PCOM p(x)

tx-a? 1 (oK

1 gk

(1. exp i—e_xs\)\ Nk x

exp (ke X)

. —(N—k—l—l))&.(,1 te -X)N+1

pud s

[i -

arctan (!"™)]

[i * 1 arctan (™) ]

I - (WP

xB3-1 (1 - a-p""l e-(N-k+D)xb

g-(N-k+DHx ™ e-xjk-1

[1 - rx(m)/r(m)JN-k X

[rx(m)/r(n)]k 1 xn 1 e~X

(a/x) (k/x)a"N-k+1") X

- kxy K

A
X

X

X

Min, Max, Median statistics (JK2/3).

Order statistics

Order statistics

(JK3/38)

Order statistics

(JK2/279)

Order statistics

Order statistics

Order statistics

Order statistics

Order statistics

Order statistics

(uniform)(JK3/38)

(random numbers)

(extreme value)

(logistic) (JK3/8)

(Cauchy) (JK2/157)

(Weibull) (JK2/254)

(exponential )(JK2/214)

(Gamma) (JK2/191)

(Pareto) (JK2/241)



cue.

C127.

C128.

C129.

C130.

C131.

C132.

C133.

C134.

C13s.

C136.

C137.

C138.

C139.

4 (x-a)/ (b-a)
4 (b-x) / (b-a)

1 - x

al (x)
a2 (X)

h (x-a)/(b-a)
h(c-x)/(c-b)

-ax

bx

aiww- [wxitll- |

px/a

pql_l (1+ip) a-px /a

exp ~A(t-p)2/2p2t

Xm—l y n-1 F(x+y)

m-1

n-1 n
x 'y /J(Ox%)

|(d+ay)e - (I+by)e

e—ay§ B e-by’2

e N dx xn 1/(Cy-x)n
JO

rb

I>y dx £(x,y)

= 0-1"2.

Symmetric triangular, tine (JK3/64)

Centered triangular (JK3/64)

Composite, symmetric q(-x) = q(x)

General triangular

Asymmetric Laplace (JK3/31)

General composite

Binomial-uniform, traffic flow

(JK3/70)

Inverse Gaussian, first passage time
(Brownian motion with drift) (JK2/138)

Bivariate with marginal Beta

Bivariate with Beta marginals

Time between calls (B/69) uniform-

compounded exponential

Marginal normal

Marginal F

Marginal, triangular region

21



C140.

C141.

Cl41A.

C142.

C143.

Cl.

C3.

C13.

22

Tail-end density

Gamma tail-end, n = 1.,2.3,...

General Gamma tail-end

Power tail-end

¢ y/(I-Ae y) Log series-compounded exponential

Continuous Densities

P(v); (a.b)
Define P(v) = fV p(v)dv, P*Mv) = 7 p(v)dv. Set v =P or v =
a Iv
P(v) = a” (v); (a,b), a*(v) > 0.
Define Aj =/ a (v)dv. Set K = min Sample density
a J

aK(v)/AK for v.

Note 1. For J = 2, this provides an elegant way of sampling an interpolated

density a’p”Cv) + o"™p”v), > 0, + a2 =1 (L. Carter)

Note 2. This is the discrete-continuous marginal version of D30. The
discrete-compounded continuous density seems to occur infrequently. As

an example, we have included C143.

q(u) =mbm
Set u = b *
)
For u = bv® k-1 l hJ
10V¢ a~drk
max {rl,... .rk} <v
k-1

~ (v) = kv



C13A. q(u) =C (a,b) m real > 0, C = (bm-am)/m, a > 0.

D o N / m rum m', \1/m
R. Setu= "a + (b -a)r )

CIS. pCv) = m3m v m O<=3<v<=00, m = k/£, kKJl e {1,2,3,...}

R. Set v = 3/ max ("™,...

J. Let v = 1/u and compare C13.

CISA. p(v) = C'l v-'I"l; O=B<<v=a<(00, m real > 0, C = (B m-a m)/m.

m

R. Set v 17 a™ + B - ™yro

J. Let v

1/u and compare CI13A.

C17. P(v) - ae aV; (0,°?), a > 0.

R. Set v=-a”"Ilnr

00 0
J. From J p(v)dv = r.

\Y

C22. q(u) = un_1 e’u/r(m); (0,«>), n=1,2.3,...

R. Set u = - Jin TT n r.
J. ™eu A(u)du = e Uun 1/(11—1)!
S\-.—u 0
Z-i |1
where A(u) = dV/du and V =/ ]I dVj = un/n!
> V. <U
-1 1

c2s. P(vi = 2V2ITL "V /T(n); (O/gy n = 1,2.3,..., 2n1 = 1,3,5,

R. Set v = (Jin ]J a

J. For v = u2, one has p(v)dv = q(u)du as in C22.



C26. P(R) = 2Re K ; (0,-)

4
R. Set R = (-£n 1)
2
Vi
C27. pCVj™) = 2 e //ir 5 (0¢>)
RI1. Generate r, 7’ until S = r2 + x’” <<1. For accepted r.r% set
VI = |(-iln r0)/s|2 r, V2 | (-£n r0)/S 5 r . (Two samples)
] 2 VI 2 -2
J1. Under = R co0sO, v2 = RsinO, one finds — e dv. x — e dv0
/F 1 /2 2
2
2Re K* dR x — dO
T
. 2 2N
R2. Generate r.,r™> until S = r + r'~ <1. Set = {(-JInS)/S}2 r
v2 = {(-£nS)/S}2 7" (Two samples)
!
R Under = R cosO, v2 = R sinO, where R = {-2£np}2, one finds
2 2
2 ~V] 2 "2
Ze¢ 1 dv. x = ¢ “dvo = 7 pdpdo.
/T 1 /if 2
-v2
C28. PO(vi) = e 1//if ; (_OO’OO)~
. 2 2
R. Generate r.r™ until S = x +y < 1, where x = 2r-1, y = 2r™-1.

For accepted S, set vl = {(-£nS)/S}"™ x, P2 = {(-£nS)/S}™ y. (Two samples)

J. Cf. C27(1J2)
_ 2n-1 -u
C29 q(u) = 2u e /F(m); (0,00, n=1/2, 3/2, 5/2,..., 2n-1 = 0,2.4,...
R. Define h by 2n = 2h + 1 (h = 0,1,2,...). Generate r,r™> until S = r™+r~<l.
For accepted r.r'", set T = {(-£nS)/S> r2. Set u = |-5n JT * ™ + T2]|2.
2n/ 2 "Vi -
T gl_l ] m2n/ Vi ’dvi\ d }“u 22n . u A-~du

/ 0 m

T 4%

24



C32.

C35,

C43.

RI.

=2 e U u2n */r(n), where A = dV/du, and V = J T~P[n dv.

En £ty

Note, T2 ={2—£nS/S}r/\ should be saved for a second transit of C29.

T T e

p(v) = viI"l e~V/r(n); (0.), n = 1/2, 3/2, 5/2,...

Set v = u where u is obtained from C29. (Avoid squaring the square root!)

2
For v = u , one finds p(v)dv = gq(u)du in C29.

B(v) = viI"l (-v)n~1/B(m,n); (0,1)
b(z) = zm~1/(1+z)m+tn B(m,n) ; (0,°°)
q(6) = 2 sin2Zm~16 cos2n~19/B(m,n); (0.,%/2)

mne {1/2, 1, 3/2, 2,...} in all.
Sample xm-1 e”’X/r(m), yll-1 e"y/r(n) for x,y on(0,0°) by C22 and/or C32.
Set v = x/(x+y), z = v/(I-v) = x/y, 0 = arc sin /v .

