| | 9503122 -/
LA-UR @5—@70 | |

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: PERIODICALLY SPECIFIED PROBLEMS: AN EXPONENTIAL
COMPLEXITY GAP BETWEEN EXACT AND APPROXIMATE
SOLUTIONS
AUTHOR(S): H. B. Hunt I, M. V. Marathe, V. Radhakrishnan, D. J. Rosenkrantz,
R. E. Stearns
SUBMITTED TO: 27th ACM Annual Symposium on Theory of Computing (STOC) 1995
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

MASTER
Los Alamosg Leshames National Laboratory

CRTRIRUTION 0F THIS DORUMENT IS U TR, O

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Periodically Specified Problems : An Exponential
Complexity Gap Between Exact and Approximate
Solutions
(Extended Abstract)

H.B. Hunt III 1,23 M.V. Marathe!»2:35 V. Radhakrishnan?*
D.J. Rosenkrantz 13 R.E. Stearnsh??3

November 28, 1994

Abstract

We study both the complexity and approximability of various graph and combinatorial
problems specified using two dimensional narrow periodic specifications (see [CM93, HW92,
KMW67, KO91, Or84b, Wa93]). The following two general kinds of results are presented.

1. We prove that a number of natural graph and combinatorial problems are NEXPTIME- or
EXPSPACE-complete when instances are so specified.

2. In contrast, we prove that the optimization versions of several of these NEXPTIME-, EXPSPACE-
" complete problems have polynomial time approximation algorithms with constant perfor-
mance guarantees. Moreover, some of these problems even have polynomial time approxima-
tion schemes. .

We also.sketch how our NEXPTIME-hardness results can be used to prove analogous NEXPTIME-
hardness results for problems specified using other kinds of succinct specification languages.

Our results provide the first natural problems for which there is a proven exponential (and
possibly doubly exponential) gap between the complexities of finding exact and approximate
solutions.

'Email addresses of authors: {hunt,madhav,djr,res}@cs.albany.edu
2Supported by NSF Grants CCR, 89-03319, CCR 89-05296, CCR 90-06396 and CCR9406611.
3Depa.rtment of Computer Science, University at Albany - SUNY, Albany, NY 12222.
4Current Address: Mailstop 47LA, Hewlett-Packard Company, 19447 Pruneridge Avenue, Cupertino, California
95014-9913. Email: rven @cup.hp.com
5Current Address: Los Alamos National Laboratory P.O. Box 1663, MS M986, Los Alamos NM 87545. Email:
madhav@gardener.lanl.gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

1 Introduction and Motivation

A 2-dimensional periodic graph is an infinite graph described succinctly by a static graph. A
static graph is a directed graph with 2-dimensional integer displacement vectors associated with
its edges. The periodic graph G* is obtained by repeating the static graph G in a 2-dimensional
orthogonal grid as follows: For each edge from v to v in G with vector weight y, the copy of u at
grid point z is connected with a copy of v at grid point z + y. For an integer vector (M, N), the
finite periodic graph G(MN) ig the subgraph of the infinite periodic graph G® induced by the
vertices associated with nonnegative grid points less than or equal to (M, N). Here M denotes the
largest X coordinate and N denotes the largest Y coordinate. A finite periodic graph G(M:N) ig
narrow if for all integer displacement vectors y =< y1,ys > of its static graph, y; € {-1,0,1},
1 € ¢ £ 2. Figure 1 shows an example of a 2-dimensional periodic graph. It is possible to define
periodically specified formulas in a similar manner. A formal definition of periodically specified
boolean formulas is given in Section 3.

Periodic graphs (specifications) have applications in a variety of areas such as transportation
planning, communication networks, VLSI layout, etc, and consequently have been widely studied
(see [CM93, HW92, KMW67, KO91, Or84b, Wa93|) . A second specification language studied in
this paper is the Graph Construction Representation (G.C.R) specification language of Galperin
[Ga82]. The G.C.R specification language is motivated by practical applications in the area of
VLSI design. ,

- An important feature of these specifications is that they permit more concise description of
objects than the standard (non-succinct) descriptions. Consequently, the complexity of analyzing
or otherwise processing a given succinctly specified object can be different from the complexity
" 'when the object is presented using a standard description.
The contributions of this paper include the following.

1. For the first time in the literature we prove that a number of natural graph and combinatorial
problems are NEXPTIME- or EXPSPACE-complete when instances are specified using 2-
dimensional narrow periodic specifications. As an example, we show that the satisfiability
problem when instances are specified using 2-dimensional finite narrow periodic specifications
is NEXPTIME-complete.

Previously, Wanke [Wa93] and Hofting and Wanke [HW92] proved the NP-, PSPACE-hardness
of a number of combinatorial problems specified using 2-dimensional periodic specifications.
Apart from their work, we are not aware of any lower bound results for problems specified
using a 2-dimensional narrow periodic specification. Our results should be contrasted with
those of Orlin [Or82a] who proved PSPACE-hardness results for a number of problems when
specified using 1-dimensional periodic specifications.

Qur results show that problems specified using a two dimensional periodic specification can
be “harder” to solve than the corresponding problems specified using 1-dimensional periodic
specifications. :

2. In contrast, we prove that the optimization versions of several of these NEXPTIME-complete
problems have polynomial time approximation algorithms with constant performance guar-
antees. Some of these problems, even have polynomial time approximation schemes. In par-
ticular, these problems have polynomial time approximation algorithms with performance

guarantees asymptotically equal to the best possible performance guarantees for the same
problem when instances are specified using standard specifications. The ideas can also be
extended to obtain polynomial time approximation algorithms for EXSPACE-hard problems
specified using a 2-dimensional narrow periodic specifications.

This is the first natural class of problems for which there is an exponential (and possibly
a double exponential)® complexity gap between solving the problem exactly versus approxi-
mately.

3. We prove that a 2-dimensional narrow periodic specification of a finite graph can be trans-
lated in polynomial time into a G.C.R. specification of an isomorphic graph. Together with
our NEXPTIME-hardness results in (1) above for 2-dimensional narrow periodically specified
problems, this yields the first NEXPTIME-hardness results for a number of natural prob-
lems specified using the G.C.R. specification language. The G.C.R. specification langnage
is strictly less powerful than the small circuit representation (S.C.R.) [Ga82, GW83, PY86,
LB89] used to succinctly represent inputs. Thus our results significantly strengthen several
lower bound results proved by Papadimitriou and Yannakakis [PY86], Galperin and Wigder-
son [GW83] and Lozano and Balcazar [LB89] (See Section 2.3 for a more detailed discussion
of this). In Galperin [Ga82] no hardness results were presented for graph problems when
graphs are represented using G.C.R. specification. The results here are the first such results
for problems specified using G.C.R. specifications.

