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A SECOND MONTE CARLO SAMPLER

by

C. J. Everett and E. D. Cashwell

ABSTRACT

Methods are suggested for sampling many additional 
probability densities occurring in practice, as well as 
more general forms, of some of those appearing in the 
first SAMPLER. Notably, the frequent restriction to 
half-integer exponents has been removed. As before, no 
claim to priority is intended, the sole object being to 
provide a handbook for Monte Carlo practice.

FOREWORD

In all cases, the density to be sampled is followed by a rule (R) for choice 

of the variable, in terms of random numbers r, uniform on. (0,1), and a justifi­

cation (J) for the method is indicated. The indices (D, C, R) provide "key words" 

which may help in locating a desired density, and usually a reference is given 

for further information (see REFERENCES, last page). Some of the basic densi­

ties of the first SAMPLER have been included, with the original numbering, so 
that the present handbook is reasonably self-contained.

D2. 0k/k!

D7. rs+k-l s k Cs-1 P ^

D-INDEX

Discrete Densities

Poisson (JK1/87)

Negative binomial, s integral 

(JK 1/124)

D17. vVj Log series (JK 1/166)

D18. 1/(k+1)P+1 Zeta, Zipf-Estoup, word distribution
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D19. y CM CN , x 
•<-ja y y-k Binomial difference (JK 1/55)

M+N+k-2y 2y-k
q P

n„n (rM „N/rM+N \
D20' \Cs-l Ck/Ck*s-1J x Negative hypergeometric (j£ 1/157)

(M-s+1)/(M+N-k-s+1)

k
D21. ^ (-1)1 (k-i)1^//

0

Arfwedson, occupancy (JK 1/251)

D22. rbdx f(x,k)
J a

Continuous-discrete marginal

D23. / dx p(x) fx (k)
Ja

p(x) - compounded f (k) density
X

k k
D24. e"a^ a1/!! - e_b]> b1/!!

0 0
Unifonn-compounded Poisson

(JK 1/184)

D25. pSqk r(s+k)/r(s) k! Negative binomial, s real >0, F-

D26. P(a+k) r(N+b-k) x

(B(a,b) P(N+a+b)}_1

compounded Poisson (JK 1/125) 

B-compounded binomial (JK 1/79)

D27. P(s+k) B(p+s, G+k) x 
{P/s k! BCp.a)}"1

B-compounded negative binomial

D28. p B(p+1,k+l) =

pk! /(p+1)...(p+l+k)

Simon, power-compounded geometric

(JK 1/245)

D29. /”ae-(a+b)u(l-e-bu)k du Yule, exponential-compounded geometric
0 (JK 1/245)

\ CO

D30. ^fCUk) Discrete-discrete marginal

^—\O0
D31. > p(j) f.(k) p(j)-compounded fj(k) density

CO

D32. ((J)k/k!) J jk"1(xe"<},)j

1
Log series-compounded Poisson

(JK 1/211)
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D33.

D36.

D37.

(e X/k!) ^

D34. e

D35,

-X k > „nj nj-k,j . p zL C, J q J XJ/j!
j>k/n K

/ K\exp - XI1-p j; k = 0,
CO . .
^ e~xqk r(Kj+k)(xpK)j/j!k!rCKj);

1

k>0.

e ; v = 0

2
j<v.

e'ACV 
6 LKj

::i(xPK)iq''-Ki/j! ;

7K
V = K, K+1,.. .

e ; v = 0

V -X „v-l ,, . j v-j ,..
Ze Cj_i P h' '>

Neyman Type A, Contagious, Poisson- 

compounded Poisson (JK 1/217)

Poisson-compounded binomial (JK 1/190)

Poisson-compounded negative binomial 

(JK 1/196)

Generalized Polya-Aeppli (JK 1/197)

Pdlya-Aeppli (JK 1/197)

v = 1,2,. ..

D38.

D39.

D40.

D41.

y“ e'V'Vj! =
"Hc+1

r6 xke'Xdx/0k!
J0

(1-1/1!+...+(-l)N_k/(N-k)!}/k! 

(e-1) /(e -1)

rN r .k, -tj) j N-j
A C-i (Pe ) ^ /k:

j=0 J

Poisson tail-end, Poisson's exponential 

binomial limit (JK 1/262)

k - coincidences, matching (JK 1/264) 

A density for fractions a/b (JK 1/31)

Binomial-compounded Poisson (JK 1/186) 

Discrete Densities

D2. p(k) = e 9 ek/k! ; k=0,1,2,...,0>O

Rl. Set k = min n ; Vn 0k/k!
■4—< n

5s r_ e
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R 2. Set k = -1+min

J. See Sampler I.

D7. n rs+k-lq(k) = c„ .

R. Set k = -s + {

J. „s+k-l s-1 
Cs-1 P «

Tin <r “9n; IIj ri < e

p is the probability of exactly s successes

occurring for the first time on the (s+k)-th trial. See Sampler I. 

D17. p(j) = AVjLCA) ; j = 1,2,... ,0<X<1, L(X) = - Jln(l-X).

R. Set j = min J; ^ Aj/j > rQ L(X)

p+1D18. q(k) = 1/(k+1)M g(p+l); k = 0,1,2,..., p>0.

K 

0
R. Set k = min

£
K;Y l/(k+l)P+1 > r?(p+l)

< n

ci ^ V'*3 c-M „N M+N+k-2u 2u-k ^ ^ ^ , iD19. p(k) = y CC.q p , M,N ^1, - N<k<M, a = max {0,k},
Z ia U y K

b = min {M,N+k}, 0<p<l, q = 1-p.

R. Set y = number of r^,..., rM such that r. < p. Set v = number of t',...,M

ri! such that r' < p. Set k = y-v. N i r

J. p(k) is the probability that y-v = k, where y and v have the binomial 

. . M M-u u N W-\) vdensities q pM and q p respectively. Cf. D6.
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D20. p(k) (cM
s-1 k k+s-1

) (M - s+l)/(M+N - k-s+1); k = 0, ..jN, s integral,

1 < s < M, M,N > 1.

R. One follows the steps:

1. List the integers 1,2,..., M+N.

2. Put 0 -* a, M+N b, 1 -> v.

3. Set I = min = 1,2,...,b)

4. Delete the I-th integer E from the remaining list.

5. If a^ < M go to (6). If a^ > M go to (7).

6. Put a+1 +• a. If a < s, go to (7). If a = s go to (8).

7. Put b-1 ■+ b, v+1 -> v. Return to (3).

8. Exit with k = v-s.

J. p(k) is the probability of drawing s integers < M from the list 1,2,...,

M,...,M+N for the first time on the (s+k)-th drawing (without replacement). 
M N M+NNote that Cs_^ 1 t^e Pr°bability of drawing exactly s-1 of

these in (k+s-1) drawings (Hypergeometric, D12). The "negative hypergeomet­

ric" of D20 is the dependent analogue of the negative binomial (D7).

D21. p(k) = C ('1)i ci (jsr)N; k = min

R. One follows the steps:

1. Put 0 -+ n, ,..., 0 -+ p^, 1 ■+ t.

2. Set K = min {k; k > fr}. Put l+q. ^ n^.

3. If t < N, put t + 1 -+ t, return to (2). If t = N go to (4).

4. Set k = number of positive components q of [n^,...,n^]

J. p(k) is the probability of exactly k of f boxes being occupied if N

particles are assigned to f equally likely boxes. This may be seen from 

the inclusion-exclusion principle

#(s.u...u sk) #(si^) -^#(S. s. ) + ... + (-i)k_1 #(sr..sk)
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where Si denotes the set of all assignments forbidding the boxes i and 
k+l,...,f. Note that p(k) = (1/f)^ • {#S - S^)}, where S is 

the set forbidding boxes k+l,...,f.

D22. q(k) = Tb dx f (x,k); k = K, K+1,..., f(x,k) density for a<x<b, k = K,K+1, 
---------- Jo -------------------

R. Sample the marginal density p(x) = y^ f(x,k) for x on (a,b). For this x, 

sample the x-dependent discrete k-density ^xCk) = f(x>k)/p(x) for k on K, 

K+1,.. .

J. The probability of choosing the integer k is dx p(x) fx00 = qO).

D23 . q(k) = Jh dx p (x) fx(k); k = K,K+1,..., p(x) density on (a,b), fx(k)

discrete k-density for each value of a parameter x on (a,b).

R. Sample p(x) for x on (a,b). For this x, sample density f (k) for k.

J. Corollary of D22.

D24. q(k) = (b-a) -1 -aVk ^-i! - e-b^k bVi!e / a /
0

; k = 0,1,2,..., 0<a<b.

R. Set x = a+(b-a)r. Sample e Xx^/k! for k by D2.

J. For p(x) = l/(b-a) on (a,b), and f (k) = e Xxb/k! on {0,1,2,...} one has

f (b-a) ^ x^e Xdx/k! = q (x), using the basic formula (F3) f^x11 '''e 
J a Jo

-1 -Bxdx

(n-1)! B' 1-e -By 211'1 (By)1/!! . The rule follows from D23.
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R. Sample US ^e U/r(s) for u on (0,°°) by C22, C32 or R18. For x = uq/p,

“X ksample e x /k! for k on {0,1,2,...} by D2. (See D7 for s integral.)

D25. q(k) = pSq^F(s+k)/r(s)k!; k = 0,1,2,...,0<p<l, q = 1-p, s real >0.

J. For p(x) = (p/q)S xS ^e X^^/r(s) on (O,00) and fx(k) = e Xx^/k.'; k = 0,1,2,

/
• oo

p(x)f (k)dx = q(k) as given. Moreover,
0 XS “ 1 — up(x)dx = u e du/F(s) for x = uq/p. The rule follows from D23.

Note. 1 = p (1 -q)’s =7°° (-s) (-s-1)...(-s-k+1) _s^ ,k _

k=0 k! p C-q) =

__  IXJ
v-'00 (s+k-l)...s s k F(s+k) s k NT2v=n ^—pq = zk=0T(ir -- -N-or: p q = zq(k)

D26. q(k) = c|J F(a+k) F(b+N-k)/B(a,b) F(a+b+N); k = 0,1,.. . ,N;a,b>0, N integer > 1.

R. Sample va '*‘(l-v)^> '*’/B(a,b) for v on (0,1) by C35 or R19 (b^l), or by C13

or C13A (b=l).

Set k = number of r, ,...,r.t such that r. < v.I N i

J. For p(v) = va ^(1-v)^ ^/B(a,b), and fv(k) = vk(l-v)^ k, one has

fhv p(v)f (k) = q(k) . Cf. D23.
JQ V

D27. q(k) = F(s+k) B (p+s,a+k)/F(s)k! B(p,q); k = 0,1,2,...;p,a,s >

R. Sample p(x) = x*3 1 (l-x)a 1/B(p,CT) for x on (0,1) by C35 or R19 if a =£ 1,

or by C13 or C13A if a = 1. For this x, sample fx(k) = xs(l-x)^ F(s+k)/ 

r(s)k! for k on {0,1,2,...} by D7 or D25 (p=x).

J. For, J dx p(x) 
0

f (k) x q(k) as above. (D23)
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Note. Included are the special cases: Beta-compounded geometric 

(s = 1) , power-compounded negative binomial (cr = 1), and power- 

compounded geometric (a = 1 = s) Cf. D28, 29.

D28. q(k) = p B(p+l,k+l) = pk!/(p+1)(p+2)...(p+l+k); k = 0,1,2,...;p > 0.

