skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracer Tests in a Fractured Dolomite: 3. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests

Journal Article · · Water Resources Research
OSTI ID:4249

We investigated multiple-rate diffusion as a possible explanation for observed behavior in a suite of single-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite. We first investigated the ability of a conventional double-porosity model and a multirate diffusion model to explain the data. This revealed that the multirate diffusion hypothesis/model is most consistent with all available data, and is the only model to date that is capable of matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW recovery curves to the distribution of diffusion rate coefficients and other parameters. We concluded that the SWIW test is very sensitive to the distribution of rate coefficients, but is relatively insensitive to other flow and transport parameters such as advective porosity and dispersivity. Third, we examined the significance of the constant double-log late-time slopes ({minus}2. 1 to {minus}2.8), which are present in several data sets. The observed late-time slopes are significantly different than would be predicted by either conventional double-porosity or single-porosity media, and are found to be a distinctive feature of multirate diffusion under SWIW test conditions. Fourth, we found that the estimated distributions of diffusion rate coefficients are very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
4249
Report Number(s):
SAND98-2573J; TRN: AH200113%%121
Journal Information:
Water Resources Research, Other Information: Submitted to Water Resources Research; PBD: 4 Mar 1999
Country of Publication:
United States
Language:
English