2 _Summary of Results

Let II be a problem posed for instances specified in the standard (non-succinct) manner. We use
2-FPN-II to denote the problem II, when instances are specified using 2-dimensional finite periodic
narrow specifications. An instance of a periodically specified graph (formula) is a three tuple
(G,M,N), where G denotes a static graph (formula),” and M and N, denote binary numerals
which give the bounds on the X and the Y coordinates of the grid points. The corresponding
periodic graph (formula) is the graph G(:N),

2.1 Hardness Results for 2-Dimensional Periodically Specified Problems

Our first result shows that the problems 3SAT and PI-3SAT (3SAT problem restricted to instances
‘in which the associated bipartite graph is planar) for 2-FPN specified instances are NEXPTIME-
complete.

Theorem 2.1 2-FPN-3SAT and 2-FPN-PI-3SAT are NEXPTIME-complete.

8The previous non-approximability results obtained show that many optimization problems are NP-hard or
PSPACE-hard to approximate beyond a certain factor. While the hardness results point out that it is unlikely
in general to find “good” polynomial time approximation algorithms, it does not rule this possibility. The results
presented here show a provable gap between approximation and decision since the decision problem is NEXPTIME-
complete and hence requires at least 2°™ steps and possibly 227" steps (if NEXPTIME # EXPTIME) to solve it.

"A collection of clauses is narrow if for all (w (i1, i) V wa(iz, j2) V w3(i3,53)) € C, lis — 4, |js — Jr] £ 1 for
1<r<s<k. ' :

Theorem 2.1 along with known polynomial time local reductions can be used to prove that
many graph, combinatorial and satisfiability problems are NEXPTIME-complete when specified
using a 2-FPN specification. We first recall the generalized satisfiability problems introduced by
Schaefer [Sc78]. In this framework, we have a finite set S = {R), Ry, -+, R} of finite arity
logical relations. An S-formula is a conjunction of clauses each of the form R;(&,&2,---), where
&1,&,- - - are distinct, unnegated variables whose number matches the rank of R;,i € {1,---m}.
The S-satisfiability problem is the problem of deciding whether a given S-formula is satisfiable. Let
SAT(S) denote the set of all satisfiable S-formulas. Given this framework, we define the problems
MAX SAT(S) as follows: Given an S-formula £, the problem MAX SAT(S) is to determine a
{0, 1} assignment to the variables of F' so as to maximize the number of clauses that are satisfied.
The following theorem yields an infinite collection of 2-FPN specified satisfiability problems and
several graph problems that are NEXPTIME-complete.

Theorem 2.2 (1) For each finite set S such that the problem SAT(S) is NP-complete, the problem
2-FPN-SAT(S) is NEXPTIME-complete.

(2) The following problems are NEXPTIME-hard for 2-FPN specified planar graphs: independent
set, 3 coloring, dominating set, vertezx cover, partition into triangles, and Hamiltonian path.

Theorems 2.1 and 2.2 hold when M and N are finite and are specified using binary notation.
Instead, now suppose M equals infinity. (That is we consider the graph G(N) which is a 2-
dimensional periodic graph finite in the Y direction but infinite in the X direction.) We call such
graphs two dimensional semi-finite specified graphs and the associated specifications as 2-SemiFPN
specifications. Extending Theorems 2.1 and 2.2 we can show that several combinatorial problems
when instances are specified using 2-SemiFPN specifications are EXPSPACE-complete. Thus for
example we can show the following:

Theorem 2.3 The following problems are EXPSPACE-complete for 2-SemiFPN planar specifica-
tions: 3SAT, independent set, 8 coloring, dominating set, vertex cover, partition into triangles.

Analogous NEXPTIME- and EXPSPACE-completeness results hold, for most but not all of
the problems shown to be NP-complete in [Ka72, Sc78]. An example of this is the CLIQUE problem
which remains NP-complete even when graphs are specified using 2-SemiFPN specifications.

2.2 Approximation Algorithms for 2-FPN Specified Problems

The hardness results of Theorem 2.1-2.3 motivate the study of polynomial time approximation
algorithms with good performance guarantees for these problems. The search for good approxi-
mation algorithms probably is all the more important from a practical standpoint, given that the
problems take at least 2°" (and possibly 227) time to solve exactly. We give simple polynomial
time approximation algorithms for problems shown to be NEXPTIME-complete in Theorems 2.1
and 2.2. As mentioned earlier, this is the first time polynomial time approximation algorithms have
been given for natural NEXPTIME-hard problems. Our approximation algorithms are based on
the technique of partial ezpansion which we developed in [MH+94] to devise efficient approximation
algorithms for level restricted hierarchically specified graphs (formulas) and one-dimensional finite
periodically specified graphs (formulas).

Let 11 be one of the following problems: MAX 3SAT, MAX 25AT, MAX 1-3SAT, MAX SAT(S),
MAX Independent Set, MIN Dominating Set, Minimum Vertez Cover, Minimum Partition into
Triangles. Following Schaefer [Sc78], S denotes a finite set of finite arity boolean relations.

Theorem 2.4 For all fized [> 1 and for all of the problems Il stated above given a 2-FPN
specification of an instance of II, there exists a polynomial time approzimation algorithm with
running time O(RT(12-|G))) with performance guarantee® (21)2. FBESTy. Here |G| denotes the
size of the specification, RTi(n) denotes the running time of the algorithm with input size n which
guarantees a performance of FBESTy for the problem II and FBESTy denotes the best known
performance guarantee of an algorithm for the problem Il for non-succinctly specified instances.

As an example, using recent results in [GW94], we get that the problem 2-FPN-MAX 2SAT has
a polynomial time approximation algorithm that outputs a solution which is within a factor of (1 —
€)0.878 of an optimum solution. As a corollary of Theorem 2.4, using the recent nonapproximability
results of [AL+92] we get the following:

Theorem 2.5 The problems Il stated above when specified using 2-FPN specifications, have poly-
nomgial time approzimation schemes if and only if P = NP.

As a second result which follows from Theorem 2.4, we get that all the above problems II have
a polynomial time approximation scheme (PTAS), when restricted to planar instances.

Theorem 2.6 Given a 2-FPN specification of a planar graph, there are polynomial time approzi-
‘mation schemes for the problems Il listed above.

As mentioned before, results analogous to Theorems 2.4 and 2.6 hold for 2-SemiFPN specified
optimization problems. We remark that recently, there has been interest in the study of effi-
cient approximability of PSPACE-hard functions (See [AC94, CF+93, CF+94, MH+93a, MR+93,
MH+94]).

