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Summary

i ‘ The field equations4governing cregp in spherical and incompréssible
; cylindrical pressure vessels subject to a nondecreasing internal pressure
are reduced to a single equation in the effective stress. Using this
equation, bounds,are.obtained for the effective stress and the displacement
at any poiﬁt in the body at any time.: - Also, in the case where the
pressure tends to a limit as t - «, limit theorems are obtained which

“ describe the long term behavior of the effective stress and the displacement.




1. Introduction

A priori bounds for creep problems are of great practical importance
.in engineering applications, since they allow rapid evaluation of preliminéfy
designs and reduce the need for_comprehensive and expenéive computer
sqlutions. Bounds for creep derived by authors such as Leckie, Martiﬁ,
and Ponter [4], [61 on the basis of energy considerations are well known.
Thesebgivé estimates for the displacement on the surface of bodies of.

- fairly general geometry subject to creep. While results of this type are
quite general, their application to sﬁecific casés first requires the:
'~solution of an associated boundary value problem. A type of bound not

" having this limitation is,d#e to Einarsson [2], [3] and does not seem to
‘'be as well known. Einarsson's boun@s result from direct calculus
considerations and may be calculated a priori in terms of known quantities
without the need for solving ény boundary value problems. 'While-they.are
'thus"quitg éimple to appl&, they are l;mited_in thei; gengrality; ﬁhe
bounds of [2] and.[3] apply only to spheres and cylinders under constant
internal pressuré.

Our w§rk furnisheé a new set of direct calculus bounds for a
generalizatiop of the problems considered by Einaréson; howéver, the formula-
tion is more direct and proceeds using totally different arguments. We
deal with the two prob}ems of the hollow sphere and the infinite incom-
préssibie hollow cylinder shbject fb internal pressure p. However, in
‘ all of our results we relax the constraint that p be constant in time and
allow.it to be nondecreasing. An éarlier version of our bounds for.the case
of Sphe;icél geometry,ahd_conSCAnt pressure appears in [1]. Like Einarsson,
we include the effect of the elaspic as well as the creep strains and
reduce the field equations to a single integral equation.' Our method of

reduction leads directly to an equation for the effective stress, here




denoted ﬁy 6, rather than to an associated quantity éuch as the y defined

by Eiharsson{ Thus thelﬁounds which result relate immediately to all of the

physical quantities of the problem without the need for further transformation.
For compafison purposes we record the equation central to developing

Einarsson's bounds. The c&lindef equation, given by (51) of [2], and the

sphefé equation, (94) of IZ], afe given respectively by the cases j = 2

‘and ] = 3 of the equation
n

: . ] c
B (x,t) = -1 + [1 + x Jti/n { 1< J YCELE) 4p _ y(x,t}] ,
at J-o1 s €J+1

NG =‘2,3) s . (1.1

where we have neglected the effects of strain-hardening included in (51)
and (94) of [2]; i.e., we have set m = 0. For the cylinder case (j=¥2),
the“quantity y is related to the radial stress or through eduations (37)
and (55) of [2]. 1In (3.12) of the present paper we show the relation,-
again for the cylinder, between y and.the éffective stress. The derivation
of (1.1) is given in [2]} hovwever, the anal?sis leading to error bounds
for numerical solutions in the case of secondary creep, which is of ﬁajor
intgrest to us, is conﬁained in [3]. In section 2 we obtain equations
for the sphere (2.28) and thé cylinder (2.32); These are then unified
in equation (2.36). This latter equation plays the role analogous to
(1.1) and is the equation on which the analysis of the paper is based.