R. Sample p(x) = px*3 ^ for x on (0,1) by C13 or C13A. For this x,

sample fxOO = x(l-x)^ for k on {0,1,2,...} by D7 (p = x, s = 1).

Jl. Case a = 1, s = 1 of D27.

R2. Choose any a,b > 0 such that p = a/b. Sample q(k) for k as in D29, Rl.

J2. Under the substitutions p = a/b, x = e U one finds that q(k) =

P x^Cl-x)^ dx = q(k) as in D29.

“0

Note the case of integral p, e.g., p = 1, gives q(k) = 1/(k+1)(k+2); 

k = 0,1,2,... (uniform-compounded geometric).

D29. q(k) = f a e (l-e du; k = 0,1,2,...; a,b>0.
J0

Rl. Sample p(u) = a e au for u = -a ^ £nr on (0,°o) by C17. For this u,

sample fu(k) = e (1-e ^u)^ for k on {0,1,2,...} by D7 (p = e ^U, s = 1)

Jl. For, f du p(u) f (k) = q(k) as above. (D23).
JQ u

R2. Define p = a/b and sample q(k) for k as in D28, Rl.

J2. Under the substitution e = x, one sees that q(k) = (a/b) B((a/b)+1,K+l)

8



D30. q(k) f(j,k); k = K,K+1,. . . ;f (j ,k) density for j > J, k > K.
.flifJ

\ oo
R. Sample the marginal density p(j) =\ f(j,k), j > J, for j > J. For

^k=K

this j, sample the j-dependent k-density f^(k) E f(j,k)/p(j) for k > K. 

J. Cf. D22.

—jOO

D31. q(k) =\ p(j) f. (k); k = K,K+1,. . . ,p(j) density for j = J, J+l,..., 
^j=J J

f^(k) density for k = K,K+1,..., for each j > J.

R. Sample p(j) for j > J. For this j, sample f^(k) for k > K.

J. Corollary of D30. Cf. D23.

V—' OO

D32. q(k) = L-1 (X) (//k;) 2, j=1 jk~1 k = 0,1,2,... ,0<X<1, (^>0,

L (A) = -Jln(l-X).

R. Sample p(j) = A^/j L(A) for j on {1,2,...} by D17. For this j, sample 

f (k) = e ^ (jcJoVk! for k on {0,1,...} by D2.

J. One has \ p(j) f. (k) = q(k) (D31).
^ j=l J

D33. q(k) = ^e ^/k!^ ^ ^ ^Ae Vli! J k = 0,1,...; A, a>0, and

(N.B.!) (())j)k E 1 for j = 0, k = 0.

R. Sample p(j) = e ^ X^/jl for j on {0,1,2,...} by D2. If j = 0, set k = 0.

For j > 1, sample f ^ (k) = e ^((JjjjVk! for k on {0,1,2,...} by D2.

9



J. For, ^ p(j) fjOO = q(k) (D31). 

j = 0

D34. q(k) = e"A pk J q^'V/j!; k = 0,1,2,... ;X>0, 0<p<l, q = 1-p,

j > k/n

n positive integer.

R.

J.

Sample e ^ A^/j! for j on {0,1,2,...} by D2. For this j, set k =

number of r, ,..., r . such that r. < p.1 nj i r

f(jjk) = ^e ^ A^/jlj (C^ pk q11^ kj is a doubly-discrete density on the

lattice points (j,k) with j = 0,1,2,..., k = 0,1,..., nj. Its marginal 

densities are

j

y f(j,k)
^ k> £

nj
= q(k} as above, and p(j) = ^ f(j,k) = e ^A^/j!

k=0

Moreover, fj (k) = f(j,k)/p(j) = pk q11^ . The rule is an obvious 

modification of that in D31, and is an analogue of C139.

exp - A^l-pM; k = 0 
D35. q (k) = ^ oo

S j=i (e X qk/k!) F^Kj+kj r/Kj^ ;

A,K real >0, 0<p<l, q = 1-p.

k > 1

R. Sample the Poisson density e X A^/j! for j on {0,1,...} by D2. If j = 0,

set k = 0. If j > 1, sample the negative binomial density

r(Kj+k) pK^ qk/r(Kj)k! for k on {0,1,2,...} by D7 or D25 (with s = Kj).

10



J. Define p(j) = e ^ A-'/j!, j = 0,1,..., and

1 for j =0, k = 0 

0 for j =0, k > 1

r(Kj+k) pK;i qk/r(Kj)k! for j > 1, k > 0.

_ . X-' 00
Then one verifies that N P(j) f-(k) = q(k) as above and the rule

^j=0 3

follows as in D31.

Note. If one defines "r(k)/r(0)" = 6^ (Kronecker delta) then for all
K

k = 0,1,2,..., one may formally write q(k) =

^ (e'A qk/k:) r (kj+k) (xp^/j.'I^Kj). 

j = 0

-Ae ; v = 0
D36. q(v) = < V -A rV-l /, K\j V-Kj,.,2, e cKj-i q J/1'-

1 < j < V/K

X real > 0, K integer >1, 0<p<l, q= 1-p.

B. Sample e A X3/jl for j on {0,1,...} by D2. If j = 0, set v = 0. If 

j > 1, sample pk^ qV for v on {jK, jK+1,...} by D7 (s = Kj ,

set v = jK+k).

J. Define p(j) = e A xVj! , j

Vv) =,

1 for j = 0, v =

0 for j = 0, v>0

v-1 Kj v-Kj C„ . . p aKj-1 r M

= 0,1,2,..., and 

0

for j >0, v > Kj

11



the domain of (j,v) being all lattice points with j ^ 0, v > Kj. Then

the above q(v) = p(j) Fj(v)• The method is an obvious modification

0 < j < v/K

of D31, and a discrete analogue of C69.

D37. q(v) = <
V = 0

-X _v-1y v e cY_1 (Xp)•, qV ^/jl; v= 1,2,...;A real >0, 0<p<l, 
^ j=l J 1

q = i-p-

R. Sample e ^ A^/j! for j on {0,1,...} by D2. If j = 0, set v = 0. If

j > 0, sample j p^ qV ^ for v on {j,j+l,...} by D7 (s = j, set v = j+k). 

J. Case K = 1 of D36.

___y CO

D38. q(k) =y e"9 O^"1/}! = f 9 xke"X dx/0k.'; k = 0,1,2,. . . ; 0>O.
j=k+l-jO

R. For x = r0, sample e xxk/k! for k on {0,1,2,...} by D2.

J. The integral form of the Poisson "tail-end" density follows from the

formula F3 (See D24.J). Using the marginal method of D30 on f(x,k) =

k “X f'Qx e /0k!, O<x<0, k = 0,1,2,..., one has / dx f(x,k) = q(k) as above, and
J0

p(x) =y° f(x,k) = 1/0, f (k) = f(x,y)/p(x) = e"Xxk/k!
Z^o

D39. p(k) = (k!)~1{l-l/l! + 1/2!.., + (-l)N~k/(N-k)!}; k = 0,1,2,...,N.

Note p(N-l) = 0.

12



R. Follow the steps:

1. Put 1 Aj,..., 1 ->■ (A^ storage positions)

2. Put 1 -> t, N -> D.

3. Set K = min {k; k > Drt> k = 1,2,...,D}

4. If K ^ D, interchange contents of A„ and A^. Go to (5).1 K U
5. If t < N, put t + l->-t, D-l^-D, return to (3)

If t = N, one has a random permutation (C^,...C^) of 1,...,N, C. = content 

of A.. Set k = number of i for which C. = i.i i

J. p(k) is the probability of exactly k coincidences. From the inclusion- 

exclusion principle, the probability of no_ coincidence on a random 

permutation on any n digits is

1 - 1/1! + 1/2! -...+ (-l)n/n!

Hence the probability of exactly k coincidences on 1,...,N is 

‘ {1-1/1! +...+ (-1)N V(N-k)!} = p(k) as above.

D40. p(a/b) = (e-1)2/(ea+b-l)2; a,b > 1, (a,b) = 1.

al ak k
R. For m = p .. .p , define <j)(m) = m II (1-1/p.), Euler's cf>-function.

JL K 1 1

Set: m = min {m; ^ (e -1) ^ r-,/(e-l) » f = 3 = min {ji 3 ^ t^f).
i=2

List the integers a^ prime to m on {l,...,m} as a^, a2,...,a^. Set a = a^,

b = m-a..
3

J. Classify all fractions a/b according to the sum m = a+b, (a,m) = 1.

Those belonging to the same m are equally likely, and the probability of 

the subset with sum m is

I (e-l)2/(ea+b-l)2 = (e-1)2 cf)(m)/(em-l)2.

a+b = m
13



D41. q(k) =yN (())j)k(pe (*>)J'qN";’/k!; k = 0,1,2,..., <p>0, 0<p<l,
^ j=0 J

q = 1-p, (<}>j)k = 1 for j = k = 0.

R. Set j = number of r^,..., r^ such that r^ < p. For this j, sample 

e for k on {0,1,2,...} by D2. (If j = 0, set k = 0)

J. For p(j) = Cj pj qN ^ on j = 0,1,...,N and f ̂ (k) = e ^(j(|))k/k!

N
on k = 0,1,2,..., one has\ p. f.(k) = q(k) above.

J J 
j=0

C-INDEX

Continuous Densities

Cl. P(v) General density, continuous on open

interval, finite or infinite

C3.
X aitv)

Sum of positive functions, interpolated 

densities, discrete-continuous marginal

C13, TTA m"l13A. u Power, m > 0

CIS, , r. -m-1ISA. v Power, m > 0

C17. -ave Exponential

C22. un ■'"e U, n = 1,2,3,... Gamma

C25.
9 2

v e"v 3 n = 1,2,3,... Gauss type, 2n-l = 1,3,5,...

C26.
R ~r2
Re Gauss type (n = 1)

C27.
2

e‘V , (0,°°) Error function
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C28.

C29.

C32.

C35.

C43.

C62.

C63.

C63A.

C64.

C65.

C66.

e , (-°°,°°) Normal

2n“1 'u2 1/7 \/7 S/?

u e > n = 1/2, 3/2, 5/2,... Gauss type. 2n-l = 0,2,4...

vn_1e"V, n = 1/2, 3/2, 5/2,... Gamma

m-1 -.n-lv (1-v)

m-1.,, ,m+n z /(1+z)

. 2m-l, 2n-lQsm 0cos 0

Beta; m,n e {1/2, 1, 3/2, 2

Student's t

V 00 j> a.\r ^0 ^ Power series, Butler

r b
J dx f(x,y)

f dx p(x) £x(y)

Marginal, Composition, Butler

Marginal, Composition, Butler

f1 dx xm"3/2 exp(-y2/2bx) 
J0 V '

f dx xN e-^2 X 

0

exp
- y- ^)72K2a-p2) X

Romanowski, modulated normal, equi- 

normal (m=l), radico-normal (m=3/2), 

lineo-normal (m=2). (JK3/276)

Non-central t (JK3/204)

Sample covariance (JK3/231)

15



C67. (e-W - e'^j/y

C68. exp ^-ayl^nj- exp (-by

,-i/n

Exponential marginal (n = 1) 

Exponential marginal (n =£ 1)

C69 . JYdx f(x,y) Triangular marginal, composition

C70. 1/2 ^g(w) + g(-w)j Symmetric sum

C71. $(w-p)e + $(-w-p)e(:iW Compound Laplace (JK3/32)

C72.
ei(a/ct))2 x

3-parameter compound Laplace

z-? z-C

C73. 1/(1+Bx)

C74. (l+0x) exp ^x+i0x2j

f)

Truncated Type VI, Bradford (JK3/89) 

Linear failure rate, life-times

C75.

