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Summary 

The field equations governing creep in spherical and incompressible 

cylindrical pressure vessels subject to a nondecreasing internal pressure 

.are reduced to a single equation in the effective stress. Using this 

equation, bounds .are obtained for the .effective stress and the displacement 

at any point in the body at any time.. Also, in the case where the 

pressure tends to a limit as t -t -, limit theorems are obtained which 

describe the long term behavior of the effective stress and the displacement. 



1. Introduction 

A priori bounds for creep problems are of great practical importance 

in engineering applications, since they allow rapid evaluation of preliminary 

designs and reduce the need for comprehensive and expensive computer 
, . 

solutions. Bounds for creep derived by authors such as Leckie, Martin, 

and Ponter [4], [6] on the basis of energy considerations are well known. 

' These give estimates for the displacement on the surface of bodies of 

fairly general geometry subject to creep. While results of this type are 

quite general,' their application to specific cases first requires the. 

.solution of an associated boundary value problem. A type of.bound not 

having this liniitation is.due to Einarsson [ 2 ] ,  [3] and does not seem to 

be as well known. Einarsson's bounds result from direct calculus 

considerations and may be calculated a priori in terms of known quantities 

without the need for solving any boundary value problems. While they are 

thus'quite simple to apply, they are limited in their generality; the 

bounds of [2] and [3] apply only to spheres and cylinders under constant 

internal pressure. 

Our work furnishes a new set of direct calculus bounds for a 

generalization of the problems considered by Einarsson; however, the formula- 

tion is more direct and proceeds using totally different arguments. We 

deal with the two problems of 'the hollow sphere and the infinite incom- 

pressible hollow cylinder subject to internal pressure p. However, in 

all of our results we'relax the constraint that p be constant in time and 

allow it to be nondecreasing. An earlier version of our bounds for the case 

of spherical geometry .and constant pressure appears in [I]. Like Einarsson, 

we include the effect of the elastic as well as the creep strains and 

reduce the field equations to a single integral equation. Our method of 

reduction leads directly to an equation for the effective stress, here 



denoted by a, rather than to an associated quantity such as the y defined 

by Einarsson. Thus the bounds which result relate immediately to all of the 

physical quantities of the problem without the need for further transformation. 

For comparison purposes we record the equation central to developing 

~inarsson's bounds. The cylinder equation, given by (51) of [2], and the 

sphere equation, (94) of [2], are given respectively by the cases j = 2 

'and j = 3 of the equation 

where we have neglected the effects of strain-hardening included in (51) 

and (94) of [2] ; i. e .  , we have set m = 0. For the cylinder case (j = 2)', 

the quantity y is related to the radial stress a through equations (37) r 

and '(55) of [2]. In (3.12) of the present paper we show the relation, - 
again for the cylinder, between y and.the effective stress. The derivation 

of (1.1)' is given in [2]; however, the analysis leading to error bounds 

for numerical solutions in the case of secondary creep, which is of major 

interest to us, is contained in [3]. In section 2 we obtain equations 

for the sphere (2.28) and the cylinder (2.32). These are then unified 

in equation (2.36). This latter equation plays the role analogous to 

(1.1) and is the equation on which the analysis of the paper is based. 

Our first results in .section 3, which have no counterpart in [2] and 

a u a .  
[3], state that - < 0 and - (rJa) > 0,for all t > 0, where j = 2 for 

ar ar 

cylinders and j = 3 for spheres. These results, together with some others, 

are used to obtain bounds (3.8) fqr a(r, t) . They, in turn, may be used 
r .  . . 

. . 
to furnish upper and lower bounds. for the radial displacement u(r, t) at 

any point in the body, although only bounds for the displacement u(b,'t) 

at 'the outer surface [(3.. 9) and (3.10) 1 are stated. These bounds reduce 



to the exact solution at t = 0. However, as indicated in section 5, 

they lose accuracy as t increases.. At the end of section 3, a comparison 

is made between (3.8), restricted to the special case of constant pressure, 

and the.,bounds on the effective stress implied by those of Einarsson for 

y. . 1t is shown that the two sets of bounds, which were derived by 

completely diiferent arguments, also give different results. 