Our first results in section 3, whicﬁ have no counterpart in [2] and
{3], state that %% < 0 and g%-(rjo) > 0 for all t > 0, where j = 2 for
cylinders and j = 3 for spheres. These results, together with some others,
are qsgd-to obtain bounds (3.8) for o(r,t). They, in turn, may be used
to fﬁrnish upper ahd.16Wer'$Ohnds-for the radial displacement u(r,t) at
any point in the body; altﬁough only‘bounds for the displacement u(b,t)

at the outer sutface [(3.9) and (3.10)] are stated. These bounds reduce




to.the exact solution at t = O. However, as indicated in section 5,

they lose accuracy as t increases. At the end of section 3, a comparison
is made between (3.8), restricted to the special caée of constant pressure,
and tﬁe*bounds on the éffeétive stress implied by ihose of Einarsson for
y. - It is shown that the two seté of bounds, which were derived by
éompletely different arguments, also give different resulté.

| In section 4, Tﬂéoreﬁ 4;1, it is proven that if p(tj tends to a
constant fast enough, tﬁen o ténds to a limit és t + . The main idea in
our proof is due to Einéfsson and was used by him in [3] to prove thét‘
‘ solﬁtidﬁs'y‘of an equation (3) of [3], which is a generaiization of (1.1);
tend to a constant.jw._ This idea is essentially an appiication of linear
methods to a nonlinear problem, in that it involvesvthe'introduction of
~an appropriately chosen inner product and.norm, the estimation of the
norms of certain quantities, and the.application of these norms togefher'
with . a Sobolev-type inequality to the derivation of a pointwise estimate
which implies uniform qonve:genée. We apply this method to the equation
(4;23) belbw, which is a modification of (2.36) involving a power of the
effective stress. For ﬁ # 0, this equation is not coﬁtained in Einarsson's
genéralized équation 3) in‘that it does not have Einarsson's broperty C{
However, even in the case ﬁ,E 0 we feel that our convergence argument

is ﬁbfth‘staging in deﬁéil, since, by virtue of having specialized, we.

are able tq‘intfoduce'various simplifications. Equation (4.13) gives an
explicit exp;ession for the iimit of the effective stress.

In section 5 we derive an asymptotic expression for u(b,t) as t + «

and a new bound for u(b,t) which‘is suggestéd by the analysis of section 4
" and which appears to Ee ﬁéfe appropriate»foi large times fhan the previously

©

derived bound.




2. Derivation of Equations

Following Einarsson [2] and numerous other authors, we write the
strain-stress relations for secondary creep with initial elastic response

ip the forml

_ @, o

eij eij +€ij A | (Z'A)
where

(e) _ 1 - o 2

eij =3 [(1+ \))0i vckk ij] . - (2.2)
-and

5e(¢)

A1 3l 1 (2.3)

5t 2% 815 - y

Here eij’ eii),‘and si§? denote total strain, elastic strain, and

13° Sij’ and oe stand for stress, stress

deviation, and the effective stress. The latter two quantities are defined

' creep strain respectively, while ¢

in terms of the stress by the equations

S, .
= g ,
sij Oij 3 okk 3 A A o (2.4)
223 .
0, =3 sij sij . (2.5)

The quantity O is taken to be the positive square root of ci (c.f.
Odqvist [5], page 20). We assume that Young's modulus E and Poisson's
ratio v.satisfy the inequalities

E>0 , -1<v5‘%~ , (2.6) -

and that creep constants K,n are positive with n > 1. With the assumption

c)

that the creep strains eij are initially zero, the total strain-stress

relations take the form

lSubscripts have the range 1, 2, 3, §;i stands for the Kronecker delta, and
summation over repeated indices is impiiedi We shall also use a superposed
dot to denote differentiation with respect to time. Our symbol for Poisson's
ratio is different from that used by Einarsson.