C76.

C77.

C78.

C79.

C80. 

16

I1 * 41 + 0 (1-e 

exp -[x + 0^x+e~X -1

exp ^-y-e

-Cz-?)/e X exp - e-(z-C)/0|

-<pt/o ( ^ -t/a\ e r exp l-pe I

+ f)ab -bx e

, , n+1 b/x 1/x e

(JK3/268)

Life-times (JK3/268)

Extreme value (JK2/277)

2-parameter extreme value (JK2/277). 

Gompertz (JK3/271)

Transition Type III (EJ/78)

Transition Type V (EJ/81)



C81.

C82.

C83.

C84.

C85.

C85A

C86.

C87.

1 + m -■z

exp -i y + Ssinh

(t1)"1 (i -

exp -i y + 6 Jin x-g
g+A-x

2

exp ^ - Jln^ uj

(x-0) X

exp j- | Jin (x-0) - g|^/2bj

exp

y2"U2^2

exp - > x. a. . x.Z, i ij J

Sy curves (EJ/126)

SD curves (EJ/130)
D

Pseudo log-normal

3-parameter log-normal, 

Cobb, Douglas (JK2/113).

General 2-variable normal.

n-variable normal

g(x) + g(-x)

cosh

exp

Folded density

Normal symmetric sum (JK3/136)

17



C88. Folded normal (JK3/136)cosh (£x/a^) X

exp - (x2 + c2)/2a2

C89. 1/(5 x + b + e“x), be(-2,2) Symmetric exponential I (JK3/15)

C90. 17 (e x -x\
> + e J Hyperbolic secant (JK3/15)

C91. i/(e x „ -x\+ 2 + e 1 Logistic, sech-square, growth-curve,

symmetric exponential II (JK2/244).

(JK3/3)

C92. 17(e X + b + e“X), b > 2 Symmetric exponential III(JK3/15)

C93. i//x + cosh a(y~y0^\ Champemowne, income. Perks (JK2/242)

C94. i/t Champemowne, income (JK2/243).

C95. eX/(> * exr Generalized logistic I (JK3/17)

C96.
/ 1 \m+le-y/(l + B'1e->')

Generalized logistic II (JK3/17)

C97. (x-a)”1-1 (b-x)”"1 Pearson Types I, II, general Beta

(JK3/37)

C98. (x-b)r/(x-a)q
M+N

Pearson type VI (JK2/13), (JK3/87)

C99.
CM-1 ./ M _2 \ 2
E d1 + N E ) Square root of Snedecor's F, rms/rms

C100. l/(ex/2 a e"x/2)2m
Logistic power, power of 

(JK3/5,17)
sech-square

C101. e-mx/a/(l + pe"x/a)m+n 4-parameter generalized logistic 
(JK3/271)

18



C102. /, -x/a\n-l (l - pe ' ) 4-parameter generalized exponential 

(JK3/271)

-mx/ae

C103. 1 x
2a

2 n-l

C104. xm 1/(1 + x)

C105. x(x-a)m 1 (b-x)n

C106. xn,-1(l-x)n-1/(x+a)m+n

C107. (a+x)m 1 (a-x)n *

C108. F(x) + x-2 F(x-1)

C109. / m-1 n-l\ .m+n^ x + X j/fl+x)

C110.
i/[c2 * (c-?„)2 r

cm.
* (¥)2

C112.

1 + 2

C113.

C114.

1 +
t2+e2

.2 2\ / 2 2\2ftZ+0Z\ /1 -0Z 'Z
+

A A

-1

2 X C112 on (0,°°)

l/[l + Ix-0i1/m
1 A 1

m+n

C-00,00)

C115. 1 - P(x) N-k Pk"1(x) p(x)

Transition Type II (EJ/74)

Restricted Beta (0 < m < 1)

x-Beta

Modified Beta

Centered Beta

Reflected density

Reflected Beta

Pearson Type VII (JK2/13), (JK3/114)

2-parameter Cauchy (JK2/154)

Cauchy symmetric sum (JK2/163)

Folded Cauchy (JK2/163)

Generalized Cauchy, Rider (JK2/162)

General order statistics
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r IN-l N-l
C116. - P(x)J p(x), P (x) p(x), Min, Max, Median statistics (JK2/3).

[(l - P(x)) P(X)]M p(x)

C117. , ,k-l ,, .N-k (x-a) (b-x) Order statistics (uniform)(JK3/38)

C118. k-1 .N-kx (1-x) Order statistics (random numbers)

(JK3/38)

C119. / i c -x^\ N-k -x ^1 1 - exp (-e )) e X Order statistics (extreme value)

exp (-ke X)
(JK2/279)

C120. -(N-k+l)x., -x.N+1e /(1+e ) Order statistics (logistic) (JK3/8)

C121. [i - i arctan (!^)] X
Order statistics (Cauchy) (JK2/157)

[i * i arctan (^)] X

I1 -(WP

C122.
x13-1 (l - a-p""1 e-(N-k+l)xb Order statistics (Weibull) (JK2/254)

C123. g-(N-k+l)x ^_e-xjk-l Order statistics (exponential)(JK2/214)

C124. [l - rx(n)/r(n)JN-k X Order statistics (Gamma) (JK2/191)

[rx(n)/r(n)]k_1 xn_1 e~X

C125. (a/x) (k/x)a^N-k+1') X Order statistics (Pareto) (JK2/241)

1 - (k/x)' k-1
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cue. Symmetric triangular, tine (JK3/64)

C127.

C128.

C129.

C130.

C131.

C132.

C133.

C134.

C135.

C136.

C137.

C138.

C139.

4 (x-a) / (b-a)' 

4 (b-x) / (b-a)'

1 - x

a1 (x) 

a2 (X)

h (x-a)/(b-a) 
h(c-x)/(c-b)

-ax

bx

aiw- [vxi+ll- 1 = 0-1'2.

px/a

i-1
pq (1+ip) a-px / a

exp -A(t-p)2/2p2t

m-1 n-l .x y F(x+y)

m-1 n-l .,n x y /(1-x-y)

|(l+ay)e - (l+by)e } y 2

2 2e-ay2 _ e-by^

e ^ dx xn 1/(y-x)n 
J0

rb
I dx £(x,y)
>y

Centered triangular (JK3/64) 

Composite, symmetric q(-x) = q(x)

General triangular

Asymmetric Laplace (JK3/31)

General composite

Binomial-uniform, traffic flow 

(JK3/70)

Inverse Gaussian, first passage time 
(Brownian motion with drift) (JK2/138)

Bivariate with marginal Beta

Bivariate with Beta marginals

Time between calls (B/69) uniform- 

compounded exponential

Marginal normal

Marginal F

Marginal, triangular region

21



C140. Tail-end density

C141.

C141A.

C142.

Gamma tail-end, n = 1,2,3,...

General Gamma tail-end

Power tail-end

C143. e y/(l-Ae y) Log series-compounded exponential

Cl.

R.

C3.

R.

Continuous Densities
P(v); (a,b)

Define P(v) = fV p(v)dv, P^fv) = f p(v)dv. Set v = P or v =
a Jv

P(v) = a^ (v) ; (a,b) , a^. (v) > 0.

Define A.
J

aK(v)/AK

= / a. (v) dv. 
a J

for v.

Set K = min Sample density

Note 1. For J = 2, this provides an elegant way of sampling an interpolated 

density a^p^Cv) + o^p^v), > 0, + a2 = 1 (L. Carter)

Note 2. This is the discrete-continuous marginal version of D30. The 

discrete-compounded continuous density seems to occur infrequently. As 

an example, we have included C143.

C13. q (u) = m b m

R. Set u = b •

J. For u = bv^ <

^ (v ) = kv

k-1

k-1

■ovel’hJ dVdrk
max {r1,... ,rk} <v

22



C13A. q(u) = C (a,b) m real > 0, C = (bm-am)/m, a > 0.

d o ^ / m rum m', \l/m
R. Set u = ^a + (b - a ) r )

CIS. pCv) = m3m v m 0<3<v<00, m = k/£, k,Jl e {1,2,3,...}

R. Set v = 3/^max (r^^,...

J. Let v = 1/u and compare C13.

C15A. p(v) = C'1 v-”1"1; 0<B<v<a<00, m real > 0, C = (B m-a m)/m.

R. Set v = 1/
-m .n-m -m.a + (B -0i )ro

J. Let v = 1/u and compare C13A.

C17. P(v) = ae aV; (0,°°), a > 0.

R. Set v = -a ^ Ln r
oo 0

J. From J p(v)dv = r.

V

C22. q(u) = un_1 e”u/r(n); (0,«>), n = 1,2,3,...

R. Set u = - Jin TT n r.

J.
y\.<u
Z-i 1

ru ie u A(u)du = e Uun /(n-l)!
0

where A(u) = dV/du and V = / ]I dVj = un/n!

> V. < U
-1 1

C25. p(v} = 2V211'1 e"V /T(n); (0/“o), n = 1,2,3,..., 2n-l = 1,3,5,

R. Set v = (-Jin ]J a

J. For v = u2, one has p(v)dv = q(u)du as in C22.
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C26. P(R) = 2Re K ; (0,-)

R.
4

Set R = (-£n r)

C27.

2
_Vl

pCVj^) = 2 e //ir ; (0,«>)

Rl. 2Generate r, r' until S = r + x' <1. For accepted r,r% set

V1 = |(-iln r0)/s|2 r, v2 | (-£n r0)/S
1"2 r . (Two samples)

Jl. Under = R cos0, v2 = RsinO,

„2

2 V1 2 -V2 
one finds — e dv. x — e dv0

/F 1 /? 2

2Re R dR x - d0
TT

R2. Generate r,r^ until S _ 2 .2 ^- r + r <1. Set = {(-JlnS)/S}2 r

v2 = {(-£nS)/S}2 r'. (Two samples)

(M Under = R cos0, v2 = R sin0, where
1

R = {-2£np}2, one finds

2 2
2 ~V1 2 "^2 
- e 1 dv. x - e dv0
/tt 1 /if 2

= ^ pdpd0.

-v2
C28. P0(vi) = e 1//if ; (-00, 00) •

R.

J.

C29

R.

J.

2 2Generate r,r^ until S = x + y < 1, where x = 2r-l, y = 2r^-l.

For accepted S, set v;L = {(-£nS)/S}^ x, \>2 = {(-£nS)/S}^ y. (Two samples) 

Cf. C27 (J2)

q(u) = 2u2n-l -ue /F(n) ; (0,oo) , n = 1/2, 3/2, 5/2,..., 2n-l = 0,2,4,...

Define h by 2n = 2h + 1 (h = 0,1,2,...). Generate r,r^ until S = r^+r^<l. 

For accepted r,r", set t = {(-£nS)/S> r2. Set u = |-5n JT ^ r^ + t2|2.

d_
du I

:r 4*«■
■2n/ 2 "Vi , \ d fu 22n -u2e dvi / —e A^du

/ 0 TT
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= 2 e U u2n '*‘/r(n), where A = dV/du, and V = J T~P[n dv.

Enf<u
n 2n . 2n r, .

= tt u /2 nr (n).
2 2Note, t ={-£nS/S}r^ should be saved for a second transit of C29.

C32. p(v) = v11"1 e~V/r (n); (0,“) , n = 1/2, 3/2, 5/2,...

2
R. Set v = u where u is obtained from C29. (Avoid squaring the square root!) 

2J. For v = u , one finds p(v)dv = q(u)du in C29.