2.3 Applications to G.C.R Specification Language

Next we discuss the hardness results obtained for problems specified using the G.C.R. specification
language. As observed Lengauer and Wanke [LW93], the G.C.R specification language provides
a natural and practical way of succinctly representing large objects occurring in VLSI design.
For instance using this language one can succinctly represent regular graphs like the meshes of
trees, trees of meshes, a complete grid, Petersons graph, Hypohamilton graph etc., in such a
way that the size of the specification is logarithmic in the size of the actual graph. The G.C.R
specification langnage uses repeated applications of the operations cloning and glueing to construct
bigger graphs. In this model, a graph is represented by a description of a way to construct it. The
description starts with a few basic graphs to which a set of graph operations is applied repeatedly
to define new graphs.
We first prove the following translation theorem.

8For the sake of uniformity we assume that the performance guarantee is > 1.

Theorem 2.7 Given an instance (T, M, N) of a 2-dimensional narrow finite periodic graph DM:N)
there is a polynomial time algorithm A that outputs a G.C.R specification Ap of a graph G’ which
is isomorphic to DM

As a corollary of Theorem 2.7 we can show that many natural graph and combinatorial problems
are NEXPTIME-complete. For example, we can show the following:

Theorem 2.8 The following problems are NEXPTIME-complete for graphs specified using a G.C.R-
specification: independent set, dominating set, vertex cover, 8SAT, 1-3SAT, partition into triangles
and mazimum cut.

The translation theorem enables us to obtain hardness results for problems specified using
G.C.R specifications by translating the known hardness results for problems specified using 2-
FPN specifications. Moreover, the theorem for the first time relates two seemingly unrelated
succinct specification languages. In the past each of the models considered here have been studied
separately; and as a result no attempt was made to find general ways of obtaining hardness and
easiness results for problems specified using these models. The results obtained are a part of our
attempt to characterize the complexity of various combinatorial problems for different succinct
specifications in a unified way.

Theorem 2.8 yields the first NEXPTIME-hardness results in the literature for problems speci-
fied using G.C.R specifications. It also strengthens several results in [GW83, LB89, PY86] showing
that problems like 3SAT when instances are specified using the Small Circuit model (S.C.R.)
[GW83, LB89, PY86] are NEXPTIME-complete. This follows from the results in Galperin [Gag82],
showing that the S.C.R. specification language is strictly more powerful than the G.C.R specifica-
tion language. For instance, given a graph (specified using a S.C.R. specification trivial questions
such as “Is there an edge in G 7 7 is NP-complete. On the other hand the same question can be
solved easily in polynomial time when G is specified using a G.C.R specification. It is important
to note that although we strengthen several results obtained by Papadimitriou and Yannakakis
[PY86] and Lozano and Balcazar [LB89], we do not have analogues of the metatheorems given in
[PY86, LB89| which give sufficient conditions on the property of graphs for it to be NEXPTIME-
hard.

Due to lack of space the rest of the paper consists of selected proof sketches. A detailed
exposition of some of the proofs appears in the Appendix.

3 Hardness Results for Periodic Satisfiability Problems

In this section we outline our proof of the NEXPTIME-hardness of 2-FPN-3SAT (finite periodic
non-narrow 3SAT). The EXPSPACE-hardness of 2-SemiFPN-3SAT follows by a similar argument.
We first give a formal definition of the two dimensional periodic satisfiability problem. The defini-
tion is an extension of 1-FPN-3SAT given in Orlin [Or82a].

Definition 3.1 An instance of 2-FPN-35SAT consists finite set of variables U = {u1,...,u,}. U™
denotes the set {ux(i,7): 1<k<mn, i€{0,1,2,---,N} j € {0,1,2,---,M}}. A literal of U is
an element of {u1,...,Un,Ul,---,Un}. If wis a literal of U, then w(i,j) is a literal of UMV, 4
set of clauses C s periodic if the following is true. (wy(i1,51) V wa(ie,j2) V ws(is,j3)) € C if and

only if (w1 (i1 + 2,51 +y) Vuwe(ia +2,ja +y) Vws(is+ 2,43 +y)) € C. Here w; denotes a literal. A
collection of clauses is narrow if for all (w (i1, j1) Vwa(ia, j2) Vws(i3,73)) € C, |is—ir|, |75 —jr] < 1
for 1 <r < s < k. To specify the input for a periodic collection of clauses it suffices to specify all
clauses containing at least one of the literals {11(0,0),...,u,(0,0),%7(0,0),...,%,(0,0)}.

An instance of 2-FPN-3SAT consists of a finite set of variables U and a periodic collection of
narrow 3 literal clauses C defined on UM-N | where M and N are specified in binary.

Theorem 3.2 The problem 2-FPN-3SAT is NEXPTIME-complete.

Proof Sketch: The membership in NEXPTIME follows easily by observing that the size of
the expanded formula is 2¢€0G+M+ND - yhere (@G, M, N) is the specification of GMYV. Hence a
NEXPTIME bounded TM can guess an assignment to the variables and then verify in EXPTIME
that the assignment satisfies all the clauses.

Next, we discuss the reduction which shows the NEXPTIME-hardness of the problem. It
is worth pointing out the basic technique used behind the reductions. Since the static formula
associated with 2-FPN-3SAT instance is the same for each time period, it is not possible to write
a 3CNF formula which says that the machine has the correct starting ID. This makes the task of
constructing the SAT instance more difficult. In order to overcome this difficulty, our reduction
consists of two phases. In the first phase, we start with the given Turing machine M with input
z = (z1,-..,%n) and construct a new Turing machine M; which simulates M on z with the following
additional properties that) ‘

1. If the Turing machine M does not accept = then M) on z halts within 2°" moves, else

2. If the Turing machine M accepts z then M; has a cycling computation, where the length of
an ID never exceeds 2%, for some given dp.