2.7

€,
1]

e f=
[8%]

=
S—
rr

Q
=]

[

[

V)

o

~

[(1 + v)oij - Vdijckk] + o)

We'shéll now sketch the derivation of the equation which goverﬁs the
effecéive stréss in a hollow spherical shell of inner radius a and outer
radius b‘subject to a nondecreasing internal pressure p(t) > O and zero
'body,force. In spherical coqrdinates r, 8, ¢ with the displacement

components denoted by u?, ué, u,, the assdmption of a spherically symmetric

¢

deformation takes the form

‘u_ = u(r,t) , uy = u¢ =0 . . (2;8)

Subject to (2.8), the infinitesimal strain-displacement relations (see

- e.g. Sokolnikoff [7 ], page 184) in spherical coordinates reduce to

= — .= =E = =‘ =
e_= £ € r €ro 4er¢ €6¢ o . (2.9)

Gre = °r¢ = °6¢ =0 |, oe = °¢, y (2.10)
so that by (2.4) and (2.5),

e é'lor '-°e| i

R U SN g | '

8y = 7 S, 3 (oe or) =3 g . (2.11)

It will later be proven that thelquantity o is, in fact, the effective
stress. With the above simplifications, the strain-stress relations (2.7)

for'er and ee become

e, =g lo, - 2ol - [ - ‘ (2.12)
C Ll - ouye 1 | - -
€ = [(1 v)oe v?r] + > Z (2.}3)
where
v S 1 . )
Y (r,t) =K J c: cdt . . (2.14)
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We adjoin to (2.12) and (2.13) the quasistatic stress equétion of motion
25 22520 ~ (2.15)
T A
(assuming zero body force) and the strain equation of compatibility
€= Ji-(r €,) : | (2.16)
r or 67 ' ‘ _

to obtain four equations for the four unknowns Er’ €g> cr, and. o This

6’

. system can be fapidlyvcollapsed into a single equation for o. In fap;, if .

into (2.16)

we substitute the expressions (2.12) and (2.13) for_erbandAee
and utilize (2.11) and (2.15), we find that
) 3 E- 3 3¢, _
r Tt raowy e D=0,
from which it immediately follows that
o(r,t) +2(1_v)2 Q,n = =3 . _ (2.17)

T
Before dealing with the unknown function f(tx we first record the
boundary conditions

o (a,t) = -p , o (b,t) =0 .. - (2.18)

Together with (2.15), they imply that

. . d
| ey 2R | (2.19)
g 2 . , .
a E
This result suggests‘fhat the natural way to eliminate f(t) is to multiply
both sides of equation (2.17) by rfl, integrate with respect to the space. -

variable, and then apply (2.19). Substituting the resulting expression

for f(t) back into (2.17) and making use of (2.14), we obtain

B8 p(t) B (b (t t ' ' 4
o(r,t) = —§————‘+ M. (—E-j J cn-lczdr a4 _ J cn_ltsdf). . (2.20)

2f3 _ ? r3_ a’o € 2 o €

Here '




- EK
Wy = Ezifj;y , . L . (2.21)
-1 _ dg
B, = J = . - (2.22)

ag
We assume from now on the existence of a differentiable solution ¢ of
(2.20). 1t is physically plausible that o > 0, so that ¢ = Oy Uéing

(2.20), we can prove this conjecture easily, provided we make the basic

.assumption that

p(0) >0 , . p(t) 20 (£20) . (2.23)
Our proof depends on the following elementary fact which we record as a

lemma for future reference.

Lemma 2.1. Let Q and G be continuous functions of t on [0,t] (T > 0), and

suppose that F i§_C1 and satisfies the equation

F+QF =6 | (2.24)
on fO,T]. Suppose G 2 0 (resp. G < 0) on [0,T] gBQ_F(Oj 2 0 (resp.
F(0) < 0). Igég F > 0‘(£g§2; F < 0) for all t ig [0,T]. Furthermore,