C35, B(v) = v111"1 (l-v)n~1/B(m,n) ; (0,1)

b(z) = zm~1/(l+z)m+n B(m,n) ; (0,°°) 

q(6) = 2 sin2m~16 cos2n~19/B(m,n); (0,^/2) 

m,ne {1/2, 1, 3/2, 2,...} in all.

R. Sample xm-1 e”X/r(m), y11-1 e"y/r(n) for x,y on(0,o°) by C22 and/or C32.

Set v = x/(x+y), z = v/(l-v) = x/y, 0 = arc sin /v .

J. The densities are equivalent under the substitutions indicated. For the 

transformation x = uv, y = u(l-v), with inverse u = x+y, v = x/(x+y), one 

finds

,-,-1, . m-1 -x, -a n-1 -y, ^ m+n-1 -u, D-lrT (m)x e dx*r (n)y e /dy=F (m+n)u e du B (m,n)v (1-v) dv

N+l
C43. qi(t) = r(~-) /m T (N/2) (l + i-) ; (-co,oo) , N= 1,2,3,...

Rl. Sample w1^2 ^ e W/f(N/2) for w on (0,°°) by C22 or C32; set x = (w/N)2. 

-v2 /__
Sample e 7 //ir for y on (-00,00) by C28. Set t = y/x.
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Jl. See Sampler I.

R2. Sample b(z) = z 2/(l+z) ^ for z on (O,00) by C35.

Change sgntwith probability 1/2.

Set t = vftT .

J2. By symmetry, we may sample density 2q^(t) for t on (0,°°), 

for sign change (Cf. C128). But 2q^(t) dt = b(z)dz for t

with provision

= vftl on

(O,00). The two rules are essentially identical.

C62. p(v) = 'V a. ; (0,1), a. > 0.

R.

J.

J ................. ^

Define A. = a./(j+l). Set K min 
J 1 ^ 0 J

exp r^ or set v = max (r^,. . . ,rK+1).

The rule follows from C3, and from C13A or C13.

c * 1/(K+l)Set v = r^ v J

C63. q(y) = / dx f(x,y); (c,d), f(x,y) > 0. 
Ja.

-d
Rl. Sample marginal density p(x) = f f(x,y) dy for x on (a,b). For this x,

x
sample the x-dependent y density f (y) = f(x,y)/p(x) for y on (c,d).

X rhJl. Under the rule, the probability of choosing y on (y,y+dy) is / p(x)dx • 
fx(y)dy = q(y) dy. a

R2.

C63A.

Note. One may regard C6 (n=2) and C8 (p,q,q^) as special cases. 

Sample f(£>r)) for (5,0) • Set y = q.

= /‘q(y) = / dx p(x) f (y); (c,d), p(x) density on (a,b), f (y) continuous 
w/ x Xa

y-density on (c,d) for each value of parameter x on (a,b). 

R. Sample p(x) for x. For this x, sample f (y) for y.
X

J. Corollary of C63.

C64- q(>0 = 7m f0 dx * xin"3/2 e"y /2bX’ C-00,00), m,b > 0.
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R.

J.

Sample mxm ^ for x on (0,1) by C13 or C13A. By C28, sample e V /v^tt for 

V on (-00,00) . Set y = v(2bx)^.

Following C63 for the integrand f(x,y), one finds
/OO 1

f(x,y) dy = mx on (0,1) and fx(y)dy = f(x,y)dy/p(x)
-OO

_ e X ^'-)Xdy/(27rbx)^ = e V dv//TT where y = v(2bx)J.

C65. q(y) =
1

N-l
2 2 yW T(N/2)

6 arbitrary, N = 1,2,3,...
2

R. Sample w^^2 ^ e w/F(N/2) for w on (0,°°) by C22 or C32. Sample e V //ir 

for v on (-00,00) by C28. Set y = ^2*v+6 ^ • yftl/2w .

J. Following C63 for the integrand f(x,y), one finds p(x)dx = dx

—
dx • xN 1 e 2/2N//2 1 r(N/2) = w^^2 ^ e W dw/r(N/2) , where x = /2w.

2 2
Moreover, f (x,y) dy/p(x) = x exp -(-£%- - 6]/2 = eV dv//rr for 

, v y^riN VyfT /
y = y/2 v+8) ^/x .

f f(x,y)dy =

C66.
C

q(y) = [

n-4
2 -x/2H"

dx*x e
n-l exp

-(y-(pKx/H)) 2 .

/2ttK2(1-p2) (2H2) 2 r(¥)
2K (1-p )x

; (-00,00),

n = 5,6,..., H, K > 0, - 1 < p < 1.

R. Sample z ^ e Vr^p^for z on (O,00) by C22 or C32. Sample e U //F for u on

(-oo}0o) by C28. Set x = 2H2z, and y = + u »/2K^(l-p2)x .
n
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J. The rule follows from C63 upon noting the relations:

p(x)dx = x 2 e“x/2H dx/(2H2) 2 

n-3
= z 2 e Zdz/F^^i-^ for x = 2H2z

f(x,y)dy/pCx) = e U du//rr for y = ^jp-+u/2K2(l-p2)x .

C67. q(y) = (e -e ^)/yC; (0,°°), o < a < b, C = Jin (b/a)

Crl
R. Generate r^, r^ and set y = -(Jin i^/a e

J. For f(x,y) = e X^/C on (a,b) x (O,00), one has the marginal densities

q(y) = (e a^-e ^)/yC on (O,00), p (x) = 1/xC on (a,b) . Moreover

f(x,y)/p(x) = x e X^. Following C63, we sample p(x) on (a,b) using

rx _i ^rl
P(x) = J p(x)dx = C Jln(x/a) = r^, and thus setting x = ae as in

a

C14. For this x, we sample f(x,y)/p(x) for y by C17, setting y =

- (Jlnr2)/x.

C68.

R.

J.

qCy) = exp (-ay ) - exp (-by t /y1/n C; (0,°°) , 0 < a< b, n > 0,

(i^l), C = r(n+l) (b1_n-a* 1"n)/(l-n) .

Sample C ^ F(n+l)x n for x on (a,b), using C13, C13A, CIS, or C15A.

Sample zn ^ e Z/F(n) for z on (O,00) by C22, C32, or R18. Set y = zn/xn.

For f(x,y) = expC-xy^^0)/C on (a,b) x (0,°°), one has, for marginal

1 XIdensities, the given q(y) on (O,00), and p (x) = C r(n+l)x on (a,b).

n 1 /nMoreover, f(x,y)/p(x) = x exp(-xy )/r(n+l). Following C63 we there­

fore sample p(x) for x on (a,b). For this x, we then sample f(x,y)/p(x)

for y on (0,°°) . Since f(x,y)dy/p(x) = z11 '*'e 2 dz/F(n) for y = zn/xn,

the rule follows.
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C69.

R.

J.

C70.

R.

R.

J.

q(y) = / dx*fCx,y); (a,b) , fCx,y) > 0 on region R bounded by x = a, 
-'a

y = b, x = y, where a < b.

Define p(x) = f(x,y)dy for each x on (a,b). Sample density p(x) for 
x

x on (a,b). For this x, sample density fx(y) = f(x,y)/p(x), x < y < b 

for y on (x,b).

Under the rule, the probability of choosing y on (y,y+dy) is 

/ dx 'fpx£-dy = p^^dy-

3.

Note. This is an obvious modification of C63 for a density f(x,y) 

defined on the region R. For (a,b) = (-00,00), R is the region above the 

line y = x. C8 (s) is a special case of C69.

s(w) = 1/2 (g(w) + g (-w)) ; (-00 ,00), g(w) density on

Sample density g (w) for w on (-00,00). Change sign of w with probability

1/2.

J. The obvious rule may be regarded as an instance of C3.

C71. s(w) = (p/2) e
p* 2/2

<J)(w-p)e‘pW + (J)(-w-p)ePW ; (-00,00), P > 0,

<Ky) = ----- / e dx.
/2n J-oo

Sample e V //a for v on (-00,00) by C28. Set w = v/2 - £nr. Change 

sign of w with probability 1/2.
2

By C70 it suffices to sample density g(w) = pep ^ <j>(w-p) e PW for w on 

(—oo,oo) with provision for changing sgn w. For w = y+p, we find that

g(w)dw = q(y)dy, where q(y) = J dx*peP^eX//^e Following
-OO

C69 with f(x,y) = peP^eX^e Py//2TT, we find that:
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r00 -( 'i 2/) 2
p(x) = / f(x,y)dy = e '•X+P^' ' /ffn ; p(x)dx = e V dv//rr for 

x

x = - p + v/2 ; f(x,y)/p(x) = p y > x; dy =

-1

C72.

y = x + p v. The rule follows from these relations and C17.

z-C
eiMK't(z) = eKa/^ + $ . lli . £\ e ^ 

a cb / /2(j);

1 f -x /2(-00,00) j cr, <f> > 0, ^ arbitrary, cj)(y) = ------- I e 7 dx.
/2?

B. Sample s(w) for w as in C71, where p = a/(f>. Set z = £ + aw. 

J. Under the stated substitution, one finds t(z)dz = s(w)dw.

C73.

B.

J.

C74.

p(x) = g/(l+gx) In (1+B); (0,1), 6 > -1. 
,-lSet x = 3 - 1 + exp [r £n (1+6)]

r xThe rule results from setting / p(x)dx = r.

p(x) = (l+9x) exp
-(x+i0x2)

; (oj00), e > o.

(Cf. Cl.)

B.

J.

C75.

Set x = 0 ^ | - 1 + (1-20 £n r)2 

For v = x + i0x2, one has p(x)dx = e Vdv. (Cf. Cl7)

q(x) = 1 + 0(1-e X) exp x + 0(x+e X-l) ; (oj00), e > o.

B. Set Vq = - £n r^. Solve equation = x + 0(x+e X-l) for x. 

below).

J. For v = x + 0(x+e X-l), one has q(x)dx = e Vdv as in C17.

Note (Newton's method for x). For f(x) = x + 0(x+e”X-l) - 
one has f(v0) = 0(vo+e V°-l) > 0, f(0) = - vQ < 0, f"(x) = 1 

f'"(x) = 0e_x > 0. Newton's recursion reads

e Vdv for

(See note

on [0,°°) , 
0(l-e"X) > 1,
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C76.

R.

J.

C77.

R.

J.

C78.

R.

J.

C79.

R.

J.

C80.

R.

J.

C81.

R.

J.

n+l xn f(x )/f"(x ) n n

v + 0 {1 - (1+x ) exp (-x )}0 v n r n
1 + 6 {1 - exp (-X )}

With initial x^ = the sequence {x^} rapidly converges down to x.

P (x) = exp (-x-e X); (-00,00)

Set x = - Jin (-Jin r)

For x = - £n v, one has p(x)dx = e V(-dv) on (0,°°) as in C17.

. , „-l -(z-tf/Q -(z-c)/eq(zj = 6 e exp |-e ; (-00,00) , 0 > 0, C arbitrary.

Set z = C - 0 £n (-Jin r) .

For z = ^ + 0x, one has q(z)dz = p(x)dx as in C76.

-<t>t/o , -t/o. , . m ^ nP(t) = e Y exp (-p e ); (-°°,°°), p,a,<t> > 0

Sample w^ ^ e W/r(cj)) for w on (0,°°) by C22, C32, or R18. Set t = - a Jln(w/p). 

For the given transformation, one has p(t)dt = ^ e W(-dw)/r((j)) .

p(x) = C^l + e"bx; (-a,«0, a,b > 0, C = (ab)ab/a eab r(ab) .