The second phase consists of constructing an instance f(z) of 2-FPN-3SAT by a polynomial
time reduction from M;. Now we know that each ID of the Turing machine M is of length 2% +1.
Since it is a non-deterministic exponential time bounded Turing machine, we need to consider only
29om different ID’s for our reduction. In order to understand the construction imagine each ID of
the Turing machine M; being laid out in the plane along the Y-axis. Two consecutive ID’s of M;
are laid out next to each other in the plane. For the sake of exposition we will refer to the X-axis
as the tifme line. In order to simulate the behavior of M; properly we need to have two set of
counter variables; ¢, and ¢;. The counter c, keeps track of the particular tape cell in a given ID.
The counter can be simulated by means of don + 1 boolean variables. The counter c; keeps track
of the number of ID’s. The counter ¢; can be simulated by means of don + 1 boolean variables.
The initial ID is of the form #(qo, 1) ... 2, B2°" ™ where B denotes a blank. The static formula
CNF formula f(z) is described as follows. Let TAPE(y,t) denote the y** symbol in the t*h ID.
TAPE(y,t) takes values from the set {#} UT' U (Q x I'), where I' denotes the tape symbols and
@ denotes the set of states of M. The number of variables needed to encode TAPE(y,t) depends
only on the machine M;. The static formula is given by R(t,y) = f1(t,y) A fa(t,y) A f3(t,y). We
now describe each of the subformulas f;(t,y),1 <1 < 3 separately.

1. Counter Updating: Formula f;(¢,y)

c(y,t+1) = (ci(y,t) +1) (mod 2%" + 1)

6

c(y+1L,t) = ce(y,t) 0<eyt,y) < 29m
ey(y +1,t) = (¢y(y, t)+1) (mod gdon 1)
cy(yt+1) = ¢y(y,8) 0 < ault,y) < 2%7

2. Implicit Initialization: Formula f5(¢,y)

(cy=0)A(c;=0) = TAPE(y,t) = #
(ey =1) A (et =0) = TAPE(y,t) = (qz1)

(cy=n)A(ct=0) = TAPE(y,t) =z,
(n+1<c, <2")A (e =0) = TAPE(¢y, ;) = B

3. Consistency Checking: Formula f3(t,y)
(0<cy <20™M)A (2" +1 < ¢ < 2%07)
Consistent(TAPE(t,y),TAPE(t,y+1),TAPE(t,y+2),TAPE(t+ 1,y),TAPE(t + 1,y +
1), TAPE(t + 1,y +2))

Next, we explain what each of the f;(¢,y) denote.
Counter Updating Formula: f;(t,y)

Equations 1 and 2 describe the counter ¢;. Equation 1 says that the counter c¢; is reset after
every 2™ 41 time units. Equation 2 says that the counter value for a given value of ¢ remains the
same. Equation 3 and 4 describe the desired properties of the counter ¢y. Equation 3 says that
the counter ¢, resets after every 2dom 1] steps. Equation 4 says that the counter value ¢y has the
same value for a given y coordinate.

Implicit Initialization: fa(¢,y)

fa(t,y) can be thought of as a way to implicitly check that the Turing machine starts right.
Observe that the counters ¢, and c; are implicitly initialized. The initialization condition say that
if both the counter values are 0, then we have # as the tape symbol and so on.

Consistency Check: f3(t,y)

fa(t,y) ensure the consistency of the tape symbols, i.e. the contents of the tape cells 7, i+ 1 and
t+ 2 in ID, determine the contents of the tapecells 7, 1 + 1 and 2 + 2 in ID;;,. The Consistency
function of course depends on the state transition relation. f(z) is the conjunction of clauses as
defined by the above 3 set of formulas. It is easy to see that these equations can be transformed
into an equivalent narrow 3CNF formula f(z) whose size is polynomial in n, where n is the size of
the input to x.

The expanded finite periodic 3SAT instance is Agiﬁ’iﬁN R(y,t), where M and N are suitably
chosen large numbers. '

We now prove the correctness of our reduction. If the Turing machine M accepts z then we
know that M; has a cycling computation. Hence by setting the counters ¢;(0,0) = ¢,(0,0) =0 we
get that the first column of the grid contains the right initial ID. From then on, the consistency
conditions force the formula /\gzﬁ’g“’ R(y,t) is satisfied.

Conversely, assume that the formula is satisfiable. Since M and N are suitably large integers,
it is guaranteed that the following two conditions hold:

7

1. Since N is large enough, the simulation must be carried out for enough steps so that the
Turing machine M; goes through the sequence ¢; = 0,¢; = 1,¢; = 2, --¢; = 2%, This
implies that the formulas fo(t,y) and f5(¢,y) would be true from the time when the value of
C¢y = 0.

2. Similarly, since M is large enough, the grid is sufficiently long in the Y-direction so that the
counter value c, goes through a sequence of values ¢y = 0,¢y = 1,¢y, =2,--- ¢y = 2407 This
implies that the first part of the implication in f5(¢,y) is true and from then on, it is ensured
that the TM M; goes through the simulation correctly.

The above two conditions imply that if the formula /\gj}{t’g” R(y, t) is satisfied then the Turing

" machine M accepts z. ®

4 Approximation Algorithms and Schemes for 2-FPN-specified
problems

4.1 Meaning of Approximation Algorithms for Periodically Specified Problems

First, it is important to understand what we mean by a polynomial time approzimation algorithm
for a graph problem, when the graph is specified using a 2-FPN specification. Our definition of an
approximation algorithm is best understood by means of an example.

Example: Consider the maximum independent set problem, where the input is a 2-FPN
specification of a graph G, we wish to compute the size of a maximum independent set of vertices
~in G.

We provide efficient algorithms for the following versions of the problem.

1. The Approximation Problem: Compute the size of a near-maximum independent set in

G.

2. The Query problem: Given any vertex v of G determine whether v belongs to the approx-
imate independent set so computed.

3. The Construction Problem: Output a 2-FPN specification of the set of vertices in the
" approximate independent set.

4. The Output Problem: Output the approximate independent set computed.

Our algorithms for (1), (2) and (3) above run in time polynomial in the size of the 2-FPN
specification rather than the size of the graph obtained by expanding the specification. Our
algorithm for (4) runs in time linear in the size of the expanded graph but uses space which is
linear in the size of the periodic specification. =

This is a natural extension of the definition of approximation algorithms in the flat (i.e. non-
succinct) case. This can be seen as follows: In the flat case, the number of vertices is polynomial in
the size of the description. Given this, any polynomial time algorithm to determine if a vertex v of
G is in the approximate maximum independent set can be modified easily into a polynomial time
algorithm that lists all the vertices of G in the approximate maximum independent set. The concept
of approximation algorithms for problems specified using 2-FPN specifications can be extended in

a natural way so as to apply to problems specified using 2-SemiFPN specifications. The extension
is along the lines of the definition of periodic optimization problems defined in Orlin {Or82a] and
Cohen and Megiddo [CM91]. We omit the details in this abstract.