In section 4, ~htiorein 4.1, it is that if p(t) tends to a 

constant fast enough, then a tends to a limit as t -+ m. The main idea in 

our proof is due to ~inarsson and was used by him in [3] to prove that' 

solutions y of an equation (3) of [3], which is a generalization of (1.1), 

tend to. a constant.yoo. This idea is essentially an application of linear 

methods to a nonlinear problem, in that it involves the introduction of 

. . 
an appropriately chosen inner product and norm, the estimation of the' 

norms of certain quantities, and the application of these norms together 

with:a Sobolev-type inequality to the derivation of a pointwise estimate 

which implies uniform convergence. We apply this method to the equation 

(4.23) belbw, which is a modi'f ication of (2.36) involving .a power of the 

effective stress. For f 0, this equation is not contained in Einarsson's 

generalized equation (3) in that it does not have Einarsson's property C. 
. 

However, even in the case p G 0 we feel that our convergence argument 

is worth stating in detail, since, by virtue of having specialized, we 

are able to introduce .various simplifications. Equation (4.13) gives an 

explicit expression for the limit of the effective stress. 

. In section 5 we derive an asymptotic expression for u(b,t) as t -too 

and a new bound for u.(b,t) which is suggested by the analysis of section 4 
. . 

. . 

and which appears to be more appropriate for large times than the previously 

derived bound. 



2. Derivation of Equations 

I - 
Following  ina ark son [2] and numerous other authors, we write the 

I . strain-stress relations for secondary creep with initial elastic response I 
I in the form 1 I 

where 

and 

Here E E'~), and E(') denote total strain, elastic strain, and 
ij' ij ij 

creep strain respectively, while o ij' s ij' and oe stand for stress, stress 

I - 
deviation, and the effective stress. The latter two quantities are defined I 
in terms'of the stress by' the equations 

. I 

 he quantity o is taken to be the positive square root of 02 (c.f. 
e e 

Odqvist [5], page 20). We.assume that Young's modulus E and Poisson's 

ratio v.satisfy the inequalities 

and .that creep constants K,n are positive with n 5 1. With the assumption I 
that the creep strains are initially iero, the total strain-stress 

i j 

relations take the form 

'subscripts have the range 1, 
29 3' 

stands for the Kronecker delta, and 
summation over repeated indices is imp ied'; We shall also use a superposed 
dot to denote differentiation with'respect to' time. Our symbol for Poisson's 

. ratio is different from that used by Einarsson. 



We shall now sketch the derivation of the equation which governs the 

effective stress in a hollow spherical shell of inner radius a and outer 

radius b subject to a nondecreasing internal pressure p(t) 2 0 and zero 

' body. force. In spherical coordinates r, 9 ,  $ with the displacement 

components denoted by ur, ue, u ~ ,  the assumption of a spherically symmetric 

deformation takes the form 

Subject to (2.8), the. infinitesimal strain-displacement relations (see 

e.g. Sokolnikoff [ 7  1, page 184.) in spherical coordinates reduce to 

It then follows immediately from (2.6), (2.7), and (2.9) that 

a = a  = a  =0. , 
re r 04 Qe = a$ 9 

so that by (2 ..4) and ,(2.5), 

a e = lar-uel , 

' 8  = - -  1. s = ?; (uO 1 -a):-a . 
2 r 

(2.11) e r 3 

It will later be proven that the quantity a is, in fact, the effective 

stress. With the above simplifications, the strain-stress relations (2.7)' 

for E and E become 
r 8 

1 
E = E [ar - 2 ~ ~ ~ 1  - 1 r 

(2.12) 

1 1 
E =-[(I - v)ae'- va I + - I  

r 2 
(2.13) 

8 E 

. , 
' where 

(2.14) 



We adjoin to (2.12) and (2.13) the quasistatic stress equation of motion 

(assuming zero body force)' and the strain equation of compatibility 

to obtain four equations for the four unknowns E E a and.a This 
r' 0' r' * 

system can be rapidly collapsed into a single equation for a. In fact, if 

we substitute the expressions (2.12) and (2.13) for cr and E into (2.16) 
9 

and utilize (2.11) and (2.15), we find that 

from which it immediately follows that 

Before dealing with the unknown function f (t), we first record the 

boundary conditions 

Together with (2.15), they imply that 

This result suggests that the natural way to eliminate f(t) is to multiply 

both sides of equation (2.17) by r-l, integrate with respect to the space. 

variable, and then apply (2.19). Substituting the resulting expression 

for f(t) back into (2.17) and making use of (2.14), we obtain 

Here 



We assume from now on the existence of a differentiable solution a of 

(2.20) . It is physically plausible that a 2 0, so that a = a . using 
e 

(2.20) ,. we can prove <his conjecture easily, provided we make the basic 

assumption that 

Our proof depends on the following elementary fact which we record as a 

lemma for future reference. 