Define n = ab + 1. Sample z11 ^ e Z/r(n) for z on (O,00) by C22, C32, or R18. 

Set x = (z-ab)/b.

n-l - zUnder the latter substitution, one has p(x)dx = z e dz/F(n) on (0,°°).

p(x) = bn/r(n) xn+1 eb/^X ; (0 j00) , b > 0, n > 0.

c i n-1Sample z 

For,p(x)dx = z

e /r(z) for z on (0,°°) by C22, C32, or R18. Set x = b/z. 

n-l -z,e (-dz)/T(n).

p(x) = (2tt) 2 X 16 j 1 + } exP ~ i Y + 6 sinh 1
i

(-00,00) , Y arbitrary, X, 6 > 0.

Sample e y //ir for y on (-°°,«>) by C28. Set x = ^ + X sinh ~ Y

-v2
One finds p(x)dx = e ^ dy//rr .
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C82. p(x) = (270* A"1 6 ) i1 -¥) exp y + 6 £n x-C
5+A-x

R.

(£,£;+A), Y arbitrary, A,6 > 0 .

Sample e ^ //fr for y on (-00,00) by C28. Set x = £ + |a/(1+E)| , where

E = exp -S"1 (y/2 - y)].

J. For the x,y substitution, one finds p(x)dx = e ^ dy//iF !

C83. g(u) = exp (~£n u)/e4 y^rr ; (O,00).
2

R. Sample e”V //F for v on (-00,00) by C28. Set u = exp (v+i). (Cashwell)

-v2 ^
J. For the latter transformation, one finds q(u)du = e dv//77 .

; (0,«>), b > 0, 0,5 arbitrary.C84. p(x) = —X exp £n(x-0)-5]2/2b

/27Tb J

R.

J.

CSS.

R.

-v2Sample e //F for v on (-00,00) by C28. Set x = 0 + exp 5 + v/Zb]

-v2
For the given transformation, one has p(x)dx = e //tt.

(See log-normal, CSS).

p(y1,y2) =
2tt a1a2/l-p^

exp - 2,
■P )

y1, y2 on (-00,00), , a2 >0, y]L, u2 arbitrary, - 1 < p < 1.

C28.Sample e //F for both , v2 on (-00 , 00) by 

Set + /I v1 + PV2j, y2 = y2 + a2 v2, where R = 1 -

J. Under the indicated transformation, one has p(y^, y2) dy^ dy2

-v.
^e 1 dv^/nj ^e 2 dv2//FJ .

C85A. pty^..., y^) = C 1 exp yi y ; yi on (-«>,“), A = [a^] positive

ij
definite.
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R. Construct a matrix S such that STAS = I. (See note.) Sample e //tt n

times for z,,..., z by C28. Define y. by the linear transformation 1 ’ n ' J \ J

2

yl Z1

• = S •

y zn n

J. In (column!) vector notation, we have Y = SZ, and hence

2 = x v. a.ZTZ = ZTIZ = zV ASZ = YTAY, i.e. zi = J yiaijyj

Therefore, under the transformation Y = SZ, with Jacobian |det S|,
2n/ -z.

we see that p(y^...yn) dy^.-.dy^ = XL ]le 1 . Note that

n/2C = tt (det S| necessarily.

Note. The matrix S may be obtained from the Gram-Schmidt process. With­

out going into its machinery, we remark here that it is a definite 

algorithm for constructing from any n linearly independent vectors an

equivalent set which are orthonormal with respect to a given inner
n tproduct. If we define in E the inner product (X,Y) = X AY then the 

Gram-Schmidt algorithm, applied to the "1-spot" vectors 6^, produces a 

set w^,...,w which are orthonormal relative to (X,Y). Hence we may 

define S by w ,... ,w 1 n = IV--.SJ s.

For then 6. . = (w. ,w.) = / \ 6, s. ., \
iJ i J k kl Z

\ k £
6£ S£j

= X ski (5k-SJ sij ski stj- or- matrix form,

k,£ k, £

x
I = S AS, as required. Note that S is simply the matrix whose columns

are the column vectors w..
1
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C86. h(x) = g(x) + g(-x) ; (0,00), g(y) density on O00,00) .

B.

J.

C87.

R.

J.

C88.

R.

J.

C89.

R.

J.

C90. 

Rl. 

R2. 

J.

Sample density g(y) for y on (-00,00) . Set x = |y|.

h(x) is the symmetric sum density i ^g(x) + g(-x)j restricted to (O,00) , 

and doubled. See C70.

1“S'
s(x) = (2t\o ) cosh (Cx/a ) exp 2 2 2 (xz+n/2az ; (-00,00), ? arbitrary, a > 0.

Sample e V //ir for v on (-00,00) by C28. Set x = £ + v/2a2. Change sign 

of x with probability 1/2.

One notes that s(x) = i^g(x) + g(-x)j where g(x) = e ^ //2ira2

and uses C70.

h(x) = /2/Tra2 cosh(gx/g2) exp { -(x^+g^)/2g^j; (O,00)

_v)2 , _
Sample e //ir for v on (-00,00) by C28. Set x = |£+v/2a2|

See C86, C87.

p(x) = a/(eX+b+e X) ; (-00,00), - 2 < b < 2,

tt/2 - arc tan(b/2B)| , B = (l-b^/4)2.a = B/

Set x = Jin + B (b/2B)+tan(Br/a) |
l-(b/2B) tan(Br/a) ]

For x = Jin y, one finds p(x)dx = ady/|^y +

with ^ q(y)dy = f
B

y + 2arc tan ^^------ arc tan D
D D

(I)

B2] = q(y)dy on (0,°°) ,

= r yielding the rule.

P (x) = (2/tt) / (ex+e X) ; C-00,00)

Set x = Jin .

Generate r,r^ until S = r + r^ <1. For accepted r,r^, set x = Jln(rVr)- 

Special case of C89 (b = 0).

Note the equivalent form p(x) = ^ sech x.
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C91. p(x) = l/(eX+2+e X) ; (-00 , 00)

B.

J.

C92.

B.

J.

Set x = iin | r/ (1-r) J .
2For x = £n y, one finds p(x)dx = dy/(y+1) = q(y)dy on (0,°°), with

-XJ q(y)dy = y/(y+l) = r yielding the rule.

0

Note the equivalent forms p(x)

x ,, x t . 2 -x ,-x. 2 = e /(e +1) = e /(1+e ) .

/ 2i L\2l/(e2 ,;2) =
5 sech (x/2)

2 ^p (x) = a/(eX+b+e~X); (-“,0°) , b > 2, a = C/ln + c), where C = (j - l) .

(E-l)/(s-dE)Define s = y+C, d = -j-C. Set x = .&n

For x = £n y, one finds p(x)dx = ady /

y

* !)2 - c

, where E = exp(2r5,ns) 

E q(y)dy on (0,«>) ,

with J q(y)dy = ^- Zn = r yielding the rule. (Note that sd = 1) .
0

C93.

B.

J.

q(y) = n/ A + cosh a (y-yg) (-00,00), A > 1.

Define b = 2A > -2. Sample density a/(eX + b + e X) by C89, 90, 91, or 92. 

Set y = yQ + (x/a).

For the given substitution, one obtains q(y)dy = h(x)dx for an h(x) in 

the cited references. Note that n = a a/2.

C94. r(t) (0,°°), a, tQ > 0, A > - 1.

B.

J.

Define b = 2A > -2. 
x/aSet t V

Sample a/(eX + b + e X) by C89, 90, 91, or 92.

For the given substitution, one obtains r(t)dt = h(x)dx for an h(x) in 

the cited references. Note that n = a a/2.

C95. q(x) = m gm eX/(g+eX)m+1; (-00,00) , B, m > 0.

B. Sample m Sm v m ^ for v on (B,00) by CIS or C15A. Set x = Jin (v-S) .
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J.

C96.

R.

J.

For x = £n(v-(3), one has q(x)dx = m Bm v m 1 dv = p(v)dv on (B,00) .
OO

For arbitrary m > 0, one sets J p(v)dv = r to obtain v = B r

= B exp - — £n r m . For B = m = 1, Cf. C91,

r(y) = m B 1 e~y/(l+B 1 e y)m+1; (-00,00) , B, m > 0.

Sample m B™ v m 1 for v on (Bj00) by CIS or C15A. Set y = - £n(v-B) 

With y = -x, one has r(y)dy = m B™ e ^dy/(B+e 

= m Bm eX(-dx)/(B+eX)m+1 as in C95.

C97, q(x) = Qc-a)m ^ (b-x)n V(b-a)m+n ^ B(m,n); (a,b) , a < b, m,n > 0.

R. Sample B(v) = vm ^(l-v)n ^/Bfmjn) for v on (0,1) by CSS or R19.

Set x = a + (b-a)v.

J. For the x,v substitution, one has q(x)dx = B(v)dv.

C98. p(x) = F(Q) (b-a)^^1 (x-b)R/r(Q-R-l) r(R+l) (x-a)Q; (b,~), b > a,

Q > R + 1 > 0.

R. Define m = R + l>0, n = Q-R-l > 0. Sample b(z) = zm '*'/(l+z)m+n B(m,n) 

for z on (0,°°) by CSS or R19. Set x = b + (b-a)z.

J. For the x,z substitution, one has p(x)dx = b(z)dz.

M+N
C99. p(E) = 2(M/N)M/2 EM_1/B(M/2,N/2) (l + ^ E2) 2 ; (0,°o), M, N e{l,2,3...}.

i -v , -v
R. Define m = M/2, n = N/2. Sample v1? e Vr(n) , v1! e /r(m)

1 Z i
for Vj, v2 on (0,°°) by C22 and/or C32. Set E = (Nv^Mv^)^.

J. For E = F^, one finds p(E)dE = q(F)dF for Snedecor's F, as in C45.

C100. p(x) = 1/B(m,m) (eX^2+e X//2)2m- (_oo}oo) } m > 0.

R. Sample b(z) = zm 1/B(m,m) (1+z)2m for z on (O,00) by CSS or R19. Set x = 

£n z.

J. For x = An z, one has p(x)dx = b(z)dz on (0,°°) .
Note the equivalent form sech2m(x/2)/4m B(m,m).
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C101. p(x) = pm e mX//a/gB(m,n) (1+pe x/ajm+n- (.o^co) a P)a > q, m,n > 0.

R. Sample b(z) for z on (O,00) by C35 or R19. Set x = -a £n(z/p).

J. For the x,z substitution, one has p(x)dx = zm ^ (-dz)/(l+z)m+n B(m,n)

on (0,°°) .

Note 1. See C120 for the case m=N-k+l,n=k, p = a = 1.

Note 2. For m=n=l=p=a, p(x) reduces to C91.

C102. e(x) = pm e~mx^a(l-pe Xy/g)n ^/gBCmjn); (a £n p, oo), p,a > 0, m,n > 0.

R. Sample B(v) = vm ^(l-v)n ^/B(m,n) for v on (0,1) by C35 or R19. Set

x = - a £n(v/p).

J. For the x,v substitution, one has e(x)dx = B(v)(-dv) on (0,1).

Note 1. See C123 for case m=N - k + 1, n = k, p = a = 1.
* — x

Note 2. For m = n = l = p = a, e(x) = e on (0,°°).

/ 2\n-l
C103. p(x) = r(n+i)(l - /a/fr F(n); (-a,a), a > 0, n > 0.

R. Sample v 3(l-v)n ^/B(i,n) for v on (0,1) by C35 or R19. Set x = av2. 

Change sgn x with probability i.