4.2 Basic Technique

The basic idea behind our approximation algorithms involves the conversion of solutions derived
by a local algorithm on graphs induced by certain bounded grid points to a solution to the global
problem. The method of partial expansion involves the application of a divide and conquer al-
gorithm iteratively by considering different subsets of the given graph; solving each subset by a
local algorithm, constructing a global solution and finally choosing the best solution among these
iterations as the solution to II. The method can be seen as an extension of the shifting strategy
used by Baker [Ba83], Hochbaum and Maass [HM85, HM87] and Hunt et al. [HM+94a] for finding
efficient approximation algorithms for several combinatorial problems.

We outline the basic technique by discussing our NC-approximation scheme for the maximum
independent set problem. Consider a 2-FPN specification of a graph G, and an integer £ > 1. To
begin with, for each 7, 0 < i < k, we partition the graph G into [disjoint sets GGy, - - - Gy by removing
vertices with horizontal coordinates congruent to ¢ mod (k+1). For each subgraph Gp, 1 <p </,
we find an independent set of size at least 'k_-kﬁ times the optimal value of the independent set in
Gp. The independent set for this partition is just the union of independent sets for each of G,. By
an averaging argument, it follows that the partition which yields the largest solution value contains
at least (k—fj)2 - OPT(G) nodes, where OPT(G) denotes the value of the maximum independent
set in G. (For simplicity, we use a symbol to denote a set as well as its cardinality. The intended
meaning will be clear from the context.)

It is important to note that the size of the graph we are dealing with is in general exponential
in the size of the specification. Hence a naive application of the above idea will lead to algorithms
that take an exponential amount of time. However, as we shall see, the “regular” structure of the
graph allows us to solve the problems at hand in time polynomial in the size of the specification.

4.3 Approximation Scheme for the Maximum Independent Set Problem for
2-FPN Specified Graphs

Input: An instance (G, M, N) of a periodic graph G*Y and an € > 0

Algorithm: 2-FPN-MAX-IS
1. Let K =[1/e] — 1.
2. Foreach i, 0<:<kdo

(a) Partition the graph into r disjoint sets G;1---G;, by removing all the vertices at grid
points with X-coordinate congruent to i mod (k + 1).

{(¢) Foreach j,1<j<rdo
i. For each i;,0 <4 <kdo ;
A. Partition the graph G; ; into s; disjoint sets G’:’l J!l - G52 by removing vertices at grid

1,5
points with Y-coordinate congruent to iy mod (k + 1).

B. G} =Uigj <, Gif'
C. For each G’zlﬂ] ', 1 < j1 < 55 compute the optimal (near optimal) value of the independent
set denoted by IS(G}'/*).
Remark: This can be done by running the algorithm on just three graphs
namely; G;}jl, G?J’z and G}
D. IS(G1y) = Uigji<s, IS(GEY"
(d) 18(Gs) = maxog; <k 1S(G}y)

(e) IS(Gi) = Ui<j<r 1S(Giy)
3. IS(G) = maxo<i<k 15(Gi)

The proof of correctness and the performance guarantee is outlined in the Appendix.

5 Conclusions and Discussion

We have looked at large instances of graph and satisfiability problems created in a natural and
simple ways, namely by repeating a single graph or formula in a multidimensional grid and then
connecting vertices placed at given grid points to vertices placed at neighboring grid points. The
size of large objects so created can be ezponential in the size of the object being replicated. In
spite of the simple repetitive nature of the constructed object, the difficulty in solving certain
‘NP-complete problems blows up with the size of the object being specified. Thus, several of these
~ problems are NEXPTIME-complete when complexity is measured in the size of the original (pe-
riodic) description. In contrast, the simple repetitive nature also enables us to design efficient
polynomial time approximation algorithms with good performance guarantees even when com-
plexity is measured in the size of the periodic specification. The complexity of approximation
remains polyhomial in the size of the description. Thus we have a striking contrast that problems
which are NEXPTIME-complete to solve exactly can be efficiently approximated in polynomial
time.

The fact that there is an exponential gap between solving the problem exactly and approxi-
mately for such succinctly specified objects may prove to be useful in trying to tackle other questions
in complexity theory. For example, the results obtained in this paper raise the possibility of proving
the recent non-approximability results without using the machinery of interactive proof systems.
Given that the decision problem 2-FPN-3SAT is NEXPTIME-hard it is conceivable that one could
prove Theorem 2.5 directly without using the recent results from interactive proof systems. If this
were the case, then by Theorem 2.4 one gets a direct proof of the fact that MAX 3SAT does not
have a polynomial time approximation scheme unless P = NP.

The simplicity of the graph (formula) obtained in the proof of Theorem 2.1 makes it a good
candidate for being specified using other kinds of succinct descriptions. In particular, it can be
specified using G.C.R. specifications. This shows for the first time that natural problems specified
using this model are also NEXPTIME-hard to solve. The G.C.R. model is generally acknowledged
as a natural and useful way of describing large real-world objects such as circuits and VLSI designs.

10

Acknowledgements:

We wish to thank Prasad Chalasani, Ashish Naik, R. Ravi, Ravi Sundaram, for reading the draft
and suggesting improvements. We also thank Anne Condon, Thomas Lengauer and Egon Wanke
for helpful discussions.

References

[ACY4]

[AL+92]

[Bag3]

[CM93]

[CM91]

[CF+93]

[CF+94]

[Ga82]
[GW83]
[GJ79]

[GW94]

[HMS85]

[HMS87)

[HW92]

S. Agarwal and A. Condon, “On Approximation Algorithms for Hierarchical MAX-
SAT,” Manuscript, November, 1994,

S. Arora, C. Lund, R. Motwani, M. Sudan and M Szegedy, “Proof Verification and
Hardness of Approximation Problems”, Proc. 33rd IEEE Symposium on Foundations
of Computer Science (FOCS), 1992, pp. 14-23.

B.S. Baker, “Approximation Algorithms for NP-complete Problems on Planar Graphs,”
24th IEEE Symposium on Foundations of Computer Science (FOCS), 1983, pp 265-273.
Journal version in Journal of the ACM (J. ACM), Vol. 41, No. 1, 1994, pp. 153-180.

E. Cohen and N. Megiddo, “Strongly Polynomial-time and NC Algorithms for De-
tecting Cycles in Dynamic Graphs,” Proc. 21st ACM Annual Symposium on Theory
of Computing (STOC), 1989, pp. 523-534. Journal version appears in Journal of the
ACM (J. ACM) Vol. 40, No. 4, September 1993, pp. 791-830.

E. Cohen and N. Megiddo, “Recognizing Properties of Periodic graphs”, Applied Ge-
ometry and Discrete Mathematics, The Victor Klee Festschrift Vol. 4, P. Gritzmann
and B. Strumfels, eds., ACM, New York, 1991, pp. 135-146.