The densities are equivalent under the substitutions indicated. For the
transformation x = uv, y = u(l-v), with inverse u = xty, v = X/(x+y), one

finds

’F"'l(m‘)xm'1 e Xax*r (n"}yn'1 e Yay=F (m+nA)um+n'1 e Yau R_lfm,n)v a-v) dv

N+
qi(t) = r(—~-) 722z T(IN2) A + 1-) ; (-co,00), N= 1,2.3,...

Sample w2 ~ e W/H(NN/2) for w on (0,°°) by C22 or C32; set x = (W/N)2.

-v2 |
Sample e \7, //it- for y on (-00,00) by C28. Set t = y/x.

25



J1. See Sampler I.
R2. Sample b(z) = z 2/(1+z) * for z on (O,0) by C35. got ¢t = VAT .

Change sgntwith probability 1/2.

J2. By symmetry, we may sample density 2q”™(t) for t on (0,°°), with provision
for sign change (Cf. C128). But 2q”™(t) dt = b(z)dz for t = vftl on

(0,00). The two rules are essentially identical.

Co62. p(v) ='V a. ; (0,1), a. > 0.
I A
R. Define A; = a./G+D. Set K min 8t v = AT
~0 J
exp r™ or set v = max (r",... . .rK+]).
J. The rule follows from C3, and from CI13A or Cl13.

C63.  a(y) =/ d&x f(x,y); (c.d), fixy) > 0.

Ja.
RI. Sample marginal density p(x) = fd f(x,y) dy for x on (a,b). For this x,
sample the x-dependent y densit)}(/ f (y) = f(x,y)/p(x) for y on (c,d).
J1. Under the rule, the probability ofxchoosing y on (y,y+dy) is rhp(x)dx .
x(y)dy = a(y)dy. a

Note. One may regard C6 (n=2) and C8 (p,q.q”) as special cases.

R2. Sample f(£>1)) for (5,0)* Sety = q.

¢
C63A.  q(y) Ewl/dx 19169 fX (v); (c.d), p(x) density on (a.b), f;((y) continuous
a

y-density on (c,d) for each value of parameter x on (a,b).
R. Sample p(x) for x. For this x, sample fX (y) for y.

J. Corollary of C63.

C64- q(0 = 772 #0 dx * xin"3/2 e"y /2bX° C-00,00), mb > O.
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R. Sample mxm * for x on (0,1) by Cl13 or CI3A. By C28, sample ¢ V /"iT for
V on (-00,00) . Set y = v(2bx)".

J. Following C63 for the integrand f(x.,y), one finds

700 |
f(x,y) dy = mx on (0,1) and fx(y)dy = f(x,y)dy/p(x)

-00

e X NM)Xdy/(27rbx)™ = e V dv//TT where y = v(2bx)J.

Co5. q@y) = N.I
2 2 yW T(N/2)

6 arbitrary, N = 1,2.,3,...
2
R. Sample w2 * e w/F(N/2) for w on (0,°°) by C22 or C32. Sample e V //ir

for v on (-00,000 by C28. Set y = A2%v+6 "« yftl2w .
J. Following C63 for the integrand f(x.y), one finds p(x)dx = dx f f(x,y)dy =

dx « xN 1 e 2/2N/2 1 t(N/2) = w™2 * e W dw/r(N/2), where x = /2w.

2 2
Moreover, f(x,y)dy/p(x) = x exp -(-£%- - 6]/2 = eV dv//ir for
, v y riN VyfT /
y = y2 v+8) N/x .

n-4
c .o 2 -x/2H" -(y-(pKx/H)) 2
Co66. q(y) = [ dx*x © exp 3 €=00.00>,
n-1
2K (1I-p Hx
/21MK2(1-P2) 2H2) 2 r(X)
n=5,6,...., H K>0, - 1 <p < 1.
R. Sample z * ¢ Vr™p~™for z on (O,00) by C22 or C32. Sample ¢ U //F for u on
(-o0}lo) by C28. Set x = 2H2z, and y = + u »2K (1-p2)x .
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J. The rule follows from C63 upon noting the relations:

p(xX)dx = x 2 e“x/2H dx/(2H2) 2

n-3
=z 2 e Zdz/F™"Mi-~ for x = 2H2z

f(x,y)dy/pCx) = e U du//rr for y = Np-tu/2K2(1-p2)x .

Co7. qy) = (e -e N/yC; (0,°°), o < a<b, C=lJin (b/a)
Crl
R. Generate ™, ™ and set y = -(Jin 1™~/a e
J. For f(x.,y) = ¢ X*C on (a,b) x (0O,00), one has the marginal densities

qy) = (e a™e MN/yC on (0,00), p(x) = 1/xC on (a,b). Moreover

f(x,y)/p(x) = x e X*. Following C63, we sample p(x) on (a,b) using

_i Arl
C JIn(x/a) = r”™, and thus setting x = ae as in

P(x) =f xp(x)dx
a

Cl4. For this x, we sample f(x.,y)/p(x) for y by Cl7, setting y =

- (JInr2)/x.

Co68. qCy) = exp (-ay ) - exp (-by t >i/n C 0,°°), 0<a<b, n > 0,
anD, C = r(n+1) (bl_n-at"n)/(1-n) .

R. Sample C * F(n+1)x n for x on (a.b), using C13, CI13A, CIS, or CIl5A.

Sample zn * ¢ Z/F(n) for z on (0,000 by C22, C32, or RI18. Set y = zn/xn.
J For f(x,y) = expC-xy™*0)/C on (a,b) x (0,°°), one has, for marginal
densities, the given q(y) on (0,00), and p(x) = C ! r(n+1)x X on (a,b).

Moreover, f(x,y)/p(x) = X exp(—xyl/n )Y/ r(n+1). Following C63 we there-
fore sample p(x) for x on (a,b). For this x, we then sample f(X.,y)/p(x)

for y on (0,°°) . Since {f(x,y)dy/p(x) = zll *e 2 dz/F(n) for y = zn/xn,

the rule follows.
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C69.

C70.

C71.

qly) = / dx*fCx,y); (a,b), fCx,y) > 0 on region R bounded by x = a,

_'a

y = b, x =y, where a < b.

Define p(x) = f(x,y)dy for each x on (a,b). Sample density p(x) for
b'e

x on (a,b). For this x, sample density fx(y) = £f(x,y)/p(X), x <y <b
for y on (x,b).
Under the rule, the probability of choosing y on (y,y+dy) is

/7 dx foxE —dy = p~™"dy-

3

Note. This is an obvious modification of C63 for a density f(x,y)
defined on the region R. For (a.b) = (-00,00), R is the region above the

line y = x. C8 (s) is a special case of C69.

s(w) = 1/2 (gw) + g (-w)) ; (-00,00), g(w) density on

Sample density g (w) for w on (-00,00). Change sign of w with probability
1/2.

The obvious rule may be regarded as an instance of C3.

p2/2
s(w) = (p/2) e <D(w-p)epW + (D(-w-p)ePW ; (-00,00), P > O,

<Ky) = -—- / e dx.
/2n  J-oo
Sample ¢ V //a for v on (-00,000) by C28. Set w = v/2 - £nr. Change

sign of w with probability 1/2.
2
By C70 it suffices to sample density g(w) = pep ™ <>w-p) e PW for w on

(—o00,00) With provision for changing sgn w. For w = y+p, we find that

g(w)dw = q(y)dy, where q(y) =J dx*peP~eX//e Following

-00

C69 with f(x,y) = peP~eX"~ec Py/2TT, we find that:
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700 - 12/) 2
px) =/ f(x,y)dy = e "X+P" " /ffnn ; p(x)dx = e V dv//rr for
X
X = - p+v2; f(xy)/pXx) = p y > X dy = e Vdv for

y = x + p_lv. The rule follows from these relations and Cl17.

z-C

a (

(-00,00)5 cr, ¢ > O, * arbitrary, cj)(y) = ---1-‘-)-- lf e ™ '{2 dx.