J. By symmetry, we may sample 2 p(x) for x on (0,a), with provision for
1

sign. (Cf. C128, Note). For x = av2 we find 2 p(x)dx 
= v‘i(l-v)n_1/B(i,n) = B(v) on (0,1).

C104. b(z) = (sin m tt/tt) zm~1/(l+z); (0,°°), 0 < m < 1.

R. Sample b(z) = zm 1/B(m, 1-m) (1+z) for z on (0,°°) by C35 or R19.

Note that B(m,l-m) = F(m) r(l-m) = m/sin mu.

C105. p(x) = C ^ x(x-a)m ^ (b-x)n (a,b), a < b, m,n > 0.

C = (b-a)m+n-1 F(m) r(n)(na+mb)/r(m+n+l).

R. If rQ < = (m+n)a/na+mb, sample B(v) = vm-'*’(l-v)n ^/B(m,n) for v on

(0,1) by C35 or R19. If rQ > A^, sample B(v) = vm(l-v)'*' n/B(m+l,n) for 

v on (0,1) by C35 or R19. Set x = a + (b-a)v.
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J. For x = a + (b-a)v, one finds p(x)dx = + a2(v)jdv

i. ^ r,-l .m+n-1 m-1.- .n-l . . „-l .. .m+n m,, .n-lwhere a^v) = C (b-a) av (1-v) , a2(v) = C (b-a) v (1-v)

and A = a (v)dv = (m+n)a/(na+mb). The rule then follows from C3.

C106. p(x) = xm 1 (l-x)n 1/(x+a)m+n C; (0,1) a > 0, m,n > 0,

C = B(m,n)/an(l+a)m.

B. Sample b(z) = zm ^/(l+z)m+n B(m,n) for z on (O,00) by C35 or R19.

Set x = az/(l+a+az).

J. Under the x,z substitution, one has p(x)dx = b(z)dz on (O,00).

Note. The x,z substitution is the iterate of x = y/(l+y) and y = az/(l+a).

C107. p(x) = (a+x)m ^ (a-x)n ^/C; (-a,a), m,n > 0, C = (2a)m+n ^B(m,n). 

B. Sample B(v) for v on (0,1) by C35 or R19. Set x = a(2v-l).

J. For, p(x)dx = B(v)dv.

C108. p(x) = F(x) + x 2F(x 1); (0,1), F(y) density on (0,00).

B. Sample F(y) for y on (O,00). If y < 1, set x = y. If y > 1, set x = 1/y.

J. Under the rule, the probability of an x on (x,x+dx) C (0,1) is
F(x) dx + F(y)(-dy) where y = 1/x. But F(y)(-dy) = F(1/x)dx/x^.

Note. The rule is a disguised version of C3.

C109. p(x) = (xm '*'+xn /(l+x)m+n B(m,n); (0,1) , m,n > 0.

B. Sample b(z) for z on (0,°°) by C35 or R19. If z < 1, set x = z.

If z > 1, set x = 1/z.

J. For b(z) = zm Vd+z)"1^ B(m,n), one has x ^b(x ^) = x11 ^/(l+x)^11 B(m,n) . 

The rule then follows from C108.

C110. p(C) r(m) c^'V/r r(m-i) 2c (c-?0)
m (-00,00) c > 0, Zq arbitrary.

m = 1, 3/2, 2, 5/2,...
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1
R.

J.

N
2 -wDefine N = 2m-l = 1,2,3,... Sample w“ e /F(N/2) for w on (O,00) by 

C22 or C32; set x = (w/N)^. Sample e ^ //tt for y on (-00,00) by C28.

Set ? = + (s-5)

With N as defined, and ^ + ct/v^, one finds p(5)cl£ = q^(t)dt as in

C43 (Student's t).

Gill. q(t) = 1/ttX

Rl.

Jl.

R2.

J2.

1 + m ; (-00 , 00), A > 0, 0 arbitrary.

Set t = 0 + A tan j (2r-l).

1 t ”0q(t)dt = i + — arctan —— = r, the rule follows (Cl).
_oo 7T • A

,22 ,Generate r,r^ until S = x + y < 1, where x=r,y=2r -1. For

accepted x,y, set t = 0 + A(y/x).

(x,y) is chosen, uniformly in area, in quadrants I, IV of the unit circle. 

Hence y/x = tan 0 where 0 is uniform on (-tt/2, 7r/2) , as required in Jl.

C112. s(t) =

R.

J.

1 + mh [■ • ■(¥) • m ; (-00,00) , A > 0, 0 arbitrary.

Sample q(t) for t on (-00,00) as in Clll. Change sign of t with probability i.

One notes that s(t) = i q(t) + q(-t) and uses C70.

C113. h(t) = 2 1 + (srt]/* I' • ; (0,°°), A > 0, 0 arbitrary.

R. Sample qft^) for t^ on (-00,00) as in Clll. Set t = |t^ 

J. See C86.

C114. p(x) = l/2mAB(m,n) 1 + i x-0 1/m m+n
; (-00,00) , A > 0, 0 arbitrary, m,n > 0.

R. Sample b(z) = zm ''■/(l+z)m+n B(m,n) for z on (0,°°) by C35 or R19. Set

y = zm. Change sgn y with probability i. For final y, set x = 0 + Ay.
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(-00,00). By symmetry, we may sample density q(y) = 1/m B(m,n) ^l+y'*'^mjm+n 

for y on (0,°°), changing sgn y with probability 1/2. But for y = z™, one

has q(y)dy = z™ ^ dz/(l + z)m+n B(m,n) = b(z)dz on (O,00).

J. For x = 0 + Ay, one has p(x)dx = dy/2m B(m,n) ^1 + |y |for y on

C115. q(x) = k [l - P(x) N k Pk 1 (x) p(x); (a,b), p(x) density on (a,b),

P(x) = JX p(x)dx, k = 1,2,...,N.

R. Sample p(x) independently N times for x^-.-jX^. Order the x^ as

x; ^ < Set x = x' k

The probability distribution function for x^ is Q(x) = Pr(x^ ^ x) 

1 - P(x)Pk(x) N-k „N Dk+1. , Dr J N-k-1 + Ck+1 P (x) [1 - P(x)| +•

+ 1 PN ^(x) |l - P(x)j + PN(x). Hence the density function for

x^ is q(x) = QO) = cJJ kPk_1(x) p(x) |l - P(x)]N_k.

Note. The rule is feasible for moderate N, and may compare favorably 

with more direct methods when available.

016.

R.

q(x) = n 1 - PCX) N-l , , M dN-1 
p(x) , N P

((2M+1) !/(M!)2)[(l-p(x)) P(x)JMp(x) J

(x) p(x) , or

(a,b), p(x) density on
rx

(a,b), P(x) =J p(x)dx, M,N e {1,2,3,...}. 
a

Sample p(x) for x^,...,x^; set x = min {x^}, x = max {x^} for first two

densities. In last case (N = 2M+1 odd), order the x. as x' <• • •< x^,. n.1 1 2M+1

Set x = xM+l

J. Cases k = 1, k = N, and k = M+l for N = 2M+1 in CHS.
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Cll 7.

Rl.

Jl.

R2.

018.

Rl.

Jl.

R2.

J2.

019.

R.

J.

N k-1 N-k Nq(x) = k Ck (x-a) (b-x) /(b-a) ; (a,b), k = 1,...,N.

Generate r ,...,rlT. Order as r' <• • •< r'. Set x = a + (b-a)r/.1 N 1 N k

For the uniform density p(x) = l/(b-a) on (a,b), one has 

x
P(x) = / p(x)dx = (x-a)/(b-a), 1 - P(x) = (b-x)/(b-a). The rule 

•'a

follows from 015.

Define m = k, n = N-k+1; sample (x-a)m 1 (b-x)n ^/Cb-a)1114^11 ^ B(m,n) for 

x on (a,b) as in C97.

q(x) = k xk_1 (l-x)N_k; (0,1), k = 1,...,N.

Generate r,,...,^,. Order as r' <• ••< r' . Set x = r'I N 1 N k

Special case of 017.

Define m = k, n = N-k+1. Sample B(x) = xm ^(l-x)11 '''/Bfmjn) as in C35. 

For m,n as defined, note that q(x) = B(x).

Note 1. The method of Rl. provides a useful test for "random number" 

generators.
N-lNote 2. For k = N, the rule Rl samples q(x) = N x for x on (0,1) by 

setting x = max {r^,...,r^}. The direct method (Cl) would set x = r^^. 

Cf. 03, 13A.

q(x) = k C‘N 1 - exp(-e X) N k exp(-ke X) -x °), k = 1,. .. ,N.

Generate r N‘ Order as r' <•• •< r'. Set x = -£n (-£n r') IN k

For the p(x) in C76, one has P(x) = f
-O

follows from 015 and C76.

Note. For k = N, q(x)dx = N exp(-Ne-x

and one may set x = - £n ^-(-£n r)| .

p(x)dx = exp(-e X).

) e Xdx = N e ^^(-dy) 

Cf. 07.

The rule

: e-Z(-dz),
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r ^ i <-N _(N"k+1)x//'ii -X. N+lC120. q(xj = k e /(1+e J (-«>,<») , k = 1,.. .,N.

Rl. Generate r r . Order as r^ <• • •< r'. Set x = Jin [rZ/fl-r/) ].1 N 1 N k k
rx

Jl. For the p(x) of C91, one has P(x) = J p(x)dx = l/(l+e ). The rule
-00

follows from C115 and C91.

R2. Define m = N-k+1, n = k, p = a = 1. Sample e mx/B(m,n)(1+e x)m+n for 

x as in C101.

C121.

R.

J.

q(t) = k Cl
1 ~ ?

N-k
2+ tt arctan(-r-)

k-1
ttA

(—“o,00) , A > 0, ©arbitrary, k = 1,. • ,N.

Sample q(t) as in Clll fop t^,...,^. Order as t^ <• • • < t^' Set t = t' k

The rule is clear from Clll and C115.

mi r 'i i u b-l^T -xb.k-l -(N-k+l)xb ^ ^ r>C122. q(x) = k C^ b x (1-e ) e v J ; (O,00), b > 0.

R.

J.

Generate r^,...,r^. Order as r' > r' > ‘ > r' (Sic!)

Set x = exp |b * £n(-£n rp j .
b-1 -xb

For the Weibull density p(x) = b x e on (0,oo)(C52) one has 

, ^ rx _xb
P(x) = / p(x)dx = 1 - e . The rule follows from C115.

C123.

Rl.

Jl.

Note that x = x(r) is decreasing.

q(x) = k Ck e v (1-e ) ; (0,oo), k =

Generate r^,...,r^. Order as ^ r2 ^ ‘

-x fxFor p(x) = e , one has P(x) = p(x)dx = 1
J0

from Cl15. Note x = x(r) is decreasing.

1,... ,N.

r."*,. Set x = -Jin r/.N k
— x

- e , and the rule follows
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Define m = N-k+1, n = k, p = a = 1. Sample e(x) for x on (0,°°) as in C102.B2.

C124.

R.

J.

C125.

R.

J.

C126.

R.

J.

C127.

R.

J.

Nq(x) = k Ck 1 - f (n)/r(n)
X.

N-k rx(n)/r(n) k-1 n-l -x/T,, . x e /r(n);

r YV. -j
(0 j00) , n > 0, k = 1,... ,N, F (n) = / x11 e X dx.