if, 'in addition, either F(0) > 0 or G > 0 on (0,T] (resp. F(0) < 0 or

G < 0 on [0,T]), then F > 0 on (0,T] (resp. F < 0 on (0,T]).
The lemma follows from the representation
t t T _
F(t)exp[:J Q(r)dr] = F(0) + j G(T)exp[jj Q(A)d*] dt . (2.25)
0 0 ‘ 0
Suppose now that there exists t > 0 and a < r < b such that o(r,t) < O.
Let
72 . ' :
= {t > 0: there exists a < r < b such that o(r,t) < 0}
Then t, = g.2.b. tjr exists and £

continuity of o. Due to the Bolzano-Weierstrass Theorem, there must exist

> 0 by (2.20), (2.23), and the assumed

a< < b such that 6(r ,tl) < 0. However, differentiating (2.20) with

1 1
respect to t, we find that




B.[: b
-_S|p n-1_d¢
g =— [2 + M J o, © £ ] . (2.26)
r a
. BP(0) :
o(r,0) = — - : : - (2.27)
: 2r '

‘Due to the continuity of o and the definition of t,, we must have ¢ > 0

1
in [a,b] x [O,tl]. Therefore (2.23), (2.26), (2.27) and Lemma 2.1 imply
that~o(rl,tl)> 0 on [a,b], which is a contradiction. Since we now know
that ¢ > 0 on [a,b] x [0,») we may apply Lemma 2.1 to (2.26) and (2.27)

égain to see that ¢ > 0 on [a,b] x [0,x).

Equétion (2.20) now becomes

B.P(t) B. (b rt t ‘
o(r,t) = = 4 u = on(g,r)dr d& _ on(r,r)dr .. (2.28)
3 . s \.3 £
A 2r r- ‘a’‘0 0
It follows from (2.9), (2.13), (2.14), (2.15), and (2.18) that the
radial displacement u(r,t) 1is expressed in terms of the effective stress

o by the equation

. : : T
u(ryt) = % [(1 - v)o(r,t) - (1 —_2v)p(t) + 2(1 - 2v) J o(E,t) 5%;]
. ) : a

) Kr t n ‘
+ = J o (r,t)dtr . (2.29)
2 0

A quantity of special interest is u(b,t), the displacement history of
"the outer surface of the cylinder. Due to (2.19), it takes the form

.

u(b,t) = a ;?v b [%(b,t) +oug J Un(b,T)dT] . (2.30)

0

Let us consider now the case of a hollow incompressible cylindrical
pressure vessel of inner ?adius a{and.outer radius b subject to an internal

pressure p(t) which satisfies the restrictions (2.23). We again denoté

the radial displacement by u(r,t) and the effective stress by o(r,t).

In this case




g(o—o) . _ (2.31) °

9= 0 T

The cylinder eqﬁations analogous to (2.28) and (2.29) are

| V3 8 _p(t) 8 (b (t t \
o(r,t) =-—————‘=————-+uC (—E-J J o(e,)dr 35 - J on(r,r)dr) ,  (2.32)
a 0 ’

2r2 r2 0 &
. . |
u(r,t) = /g r {%(r;t) + u J on(r,r)dr] . (2.33)
‘ E . c 0 . .
Here,

b

gt = J %€, (2.34)
c 3

ag

M, = EK . | (2.35)

The differénce between the derivation of the incompressible cylindrical
and the sphérical equations is not sufficiently great to justify the
inclusion of the former in this paper. Both (2.28) and (2.32) are included

in the genéral equation

4 b ¢t | t _
o(r,t) = §B$£l + (Ji J J on(g,r)dr d& _ J on(r,r)dr) ©(2.36)
r? o Jalo ) 3 0

where j = 2 or 3 and

P(0) > 0 , P20 , p>0 L (2.37)
. , |
-1 de
B = J _—_ . . (2.38)
: a £J+1

The derivation of (2.28) and (2.32) included the proof that ¢ > 0 on [a,b].
With assumptions (2.37), this can also be proven directly from (2.36) and
(2.38).