/2?
B. Sample s(w) for w as in C71, where p = a/(f>. Set z = £ + aw.
J. Under the stated substitution, one finds t(z)dz = s(w)dw.

C73. p(x) = g/(l+gx) In (1+B); (0,1), 6 > -1.

B. Set x = 3’_1 -1+ exp [r £ (1+6)]
J. The rule results from setting f/ x p(x)dx = r. (Cf. Cl)
-(x+10x2) .

C74.  px) = (1+9x) exp ; (0ji), e > o.

B. Set x =0 " |- 1+ (1-20 £n 1)2

J For v = x + 10x2, one has p(x)dx = e¢ Vdv. (Cf. CI7)

C75. qx) = 1 * 0(l-e X) exp x + O(xt+e X-1) i (0ji0), e > o.

B. Set VQ = - £n . Solve equation = x t O(xte X-1) for x. (See note
below).

J. For v = x + O(xt+e X-1), one has q(x)dx = e Vdv as in CI17.
Note (Newton's method for x). For f(x) = x + 0(x+e”X-1) - on [0,°°),
one has f(v0) = O(vote V°-1) > 0, f(0) = - vQ < 0, f'"(x) =1 o(1-e"X) > 1,
f"(x) = 0e x > 0. Newton's recursion reads
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) + 0 {1 - $1+Xn) exp (—Xn)}

*n f(Xn)/f'(xn) I +6 {1 - exp (-X )}

n+l
With initial x* = the sequence {x"*} rapidly converges down to x.
Cc76. P(x) = exp (-x-e X); (-00,00)

R. Set x = - Jin (-Jin 1)

7J. For x = - £n v, one has p(x)dx = ¢ V(-dv) on (0,°°) as in C17.

C77.  qzj = &1 GO o) |-e'(Z'C)/ € . oM, 0> 0, C arbitrary.

R. Set z = C - 0 £n (-Jin 1) .
J. For z = ~ + 0x, one has q(z)dz = p(x)dx as in C76.
- — oA
7. P - eV exp (p D (000, pa<t 50
R. Sample w* * e W/r(cj)) for w on (0,°°) by C22, C32, or R18. Set t = - a Jln(w/p).
J. For the given transformation, one has p(t)dt = e W(-dw)/r((G)) .
C79. px) = CM + e'"bx; (-a,«0, a,b > 0, C = (ab)ab/a eab r(ab) .
R. Define n = ab + 1. Sample zll * e Z/r(n) for z on (0O,00) by C22, C32, or RI18.

Set x = (z-ab)/b.

-1 -
J. Under the latter substitution, one has p(x)dx = zn e ZdZ/F(n) on (0,°°).

CS80. p(x) = bn/r(n) xntl eb/”X ; (0j00), b > 0, n > 0.

R. Sample 2" ¢ /r(z) for z on (0,°°) by C22, C32, or RI18. Set x = b/z.

J. For,p(x)dx = 2™ e ™?(-dz)/T(n).
, z

C8L.  p(x) = (@m 2 X 16 |1 + | exP ~ i Y + 6 sinh I

(-00,00) , Y arbitrary, X, 6 > 0.

R. Sample e y //ir for y on (-°°«>) by C28. Set x = ~ + X sinh ~ Y
-v2

J. One finds p(x)dx = e * dy//rr .
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Cc82 p(x) = (270* A"l 6 ) i1 —2=) exp x-C

y + 6 £n 5+A-x

(£,£;+A), Y arbitrary, A,6 > 0
Sample e ~ //fr for y on (-00,00) by C28. Set x = £ + |A/(1+E)| , where

E = exp -S"l (y/2 - y)l

J. For the x,y substitution, one finds p(x)dx = e¢ ~ dy//iF !

C83. g(u) = exp (~£n u)/ed yu ; (0,0).
2

R. Sample eV //F for v on (-00,00) by C28. Set u = exp (v+i). (Cashwell)
-V N
J. For the latter transformation, one finds q(u)du = e av//77 .
C84. p(x) = —X exp £n(x-0>-51272b ; (0,«>), b > 0, 0,5 arbitrary.
/27Tb !
R. Sample e_Vz//F for v on (-00,00) by C28. Set x = 0 + exp 5 + v/Zb]
-v2
J. For the given transformation, one has p(x)dx = e v //T1.

(See log-normal, CSS).

2
CSS.  p(yl.y2) = exp - 0
21 ala2/1-p»

y1l, y2 on (-00,00), , a2 >0, ylL, u2 arbitrary, - 1 < p < 1.
R. Sample e //F for both , v2 on (-00,00) by C28.

Set + vl + PV2j, y2 = y2 + a2 v2, where R = 1 -
J. Under the indicated transformation, one has p(y”, y2) dy* dy2

-V,
e 1 dvvrg e 2 dv2//Fo .

C85A. pty™..., y) =C 1 exp yi y ; yi on (), A = [a™] positive

ij
definite.
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2
Construct a matrix S such that STAS = I. (See note.) Sample e //m n

times for Zomenes 2 by C28. Define y\ b}/ the linear transformation

vyl Z1

In (column!) wvector notation, we have Y = SZ, and hence

ZT7 = ZTIZ = ZzV ASZ = YTAY, i.e. 7zi = 3 yiaijyj

Therefore, under the transformation Y = SZ, with Jacobian |det S|,

2
n/ -z
we see that p(y”...yn) dy”.-.dy” = XL Jle 1 . Note that
C = TTn/2 (det S| necessarily.

Note. The matrix S may be obtained from the Gram-Schmidt process. With-
out going into its machinery, we remark here that it is a definite
algorithm for constructing from any n linearly independent vectors an
equivalent set which are orthonormal with respect to a given inner
product. If we define in E" the inner product (X,Y) = X'AY then the
Gram-Schmidt algorithm, applied to the "l-spot" wvectors 67, produces a

set w”,...,w which are orthonormal relative to (X,Y) Hence we may

define S by Wioeen W = IV--.SJ s.
For th 6.. = LW =/ 6, s, ., N\ ;
or then 6.y = (w-w) k “ki® 2 6F SH
\ k £
=X ski (5k-SJ sij ski stj- or- matrix form,
k.£ k, £

X
I = S AS, as required. Note that S is simply the matrix whose columns

are the column vectors V&i



C8eé. hx) = gx) + g(-x); (0,0), g(y) density on O00,00) .
B. Sample density g(y) for y on (-00,00). Set x = |y]|.
J. h(x) is the symmetric sum density 1 "g(x) + g(-x)j restricted to (O,0),

and doubled. See C70.

“év

C87. s(x) = (20 ) cosh (Cx/a ) exp (xZz+rt/2al . (=00,00), ? arbitrary, a > O.

R. Sample e V //ir for v on (-00,00) by C28. Set x = £ + v/2a2. Change sign
of x with probability 1/2.
J One notes that s(x) = i"g(x) + g(-x)j where g(x) = e ~ //2iral

and uses C70.

h(x) = /2/Tral cosh(gx/g2) exp { -(x*+g™)/2g”™j; (0O,00)

C88.

_v)2 y
R. Sample e //ir for v on (00,000 by C28. Set x = |£+v/Za2
J. See C86, C87.