X J0

Sample p(x) = x11 e X/r(n) N times for x^,...,x^ by either C22, C32,

or R18. Order as x' <• * •< x'. Set x = x,'.IN k
rx 1 n_i

Since p(x) has distribution P(x) = J x e X dx = fx(n), the

rule follows from C115.

q(x) = k Cim)
g<m(N-k+l) /

1L (IDm\k-l
(3,°°), m,S > 0.

Sample the density p(x) = m3m x m '*■ for x^,...,x on (3,00) by CIS or

C15A. Order as x' x' . Set x = x,'.IN k

Since P(x) = J'* p(x)dx = 1 ~(^~j > the rule follows from C115.

4(x-a)/(c-a)2; (a,b)
t(x) =
_______ 4(c-x)/(c-a)2; (b,c)

Set x = a + i(c-a)(r^+r2)•

Under the transformation x = 

in CSS.

a < c, b = (a+c)/2

a + i(c-a)u, one has t(x)dx = s(u)du as

t(x) = 1 - lx] ; (-1,1)

Set x = r^ - r^.

Special case of C126 with a=-l,b=0, c=l.

43



C128. q(x)

aj^Cx); (a.b) 

a2(x); (b,c)

R. Define a2(x)dx, Ax + A, 1. If < A,

sample density a^fx)^^ for x on (a,b). If rQ > A^, sample a2(x)/A2 

for x on (b,c).

J. Special case of C3.

Note. For a symmetric density q(x) = q(-x) on (-c,c), one samples the 

density 2q(x) for x on (0,c) and changes sgn x with probability 1/2. 

This obvious rule may be regarded as a special case.

C129. t(x)
h(x-a)/(b-a) ; (a,b)

h(c-x)/(c-b); (bjC), a < b < c, h = 2/(c-a)

R. Define A^ = (b-a)/(c-a). For r^ < A^, set x = a + (b-a) • max (r^ r2).

For r^ > A^, set x = c - (c-b) max {r^,^}.

J. The rule is a consequence of C128 and C13 (b = 1, m = 2) Cf. R15.

C130. q(x)
A ae -ax

B bebx

R. For r^ < A, set x

[0,°°)

(-oOjO], AjB^a, b > 0, A + B = 1.

= - a * 1 iin r^. If rQ > A^, set x = b 1 to r^.

J. Special case of C128.

C131. q(x) = ai(x); [x^x^), i = 0,1,2,...

r xi+l v1 00
R. Define A. =/ a.(x), where \ A. = 1.1 -^x. 1 ^ 0 1

i

Sample density a (x)/A,. for x on [x^x^ -.).Is. ]\ K. K+I

J. Modification of C3.

Set K = min
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C132. q(x) =

R.

a0(x) = px/a ; (0,a)

ai(x) = pqi 1 {(l+ip)a-px}/a2; ^ia,(i+l)aj, i = 1,2,..

a,p,q > 0, p + q = 1.

Define = p/2. If set x = a/rTj'. (Cf. C13) . If >

K = min Jk;l+q+-*-+q^^> 2rp/p(l+q)j, K > 1.

Set x = p ^a 1 + Kp - 1 - (l+q)pr1j2

i-1,Following C131, one finds A^ = p/2, A^ = pq (l+q)/2, i > 1, 

a0(x)/A0 = 2x/a2, ai(x)/Ai = 2 |(1+ip)a-px|/a2(1+q).

C133.

R.

J.

P(t)
-X (t-y)2/2p2t .

“ y (0,0°), X,y > 0.

Define (p = X/2y, and sample q(x) for x as in R16. Set t = yx. 

For t = yx, cj) = A/2y, one has p(t)dt = q(x)dx in R16.

d e-(d-vt)2/23t
Note the Brownian motion form p(t) = —■ —

Av&t3

C134. f(x,y) = C ^ xm 1 y11 ^ F(x+y); x,y > 0, x+y < a < «>, a fixed, m,

ra ^
C = A*B(m,n), A E I um+n F(u)du.

0

R. Sample density A ^ um+n ^ F(u) for u on (0,a). Sample vm ^(l-v)

for v on (0,1) by C35 or R19. Set x = uv, y = u(l-v),

J. Since |3(x,y)/3(u,v)| = u, one has f(x,y)dx dy =

A 1 um+n 1 F(u)du • B 1(m,n) vm '*'(l-v)n '*'dv on (0,a) x (0,1).

Note. For F(u) = e U, a = “Q, we obtain the relation

-1 m-1 -x -1 n-l -y -1 m+n-1 -u, n-l. . m-1 (m)x e dx F (n)y e dy = F (m+n)u e duB (m,n)v

which gives a simple basis for C35, R18, R19.

, set

> 0,

1/B(m,n)

(l-v)n ^dv
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C135. f(x,y) = xm ^ y11 ~*y(l-x-y)n C; x,y>0, x + y<l,m>0, 0<n<l,

C = r(n) r(l-n)/m = Tr/m sin mr.

R. Sample um+n-1(l-u) *-1"n'*”1/B(m+n,l-n) and v™ 1(l-v)n 1/B(m,n) for u,v on 

(0,1) by C35 or R19. Set x = uv, y = u(l-v).

J. Case a = 1, F(u) = (1-u) n of C134.

C136. q(y) (l+ay)e - (l+by)e ^^|/y^(b-a); (O,00) , 0 < a < b,

R.

J.

Set y = (-Jin r^/ja + (b-a)r^ .

For p(x) = l/(b-a) on (a,b) and f (y) = xe on (a,b) x (0,°°), one

rb
has / p(x) fx(y)dx = q(y)■ See C63A.

C137.

R.

J.

C138.

q (y) = (e~ay - e"by]42C; (0,«>), 0<a<b,C = /rr(/b-/l).

Sample z ^ e Z//n for z on (0,°°) by C32. Set y = /z/ /a + {^/b - v^jr J . 

-1 -xv2
For f(x,y) = C e 7 on (a,b) x (O,00), one has for marginal densities 

the q(y) above, and p(x) = x"2/2^/b - /a j . The latter is sampled by

setting x v/a + (v/E* - v^rl2 (C13A). For this x, one has

f(x,y)dy/p(x) = 2x2 e dx/Zir = z 2 e Zdz//rr on (0,oo), for y = t/z/Zx (C63)

ry
q(y) = e x n dx/(y-x)n C; (O,00), 0 < n < 1, C = F(n)r(l-n) = 7r/sin

0
nTT.

R. Sample x11 ^ e X/F(n) and z n e Z/F(l-n) for x and z on (0,°°) by C32 or 

R18. Set y = x+z.

J. For the density f(x,y) = xn ^e ^/(y-x)nC on the region bounded by x = 0, 

y = oo} y = x, one has for marginal and x - dependent densities: q(y) as 

given, p(x) = x11 1 e X/r(n), and f(x,y)dy/p(x) = (y-x) n e ^ X'*dy/r(l-n)

—n - z
= z e dz/F(l-n) for y = x+z. The rule follows from C69.
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C139. qCy) = / dx £(x,y); (a,b), £(x,y) > 0 on region R bounded by x = b,
y

y = a, y = x.
rx

R. Define p(x) = / f(x,y)dy for each x on (a,b). Sample p(x) for x on
a

(a,b). For this x, sample f(x,y)/p(x) for y on (a,x).

J. Obvious variant of C69.

f b
C140. q(y) = / dx t(x)/t1 ; (0,b), t(x) density on (0,b), first moment

ll

0

R. Sample p(x) = x t(x)/t^ for x on (0,b). Set y = r^x.

J. Corollary of C139.

Note: To sample the "tail-end" density q(y) of t(x), it suffices to 

be able to sample its "first moment" density p(x).

C141. q(y) = (B/n) e"Byyn_1 (By)1/!! ; (0,°°), B > 0, n = 1,2,...
^0

R. Set y = - (r„/B) In r. .J 0 1 i

J. Application of C140 to exponential density t(x) = Bn x11 ^ e Bx/(n-l)'., 

(0,°°), with first moment t^ = n/B, first moment density given by 

p(x)dx = x t(x)dx/t^ = Bn+^ xn e B:X;dx/n! = u11 e Udu/n! for x = u/B.

The rule follows from C140 and C22. The tail-end density of t(x) is

J dx t(x)/t^ = J dx Bn+'*‘ x11 ^ e Bx/n! = q(y) of C141, as may be seen
y T

from the formula F3: n-l -Bxe dx = (n-l)! B 1 - -By V’-Vy)1/
^0



C141A.
OO

q(y) = f dx Bn+'*' Xn 1 e Bx/r(n+l); (O,00), B,n > 0.

y
R. Sample un e U/r(n+l) for u on by C22, C32, or R18. Set y = rQ u/B

J. See C141 (J) for the special case n = 1,2,3,...

C142. q(y) = (m+l)(bm-ym)/mbm+1; (0,b), m,b > 0.

R. Sample (m+l)xm/bm+^ for x on (0,b) by C13 or C13A. Set y = r^x.

J. Application of C140 to density t(x) = mxm ''’/b™, with t^ = mb/(m+l), 

q(y) = /’dx t(x)/t1, as above, p(x) = x t(x)/t^ = (m+l)xm/bm+'*’.

y
Note. Direct sampling (Cl) leads to the equation

m+l . ^.m .m+ly - (m+l)b y + mb r = 0.

C143. q(y) = Ae"y/(l-Xe‘y)L(A) ; (0,oo), 0 < A < 1, L(A) = - £n(l-A) .

Rl. Set y = -£nA^Jl- exp [-r L(A)]j.

Jl.
p OO

This results from v = / q(y)dy (Cl).

R2. Sample p(j) = AVjL(A) for j on {1,2,...} by D17. Set y = - j"1 £n r .

J2. One may realize q(y) as^ p(j) f.(y) where p(j) = A^/jL(A) and
j=l ^

fj (y) = j e”^y.
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R-INDEX

Rejection Techniques

R7.

R14.

R15.

R16.

R17.

R18.

R19.

R20.

R21.

f(x) h(x)

a. f. (x) h_. (x)
^1 ^ J

2(x-a)/(b-a) (c-a) 

2(b-x)/(b-a) (b-c)

-3/2 I , , , 2 , |x exp -<j)(x-1J /x

(1-R2)2 2/(l+p2-2pR)

m-1 -X t ^ nx e , m real > 0

m-1 ,, .n-1v (1-v)

m-l //-i , '.m+n z /(1+z)

. 2m-1 Q 2n-l , . „sm 0cos 0, m,n real > 0

2m-l -zz . . nz e , m real > 0

.2,2sm x/x

Density X bounded function

Sum of products, Butcher

General triangular

Wald (JK2/138)

Leipnik, circular correlation (JK3/240) 

General f-type. (Jbhnk)(JK3/39)

General B-type. (Johnk)(JK3/39)

General Gauss-type 

Quasi-periodic

Rejection Techniques

Note: In all cases, the process is to be iterated until the condition 

is satisfied.

R7. p(x) = A ^ fCx) h(x); (a,b), f(x) density on (a,b), 0 < h(x) < 1.

R. Sample f(x) for x on (a,b). Accept x if next r < h(x).

J. On any trial, the probability of accepting an x on (x,x+dx) is f(x)dx*h(x).
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r°the total probability of acceptance (efficiency) being / f(x)dx • h(x) = A.
^3.Hence the relative probability of an accepted x lying on (x,x+dx) is 

f(x)dx • h(x)/A = p(x)dx.

Note. Analysis of the assignments to (x,x+dx) according to the required 

number of trials shows that the total probability of such an assignment

is f(x)dx • h(x) |l + (1-A) + (1-A)2 +---|= f(x)dx • h(x)/A = p(x)dx.