Lemma 2.1. - Let Q and G be continuous functions of t on [O,t] (T > O), and 
1 suppose that F - is C and satisfies the equation 

$ + Q F = G  (2.24) 

on [O,T] . Suppose G 2 0 (resp. G 5 0) on [O,T] & F(0) 2 0 (resp. - 

F(0) 5 0). Then F 2 0 (resp. F 5 0) for all t - in [O,T]. Furthermore, 

if, in addition, either F(0) > 0 - or G > 0 on (O,T] (resp. F(0) < 0 or 

G < 0 - on [O,T]), then F > 0 on (O,T] (resp. F < 0 on (0,TI). 

The lemma follows from the representation 

F(t)exp[Ji Q,T)~T] = 0 )  + 1: P Q(i)di] d~ . (2.25) 

Suppose now that there exists t >.O and a 5 r s b such that a(r,t) < 0. 

Let 

8= {t > 0: there exists a 5 r 5 b such that o(r,t) < 0) . 
Then t E g.2.b. 

1 
t$ exists and t > 0 by (2.20). (2.23). and the assumed 

1 

' continuity of a. Due tb'the Bolzano-Weierstrass Theorem, there must exist 

a I r < b such that a(rl,tl) 5 0. However, differentiating (2.20) with 
1 - 

respect to t, we find that 



Due to the continuity of a and the definition of tl, we must have a 2 0 

in [a,b] x [O,tl]. Therefore (2.23), (2.26), (2.27) and Lemma 2.1 imply 

. . thata(rl,tl)> 0 on [a,b], which is a contradiction. Since we now know 

that a 2 0 on [a,b] x [O,m) we may apply Lemma 2.1 to (2.26) and (2.27) 

again to see that a > 0 on [a,b] x [O,m). 

Equation (2.20) now becomes 

It follows from (2.9), (2.13), (2.14), (2.15), and (2.18) that the 

radial displacement u(r,t) is expressed in terms of the effective stress 

a by the equation 

A quantity of special interest is u(b,t), the displacement history of 

the .outer surface of the cylinder. Due to (2.19), it takes the form 

Let us consider now the case of a hollow incompressible cylindrical 

pressure vessel of inner radius a: and .outer radius b subject to an internal 
, . 

pressure p(t) which satisfies the restrictions (2.23). We again denote 

the radial displacement by u(r,t) and the effective stress by a(r,t). 

In this case 



The cylinder equations analogous to (2.28) and (2.29) are 

Here, 

The di.fference between the derivation of the ,incompressible cylindrical 

and the spherical equations is not sufficiently great to justify the 

inclusion of the former in this paper. Both (2.28) and (2.32) are included 

in the general equation 

where j = 2 or 3 and 

The derivation of (2.28) and (2.32) included the proof that a > 0 on [a,b]. 

With assumptions (2.37); this can also be proven directly from (2.36) ' and 

Equations (2.30) and (2.33) for the case r = b both have the form 

where K is a material constant. Notice that by (2.36) and (2.39), 



This yepresentation. bf .;, together with (2.37) and the fact that o > 0 

implies that u(b,t) is a nondecreasing function of time. 



Monotone P r o p e r t i e s  and Bounds f o r  t h e  E f f e c t i v e  S t r e s s  

It fol lows from (2.36) a f t e r  some d i f f e r e n t i a t i o n s  th,at 

Applying Lemma 2.1 t o  these  two equat ions  together  wi th  '(2.37), w e  s e e  

t h a t  

j Also, i f  w e  mu l t ip ly  (2.36) by r and d i f f e r e n t i a t e  wi th  r e s p e c t  t o  r we 

s e e  t h a t  

From t h i s  equat ion i t  fol lows t h a t  

This  p a i r  of equat ions ,  toge ther  wi th  (3.1) and Lemma 2.1, imply t h a t  f o r  

i n  t h e  case  of nonl inear  c reep ,  i .e . ,  n > 1. I n  t h e  l i n e a r  v i s c o e l a s t i c  

case  n = 1, they can be solved us ing  (2.25) t o  ob ta in  

f o r  some func t ion  g. For t h e  r e s t  of t h i s  paper we s h a l l  r e s t r i c t  ourse lves  
. . .  

t o  t h e  nonl inear  case;  s o  t h a t  (3.3) holds.  It then fol lows from (3.2) 

t h a t  



- f o r  t ' >  0. 