Cg89. p(x) = a/(eXtbte X); (-00,00), - 2 <b < 2,
B/ /2 - arc tan(b/2B)|, B = (1-b"/4)2.

a =
- (b/2B)+tan(Br/a) |
R. Set x = Jin B 1 (b/2B) tan(Br/a) |
J For x = Jin y, one finds p(x)dx = ady/|"y + B2] = q(y)dy on (0,°°),
ith ~ 2 @

with ay)dy = { arc tan X/\D —————— arc tan D = r yielding the rule.
C90. P(x) = (2/mM)/(exte X); C-00,00)
RI1. Set x = Jin
R2. Generate r.r™ until S = r + r <<1. For accepted r.r™, set x = JIn(rVr)-
J. Special case of C89 (b = 0).

Note the equivalent form p(x) = ™ sech x.
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Co1.

Co92.

C93.

C9o4.

C9s.

px) = 1/(eX+2+e X); (-00,00)

Set x = iin | v/ (1-0)] .

For x = £n y, one finds p(x)dx = dy/(y+1)2 = q(y)dy on (0,°°), with

Jx

q(y)dy = y/(y+1) = r yielding the rule.

0 l/(e%1 - ;5)\2 =

Note the equivalent forms p(x) 5 sech (x/2)

= ex/’CeX-FTl)2 = e_X/ﬁ’e_X)z.

p(x) = a/(eXtbte~X): (=09, b > 2, a=Cln  + ), where C = (G2 - 1)

Define s = y+C, d = -j-C. Set x =.&n (E-1)/(s-dE) , where E = exp(2r5,ns)
* 1))

For x = £n y, one finds p(x)dx = ady / - ¢ E q(y)dy on (0,«),

Yy
with J q(y)dy = ™= Zn
0

q(y) = n/ A + cosh a (y-yg)

Define b = 2A > -2. Sample

Set y = yQ + (x/a).

For the given substitution,

the cited references. Note
r(t)

Define b = 2A > -2. Sample
Set t x/a

For the given substitution,

the cited references. Note

qx) = m gm eX/(gteX)mtl;

Sample m Sm v m * for v on (B,0) by CIS or CI5A.

= r yielding the rule. (Note that sd = 1).

(-00,00», A > L

density a/(eX + b + e X) by C89, 90, 91, or 92.

one obtains q(y)dy = h(x)dx for an h(x) in

that n = a a/2.

(0,°°), a, tQ > 0, A > - 1.

a/(eX + b + e X) by C89, 90, 91, or 92.

one obtains r(t)dt
a a/2.

= h(x)dx for an h(x) in

that n =

(-00,00, B, m > O.

Set x = Jin (v-S).
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J. For x = £n(v-(3), one has q(x)dx = m Bm vm | dv = p(v)dv on (B,0) .
For arbitrary m > O, one setsJ p(v)dv = r to obtain v = B r

= B exp —a£nr. For B =m = 1, Cf. C91,

C96. r(y) =m B 1 e~y/(I4+B 1 e y)m+1; (-00,00), B, m > O.
R. Sample m B v m | for v on (Bjll) by CIS or CI5A. Set y = - £n(v-B)
7J. With y = -x, one has r(y)dy = m B™ e ~dy/(B+e

= m Bm eX(-dx)/(B+eX)m+l as in C95.

C97, q(x) = Qc-am " (b-x)n V(b-a)mtn * B(m,n); (a,b), a < b, mn > 0.
R. Sample B(v) = vm ~(1-v)n ~/Bfmjn) for v on (0,1) by CSS or RI19.
Set x = a + (b-a)v.

J. For the x,v substitution, one has q(x)dx = B(v)dv.

C98.  p(x) = FQ (b-a)""1 (x-b)R/1(Q-R-I) r(R+D) (x-a)Q; (b,~), b > a,
Q>R+ 1 > 0.

R. Define m = R + 1=0, n = Q-R-1 > 0. Sample b(z) = zm '"*'/(l+z)m+n B(m,n)
for z on (0,°°) by CSS or R19. Set x = b + (b-a)z.

J. For the x,z substitution, one has p(x)dx = b(z)dz.

M+N
C99. p(E) = 2(M/N)M2 EM I/B(M/2,N/2) (1 + ~E2) 2 ; (0,°0), M, N e{l,2.3...}.

-V , -V
R. Define m = M/2, n = N/2. Sample Vll? e Vr(n), VIZ! e . /r(m)
i
for Vj, v2 on (0,°°) by C22 and/or C32. Set E = (NV"MvMHN
J. For E = F*, one finds p(E)dE = q(F)dF for Snedecor's F, as in C45.

C100. p(x) = 1I/B(mm) (eX"2+e X/2)2m- (ooloo) | m > O.

R. Sample b(z) = zm 1/B(m,m) (1+z)2m for z on (O,00) by CSS or R19. Set x =
£n z.
J. For x = An z, one has p(x)dx = b(z)dz on (0,°°).

Note the equivalent form sech2m(x/2)/4m B(m,m).
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C101.

C102.

C103.

C104.

C105.

p(x) = pm e mX/a/gB(m,n) (1+pe x/ajm+n- (.0”co): P)a > Q, m,n > 0.
Sample b(z) for z on (O,00) by C35 or R19. Set x = -a £n(z/p).

For the x,z substitution, one has p(x)dx = zm * (-dz)/(I+z)m+n B(m,n)
on (0,°°).

Note 1. See C120 for the case m—N-k+1.n=k, p =a = 1.

Note 2. For ma—n=l=—p=—a., p(x) reduces to CIl.

e(x) =pm e~mx*a(l-pe Xy/g)n ~gBCmjn); (a £n p, 00), p,a > 0, mn > O.
Sample B(v)= vm ~(1-v)n *~/B(m,n) for v on (0,1) by C35 or RI19. Set
x = - a £n(v/p).

For the x,v substitution, one has e(x)dx = B(v)(-dv) on (0,1).

Note 1. See C123 for case m=N - k + 1, n =k, p =a = 1.

Note 2. i:or m=n=1=p=a, e(x) = eiX on (0,°°).

/ 2\n-1
px) = r(n+i1)d - /a/fr F(n); (-a,a), a > 0, n > 0.

Sample v 3(1-v)n ~/B(i,n) for v on (0,1) by C35 or R19. Set x = av2.
Change sgn x with probability 7.

By symmetry, we may sample 2 p(x) fO{ x on (0,a), with provision for

sign. (Cf. C128, Note). For x = avl we find 2 p(x)dx
= v'i(l-v)n_1/B@G,n) = B(v) on (0.1).
b(z) = (sin m /1M zm~1/(1+=z); (0,°°), 0 < m < 1.

Sample b(z) = zm 1/B(m, 1-m) (1+z) for z on (0,°°) by C35 or RI19.

Note that B(m,l-m) = F(m) r(I-m) = m/sin mu.

px) = C " x(x-a)m * (b-x)n (a,b), a < b, mn > 0.
C = (b-a)m+n-1 F(m) r(n)(na+mb)/r(m-+n+l).

If rQ < = (m+n)a/na+mb, sample B(v) = vm-*’(I-v)n ~/B(m,n) for v on

(0,1) by C35 or R19. 1If rQ > A”, sample B(v) = vm(l-v)'*' n/B(m+Ln) for

v on (0,1) by C35 or R19. Set x = a + (b-a)v.
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C106.

C107.

C109.

Cl110.

38

For x = a + (b-a)v, one finds p(x)dx = + a2(v)jdv

. N ) i . _ _ _
where a~v) = BT b-a)™ ™ 0™ g™l aoey = o o™ ™ Verovy™ !
and A = a (v)dv = (m+n)a/(natmb). The rule then follows from C3.

p(x) = xm 1 (-x)n 1/(x+a)mtn C; (0,1) a > O, mn > O,

C = B(m,n)/an(l+a)m.

Sample b(z) = zm ~/(1+z)m+tn B(m,n) for z on (O,00) by C35 or RI19.
Set x = az/(I+ataz).

Under the x,z substitution, one has p(x)dx = b(z)dz on (O,0).