A. Condon, J. Feigenbaum, C. Lund and P. Shor, “Probabilistically Checkable Debate
Systems and Approximation Algorithms for PSPACE-Hard Functions”, in Proc. 25th
ACM Symposium on Theory of Computing (STOC), 1993, pp. 305-313.

A. Condon, J. Feigenbaum, C. Lund and P. Shor, “Random Debators and the Hardness
of Approximating Stochastic functions for PSPACE-Hard Functions,” Proc. 9th IEEE
Annual Conference on Structure in Complezity Theory, June 1994, pp. 280-293.

H. Galperin “Succinct Representation of Graphs,” Ph.D. Thesis, Princeton University,
1982.

H. Galperin and A. Wigderson, “Succinct Representation of Graphs,” Information and
Control , Vol. 56, 1983, pp. 183-198.

M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory
of NP-Completeness, Freeman, San Francisco CA, 1979.

M.X. Goemans and D.P. Williamson “.878 Approximation Algorithms for MAX CUT
and MAX 2SAT.)” Proc. 26th Annual ACM Symposium on Theory of Computing,
(STOC), May 1994, pp. 422-431.

D.S. Hochbaum, W. Maass, “Approximation Schemes for Covering and Packing Prob-
lems In Image Processing and VLSL,” Journal of the ACM (J. ACM), Vol. 32, No. 1,
1985, pp. 130-136.

D.S. Hochbaum, W. Maass, “Fast Approximation Algorithms for a Nonconvex Covering
Problem,” Journal of Algorithms, Vol. 8, 1987, pp. 305-323.

F. Hofting and E. Wanke, “Minimum Cost Paths in Periodic Graphs,” Tech Report
99, Universit dt-Gesamthochschule-Paderborn, FRG, April, 1992,

11

(HU]
[Hu73a]

[HM+94a)
[HM+94b]

[HM+94c]

[HM-+94d]

[1587]

[1588]

[Jo74]

[Kan92b]
[KMW67)
[Ka72]
[KO91]
[KS88]
[LWo3]

[Li82)

J. E. Hopcroft, and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation Addison Wesley, Reading MA., 1979.

H.B. Hunt III, “On The Time and Tape Complexity of Languages,” Ph.D. thesis,
Department of Computer Science, Cornell University, August, 1973.

H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz and
R. E. Stearns, “A Unified Approach to Approximation Schemes for NP- and PSPACE-
Hard Problems for Geometric Graphs”, to appear in Proc. 2nd Annual European Sym-
posium on Algorithms (ESA’94), September, 1994.

H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, D.J. Rosenkrantz and R.E. Stearns,
“A Unified Approach to Prove Both Easiness and Hardness Results for Succinct Spec-
ifications,” Technical Report No. 94-5 Department of Computer Science, University at
Albany, May 1994.

H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, D.J. Rosenkrantz and R.E. Stearns,
“Designing Approximation Schemes Using L-Reductions,” to appear in Proc. 13th
Foundations of Software Technology and Theoretical Computer Science (FST-TCS’94),
also available as Technical Report No 94-7, Department of Computer Science, Univer-
sity at Albany, May 1994.

H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, D.J. Rosenkrantz and R.E. Stearns,
“On the Complexity and Approximability of Periodic and Hierarchical Specifications,”
Technical Report No 94-10, Department of Computer Science, University at Albany,
August 1994.

K. Iwano and K. Steiglitz, “Testing for Cycles in Infinite Graphs with Periodic Struc-

ture,” Proc. 19th Annual ACM Symposium on Theory of Computing, (STOC), 1987,
pp. 46-53.

K. Iwano and K. Steiglitz, “Planarity Testing of Doubly Connected Periodic Infinite
Graphs,” Networks, No. 18, 1988, pp. 205-222.

D.S. Johnson, “Approximation Algorithms for Combinatorial Problems,” Journal of
Computer and System Sciences (JCSS), Vol. 9, 1974, pp. 256-278.

V. Kann, “On the Approximability of NP-complete Optimization Problems,” Ph.D.
Thesis, Dept. of Numerical Analysis and Computing Science, Royal Institute of Tech-
nology, Stockholm, Sweden, May 1992. -~

R.M. Karp, R.E. Miller and S. Winograd, “The Organization of Computations for
Uniform Recurrence Equations,” Journal of the ACM (J. ACM), Vol. 14, No. 3, 1967,
pp. 563-590.

R.M. Karp, “Reducibility Among Combinatorial Problems,” in R.E. Miller and J.W.

Thatcher (eds) Complezity of Computer Computations, Plenum Press, N.Y. 1972, pp.
85-103.

M. Kodialam and J.B. Orlin, “Recognizing Strong Connectivity in Periodic graphs and
its relation to integer programming,” Proc. 2nd ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1991, pp. 131-135.

K. R. Kosaraju and G.F. Sullivan, “Detecting Cycles in Dynamic Graphs in Polynomial
Time,” Proc. 27th IEEE Symposium on Foundations of Computer Science (FOCS),
1988, pp. 398-406.

T. Lengauer and E. Wanke, “Efficient Decision Procedures for Graph Properties on
Context-Free Graph Languages ,” Journal of the ACM (J. ACM) , Vol. 40, No. 2,
1993, pp. 368-393.

D. Lichtenstein, “Planar Formulae and their Uses”, SIAM Journal on Computing, Vol
11, No. 2, May 1982 , pp. 329-343. ’

12

[LB8Y]

[MH+93a)

[MR+93]

[MH+94]

[Or82a]

[Or82b]
[Or83a]
[Or84b)
[Or85)

[PY86]
[PY91]
[Sc78]

[Wa93]

A. Lozano, and J.L. Balcazar, “ The Complexity of Graph Problems for Succinctly
Represented Graphs,” Proc. 15th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’89) , Springer Verlag, LNCS, Vol. 411, 1989, pp. 277-286.

M.V. Marathe H.B. Hunt III, and S.S. Ravi, “The Complexity of Approximating
PSPACE-Complete Problems for Hierarchical Specifications,” Proc. 20th International
Colloguium on Automata Languages and Programming (ICALP), July, 1993, pp. 76-87.

M.V. Marathe, V. Radhakrishnan, H.B. Hunt III, and S.S. Ravi, “Hierarchical Specified
Unit Disk Graphs,” Proc. 19th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG ’93), June, 1993, pp. 21-32.

M.V. Marathe, H.B. Hunt III, R.E. Stearns and V. Radhakrishnan, “Approximation
Schemes for PSPACE-Complete Problems for Succinct Specifications,” Proc. 26th ACM
Annual Symposium on Theory of Computing (STOC), 1994, pp. 468-477.

