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Janice Button
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ABSTRACT

. Measurements have been made, By double scattering, of all
parameters necessary to describe corﬁpletely the interaction of the
deuteron with complex nuclei, . Tensor components of polarization,
which characterize the scattering of spin-one particles and which
were unobservable at low energies, were determined to be appre-
ciably different from zero. Internal targets at two different positions
were.used to polarize beams undergoing differing amounts of mag-
netic bending in the field of the cyclotron in order to separate two
polarlzatlon components included in the cos¢ term of the scattering
cross sect1on for. a polarized beam.

Deuterons of 410 and 420 Mev were scattered from. berylhum

and :carbon, respectively. Internal anglesof scattering were 10 deg

for beryllium and 11 deg for carbon; angles of .second scattering
extended from 6 to 18 deg. The usual spin polarization (vector
polarizatién) normal to the plane of scattering was found to reach
a maximum of about 70%.

The impulse approximation was employed to obtain estimates
of deuteron cross section and polarization on the basis of nucleon-

scattering data. ”
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I. INTRODUCTION
Although, the phenomenon’ of deuteron polarlzatmn is much

more complex than that of proton polar1zat1on, exper1mental

research.should lead to a better understanding of the spin-orbit

1nteract10n between nucleon and nucleus and, more partlcularly,

of the relative.importance. of various effects in the scattermg of the
deuteron. Many studies have been made of the -spin-orbit potentlal
in nucleon .1nteractlons.~1 Exper1menta1 work on the scattering of
deuterons has been rather limited; Baldwin et al. 2 measured cross
sections -and polar1zat1ons for various elements. at 94 125, and

157 Mev,. but failed to observe. any of the: "tensor components' of . ..
polarization expected for a spin-one part1c1e Stapp made extensive
theoretical studies of. the app11cat1on of the impulse approx1mat1on

in various.-forms to deuteron scattering; he found good agreement

with _experlment only by assuming that.simultaneous scattering of

. both nucleons. of .the. deuteron was an important effect 3 - Neither .

his assumptions.as to the form of the nucleon- nucleus potent1a1 nor

the use of nucleon- scattermg data gave vector - polar1zat1on pre-

‘d1ct\;ons at all comparable to the large values observed by Baldwin,

although the tensor components could be estimated as very close

to zero.” Tripp carried out an experiment on the pf{*p ->Tl’+“f:‘ d:reac-
tion to analyze the polarization of the deuteron for determ1nat1on of
the phases of meson-production amplitudes and hence differences in
p-p phase shifts; on the basis of the work of Baldwin and Stapp, he
assumed that tensor components were zero. ‘

Scattering measurements at a deuteron energy above 400 Mev,
available from the reconverted cyclotfon, seemed desirabte‘ to:
determine whether the tensor components of polarization m’igh’t be
observable; further, a method of separating the two components of

polarization appearing in the cos¢ asymmetry, heéretofore considered

| very difficult, > had been suggested, and it was thought that the

complete determination of scattering-matrix components would be

aBy Dr. Ronald Mermod, now at Cern Laboratory, Geneva.
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of interest. It was to be expected that the impulse approximation
would give better agreement with experiment at the higher deuteron
enérgy, since nucleon polarization rises rapidly with energy near
100 Mev and the Born approximation has greatef Qaiiaity at higher
energies. ' o DR

The results of the scattering by beryilium and carbon of two
polarized beams having different tens'or co'mponents"are reported
here. An analysis is carried out on the basis of the impulsé ap-
proximation and comparison made with Baldwin's results.

It should be a relatively simple matter to extend these measure-
ments to lower energies by degrading before the second scattering
and thus to déetermine the energy dependérice of polarization com -
.pn'nenf.s mnre exactly. Further. useful information on differences
between p-p phase shifts could be obtained by analysis of deuteron
polarization in the p+p—>1r++d reaction at proton ene’rg'ieslof-400 to

740 Mev.
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II.° THEORY

Because the deuteron is a particle of spin one, four parameters
in addition to ~the unpolarized cross section afé-.‘needed to specify
the intensity after double scattering. These parameters are de-
pendent upon the angles of first and sevciond.scat'tering and may be
expressed in terms of the expectation values, after single scatter-
ing, of certain operaf'ofs. in the spin space of the deuteron. Two
of them may be determined immediately from differential-cross- .
Section measurements, as wlaS done by Baldwin at lower enérgies;
the other two, however, are combined as the.coefficient of a cosé¢
term (where ¢ is the azimuthal angle between the normals to-the
first and second.scattering planes) and can be separately deter-
mined only by double scattering with and without a magnetic field
between the first and second targets. .