Note. The x,z substitution is the iterate of x = y/(I+y) and y = az/(1+a).
px) = (a+tx)m * (a-x)n ~C; (-a,a), mn > 0, C = (2a)m+n ~B(m,n).

Sample B(v) for v on (0,1) by C35 or R19. Set x = a(2v-1).

For, p(x)dx = B(v)dv.

px) = F(x) + x 2F(x 1); (0,1), F(y) density on (0,00).

Sample F(y) fory on (O,0). Ify <1, setx=y. Ify > 1, set x = 1/y.

Under the rule, the probability of an x on (x,x+dx) C (0,1) is
F(x) dx + F(y)(-dy) where y = 1/x. But F(y)(-dy) = F(1/x)dx/x".

Note. The rule is a disguised version of C3.
px) = (xm "+xn /(+x)m+tn B(m,n); (0,1) ,m,n > O.

Sample b(z) forz on (0,°°) by C35 or R19.If z < 1, set x = =z
Ifz > 1, set x = 1/z.

For b(z) = zm Vd+2z)"I”> B(m,n), one has x “b(x *) = xll ~/(A+x)"l B(m,n) .

The rule then follows from C108.

p©) T eNTV/rrm-d) 2 o0 ™ cwwn 50 7 arbitrary.

m=1, 3/2, 2, 5/2,...



Gill.

RI.

J1.

R2.

J2.

Cl12.

Cl113.

Cl14.

N
1
Define N = 2m-l = 1,2.3.... Sample w* e V/F(N/2) for w on (O,0) by
C22 or C32; set x = (w/N)*. Sample e ~ //1 for y on (-00,00) by C28.

set 2 =+ (8=9)

With N as defined, and * + ct/v”, one finds p(S)clf = q~(t)dt as in
C43 (Student's 1).

qt) = I/1X 1 +m ; (<00,000, A > 0, 0 arbitrary.

Set t = 0 + A tan j (2r-1).

qdt = 1 + 71—T arctan tA = r, the rule follows (Cl).
Generate r,r’*’untli § =X Ty <1, where x=r_yy=—21r" -1. For

accepted x.,y, set t = 0 + A(y/x).

(x,y) 1s chosen, uniformly in area, in quadrants I, IV of the unit circle.

Hence y/x = tan 0 where 0 is uniform on (-11/2, 71/2) , as required in Jl.

s(t)y = 1 + mh m - =m(X) - FPZ2Z (00,0, A >0 0 arbitrary.

Sample q(t) for t on (-00,000 as in CIlll. Change sign of t with probability i.

One notes that s(t) = 1 q(t) + q(-t) and uses C70.

h(t) =2 1 + (Srt] / 5k I' ' © (0,°°), A > 0,0 arbitrary.

Sample qft™) for t™ on (-00,00) as in CIll. Set t = |t©
See C86.

' %-0 I/m mt+n
p(x) = 12mAB(mn) 1 + ' . (=00,000, A > 0, 0 arbitrary, mn > 0.

Sample b(z) = zm "w/(l+z)m+tn B(m,n) for z on (0,°°) by C35 or R19. Set
y = zm. Change sgn y with probability Z. For final y, set x = 0 + Ay.
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Cl1s.

Ole6.

40

For x = 0 + Ay, one has p(x)dx = dy2m B(mmn) "l + |y | £<>=— y on
(-00,00). By symmetry, we may sample density q(y) = I/'m B(m,n) MN+y"*'"mjmt+n
for y on (0,°°), changing sgn y with probability 1/2. But for y = z™, one

has q(y)dy = 7™ *» dz/(1+z)m+n B(m,n) = b(z)dz on (O,0).

qgx) =k [1 - Px) Nk Pk 1 (x) p(X); (a,b), p(x) density on (a,b),
P(x) =-.]X px)dx, k = 1,2,...,N.

Sample p(x) independently N times for x™-.-jX”. Order the x* as

r

X3 AN < SetX=.Xi(

The probability distribution function for x* is Q(x) = Pr(x® ™ x)
Pk | - py VK L B g - Bl N

+ I PN "x) |1 - P(x)j + PN(x). Hence the density function for

xN is q(x) = QO) = cJJ kPk_1(x) p(x) |1 - P(xX)]N_k.

Note. The rule is feasible for moderate N, and may compare favorably

with more direct methods when available.

g =~ 1 -2 VT ong . N BN ) peo s or

@M+ VMDDLA-pG)) PCOMPGI T ) 15 h(x) density on

rx
(a,b), P(x) =J px)dx, MN e {1,2.3,...}.
a
Sample p(x) for x™,....x"; set x = min {x"}, x = max {x*} for first two
L = ’ e v 0 A
densities. In last case (N 2M+1 odd), order the X, as x <o v o< Xon P
Set x = XM

Cases k = 1, k = N, and k = M+l for N = 2M+] in CHS.



Cl7.

RI.

J1.

R2.

018.

RI.

J1.

R2.

J2.

019.

qx) =k o (X—a)k_l (b—X)N_k/(b—a)N; (a,b), k = 1,....N.

f <e 1 o 4 = + -
Generate r, ,---,rﬁf. Order as 7 <o 1 o< " Set x a (b a)]ié.

For the uniform density p(x) = 1/(b-a) on (a.b), one has

/X p(x)dx = (x-a)/(b-a), 1 - P(x) = (b-x)/(b-a). The rule

*a

follows from O15.

P(x)

Define m = k, n = N-k+1; sample (x-a)m | (b-x)n ~/Cb-a)ll#ll » B(m,n) for

x on (a,b) as in C97.

qx) =k xk 1T (AI-x)N k; (0.,1), k = 1,....N.

N ! <o o0l ’ =
Generate Tpoues g Order as 4 S Set x 7

Special case of O17.
Define m = k, n = N-k+1. Sample B(x) = xm ~(-x)Il "/Bfmjn) as in C35.

For m,n as defined, note that q(x) = B(x).

Note 1. The method of RIl. provides a useful test for "random number"

generators.

Note 2. For k = N, the rule Rl samples q(x) = N xN_1 for x on (0,1) by
setting x = max {r"™,....,r™}. The direct method (Cl) would set x = ™.
Cf. 03, 13A.

qx) = k &' 1 - exp(-e X) N k exp(-ke X) X ), k = 1,. .. N
Generate r N Order as rfgrr Set x = -£n (-£n rlg

For the p(x) in C76, one has P(x) = f p(x)dx

-O

exp(-¢ X). The rule

follows from 015 and C76.

Note. For k = N, q(x)dx = N exp(-Ne ) ¢ Xdx = N e "(-dy) . e-Z(-dz),

and one may set x = - £n ~(-£n )| . Cf. O7.
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C120. qlxj = k N - N'KFDxiE XGNH o)k = 1., N

A <o+ o I4 = Ti -

RI. Generate r - Order as 1 <o v o< " Set x Jin [rkZ/ﬂ rﬁ)].
X

J1. For the p(x) of C91, one has P(x) =J px)dx = 1I/(0+e ). The rule
-00

follows from CIl115 and CO9l.

R2. Define m = N-k+1, n = k, p = a = 1. Sample ¢ mx/B(m,n)(1+e x)m+tn for
x as in CI10l.
B N-k k-1
cizi. a® =k 2+ n arctan(-r-) A

(0,000 , A > O, ©arbitrary, k = 1, + N,

R. Sample q(t) as in CIlIl fop t™,....". Order as t™ <e++ < t Set t = tk'

J. The rule i1s clear from CIl11 and Cl115.

~ \ . A _ _ (N AA
dih. qrx)l -k b xb1 Fl-e ijk 1 e Q,N k+l)Xb ; (0,00, b > 0.