We.can now obta in  bounds f o r  a ( r , t )  f o r  a l l  t ? 0. By v i r t u e  of 

(3.5) and ( 2 . 3 6 ) ,  

Theref ore,  

A very s i m i l a r  argument .y ie lds  t h e  lower bound 

I n e q u a l i t i e s  (3.6) and (3.'7) together  with (3.1) imply t h a t  f o r  ariy 

QW- < a r t  r B Pet) - 
b j a j 

By (2.36) and ( 2 . 3 9 ) ,  u ( b , t )  has the  r ep resen ta t ion  

This equation,  together  with (3.5) and (3 .8) ,  implies t h e  following upper 

and lower bounds on the  displacement of the  outer  su r face  of the  vesse l :  

Notice t h a t  these  bounds converge t o  t h e  exact  s o l u t i o n  a s  t tends t o  0. 



In the case where P is independent of t, Einarsson 12 1,  [3 ] also 

states a priori bounds on the quantity y(x,t), x = r / a ,  which imply bounds 

2 
for the effective stress a . For the incompressible cylinder, 

e 

for all time and all 1.5 x 5 c = b/a. It follows from (34), (37), and 

(55) of [ 2 ] that, in the absence of strain hardening, a and y are related 
e 

by the equation 

Here, p stands for the internal pressure, and T is a dimensionless quantity 

proportional to t which is defined by (39) and (40) of [2 1. Taken 

.together, (3.11) and (3.12) imply the following bounds on ue: 

Notice that at the inner boundary of the cylinder, where x = 1, the lower 
n 

bound in (3.14) becomes negative for c > 2 2n-2. On the other hand, at the 

at the outer boundary x = c, , (3.8), with P = p for the cylindrical 
2 

case, implies 

whereas Einarsson' s upper bound (3.13) becomes 

L 
In our discussfon of Einarsson's results, we again use ue to denote' 
effective stress in order to avoid confusion with Einarsson's notation - 1 u p  or. 



The latter is obviously a much better bound than the.former for large c. 

This is not necessarily, true,for all values of c and n. For example, in 

the case where n = 6, we have 



4. A Limit Theorem for the Effective Stress 

In order to establish a limit theorem for a(r,t) as t + m, we introduce 

3 the inner product 

and the corresponding norm 

'.~otice that for the linear functional R(v) defined by 

we have for any integrable function v and constant function c 

a(v> = (v,l) , g(vw)=(v;w) . 

For the norm (4.2) one has the following Sobolev-type inequality: 

Lemma 4.1. If v is any function c1 - in [a,b] & < is any positive constant, 

then 

for all r in [a,b]. - 

We shall also need the following Lemma. 

Lemma 4.2. Suppose that u(t) sa'tisfies the inequality 

G(t> + Qu(t) 5 F ( t )  
. . 

for all ,t > 0, where 'Q is a positive constant, - and 

-a-1 
IF<t) 1 -< A t , a > O  

3~ompare [ 3 ] equation (40). 



for all t r tl. Then 

I [ /I2 e e-Qt + i i k a  u(t) I u(0) + (4.10) 

for all t such that 

-1 
t 2 t2 = max{tl,Q . ( a +  1)) . (4 .'ll) 

In what follows, we shall write f(t') = O(g(t)) if any only if there 

exist constants t and A > 0 such that 
1 

for all t i tl. We shall also write f (r, t) = O(g(t)) uniformly in [a,b] 

provided the constants A and t can be chosen to be independent of r. 1 

Theorem 4.1.' Suppose that.for some constant a > 2, 

Then [ -" b-.i]-' - i 
lirn o(r,t) = 1 P(-) a n r 
t- 

n 

uniformly in [a,b] . 
Proof. Equation (2.36), when differentiated with respect to time, becomes 

We define 

. . where the linear functional R is given by (4.3). With this notation, 

(4.14) takes the form 



In order to show that o(r,t) tends to a limit om(r) uniforhly in 

[a,b] as t + a, it suffices to prove that , 

-a+l 
;I(r,tj = o[t (4.17) 

uniformly in [a,b]. If we then take the limit of (4.14) as t -t = using 

n 
(4.12), (4.17) and the uniform convergence of o on [a,b], we see that . 

for some 'constant C > 0. In order to evaluate C, we multfply both sides 

of equation (2.36) by .r-' and integrate with respect to r from a to b. 
This yields the identity 4 

, . 