The theory of polarization of the deuteron was given first by
_Lakin5 and subsequently treated .with a different formalism by .
St'app,.3 Just as there‘aré four independent matrices necessary to
specify the scattering matrix of nucleons. having a two-dimensional
spin space, ;chere must be nine linearly independent matrices to ..
déscribe the sca'tter.in‘gsof deuterons which have a three-dimensional.

spin space. The application of parity and time-reversal restrictions

- reduces this number to five.. For the nucleons, the unit matrix and

the three Pauli spin operators suffice, but for the deuteron there

must be included.in the 's,cattering matrix not only terms linear in

the spin operators, but second-rank tensor terms as well.
A Formalism

A convenient set of operators given by Lakin includes the
unit rhatrix, two 1.ine}ér‘ combinations of spin operators, and three
second-rank tensor products of spin operators, as.well as the
Hermitian adjoint of three of these. The advantages. of this par-
ticular representation are that the operators transform in spin

space just as the spherical harmonics transform in coordinate
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space, and further that the second-scattered intensity may be ex-
pressed in an especially simple. manner.

These matrices are:

T11= - -T .(‘Sx+isy)
TlO: _2— Sz
7. = N3 7

227 — (S +1iS. ).2.'
2 x y

e

= - J(S +48. ) S +S (S +1iS -
Ta T[(SX By B 8, ‘y’]

RN
T30% . 7= 35, 2)
\
1
M
Ty, om=TM

Choice of a particular coordindte system causes some of the
'<T TM> resulting from a Scattéring process to equal zero. (This
can be seen by considering an. explicit form of M or"MM ", as in

Section C.). An especially useful systern is that in which the y axis

®Like the spherical harmonics, ’che"TJM are an irreducible set of
tensor operators and hence have especially simple rotation trans-
formations associated with them. (See Appendix B for fuller dis-

cussion. ).
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is normal to the scattering plane.and the z axis is along the direc-
tion of motion of the once-scattered beam. (See Fig. 1.) For this

situation the state of polarization of the scattered particles is com-

. pletely described by the expectation values of four of the TJM

operators as well as\th’e normalization {<TOO> ; further, all <TZM>
are real, while. <T11/ is pure imaginary. '

Lakin constructs a product of the scattered matrix and its
adjoint MM+ which is invariant under space inversion and time
reversal, and in the reference system defined above he -obtains for

the second-scattered intcnaity

L, (6, ) =1, (9;) [l * <Tzo> 1 <Tzo>z * 2.<<?T11>1="'<1Tu>2

- <T21>1 <T21>2> cos ¢ * 2 <Tzz\>1‘<?zz>2 cos 2‘%

where Iu is the cross section for scattering of an unpolarized beam;

Y

\-- . 3
dlis the azimuthal angle between normals to the two scatterin
ng g
planes; a <TJM> 1 represents the expectation value of the tensor

operator T after scattering of an unpolarized beam at an anglé

JM
61 by Target l; and TJM 21 the same for angle 6,2 at Target 2.

‘(The coordinate system used has its z axis along the direction of

beam incident on the second target, but the'<TJM for each of
Targets 1 and 2 are defined with the z_axis.along the outgoing mo-

mentum because time reversal is used to obtain the TZM > of

- Target 2.)

The quantity iT11> is referred to as ''vector polarization, "
as it is proportional to Sy>’ the polarization normal to the

scattering plane, while the (T are components of ''tensor

ZM
polarization' and represent a spin alignment rather than an orien-

tation. _The latter constitute a second-rank tensor, one of whose

principal axes is along the direction of spin or parallel to <iT1i> .

®defined by cos ¢ = Hl . ;2 or sin ¢ =_n1 X?lz . _kZ'i

e
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I

Fig. 1. (a) Coordinate system for single scattermg as
seen in the plane of scattering.