R. Generate r,....,r". Order as "> " > > 7" (Sic!
> >

Set x = exp b * £n(-£n rp] .

b-1 -xb
J. For the Weibull density p(x) = b x e on (0,00)(C52) one has
, ! rx xb

Px) =/ px)dx =1 - e~ . The rule follows from C115.

Note that x = x(r) is decreasing.
Cl123. q(x) =k Ck e v (l-e ) ; (0,00), k = 1,...,N.
RI. Generate r,....,r>. Order as ~ 12 ™ ° r.'ij‘l,. Set x = -Jin r(-

-X x 3 -X

J1. For p(x) = e °, one has P(x) :J() p(x)dx = 1 - ¢ | and the rule follows

from CI115. Note x = x(r) is decreasing.
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B2. Define m = N-k+1, n = k, p = a = 1. Sample e(x) for x on (0,°°) as in C102.

Cl24. q(x) =k R o1 £ (n)/r(n) N-k rx(n)/r(n) k-1 n-l e_X//I"(n');
7w i
©0j30), n >0, k=1,... ,N, F (n) =/ xll e X dx.
X JO
R. Sample p(x) = xll e X/r(m) N times for x™,...,.x" by either C22, C32,
or R18. Order as X'f”ﬁl Set x = Xk'
rx | n_ i
J. Since p(x) has distribution P(x) = J X ¢ X dx = fx(n), the

rule follows from C115.

- <m(N-k+1) / \Kk-1
Cl25. qx) =k cl””‘5 1L (ID (3,°°), m,S > 0.

R. Sample the density p(x) = m3m x m % for x™,...,x on (3,00) by CIS or

C15A. Order as S e S Set x = X

J Since P(x) =J"* p(x)dx = | ~"~ > the rule follows from CI115.

4(x-a)/(c-a)2; (a,b)
Cl126. t(x) = a<c, b= (atc)2
4(c-x)/(c-a)2; (b,c)

R. Set x = a + i(c-a)(xr™+12)"
J. Under the transformation x = a + i(c-a)u, one has t(x)dx = s(u)du as
in CSS.

Cl127. t(x) =1 - Ix]; (-1,1)
R. Set x = ™ - 1.

J. Special case of Cl126 with a=—-1_b=—0, c=1.
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C128.

C129.

C130.

C131.

44

aj”Cx); (a.b)
q(x)
a2(x); (b.,o)

Define a2(x)dx, Ax + A, 1. If < A,

sample density a™fx)”™" for x on (a.,b). If rQ > A", sample a2(x)/A2
for x on (b,c).
Special case of C3.

Note. For a symmetric density q(x) = q(-x) on (-c,c), one samples the
density 2q(x) for x on (0,c) and changes sgn x with probability 1/2.

This obvious rule may be regarded as a special case.

h(x-a)/(b-a) ; (a,b)
t(x)
h(c-x)/(c-b); (bjC), a < b < c, h = 2/(c-a)

Define A* = (b-a)/(c-a). For r* < A" set x = a + (b-a)* max (" 12).

For ™ > A® set x = ¢ - (c-b) max {r™,"}.

The rule is a consequence of C128 and CI13 (b 1, m = 2) Cf. RIS5.

-ax

A ae [0,°%)
ax)
B be®™  (00j0L. AjBa, b > 0, A+ B = 1.
For * < A. set x - -~ a tinr* IfrQ > A% setx =b 1 to r™

Special case of C128.

qx) = ai(x); [x™x™), 1 = 0,1,2,...

=3

7y xi+1 v 00

Define A1 :—/Ax. a].(x), where )\ A1 = 1. Set K = min

o

i
Sample density a, (X)/Ai\ for x on [)%/I\X/I\( +f')'

Modification of C3.



a0(x)

px/a ; (0,a)

C132. X) =
) ai(x) = pqi | {(I+ip)a-px}/a2; Na,(i+Daj, 1 = 7,2,..

aap’q>05p+q:1-

R. Define = p/2. If set x = a/Tj'. (Cf. Cl13). If > set
K = min Jk;1+q+-F-+q™~"= 2rp/p(l+q)j, K > 1.

Set x =p "a | Kp - 1 - (+g)prlj?

Following C131, one finds A" = p/2, A" = pql_l’(l—l—q)/2, i> 1,
a0(x)/A0 = 2x/a2, ai(x)/Ai1 = 2 |(1+ip)a-px|/a2(1+q).

X (t-y)2/2p2t

C133. P(b) ) (00°), Xy > 0.
R. Define (p = X/2y, and sample q(x) for x as in R16. Set t = yx.
J. For t = yx, ¢ = A/2y, one has p(t)dt = q(x)dx in RI16.

d e-(d-vt)2/23t
Note the Brownian motion form p(t) = — —
Av&ies

Cl34. f(x,y) =C *» xm | yll » F(xty); x,y > 0, xty < a < «, a fixed, m,

> 0,
ra A
C = A*¥B(myn), A EIl umtn  F(u)du.
0
R. Sample density A » umtn * F(u) for u on (0,a). Samplevm ~(I-v) 1/B(m,n)
for v on (0,1) by C35 or R19. Set x = uv, y =u(l-v),
J. Since |3(x.,y¥)/3(u,v)| = u, one has f(x,y)dx dy=
Al umtn 1 F(u)du * B I(m,n) vm '"*'(d-v)n "*'dv on (0,a) x (0,1).
Note. For F(u) = e U, a = “Q, we obtain the relation
_ -1 - - -1 - - +n-1 - _ _
1 ! (m)xm 1e Xdx F ! (n)yn le ydy = F ! (m+n)um t 1e Yl l(m,n)vm (d-v)n “dv

which gives a simple basis for C35, R18, RI9.
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C135.

C136.

C137.

C138.

46

f(x,y) = < ryll ~*y(l-x-y)n C; x,y=0, x + y<<1,m=0, O<=n<1,

C = r(n) r(d-n)/m = Tr/m sin mr.

Sample um-+n-1(1-u) *1"n"*”’1/B(m+n,l-n) and v 1(1-v)n 1/B(m,n) for u,v on
(0,1) by C35 or R19. Set x = uv, y = u(l-v).

Case a = 1, F(u) = (1-u) n of Cl134.

ay) (I+ay)e - (Itby)e "|/y~(b-a); (O0), 0 < a < b,

Set y = (-Jin ~/ja + (b-a)™

For p(x) = 1I/(b-a) on (a,b) and f (y) = xe on (a,b) x (0,°°), one

rb
has / p(x) fx(y)dx = q(yn See C63A.

q(y) = (e~ay - e'"by]42C; (0«>), O<a<b.C = /rr(/b-/1).

Sample z » ¢ Z/n for z on (0,°°) by C32. Sety = /z/ /a+ b - vNrl .

-1 xv2
For f(x,y) =C e 7 on (a,b) x (0O,00), one has for marginal densities

the q(y) above, and p(x) = x"2/2*/b - /aj . The latter is sampled by

; va + (vVE* - v”~rl2 (C13A). For this x, one has
setting x

f(x,y)dy/p(x) = 2x2 ¢ dx/Zir = z 1 e Zdz//rr on (0,00), for y = t/z/Zx (C63)

ry

>

qly) = e n dx/(y-x)n C; (0O,00), 0 < n < 1, C = F()r(lI-n) = 7r/sin .1

0
Sample xIl * ¢ X/F(n) and z n ¢ Z/F(1-n) for x and z on (0,°°) by C32 or

R18. Set y = x+z.

For the density f(x,y) = xn e ~/(y-x)nC on the region bounded by x = O,

y = 0} y = X, one has for marginal and x - dependent densities: q(y) as

given, p(x) = xll | e X/r(n), and f(x,y)dy/p(x) = (y-x) n ¢ ™ X*dy/r(I-n)

=z e_ZdZ/F(l—n) for y = xt+z. The rule follows from C69.