The total probability of assignment on the v-th trial is (1-A)V '*'A,

2
with sum A + (l-A)A + (1-A) A +••• =1. The expected number of trials

V100 v-1for assignment is > v(l-A) A = 1/A,the inverse efficiency.
^1

R14.

Rl.

Jl.

R2.

J2.

p(x) =^J a. f.(x) h.(x); (a,b) , a. > 0, f.(x) density on (a,b) , 
Z—< j _2 J 3______J___  J J

0 < h^. (x) < 1, all j.

■ • > r„Define A. = f a- f • (x) h. (x)dx • Fix K = min A.
J Ja J J 1 j=i J

1. Sample density f^(x) for x on (a,b).

2. Accept x if next r < h (x). Otherwise, return to (1).K

The rule follows from C3, and R7, which samples the K-th density 

a^, fj((x) hK(x)/AK by rejection technique.

v ~ J
Define a=> a.. Then:

Then:

1

1. Generate next two random numbers r,r^.

2. Set K = min
k

k; > a. > or
^3 = 1 J

3. Sample density f (x) for x on (a,b).
K 4

4. Accept x if r^ < h (x). Otherwise return to (1).K

On any trial, the probability of accepting an x on (x,x+dx) is 

J
N (a./a) f.(x)dx • h. (x), the total probability of acceptance being the

i J J ^

integral, 1/a. Hence the relative probability of an accepted x lying on
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\ ' J
(x, x + dx) is y a. f.(x)dx h.(x) = p(x)dx. By the same analysis as in 

J—* i J J J
R7 (Note) , one finds the expected number of trials for assignment to be a.

Here we may remark that
rbf V1 a. f.

■4 A j 3 (x)dx h(x) < IJ rb
a. / f.

. i J j1 a J
(x) dx = a

B.

Note 1. In Rlj the expected number of trials for assignment is f°r

the j-th term (A. = / a. f.(x) h.(x)dx < a.) so the average expected 
3 <3. 3 3 3 3

number of trials is A. (a./A.) = a
11 1

Note 2. Any density p(x) = 'N'b.Cx) c.(x), with b.(x) > 0, B. = f^b.(x)dx3
3 3 3 3 J * 3

0 < c.(x) < c., may be written in the form p(x)^s" (B.c.l
^ J Z, 1 1

of R14.

bj (x) /B_. Cj^/Cj

R15. t(x)
2(x-a)/(b-a)(c-a); (a,b)

2(c-x)/(c-b)(c-a); (b,c), a < b <c.

Accept x = a + (c-a)r^ if (1) x < b and < (x-a)/(b-a), or if (2) x > b

and r^ < (c-x)/(c-b).

J. The rule may be regarded as a special case of R7 if we write

t(x) = 2(?y • (ttx) c-a . Cf. C129.

R16.

R.

J.

, . -3/2 -())(x-l) /x /"n i .q(x) = / — x e ; (O,00), ^) > 0.

Sample e z //n for z on (-00,00) by C28. Accept z if next r < i/l - —------ ^

\ rr~>

For accepted z, set x =
(z2+4cj))^ + z|/|(z2+4cf>)^ -

/z2+4c0 

22 -1 -z"For z = (x-l)/v^c (increasing), one has q(x)dx = -----  (x+1) e dz on
/rr

2 2 2 2 (-00,00). But from z = <Hx-l) /x and z + 4c() = cf)(x+l) /x follows

rr/z +
(• ■ TfA

/z +4({)

since sgn z = sgn (x-1).
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-1 -1 -ZZ 7-Hence, q(x)dx = A f(z) h(z)dz on (-00,00) where A =2, f(z) = e //tt

density on (-00,00) , and h(z)=ill—-r|----- ) , 0 < h(z) < 1, -«> < z < °°.
V /z +4<j> /

The rule follows from R7 (Efficiency 1/2).

Note 1. Naturally the acceptance condition should be coded to avoid 

square roots and unnecessary computations. We omit the details.

Note 2. For testing purposes, we include the following evaluation of

rxthe Wald distribution function Q(x) = I q(^)d? in terms of the well-
Jo

1 fz -C /2tabulated normal function $(z) = ------- I e ' di;; (-00,00). For convenience.

we work with G(z) = —f e ^ dt = of/? z). From (J) above, with
-co V 7

z = 4 (x-l)/v^c, we have QCx)=f (l---- yi----- 'j e~^ d?//iT = G|
\ /i; +4$ /

I(z) = / —yy----- e ^ d^/ZiT . Since the latter integrand is odd,
-00 /c +4d>

= G(z) - I(z),

where

we know I(z) = I(-z). For fixed z on C-00,!)) , let p = ->/c^+4(|) on 

_ oo < r) < _ /z^+4(J). Then I(z) = -e^ G (z^+4(J))= I(-z) and hence 

Q(x) = G(z) + e^ G (z2+4c()) 2j for all x on (0,°°). In terms of x,

therefore, Q(x) = (x-l)j + e4(^ g/-/^- (x+l)j = $^1/^- (x-1)^

+ e4* (x+l)j (Cf. JK2/141) .

T 1

R17. q(R) = (1-R2)2 2/(l+p2-2pR)2 B( | + i) ; (-1,1), 0 < p < 1, * 1 2

T = 1,2,3,...

Rl. Define n = (T+l)/2. Then:
1. Sample B(v) = v11 ^(l-v)11 ^/B(n,n) for v on (0,1) by C35.

2. Accept v if next r < (l-p)T/|(l+p) - 4pvjT72 i h(v). Otherwise 

return to (1).
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Jl.

R2.

J2.

R18.

Rl.

Jl.

3. For accepted v, set R = 2v-l. Efficiency A = (1-p) .

For R = 2v-l, one finds q(R)dR = A ^ B(v) h(v), 0 < h(v) < 1, 0 < v < 1, 

for the above A, B(v), h(v). The rule follows from R7. Note the identity

J r(f.i) r(| + i) = r(t)r(TU), (F4).

Define m = (T+l)/2, n = 1/2. Then:

1. Sample b(z) = zm '*'/(l+z)m+n B(m,n) for z on (O,00) by C35.

T2. Accept z if next r < (1+p) / 

return to (1).

(1+p)2 + Op)2z T/2 _ h(z). Otherwise

(l+p)/23. For accepted z, set R = (z-l)/(z+l). Efficiency A =

For R = (z-l)/(z+l), one finds q(R)dR = A 1b(z) h(z), 0 < h(z) < 1,

0 < z < °°, for the cited A, b(z), h(z). The rule follows from R7.

Note. The method is only feasible for small T. For p < 1/3, use Rl; 

for p > 1/3, use R2. The efficiencies are then both minimal at p = 1/3,

(f)T-with A

p(x) = xm ^ e X/F(m) ; (O,00), arbitrary m > 0, m / 1/2, 1, 3/2, 2,i..

Let m = H + R, where H e jO, 1/2, 1, 3/2,2...

1

and 0 < R < 1/2. 

1Define n = 1/2 - R. Set s = exp — Ln r,, t = exp — £n r„, and iterater m 1 r n 2

until s + t < 1. For accepted s,t, set v = s/(s+t). Sample

u^ 2 e U/f(h + ^ j for u on (0,°°) by C22 or C32. Set x = uv. (Jbhnk)

The rule results from the following remarks:

A. Under the transformation x = uv, y = u(l-v), with Jacobian -u, one

finds that F ^(m) xm ^ e X dx -v n-l -7 j F (n) y e ' ay

F ^ (m+n) um+n ^ e U du • B ‘*'(m,n) vm ^(l-v)n * dv on (O,00) x (0,1).

Hence one may sample the latter two densities and set x = uv. The first

is possible since m+n=H +_ e

B. For the density f(s,t) 

probability of acceptance

1/2, 1, 3/2, 2,.. 

msm ^ ntn 2 on (0,1) x (0,1), we find the
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E = P(s+t<l) = ^ms®"1 ds J1 S ntn"1dt = r(m+l) r(n+l)/r(m+n+l)

and hence the conditional density function

g(s,t) = E 1f(s,t) E ^ ms® ^ ntn for s,t > 0, s + t < 1. Under g(s,t).

the density for the value of the function v = s/(s+t) is found to be

q(v) = v® 1(l-v)n ^/BCnijn), on (0,1). Hence we may sample g(s,t) for

s,t by rejection technique, and set v = s/(s+t) for accepted s,t, as in 

the rule. The density q(v) may be verified from (i) or (ii):

(i) dv / S(s,t)ds dt = E 1 ^-/^ms® ldsf ntn‘1dt = q(v)

s/(s+t)<v 0 s(1-v)/V

R2.

J2.

(ii) Under transformation s = S, t = S(l-v)/v, one finds g(s,t)ds dt

= nS®+n 1(l-v)n dS dv/vn+^ B(m,n+1) = h(S,v)dS dv for 0 < S < 1,

rv
S < v < 1, with marginal density / h(S,v)dS = q(v). Hence the density of

J0

v under g(s,t) is q(v), where v = s/(s+t).

Define H, R, n as in Rl. Sample ^ e X/r(R) for x as in Rl. (i.e.,

with H = 0, m = R). Sample 1 e ^/T(H) for E, by C22 or C32. Take 

£ + x as final x.

The density of X = £ + x under F ^(H) ^ e ^ X r '*‘(R) xR ^ e X is

F‘ (H+R) -1 -X

R19.

R.

Note. The probability E of acceptance in Rl becomes small for large m, 

but is high for 0 < m = R < 1/2. Thus R2 is indicated for large m.

B(y) = v®"1(l-v)n"1/B(m,n); (0,1)

u c 1 / r 1 sHl+n r, r ■. rr. ■.b(z) = z /(1 + z) B(m,n); (0,°°)

q(9) = 2sin^® ^ 6 cos^n ^ 9/B(m,n); (0,tt/2), arbitrary m,n > 0, not both

m 1/2, 1, 3/2, 2,...

Sample x® ^ e X/r(m) for x on (0,°°) by C22, C32, or R18. Similarly,
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n— 1 —ysample y e ^/r(n) for y (with suitable change of notation). Set

J.

R20.

R.

J.

R21,

R.

J.

v = x/(x+y), z = x/y, 0 = arcsin iAF.

See C35 (J).

t(z) = 2F ^ (m) z2m 1 e Z ; (0,°°), arbitrary m > 0, m ^ |l/2, 1, 3/2, 2,..

1/2Sample p(x) for x on (0,°°) as in R18. Set z = x 

t(z)dz = p(x)dx

1 2 2p(x) = — sin x/x ; (-00,00) * 1 2

f 1Define = J 2p(x)dx .57), = 1 - A^. If r^ < A^, accept x =

2 Z. Zif sin x/x^ < r'. If r^ > accept x = 1/r if sin^x < r'. Change 

sign of accepted x with probability 1/2.

By symmetry, we may sample 2p(x) for x on (O,00), with provision for 

change of sign. Regard 2p(x) as a composite of its values on (0,1) and

. 2

/l 2 2 2
— sin x dx/x , A^ = 1-A

0
1,

and sample the densities a^ = 2p(x)/A^, a^ = 2p(x)/A2 with probabilities

A , A . For the first we have a (x)dx =
1 z 1 7TA

2 2 with sin x/x < 1.

2 2 2 2For the second, a2(x)dx = (sin x) (dx/x ) with sin x < 1. Each of

these is sampled by the rejection technique of R7. The efficiencies in 

the two cases are t\A^/2 - .89, ^2/2 = .67.
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