Since this identity must hold in the limit as t -t m, we may 'use it together 

with (4.18) to evaluate C. In this way we arrive at (4.13). 

Inequality (4.17) will follow from (4.12) and (4.16) provided we 

can show that 

-a+l) 
Iz(t) - w(r,t) ( = O(t (4.20) 

uniformly in [a,b]. This estimate will follow from the Sobolev inequality 

. Lemma 4;1 once we demonstrate.that 

The derivation of (4.21), (4.22) uses the differential equation 

- = n-1 
aw at no (r,t) (~i(t) + II[z(~) - w(r,t)l) (4.23) 

which is equivalent for o > 0 to (4.16). Using (4.23) together with 

(4.6) we see that . 

4~ompare (2.19) foi the special case of the sphere. 



An application of the arithmetic-geometric mean inequality with parameter 
5 

to the right-hand side.o£ this equation then yields the differential 

inequality 

d 2 - ( 1  - z 2 )  + Q~(Iw - z112 s clp (t) (4.24) dt 

where 

The infimum and supremum are taken over all (r,t) in [a,b] x [O,-1. 

That Q1 and C1 are finite and positive follows from (2.37) and (3.8). 

Inequality (4.24) together with (4.12) and Lemma 4.2 imply (4.21). 

1n order to establish (4.22), we use (4.23) again to see that 

Shce by (3.1) and (3.3). 

it follows that 

5~his inequality states that for a and b real and 8 > 0,' 



Again.applying the arithmetic-geometric mean inequality, this time with 

. , 

parameter 
. . 

we. obtain the differential inequality 

' where 

Inequality (4.22) now follows from (4.12), (4.21), (4.27) and Lemma 4.2. 

This completes the proof. 



5. Further Study of u(b,t) 

~heoiem 5.1. Let G(t) = ~(t-') where a > 2.5. Then 

Here z(w); the limit of ,z(t) as t -+ a, is given by 

This theorem shows that, if tlie convergence of P to P(w) is sufficiently 

rapid, then u(b,t) tends asymptotically in the t,u plane to a straight 

line with slope 

Let us consider the important special case in which P is constant.. In 

this case, the upper bound (3.9) on u(b, t) ,becomes 

where 

-n 
v = Kubl-J (jpln a' 11' - c-' I 
1 .  

For n = 1, vl = v2. However, for n > 1 and 1 < c < w, v1 > v 2 ' 
In order 

to see this, we define 

Then 

and the assertion follows- from (5.6), (5.7), and the fact that f (x) < f (x) 1 2 

for 0 < x < I. This shows that (3.9) is a bad estimate for large t and 



motivates us to complement it by another bound which has asymptotic slope . 

Proof of Theorem 5.1. Since, by (2.36), (2.39), and (4.15), 

it is clearly sufficient to show that 

OD Ij ( )  - Z l d  . . 
0 

However, 

. . . . 

so that 

In order to estimate the order of i, we apply the operator R to both sides , 

of (4.23), thus obtaining the equation 

n-1 i=n(a ,BP+P[~-W]) . 
Applying first the Schwar,z and then the Minkowski inequality to the right- 

hand side of this equation and then appealing to (4.21), we find that , 

n-1 III ~nllo 11  (sb + ullz-wll) (5.12) 

The proof of the theorem follows from (5.9), (5.11), and (5.13). . 
' 

The analysis for Theorem 5.1, together with (4.24), can be used to 

construct a new bound for u(b, t) which has the desired asymptotic behavior. 

Such a bound can be based on the inequality, 



which fo l lows  from (5.8) and (5.10) ,  t oge the r  wi th  t h e  bound 

- 
t 2 Q t 

+C1 I i2 ( r )eQ1Td~]  exp [- +]) , , (5.15) 
0 

which is  obtained from (4.24) and (5.12).  An analogous lower bound f o r  

u(b,  t )  is  a l s o  r e a d i l y  der ived .  Bounds f o r  t h e  q u a n t i t i e s  1 1  , ' 
and Q can be based on e i t h e r  (3.8)  o r  (3.131, and (3.14) ,  depending on 

1 

t h e  va lues  chosen f o r  n  and c .  For t h e  case  i n  which t h e  p re s su re  h i s t o r y  
! 

P is cons t an t  i n  t i m e ,  (5.14) and (5.15) imply t h a t  

where 

and ' Ql is given by (4.25) . 
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