C139. qCy) =/ dx £(x,y); (a,b), £(x,y) > 0 on region R bounded by x = b,
»
y=a y =X

rx
R. Define p(x) =/ f(x,y)dy for each x on (a,b). Sample p(x) for x on
a

(a.,b). For this x, sample f(x,y)/p(x) for y on (a,x).

J. Obvious variant of C69.

b
C140. q(y) = / dx t(x)/tl ; (0,b), t(x) density on (0,b), first moment

11
0
R. Sample p(x) = x t(x)/t™ for x on (0,b). Set y = rx.
J. Corollary of C139.

Note: To sample the ''tail-end" density q(y) of t(x), it suffices to

be able to sample its '"'first moment" density p(x).

Cl4l. q(y) = (B/n) e"Bysymn 1 By)l/!t ; (0,°°), B >0, n= 1,2,...
~0O
R. Set y = —(r,O/B) In | r..
J. Application of Cl140 to exponential density t(x) = Bn xll * e Bx/(n-1)'.,

(0,°°), with first moment t~ = n/B, first moment density given by

p(x)dx = x t(x)dx/t™ = Bnt+* xn e BXdx/n! = ull e Udu/n! for x = u/B.
The rule follows from C140 and C22. The tail-end density of t(x) is

J dx t(x)/t© =J dx Bn+* xll » e Bx/n! = q(y) of Cl41, as may be seen
y T

nl Bx By V-V
(4 /\O

from the formula F3: dx = (n-1)! B l -



Cl141A.

Cl142.

C143.

RI.

J1.

R2.

J2.

48

00
qly) = f dx Bnt*" Xn | e Bx/r(n+1); (0O,00), Bn > 0.

y

Sample un e U/r(n+1) for u on by C22, C32, or RI8. Set y = 1rQ u/B

See Cl141 (J) for the special case n = 1,2,3,...

q(y) = (m+l)(bm-ym)/mbm+1; (0,b), m,b > 0.

Sample (m+Dxm/bm+* for x on (0,b) by Cl13 or CI3A.

Application of Cl140 to density t(X)

q(y) =7dx t(x)/tl, as above, p(x) = x t(xX)/t" =
y
Note. Direct sampling (Cl) leads to the equation
N
ym+l - (m+1)lgny + mbm+1r = 0.
a(y) = Ae"y/(I-Xe‘y)L(A); (0,00), 0 < A < 1, L(A) =
Set y = —£EnA"NJ1- exp [-r L(A)].
. p
This results from v = / q(y)dy (Cl).
Sample p(j) = AVjL(A) for j on {1.2,...} by DI7.
One may realize q(y) as™ r(G) f.(y) where p()

=1 :
G =j ey

Set y = r'x.

mxm "/b™, with t~ = mb/(m+l),

(m+1)xm/bm+**.

- £n(1-A) .
Set y = - 3"l £&n 1 .
= A™jL(A) and



R7.

R14.

R15.

R16.

R17.

R18.

R19.

R20.

R7.

f(x) h(x)

a. /2 (x) h.(x)
AT~ ]
2(x-a)/(b-a) (c-a)

2(b-x)/(b-a) (b-c)

x_3/2 exp ! -<)(x-1] 2/X

(1-R2)2  2/(1+p2-2pR)

A
xm_1 e'X, m real > 0

Vm—l ¢ _V).n— 1

zm_1 / (]i+zj'm+n

R-INDEX

Rejection Techniques

Density X bounded function

Sum of products, Butcher

General triangular

Wald (JK2/138)

Leipnik, circular correlation (JK3/240)

General f-type. (Jbhnk)(JK3/39)

General B-type. (Johnk)(JK3/39)

sr'nzm_1 8cos2n_1 0, mn real > 0

Z2m—1 e m real > 8

_2.2
sm X7X

General Gauss-type

Quasi-periodic

Rejection Techniques

Note: In all cases, the process is to be iterated until the condition

is satisfied.

Px) = A " fCx) h(x); (a.,b), f(x) density on (a.b), 0 < h(x) < 1.

Sample f(x) for x on (a.b). Accept x if next r < h(x).

On any trial, the probability of accepting an x on (X,x+dx) is f(x)dx*h(x).
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0
the total probability of acceptance (efficiency) beingr f(x)dx * h(x) = A
A
Hence the relative probability of an accepted x lying o% (x,x+dx) is

f(x)dx * h(x)/A = p(x)dx.

Note. Analysis of the assignments to (x,x+dx) according to the required
number of trials shows that the total probability of such an assignment

is f(x)dx * hx) |1 + (1-A) + (1-A)2 +---|= f(x)dx * hx)/A = p(x)dx.

The total probability of assignment on the v-th trial is (1-A)V ™A

2
with sum A + (I-A)A + (1-A) A +eee =1. The expected number of trials

for assignment is 1>71100 v(1-A) V_lA = 1/A.,the inverse efficiency.

R14. p(x) ="J a. f.(x) h.(x); (a,b), a. > 0, f.(x) density on (a,b),
Z—=j 2 ] 3 J J J

0 <hx <1, all j.
R1. Define 4. = fa— f'(x) h (x)dx * Fix K = min Ay > 1, Then:
J Ja J J 1 J=i J
1. Sample density f*(x) for x on (a,b).
2. Accept x if next r < hK (x). Otherwise, return to (1).
J1. The rule follows from C3, and R7, which samples the K-th density
a®, fj((x) hK(x)/AK by rejection technique.
v~J

R2. Define a=> a.. Then:
1

1. Generate next two random numbers r,r".
) k
2. Set K =min k; > a. > or
~N3Z=] ]

3. Sample density lefX) for x on (a.b).
4. Accept x 1if ™ < hK (x). Otherwise return to (1).
J2. On any trial, the probability of accepting an x on (X,x+dx) is
N J (aJ./a) f:](x)dx . hA (x), the total probability of acceptance being the
i

integral, 1/a. Hence the relative probability of an accepted x lying on
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R15.

R16.

A}

(x, x + dx) is Y, . a f.(x)dx h.(x) = p(x)dx. By the same analysis as in
i) ] J

R7 (Note) , one finds the expected number of trials for assignment to be a.

Here we may remark that

¥ V1a f Joob
" Ay 300dx h() < I a . £xdx = a
1 a 3
Note 1. In RIlj the expected number of trials for assignment is f°r

the j-th term (A. =/ a. f.(x) h.(xX)dx < a.) so the average expected
3 303 3 3

number of trials is A.1 a./Al.) = a

Note 2. Any density p(x) = N'b.Cx) c.(x), with b.(x) > 0, B. = "b.(x)dx}
3 3 3 3IooJx 3

0 < c.(X) < c., may be written in the form pXx)"s" (B.c.l .. . .
A( ) | y p( )Z’ ( e b_] (X) /B_, C_]/\/C_]
of R14.
2(x-a)/(b-a)(c-a); (a,b)

t(x)
2(c-x)/(c-b)(c-a); (b,c), a < b <c.

Accept x = a + (c-a)yr™ if (1) x < b and < (x-a)/(b-a), or if (2) x > b

and ™ < (c-x)/(c-b).

The rule may be regarded as a special case of R7 if we write

t(x) = 2(?y * (ttx) ca  cf cI29.

x 32 0D X gy s o,

ax) =/ —
Sample e z /77 for z on (-00,000 by C28. Accept z if next r < 1/1 - ——
\ /74T
(Z2H4c))N + = |/| (Z2+4ct) -
For accepted z, set x =
2 -1 —2'2
For z = (x-1)/v~c (increasing), one has q(x)dx = -— (x+1) e dz on

/rr

(-00,00). But from 22 = <Hx-1) 2/X and z2 + 4o) = cf)(x+1)2/x follows

(' 1 ' T tA since sgn z = sgn (x-1).
/12 ")
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R17.