Equations (2.30) and (2133) for the case r = b béth have the form

u(b,t) = kb [%(b,t) +u J on(b,r)dT] , ' (2.39)

0

where « is a material constant. Notice that by (2.36) and (2.39),




10

| u(b,t) = kb[o(b,t) + uo(b,t)]

b
KB . n dg
bj 1 [ a ’ £

This repfesentation‘df'ﬁ, together with (2.37) and the fact that ¢ > 0

implies that u(b,t) is a nondecreasing function of time.
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3. Monotone Properties and Bounds for the Effective Stress

It follows from (2.36) after some differentiations that

. 4 b
%9 4 o™t - -] et [Bﬁ + uB J o"(E,t) %] )
’ a

or or
30 _ -5-1
32 (1,00 = —38P(0)x

Applying Lemma 2.1 to these two equations together with (2.37), we see

‘that
29 <0 on [a,b] x [0,») . , ' 3.1)

Also, if we multiply (2.36) by r’ and differentiate with respect to r.we
see that
33 93 _4n
Y [rJo(r,t)] = -y J Py [r"o (r,T)]dT . (3.2)
0 . .

From this equation it follows that

-, I n-1 9 3.y _ _ _1y,.3 . n-1 30
3t [r0] + uo .ar.(r o) = g(n Dr'o ar
L 3 '

5;-[r30(r,0)] =0

This pair of equations, together with (3.1) and Lemma 2.1, imply that for

t >0,
2 (rjo) >0 | (3.3)
ar : : .

in the case of nonlinear creep, i.e., n > 1. In the linear viscoelastic

case n = 1, they can be solved using (2.25) to obtain

o(r,t) = g(t)r J P (3.4)
for some function g. For the rest of this paper we shall restrict ourselves
to the nonlinear case, so that (3.3)vholds. It then follows from (3.2)

that




, : ) o 12
3 t .
___[J rJU“er <0 _ (3.5)
or . .
: 0 o
"for t > 0.

We.can now obtain bounds for o(r,t) for all t > 0. By virtue of

(3.5) and (2.36),

j ¢t : t '
o(r,t) 5-&21;1 + u (37 J on(a,r)dr - J on(r,r)dr)
. rJ I o 0 .
Therefore
o(a,t) < BRLEL | | (3.6)
aj S , L
~ A very similar argument yields the lower bound
oty » EEEL | - | (3.7)
b o

Inequalities (3.6) and (3.7) together with (3.1) imply that for any .

a<r<band t >0,

@f¥§ﬁ- < o(r,t) S-ﬁlﬂ?&. ) o : (3.8)
b a ] :

. By (2.36) and (2.39), u(b,t) has the representation

' b (t . ,
‘u(b,t) = «b| BELE) , BB J f glo™ (g, vyar oo
s bJ bd Jado gI*

This equation, together with (3.5) aﬁd'(3;8), implies the following upper‘

and lower bounds on the displacement of the outer surface of the vessel:

- [ert) . _ us® Jt . n -
u(b,t) < kb [ bj ‘+ bja(n_l)j . [P(1)] dT] , (3.9)
n ¢t
u(b,t) 2 b [ejp(F) + BB J [P(r)] %] . (3.10)

Notice that these bounds converge to the exact solution as t tends to O.




13

In the case where P is independent of t, Einarsson [2 ], [3 ] also
states a.priori bounds on the quantity y(x,t), x = r/a, which imply bpunds

for the effective stress2 oe. For the incompressible cylinder,

2'.2 .
=% v
l1<y<c : (3.11)

for all time and all 1 € x < ¢ = b/a. It follows from (34), (37), and
(55) of [2] that, in the absence of strain hardening, 9 and y are related

by the equation
2 2 <

-1 . '
_-Q(a ) (g“‘ ! .__2__J° e _
o, =5 ¢ -1 P x) fx T 7, y(E,T) 53 yx,tH|.. (3.12)

N

Here, p stands for the internal pressure, and T is a dimensionless quantity
proportional to t which is defined by (39) and (40) of [2]. Taken