“(b) Geometry of double scatterihg. |
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This vector p’ol’aﬂzatioh is’ evi'd'én't.ly not affected by a magnetic field
normal to the plane of scattering, but such a field does cause rotation
of the polarization tensor relative to the beam-defined coordinate

system described above, and hence a mixing of the <TZM> components’

B. Description of State of Polarization

Description of the state of a particle following a scattering
interaction may be given by:the use of a scattering matrix.M, which

..defines the final state in terms of the initial state,
by = My
The density matrix after scattering then takes the form
= Judts Mp.Mmt
ZJ. g g = Mpy M,

and this gives the expectation value of any spin operator st after
scattering,

Tr {p: st) TrMp.M'*‘S'FL
<Sp'> f . 1 .

Tr Ps TrMpiM*

The initial- den51ty matrix may be expressed in terms of a complete
set of these spin operators R under the requirement. TrR RB nié'aﬁ"
as '
Sy < V> ars
Pp=— 2 \R/ R Y
i

(ni being the dimensionality of the initial spin space).

Then the Wolfenstein-Ashkin relation6 follows,

v ‘ Trp 1
- TG, - 56
I\S" /¢ S> R 4 R TremrVIM'sH,

Trp

with R” and s" referring to the same set of spin operators for the
description of initial and final states, respectively.
From this relation the cross section is found for second scat-

tering,

1\t~<v> 4y
L, = — £ (RY), Trm'Mr';

i v
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and polarizations or expectation values of spin operators after

single scattering are

L |
I <s“> =— Tr (MMmTsH).
u {f ni _

In the case of the deuferon, these spin oper.‘ato_rs R” a:ruri‘S"L ca;n of
‘course be defined as the TJM of Lakin. ' ' .

Evidently, expressions either for MM and MMm© or for the
scattering matrix alone would be useful in describing the scattering
of a particle. Lakin chooses to define a general form for MM" and
~also for MM on the basis of invariance arguments,;,a he forms all
possible products of the above-described TJM and the spherical
harmonics YJM (with arguments derived from ki and kf, incident
and final momecnta) that are invariant under space inversion hy
using only those YJM which 'arc cven in k_i and kf. He finds the
Cross section for second scattering as a function of,<TJM> 1’

YJM (92;1)»)\{ and (12— dependent coeffi;iehts of the M-"-M terms by
substituting the M M expression into the’ <S+L >f relation above and
taking st equal to the uhi’cv matrix; he then notes that time reversal
requires MM to be equal to MM’ and finds the angle -dependent
-coefficients in terms of the <TAJM> 2 resulting from the scattering
of an unpolarized beam. (Subscripts refer to the geometries of
first and second scatterings.) The expression for second-scattering
cross section which he obtains is as given on page 9.

. Stapp, on the other hand, prcfcrc to define M alone as

M =A(6)+B,; (8) S +C; (6)S;

I S =t Z o= e
MM = Jg+ J) L Yop ) Tyt 3, £ Yo ) Toy
M RS VIR oM h

+J, % Yo ok Try + 3y - Y (kixkg) Topp whgre

YZM _(ki;kff). is a sec‘ohd-degree harmonic, bilinear, and symmetrical
in ki and kf.
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with the S j representing symmetrized products of spin opefators
Invarlance under space inversion and time reversal is aga1n applied -

tg restrict the types of terms. As Wolfenstem and Ashkin have

“shown, only the S n, term of the class of vector contractions is

invariant under space inversion and time reversal; similar arguments

show that of all the tensor products only S, Jn n, S, JPIP , and SiniK

terms are possible if nn is the normal to the plime of scattering, P :
the sum of initie.l and final momenta, and K the difference of initial
and final momenta. (The K tensor changes sign under space inver-
sion; the "r'ip tensor, under both space.inversion and time reversgal;
and the PK tensor, under time reversal. ). Thﬁs the most general

scatter1ng matr1x sat1sfy1ng 1nvar1ance requlrements is

=a(6)+b(6)Sn + [(6) nnJ-l/éé

+d(8) (PP, - K. K)] 'S,
: it i ij

Although this 'scattering matrix gives a rather complex expression

for cross section in second scattering, it is useful for evaluating

polarization components in terms of scattering"?r'n'atri‘x elements, .
which may be related to the scattering matrix for nucleon-nucleus

interaction.