J.B. Orlin, “The Complexity of Dynamic/Periodic Languages and Optimization Prob-
lems,” Sloan W.P. No. 1679-86 July 1985, Working paper, Alfred P. Sloan School of
Management, MIT, Cambridge, MA 02139. A Preliminary version of the paper appears
in Proc. 18th ACM Annual Symposium on Theory of Computing (STOC), 1978, pp.
218-227.

J.B. Orlin, “Minimizing the Number of Vehicles to Meet a Fixed Periodic Schedule:
An Application to Periodic Posets,” Operations Research, No. 30, 1982, pp. 760-776.

J.B. Orlin, “Dynamic Matching and Quasidynamic Fractional Matchings 1,” Networks
Vol. 13, 1983, pp. 551-562.

J.B. Orlin, “Some Problems on Dynamic/Periodic Graphs,” Progress in Combinatorial
Optimization, Academic Press, May 1984, pp. 273-293.

J.B. Orlin, “Maximum Throughput Dynamic Network Flows,” Mathematical Program-
ming, 1985.

C. Papadimitriou and M. Yannakakis, “A note on Succinct Representation of Graphs,”
Information and Comgputation No. 71, 1986, pp. 181-185.

C. Papadimitriou and M. Yannakakis, “Optimization, Approximation and Complexity
Classes,” Journal of Computer and System Sciences (JCSS), No. 43, 1991, pp. 425-440.

T. Schaefer, “The Complexity of Satisfiability Problems,” Proc. 10th ACM Symposium
on Theory of Computing (STOC), 1978, pp. 216-226.

E. Wanke, “Paths and Cycles in Finite Periodic Graphs,” Proc. 20th Symposium on

Math. Foundations of Computer Science (MFCS), LNCS 711, Springer-Verlag, 1993,
pp. 751-760.

13

e s fmfm - m

Figure 1: Example of a 2-dimensional narrow periodically specified graph. The static graph with
2-dimensional displacement vectors and its associated expanded graph.

Appendix
Analysis of Algorithm 2-FPN-MAX-IS

We now prove the correctness and the performance guarantee of the algorithm 2-FPN-MAX-IS.
To do this we prove a series of lemma which hold for every iteration of the innermost loop of the
algorithm.

‘Lemma 5.1 For each iteration of loop 2(c)i, the graphs szjfj", 2<i<r—-1,2<5k<s;-1 (ie.
21,2 :

the graphs G.'5°, G ... giositt) are isomorphic.

i,r—1 i,r—1

Proof 1dea:. Follows from the definition of periodic specification. =

Let us define two subgraphs obtained in iteration 2.(a).i.A to be in the same equivalence class
if they are isomorphic. Then it is easy to see that the maximum independent set problem can
be solved for exactly one member of each equivalence class. As a corollary of the above lemma
and by definition of periodic specifications we get that the number of equivalence classes are finite.
Furthermore, as result of our partitioning step, it can be shown that the size of the individual

pieces is O(k? - |G|). These crucial facts allow us to bound the running time of our algorithm by
O(RTu(k* - |G))-

Lemma 5.2 The number of equivalence classes is no more than 9. Furthermore, The number of
elements in each equivalence class is a polynomial time computable function f (in the size of the
specification) of M and N, denoted by f(M,N).

Proof Sketch: For the purposes of understanding, assume that the periodic graph as a large square
which is partitioned into small square pieces. Figure 2 shows the possible different equivalence
classes. =

Lemma 5.3 Each of the subgraphs G:,‘J’J ' obtained in Step 2.(c).i.B is disjoint.

14

—————‘l
w

~1

Figure 2: Figure showing the possible equivalence classes as a result of decomposition. The black
squares denote subgraphs and the black dotted lines denote the equivalence classes.

Proof Sketch: Follows from the property of instances specified by 2-FPN specifications; namely
a vertex defined at grid point (4,) is adjacent only to vertices that are defined at grid points (I, m)
such that [—i|,|m —j|<1. =

Next, we prove that the algorithm given above indeed computes a near optimal independent
set. That is, given any k > 1 the algorithm will compute an independent set whose size is at least
(z27)? times that of an optimal independent set.

First, we prove that of all the different iterations for 4, at least one iteration has the property
that the number of nodes that are not considered in the independent set computation is a small
fraction of an optimal independent set.

Recall that for each i we did not consider the vertices which were placed at lattice points with
horizontal coordinates ji, jo - - - jp such that j; = i mod(k + 1), 1 <1 < p. Let Sp, S1,---S; be the
set of vertices which were not considered for each iteration i. Let JSop:(S;) denote the vertices in
the set S; which were chosen in the optimal independent set OPT(G).

Lemma 5.4
k
(k+1

fax |OPT(Gy)| 2 ()IOPT(G)]

Proof: The proof follows by observing that the following equations hold:
0<i,j <L, i#j, SinS;j=¢; UZS,=V(G). =

The proofs of the next two theorems follow by an averaging argument. We omit the proofs due
to the lack of space.

Theorem 5.5 (15(G; ;)| > (k—kﬁ) - FBEST - |OPT(G;)|

Theorem 5.6 |IS(G)| > (Tc-_%)2 - FBEST - |OPT(G)|. Here FBEST denotes the performance
guarantee of the best algorithm known to solve the independent set problem.

15

1
! SO | O\
d [}
I
Vertices at these ! | ‘e
. . i i i O O
lattice points are A patficular piece o !
]
T
deleted. ' of grhp! o e
1 i N
' O O‘
w ~ \
~» -
0| e _ e .-) o L.® -
) N e X R X
OO '®)
O
O o Q.o | Ot
e~ l.-‘0|'~-"0 |0 ‘o |® "1~
—f‘ 4 3
? A}
[i ‘e
1 1 O \
| o O
! (Y]
t .I |I
1 ,
' SO
] 1
] h [
1 “]’
1
' ."OO'.
| f 1
1 A I
L% R S o I
- - -__a: — |\.~‘,-____

Figure 3: Basic Idea behind the approximation algorithm for 2FPN-MAX PI-SAT(S). The black
dots represent variables and the ellipses denote clauses. The figure depicts which set of clause to
remove and the redistribution of the variables.

Approximating 2FPN-MAX PI-SAT(S)

We now discuss how to obtain a approximation scheme for the problems 2FPN-MAX SAT(S) when
the bipartite graph is planar. We first recall a theorem from [HM+94c].

Theorem 5.7 For any S, the problem 2FPN-MAX PI-SAT(S) has a polynomial time approzima-
tion scheme.