.together, (3.11) and (3.12) imply the following bounds on 0t

o 2 1 no- 2 2_,

e .3 (c“ - _1) , [(s) + (2) .(1 _ h )] , (3.13)
P n X Ax

-1 2 2 : ‘

o 2 2-4

e, 3 (cn - 1) [(9) + & (1 -c n)] . (3.14)
P n X x2

Notice that at the inner boundary of the cylinder, where x = 1, the lower

IA

B

v

n
bound in (3.14) becomes negative for c > 22“'2. On the other hand, at the
at ;he outer boundary x = ¢, (3.8), with P = %? p for the cylindrical
case, implies

5 | . -
Je 3 , - (3.15)
P 1 - c_2

whéreas Einarsson's upper bound (3.13) becomes

=15

-2
°_es/§(2-cA')‘
P 2 '
11G§T- )
2 . .. . .y .
In our discussion of Einarsson's results, we again use Oe to denote

effective stress in order to avoid confusion with Einarsson's notation
o= p - :

(3.16)
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The latter is obviously a much better bound than the former for large c.
This is not necessarily true for all values of ¢ and n. For example, in
the case where n = 6, we have

c=1.1 c=1.2 c

- 1.3
/3 —~ ' 9.9799 5.6685 4.2423
1 -2c¢c :
_ g.)
/312 =< 10.2563 5.8144 4.2774
6 é§ —.q




4, A Limit Theorem for the Effective Stress

In order to establish a limit theorem for o(r,t) as t + », we introduce

the inner product3

b- o ‘
(v,w) = 8 J v(Ew(E) o RS

J

a . £

énd the corresponding norm |

2 b, a | - |
WIiZ= s | Vo S5 | “.2)
a gJ .

" Notice that for the linear functional 2(v) defined by ‘

b . |
B‘J v S5 | (4.3)

2(v) :
3 a gj+1

we have for any integrable function v and constant function c

b)) = (1), R = (vw) (4
ae) =c . : | C (4.5)
(c,v-2(v)) =0 . - ' (4.6)

|
For the norm (4.2) one has the following Sobolev-type inequality:

Lemma 4.1. If v is any function Cl in [a,b] and ¢ is any positive constant,

then .
, j+1 i+
2 bJ 2 . b |ldv
vi(r) < [ T l] Hvll® + 5 ir 4.7)
for all r iﬁ [a,b].
We shall also need the following Lemma.
Lemma 4.2. Suppose that u(t) satisfies the inequality
a(t) + Qu(t) < F(r) - (4.8)
for all t > 0, where”Q is a positive cohstant, and
-a-1
|F(e)| <At . a >0 (4.9)

3Compare [ 31 equation (40).
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fqr all t 2 tl. Then
| ty Qt -Qt -a -
u(t) < [F(O) + j F(t)e  'dt |e + At . (4.10)
0 .

for all t such that

f 2 t, = max{tl,Q_;(a-+ l)} . | ' - (4.11)

in what follows, we shall write f(t) = 0(g(t)) if any only if there
exist constants t. and A > 0 such that

1
E] < agt)

for all t 2 tl. We shall also write f(r,t) = 0(g(t)) uniformly in [g,b]‘

provided the constants A and t, can be chosen to be independent of r.

1

Theorem 4.1,' Suppose that-for»some constant a > 2,

o

P(t) = 0™ , - (4.12)

AimP(t) = P(x)
tow o

Then

— - A S R i R | |
lim o(r,t) =%P(«f) a "-p " r (4.13)
porco 1 .

uniformly in [a,b].