C.. Cross. Section for Sec.ond-AScéLttering

Although Stapp's notatlon is more cumbersome than Lakin's,
h1s formalism .gives a better understandmg of the origin of the ¢-

dependence of terms in'l He defines the scatterlng matxélx as

2°

given above. The vectors entering into this matrix are represented

in Fig. la, their definitions being

n = unit vector along Ii xif,
. P = unit vector along T(i‘+T<£’
K = &

= unit vector along Ef' -

a

)
l

1/2 (S, sj + SJ. si)‘ - z_/3 I'Gij'
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In terms, then:,' of the xyz kcoordinates defined by the first scattering,
as above, the veetor components used in the scattering matrix for
the second target may be represented as the followmg functlons of 6

and ¢,

n, = -.sin ¢, n,y = cos o, " n, = 0;
_ . 6 - .0 . - - 0 .
Kva = ein %= cocC ¢, sz o1h—2- oin ¢, LZz cos , i
P = i 1) r = cds—e'— sin ¢ P = S 1] =—
2 - CO85—cos ¢, 2y 5 , 22 = " sin=
If I2 (0, ¢) is now determined by taking I2 = Tr szlM; ,

with P the density matrix after first scattering, Stapp's form of
the scattering matrix charactcrising the intcraction at"Targét 2

may be substituted to give

IZ = Tr {[a + bS- n, + c(ninj -aij/3)2's1_] | .
d(P.P. - KK).S.| g [a+b 5 -n,+c* 6”) s

t PPy - KK, ij] Ry B "myte (nyng -, Sy

+ & (PP, - K.K) s"l = a®+2/3b%+ 4/3 Rea'd Tr (5,5 - n,) -
ST iJZiJ‘JJ | | € HE R

It is evident that the third term is proportional to <S >1 S >Z cos¢
or t°\1T]\1>l <T >& cos ¢. Also there is a cos ¢ te1 m prupurtwual

to <S S /1 or t0\T21>1 which derives from

Tr{plZRead(PP -K K )S QS )1 2Rea dsmg osgcoscb.
Further, such terms as Tr{ (P P - K K ) S } will reduce to

the form cos ¢ <S >1, part of which is proportional to<T22> 1

cos 243 and Tr{p, 2 Rea’ *a (P2 - KZ) s2 will be of the form

2’6 .20 > . < > .
dem - —_
(cos' > sin 2) <Sz 1’ ©°F proportional to a T20 1 term independent
of &. '

Tr (pIS ) gives the expectation value <S >1 and its coefficient Re a b

- is proportmnal to the<S >2 that would result from scattermg an

unpolarized beam from the secpnd target.
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D. Single Scattéri:ﬁg

If the coordinate system coff/éidgred has its y axis along the
normal and its x and z axes in the plane of scattering, then fs
is the only component of spin polarlzatmn produced in the scattermg
of an unpolarized beam; i.e. <S > <S 0. Further, it can be
shown that the polarization tensor has one of its principal axes along-
the y axis, or. that <S S)} <S S > 0. This can be demonstrated..
formally by using elther Stapp's or Lakin's expression for MM+a
The vanishing of these expectation values follows from the require-
ment that the terms in M be invariant under thé p‘arify operation.

In the coordinate syétem with the z axis parallel to the scatter-

-ing normal, the requirements th.at<S’>and<S)>equal zero after the

" scattering of Aan- unpolarized beam yield particular forms for the

deuteron spin functions.,b One solution is

ael)\ ' A ' S : (cos 6/2)e¥)\
Xa=| P o and the other is XB' s -0
' ae A ' (sin 6/2)e-1?\
where a and B are real and 2 o.Z+B =1, These wave functions are

of interest in that the phases can be 1nterpreted in terms of a mag—

-

netic field H applied along the z axis for a time t by solving the

' equation (with the magnetlc moment of the deuteron) -

/aH
‘-}).SZI-.IZ»X =ithy ' t(? f1nc}_ \.= -ii—-'— t.

aFormﬁlae giving the reduction of spin-operator'pfoduét,s are in
Stapp's thesis, 3 .. 119,

bThese XA and X B functxons can, of course, be put in the same

form as the Lakin or the Baldwin spin functions, (See Append1x B)
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. Solution A may bc interpreted as representing spin oriented
in the plane of scattering with probability [32 and spin oriented par-
allel or antiparallel to the normal with probability-az; the probability
of finding an average spin orientation along the zéaki's‘ normal thus
1is zero. . For Solution B, spin is oriented on the average at an
angle to the normal, so that the'probab.i[ity of finding 'spin along the

normal is cos §. For this case,

)
(o
"<SYY/

1/2 <<sxy> + <SYX>>

1

2

1/2 (1+sind cos 2)\),

1/2 (1-sin & cos 2)\),

~ 1/4 sin & sin 2 .

