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Abstract 

%!he "absolutt8' containmen-6 of ions in  the DCX 

magnetic mirror f i e ld  resulting from the cylindrical 

s-try of the f i e ld  is.discuesed. The regions of 

conf'inement 'in space and momentum are' plotted for 
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Ions are contained in the Oak Ridge high-energy injection experiment, DCX2 

by means of a magnetic 'mirror" field. It· is well known that charged parti6les 

of sufficiently small Larmer radius are confined by magnetic mirrors due to 

the constraiD.ts imposed by an exact constant of motion, the kinetic energy; 

p2j2m, together with an approximate constant, the magnetic moment. DCX orbits 

are much too large for this adiabatic containment criterion to apply. However2 

1 it is also well known that, in addition to possible adiabatic confinement, 

a class among those pa~icles encircling the magnetic axis of symmetry is 

absolutely contained by the action of two exact constants, the kinetic energy, 

again, and the canonical angular momentum, Pe· While the ultimate mirror 

machine may require adiabatic· confinement, in DCX the ion Larmer radius is 

so large that, though nonadiabatic, almost all ions are in fact subject to 

absolute containment.· As will be pointed out, this is almost as good as 

adiabatic containment in this case. 

The absolute containment criterion can be derived as follows. In · 

cylindrical coordinates with the z-axis pointing in the magnetic field 

direction; the non-relativi~tic Hamiltonian for a single particle with charge 

e, mass m, moving in a. cylindrically symmetric magnetic field arising from 
7 

the vector potential, A, which in this .case has onlyone component, 

Ae :::. A(r, z), is 

(1) 

Here, as was mentioned above, Pe = mr2~ +irA is a constant of the.motion. 

Writing H, also a constant of motion, as p2j2m, and multiplying throUgh by· 
2m gives 

2 2 2 
p = p + p + V(pe,r,z) r z 

(2) 

1. A. Garren et al., Non-Adiabatic Effects in Single Particle Orbits, in 
Proceedings-or-controlled Thermonuclear Reactions Conference, Berkeley, 
California, Feb. 1957, TID=7536 (Part 2), P• 170. . . 
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. where 

V(p ~r~z) = (~e ~~A~ -
2 

. e ~ c j (.3) 

isjl for a given p83 an effective potential for the r 3 z motion. Clearly a 

sufficient criterion for absolute containment is ·that all the energy become 
. . 

''potential" as a particle approaches the machine walls; that is3 it is sui'~ 

ficient to require that 

v > 2 
p 

at every point on the boundary of the machine. · 

(4) 

Consider positive ions, e > 0. In our coordinate system~ A~ 0 inside 

the 'mac~ine.., and A~ 0 as r ~ o. Thus,_ for Pe > 0; V = 0 at some r for 

all Pe' z,'.9 so that Eq. (4) ca:i:mot be satis;t:ied. Such is not the case if 

Pe <:... o, corresponding to orbits which encircle the z-axis. Then V as a 

function of r and· z defines a bowl=shaped surface depressed in the neighbor= 

hood of z = 0. A particle with insufficient energy to spill over the bowl is 

trapped. In Fig. 1 are plotted typical curves {V;p for .300 kev deuterons at 

z = 0, the ''midplane" of DCX (mirror ratio 2:.1). 

Equation (4) can be written as an explicit criterion in m~mentum space 

by noting that there exists a maximum Pe.ll caii it Pe' such that Eq~· (4) is 

satisfied for all Pe~ Pe· (pe is negative, of course.) Then an ion is 

absolutely contained if 

2 2 2 -
P + P. < p ~ v ( Pe' r, z) • r z . (5) 

In Fig. 2jl the circles bounding the absolute containment zones in momentum 

space defined by Eq. (5) have been plotted for .300 kev deu:t.erori.s at 'several 
. I . 

radial positions in the DCX midplane •. The momentum of any particle corresponds 

to a point wi't~.in the unit circlejl of course. A particle crossing the midplane 
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at a given radial position r is absolutely contained if its r and z momentum 

correspond to.a point within 'the circle labeled by that r. There is also 

plotted the zone of adiabatic containment, which is bounded by straight lines 

rather than circles since adiabatic confinement depends only upon Pz• · 

Herein lies an important distinction between adiabatic and absolute 

c©ntainment. In terms of the angle by which a particle newly injected into 

DCX must be scattered in order to be lost (we inject in the midplane on the 

one.orbit which is a perfect circle concentric to the symmetry axis), 

adiabatically· containe_d particles are lost when scattered by more than a · 

certain critical angle in the z-direction. 

On the other hand, absolutely contained particles may be lost when 

scattered by more than another critical angle in~ direction. In the case 

of a mirror ratio 2:13 as in DCX, the critical angles for both criteria are 
0 

~ 45 • In that case the steady-state ion density which can be achieved with 

a given· injection current in competition with ion losses out the mirrors by 

scattering is only a factor tV 3 less with absolute containment than what it 

would be if adiabatic containment were applicable. 

Turning now from the implication of absolute containment in momentum 

space to its meaning in configuration space, it is interesting to determine 

the spatial region of confinement. In Fig. 3 is plotted the equipotential 

curves V(p9pr,z) = p2 
bounding the regions in rand z space to which particles 

of a given p e are confined. The curves are labeled . by both p 
9

jp arid by ·the 

corresponding angle by which a newly injected ion must be scattered to have 

this value p9• Figure 4 is an enlargement of the region near the injection 

point. 
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