Proof. Equation (2.36), when differentiated with'respect to time, becomes

. b
Sr,t) = BRCEL o (ij o, by S5 o“(r,t)) . (4.14)
- Y £
We'define
’ w(r,t) = rjon(r;t)
‘ (4.15)
z(t) = w(t)

where the linear functional 2 is given by (4.3). With this notation,

(4.14) takes the form

5(x,t) = EELE) + 2 [2(0) - w0 . (4.16)

I'J r
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in order to show that o(r,t) tends to a limit-ow(r) uniformly in
[a,b] as t + =, it suffices to prove that

S(e,t) = o[t %t S (4.17)
uniformly in [a,b]. If we then take the limit of (4.14) as t + » usihg

(4.12), (4.17) and the uniform convergence of o" on [a,b], we see that
ol(r) = ¢ J | | | © (4.18)
for some constant C > 0. In order to evaluate C, we multiply both sides

of equation (2.36) byAf—l and integrate with respect to r from a to b.

This yields the identitya

 ¢b ar | . o |
'[ o(r,t) = = P(t) . ’ : (4.19)
s .

Since this idéntity.mhst hold in the limit as t » », we may use it together

witﬁ (4.18)_to evaluatevC.: in this way we arrive at (4.13). “
Ineduality'(4.17) will follow ftom (4;12) and (4.16) provided we

caﬁ show that

l2¢t) - w(r,t)| = ot I - (4.20)

uniformly in [a,b). This estimate will follow from the Sobolev inequality

. Lemma 4.1 once we demonstrate: that

Iz - w||® (e) = o(e™2hy | (4.21)
wal|? o oae 2
=l ©) = o™ . , O (4.22)

The derivation of (4.21), (4.22) uses the differential equation
_1 . o‘ .
= o™ N (r,t) (BP(t) + ulz(t) - w(r,t)]) (4.23)

which is equivalent for ¢ > 0 to (4.16). Using (4.23) together with

(5.6) we see that

4Compare (2.19) for the special case of the sphere.
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2w - %, W - z)

ae (Il - 211?)

2(&, w - z)

2(no™ (8P + p(z-w)l, w - z)

An application of the arithmetic-geometric mean inequality with parameter5

L2
0<o, <

- to the right-hand side.of this equation then yields the differential

inequality

é%’(“w.- z||2) +~di”w - z“2 < Clﬁz(t) . - (4.24)
where 4 |

Q = n(2u - 86,) inf ot | _ (4.25)

The infimum and supremum are teken over all (r,t) in [a,b] x [0,=].
That Q1 and C are finite and positive follows from (2.37) and (3.8).
_Inequality . 24) together with (4.12) and Lemma 4. 2 imply (4.21).

In order to establish (4.22), we use (4 23) again to see that

o (flawl|®Y L, (2 aw
~dt . oar ’ dr
n-2 30 ’ nlaw<aw)

2(n<n41) 29 (85 + u(z - w1 - " 2, 2

aw
or

Since by (3.1) and (3.3),

3| i,

or| . r

it fqllows that

5This inequality states that for a and b real and 6 > O,

2

2ab < &~ + ob’
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- B_WZ _dE
R Y (It

Again applying the arithmetic-geometric mean inequality, this time with

w

oW
or or

2 b .
%( ) < 28 J o™t {_____]_n(n;l) | 8P + u(z -w
. Ja '

parameter

2ya
j(n-1)

,:.0 < éz <
we obtain the differential inequality

S
d .
EE( )+Q2

Vhere
o - [n-1]j6 -
: - : 2 . n-1
Q2 =n (Zu'— A ) inf o "

3w

| 2w|
ar or

2 . . .
.2 2 ,
s ey (B* + [z -l ) _ (4.27)

a(a-1)j ,,2 . 2, . n-1
cz=$‘-.ae—lll(8 +u%) sup o"
92

Inequality (4.22) now follows from (4.12), (4.21), (4.27) and Lemma 4.2.

-~ . This completes the proof.
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5. Further Study of u(b,t)
Theorem 5.1. Let P(t) = O(tfa) where a > 2.5. Then

00

u(b,£) v kb [BP(w)-+.u J [z(r)-z(w)]d{] + Iz e (5.1)

0
as t > =,

Here.z(w); the Iimit of z(t) as t + =, is given by

. . ] ’ : ‘. . _n . .