RI.

52

Hence, q(x)dx = A_1 f(z) h(z)dz on (-00,00) where A_1 =2, f(z) = e_ZZ//ﬁ

density on (-00,00), and h(z)=ill—r|—) , 0 < h(z) < 1, & < z <
Vo Jz </

The rule follows from R7 (Efficiency 1/2).

Note 1. Naturally the acceptance condition should be coded to avoid

square roots and unnecessary computations. We omit the details.
Note 2. For testing purposes, we include the following evaluation of

the Wald distribution function Q(x) = e q(™d? in terms of the well-

Jo
. o1 fz -C (2 ... .
tabulated normal function $(z) = ------ [Te di;; (-00,00). For convenience.
we work with G(z) = ——F e *~ dt = of/? 2. From (J) above, with
-Co y 7

z = 4 (x-)/vic, we have QCXH Py ot dUAT = G - 1G,
i+

where I(z) =/ —y-—- e ~ d¥ZiT . Since the latter integrand is odd,
-00 /c +4d>

we know I(z) = I(-z). For fixed z on C-00,!)), let p = ->/c"+4() on
_ow <1 < _ /zM4J). Then I(z) = -e™ G (z™+4{J))= I(-z) and hence

Qx) = G(z) + e~ G (z2+4c() 25 for all x on (0,°°). In terms of x,

therefore, Q(x) = x-Dj + ed4(* G/-/"- (xt)j = $N/N- (x-1)N

+ e4x (x+Dj (Cf. JK2/141) .

T 1
qR) = (IR 2/qisp22pr2 B( | +i): (-L1), 0 < p < 1,512
T=1,2,3,...

Define n = (T+1)/2. Then:
1. Sample B(v) = vil ~(-vIl ~/B(n,n) for v on (0,1) by C35.

2. Accept v if next r < (I-p)T/|(1+p) - 4pvjT72 i h(v). Otherwise

return to (1).



3. For accepted v, set R = 2v-1. Efficiency A = (1-p)
J1 For R = 2v-1, one finds q(R)dR = A » B(v) h(v), 0 <h(v) <1, 0 <v <1,

for the above A, B(v), h(v). The rule follows from R7. Note the identity
J (i) r( + i) = r(Or(TU), (F4).

R2. Define m = (T+1)/2, n = 1/2. Then:
1. Sample b(z) = zm "*/(I+z)mtn B(m,n) for z on (O,00) by C35.
2. Accept z if next r < (l+p)/ (IFP2 + Op)2z T2 _ 4y Otherwise
return to (1).

3. For accepted z, set R = (z-1)/(z+1). Efficiency A = (1+p)/2
J2 For R = (z-1)/(z+1), one finds q(R)dR = A 1b(z) h(z), 0 < h(z) < 1,
0 < z < °, for the cited A, b(z), h(z). The rule follows from R7.

Note. The method is only feasible for small T. For p < 1/3, use RI;

for p > 1/3, use R2. The efficiencies are then both minimal at p = 1/3,
with A (OT-
RI1S. p(x) = xm * e X/F(m); (0O,00), arbitrary m > 0, m / 12, 1, 3/2. 2,i..
RI. Let m = H + R, where H e jO, 1/2, 1, 3/2,2... and 0 < R < 1/2.

Define n = 1/2 - R. Set s = exp % Ln T, t = exp % £n Lo and iterate

until s + t < 1. For accepted s.t, set v = s/(s+t). Sample

ur 2 e UFH + ~ 3 for u on (0,°°) by C22 or C32. Set x = uv. (Jbhnk)

J1. The rule results from the following remarks:
A. Under the transformation x = uv, y = u(l-v), with Jacobian -u, one
finds that F "(m) xm * e X dx F(n) yn—l e’ by
F *"(mtn) um+tn » ¢ U du ¢« B *'(m,n) vm ~(-v)n * dv on (O,00) x (0,1).
Hence one may sample the latter two densities and set x = uv. The first
is possible since m+n=H + e 1/2, 1, 3/2, 2,..

B. For the density f(s,t) msm * ntn 2 on (0,1) x (0,1), we find the

probability of acceptance
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E = P(s+t<l) ="ms®"1 dsﬂ S ntn"1dt = r(m+l) r(n+1)/r(m+n+l)

and hence the conditional density function

g(s,t) = E 1f(s,t) E *"ms® " ntn for s,t >0, s + t < 1. Under g(s,t).

the density for the value of the function v = s/(s+t) is found to be

q(v) = v® 1({-v)n ~/BCnijn), on (0,1). Hence we may sample g(s.t) for

s.t by rejection technique, and set v = s/(s+t) for accepted s.t, as in

the rule. The density q(v) may be verified from (i) or (ii):

(@ dv / S(s,)ds dt = E | ~~/*ms® ZIdsf ntnldt = q(v)

s/(s+t)<v 0 s(1-v)/V

(i1) Under transformation s = S, t = S(I-v)/v, one finds g(s.t)ds dt
= nS®+n 1(1-v)n dS dv/vn+* B(m,nt1) = h(S,v)dS dv for 0 < S < 1,

ry
S < v < 1, with marginal densityjé h(S,v)dS = q(v). Hence the density of

v under g(s,t) is q(v), where v = s/(s+t).

R2. Define H, R, n as in RIl. Sample e XIr(R) for x as in Rl (d.e.,
with H = 0, m = R). Sample 1 e NYT(H) for E by C22 or C32. Take
£ + x as final x.

2. The density of X = £ + x under F ~(H) e X r *R) xR e X is

F¢ (H+R) X

Note. The probability E of acceptance in Rl becomes small for large m,

but is high for 0 <m = R < 1/2. Thus R2 is indicated for large m.

R19 B® = v®"I(-v)n"1I/B(m.n); (0.1)

btz) = 2 Wikp™'™ Btma @00
q(®) = 2sin™® * 6 cos™n * 9/B(m,n); (0,11/2), arbitrary m,n > 0, not both

m 1/2, 1, 3/2, 2,...
R. Sample x® * e X/r(m) for x on (0,°°) by C22, C32, or R18. Similarly,
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R20.

R21,

sample yIP1 eiX/r(n) for y (with suitable change of notation). Set

v = xX/(x+ty), z = X/y, 0 = arcsin IAF.

See C35 ().

t(z) =2F "(m) z22m | e Z ; (0.,°°), arbitrary m > 0, m ~ |I/2, 1, 3/2, 2,..

Sample p(x) for x on (0,°°) as in R18. Set z = xl/2

t(z)dz = p(x)dx
p(x) = 1 sinzx/xz; (-00,00)* 1 2
Define =Jf12p(x)dx .57), =1 - AN If r» < A", accept x =

it sinzx/x’z“ <7r. Ifr > accept x = 1/r it sin'zx < 7’.  Change
sign of accepted x with probability 1/2.
By symmetry, we may sample 2p(x) for x on (0O,00), with provision for
change of sign. Regard 2p(x) as a composite of its values on (0,1) and
12 2 2
/ — sin x dx/x , A* = 1-A
0
and sample the densities a* = 2p(x)/A”, a* = 2p(x)/A2 with probabilities

1,
1’ TTA

2 .2 2 . .2
For the second, a2(x)dx = (sin"x) (dx/x”) with sin"x < 1. Each of

these is sampled by the rejection technique of R7. The efficiencies in

the two cases are 1472 - .89, ™2/2 = .67.

A, A . For the first we have a, (x)dx = with sinzx/x2 < 1.
z
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