The basic idea behind the approximation schemes is as follows: For each 0 < i < 2/ in steps
of 2, we remove the defined clauses which are at grid points with X coordinate 7 and j + 1, such
that 7 = ¢ mod (! + 1). This break the bipartite graph into a number of small disjoint subgraphs.
We then repeat the above process by now removing clauses with Y coordinates 7 and j + 1, such
that 5 = ¢ mod (I +1). This break the consecutive vertical strips into smaller disjoint subgraphs.
As shown in [HM+94c] the problem MAX P1-SAT(S) has an approximation scheme, which runs in
linear time. Using this algorithm, we find a near optimal solution for each small subgraph. The
union of the clauses satisfied for each subgraph gives a solution for a given value of i. We pick the
best solution for different values of . As in the case of maximum independent set problem, we
can show that at least for one of the iterations 0 < ¢t <!, at most 1/(2] + 2) clauses are in levels ¢
and t + 1 such that ¢ = ¢ mod (! +1). This ensures that the best assignment to the variables over
all values of ¢ is at least (l—ﬁ)3 of an optimal assignment to the variables of the 2-FPN-PI3SAT
instance. The running time of the algorithm is now O(i? - |G|).

16

Translation Theorem

In this subsection we discuss our lower bound results for graph problems when graphs are specified
using a G.C.R. specification language. In this model, a graph is represented by a description of
a way to construct it. The representation starts with a few basic graphs to which a set of graph
operations is applied repeatedly to define new graphs. The last graph defined is the graph we
consider as the graph specified by the above specification. The graph operations used here are (i)
Cloning (replication) (ii) Vertex Glueing and (iii) Edge Glueing.

1.

Cloning: Given a graph G with a associated set of lists Si; the operation clone(G) defines a
new graph G’ which is isomorphic to G. The set of lists S is defined to be the isomorphic
image of Sg. '

Vertex Glueing Let G = (V4,E;) and Gy = (Va,E;) be two graphs and let L; =
(a1,-..,ar), a; € Vi, Lo = (by,...,bx), by € Va. A graph G is a vertex glue of G; and
G9 via L; and Ly (denoted by G = G1(L1) o, G3(Ls)) if it is defined as follows:

(a) V(G)=Viu(Va—{b1,...bx}) _
(b) E(G) = EyU{{v,w)|(v,w) € Ep wherev,w € Vo—{by,...bx}} U{(v,a;)|v,€ Va—{by,... by}

3.

where (v, ;) € Ea} U{(as,a;)|(bi—, b;) € Ea}

Edge Glueing: Let G; = (V1, E;) and G2 = (V2, E2) be two graphs and let Ly = (ay,...,ax),
Vi, Ly = (b1, ..., b;), b; € Vo. A graph G is a edge glue of G; and Gg via Ly and Ly (denoted

by G = Gi(Ly) o Ga(Ly)) if it is defined as follows:

(a) V(@) =WuV,
(b) E(G) = By U By U {(a;,b;)|1 <i < k}

1.

The set of lists S¢ associated with G is defined as follows:

Let S¢, = {F1,...,Fn} and Sg, = {Mi,...,M,}, then a list L in Sg is either L = F; or
L = M; or L = F; o M;, where o denotes the concatenation of two lists. Throughout this
discussion we assume that the graphs are simple and we omit duplicates. Figure 4 illustrates
the vertex and edge glueing operations described above.

We are now ready to prove our translation theorem.
Proof of Theorem 2.7: In this proof we will construct a GCR specification using the vertex glue-
ing and cloning operations. Consider the static graph I' specifying the periodic graph. Construct
a auxiliary graph I'y which consists of four copies of I', denoted by I'g g, 1,1'1,0,I'1,1. There is an
edge between two vertices u,v € I'1 if and only if u € I'; j, v € G with the constraint that there
is an edge between u and v in I’ with vector weight (Jk — i}, |l — j]).
M = N = 1: In this case the GCR specification simply consists of the graph I';.
If not we build a GCR specification as follows:

Gy =TIy, (Le, Ly, Ln, L) where the lists are defined as follows.
Le =V (Top0) UV (Lo1) Ly =V(T10)UV([11)
L, = V(Fo,o) U V(Fu)) Ly = V(r0’1) U V(Fl,l)

17

ag; €

Figure 4: Example of Vertex and Edge Glueing. (a) Vertex Glueing: Graphs G and G5. Lg, =
{2,4} and Lg, = {5,7}. After the Vertex Glueing operation is performed 2 merges with 5 and 4
merges with 7. (b) Edge Glueing: In this case we add edges (2,5) and (4, 7).

2. Gz = clone(Gl)

3. G3 = Gl(Lw) Oy Gg(Le) a,nd
Le(G3) = Le(Gl), Lw(G3) = Lw(G2)’
Ln(G:;) = Ln(Gl)] Ln(Gg), and LS(G3) = LS(GI) o LS(GQ)

4. Gy = clone(Gs)
5. Gs = Ga(Ly) o G3(Le)

6. Gap = Gap_2(Lw) 0 Gap—1(Le)

Remark: Ggp = (I')(*?2), Furthermore assume that S(n) denotes the number of copies of I
in the graph defined by G,,. Then it can be seen that the following set of recurrence equations
hold:

S2n)=82n—-1)+S(2n—-2) -2

S(2n—1) = 8(2n - 2)

Combining the two equations the number of copies of I' obtained as a result of expanding
Gy, is given by S(2n) = 25(2n — 2) — 2. Solving the recurrence we get that in O(log |M])
steps we can specify the graph I'(M:2),

7. Now we do a similar operation merging the lists L,, and L appropriately and in turn getting
graph which is big enough in the Y-direction. In particular we do the following.

8. Hy = clone(Ggp)

18

H, D)

Figure 5: Example illustrating how to obtain a GCR specification. In our example we give a GCR
specification of I',2,2. (a) The east-west vertex glue to get Gs. (b) H; and Hy are two clones of
(3 and we do a north-south vertex glue to get Hs.

9H2 = clone(Hl)

10. Hz = Hy(Ls) oy Ha(Lp) and
Ln(Hg) = Ln(Hl), Ls(Hg = LS(HQ), Le(H;g) = Le(HI)OLe((Hz), and Lw(Hg) = Lw(Hl) o
L ((Hy).

11. Hy = clone(H3)

12. Hs = Hy(Ly) o H3(Le)

13. H2q = ng_g(Lw) o H2q—1(Le)

Remark: Hs, = [M:N) By arguments similar to thsoe before we get that for ¢ = O(log |N|)
steps we obtain description of the graph I(M:N),

19