‘ e\t -4 -4 5 |

aw=(ﬁfq & “-b“], : | -
_This theorem shdws'that, if the convergence of P to P(») is sufficiehtly
rapid, then u(b,t) tehds asymptotically in the t,u plane to a straight

line with slope

n i™ | ;
v, = Kubl—J (J—P-ﬂ) aJ [1 -c n] . - (5.3)
2 n .
Let ﬁs consider the important special case in which P is constant.” In

this case, the upper bound (3.9) on u(b,t)lbecomes

u(b,t) < Kbi-jBP + vlt | : (5.4)
where

vy = kbt (jP)njfaj[I‘— T | (5.5)
For n =1, vy =V, H§wever, for n>land 1 <c < o, vy >V, In order

to see this, we define

fl(x) = 1-x" ;
(5.6)
fz(x) = n(l - x)
Then
i
v, = Kubl'J(jP)“aJEfi‘ (c “)] Cod=1,2) , (5.7

and the assertion folldws~from (5.6), (5.7), and the fact that fl(x) < fz(x)

for 0 <x < I. This shows that (3.9) is a Bad estimate for large t and
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motivates us to complemént it by another bound which has asymptotic slope
vy o
Proof of Theorem 5.1. Since, by (2.36), (2.39), and (4.15),

. 1-4' - : ot . 1-j
u(b,t) = kb J BP(t) + u‘J [z(t) - z(=)]dx| + kub z(=o)t , .(5.8)

0

it is clearly sufficient to show that

J [z(t) - z(x)]dT| < = (5.9)
0 .
Howeyer,
X t : t .. o0 . .
: J [z(t) - z(®)]dT = - J Az(A)dx - t J z(AN)dx |,
0 ' ' o 0 t
" so that
t R t .A R ‘
’j [z(t) - z(x)]ldT| < j Az |da + ¢ J lz(x) |da (5.10)
0 ‘0 t :
< J Az dx (5.11)
0 -

In 6rder to estimate the order of é, we apply thg operator & to both sides

of (4.23), thus obtaining the equation-

2 = a(c",8P + ulz -wl)
Applying first the Séhwatz and then the Minkowski inequality to the right-

hand side of this equation and then appealing to (4.21), we find that

2] <nlle™ | R + ullz-wl) S (5.12)

S | ' |
- ,—a+_7_ aty
s 0(t ") +0ft )=0t . (5.13)
The proof of the theorem follows from (5.9), (5.11), and (5.13).
l The analysis for Theorem 5.1, togethér with (4.24), can be used to
‘cdnstruct a new bound for u(b,t) which has the desired asymptotic behavior.

Such a bound can be based on the inequality
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00

t , . _
a(b,t) < kb-I [%P(t) +u J' t|2(1) |dt + ut J |2(1) |dT + uz(w)tJ . (5.14)
0

t

which follows from (5.8) and (5.10), together with the bound

2o < n ™ (séce + u@w LY
’ 1
2

. t Q.t
+.C J ﬁz(r)eqle{] exp [} —l—]) . (5.15)
1, -2 )

which is obtained from (4.24) and (5.12).' An analogous lower bound for
u(b, t) is also readily derived. Bounds for the quantities ”cn_1||, Cl’
and Ql can be based on either (3.8) or‘(3.l3l and (3.14), depending on
the values chosen for ﬁ'and c. For the céée in which the pressure history

13

P is constant in time, (5.14) and (5.15) imply that

. butg Q,t

. u(b,.t) < Kbl-J [BP + -—é—]L (l -.exp [— %])+ uz(m)t] s (5.16)

) Q _ _ '
1

where

£, = au(sup o™ flw-z]| (@

and‘Ql is given by (4.25).
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