(These_values, or their reciprocals, when plotted to give <SZ> or
1/ <SZ in the x-y scattering plane, give an ellipse whose orienta-
tion relative to the direction of the motion of the deuterons is deter-
mined by the value of \ or of Hzt associated with the bending after
scattering. . See Fig. 2.)

The polarization tensor is to be interpreted as the statistical
distribution of deuteron spin; expectation values of <.Szz>’ <Sxx> ,
and <Sy)> indicate the probability of finding spin al_-imzalong the
various axes. .Hence, for Solution A above, Sz =2a , al-
though <Sz> .is: zero; for the second solution, <Szz> =1,
while <Sxx> and <Syy> vary from 0 to 1 depending on the
quantities sin 0 and cos 2¢.

The <T2M> tensor components ‘have the following p}'xy'rsical
interpretations in the scattering of an unpolarized beam: TZO

indicates the probability of finding spin aligned alongvthe_ z axis;

T22 , 'the preference for spin alignment along the x rather
than the y axis; and T21 , the amount by which the orientation of
the <SiS].§ ellipse axes in the plane of scattering differs from that of

the x-z sca(-tering coordinates. These conclusions are based on the

) 2 2) - (s?)
facts that T20 is dependent on <Sz>, <T22> on <Sx - Sy ’

v
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| i d-Z-Aspin S : - |H
(S2>=Scosd | ‘ - - r—2sind
o #y '/,-' r— :y

MU-=17289

Fig..2. (a) Classical representation of a general type
of wave function (XB) for spin one particles

~ (b) The pro_]ectlon of <S > or 1/<S ) in the
x-v-scattering plane.’
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and <T21> on <SXSZ> ; <T2_0/> has further significance in rep-
resenting the extent by which the occupation of the m, = 0 state

for the z axis differs from the unpolarized value of one-third.

- E. Pure Polarization States

As is stated by Lakin and as can be shown by use of the spin
operators‘ and wave functions in Appendix B, the cos ¢ term of the
polarized cross. section for 8, S 92 reaches a maximum of 3/2
cos ¢ if the first scattering puts all particles into the pure spin
state y ;, (or X-l) along thehornﬂal.(y axis). The limit.of 3/2 for
e can also be obtained by noting that the unpolarized cross section
(Iu) mast be 1/3 the polarized cross section at ¢ =0 (Ib) if the
polarized beam contains only spin-up particles and these are all

scattered left. Then -

0 180 0 3/2.

The tensor components describing the once-scattered incident beam

in:this case have the values .

<T~1o> or <SZ> L |
G111 o (s) =05y -
. {}'30>' ' -A-j—i[—'z_ or <S_7j‘> = 1/2,

3 ,<T21> orl <S§Z> ; <szx> K
. G R CHECORIRCORTIT

Thus all spms will be found in a cone along the +y axis; 1/4 of them

|
o

ni
5.
~
v

B

t
o

|
~. R
> .

will be along the +z or -z axis, but with average S = 0, and 1/4
along the +x or =x axis 'w1th average-‘SxA 0, while 1/2 will be aligned
along the y axis. The {r axis.is.a principal axis of the polarization
tensor and indeed is the smallest of the three axes of the polarizati.on

ellipsoid representing this tensor. (See Appendix D.2.)



-19-

1 1 1 ’
== < = ) The ellipsoid has the form of an oblate
2 2 2 :
& & ,

spheroid. Magnetlc -field rotation of the tensor or ellipsoid about
the y axis does not change the values of <S > <S , or <S >,
and hence leaves the \ T unchanged.

M
The cross-section cos 2¢ term attains a maximum for the -

case of a pure x()), state.- <Sy> theni: 0; as do also <Sx> a.nd‘j<Sz>.
The values of tensor components indicate that the spins of all
particles lie in the plane of scattering, but are 'ciuite randomly aligned.
Again the polarization elhps oid 1s c1rcularly symmetrlc about the

-y axis --i. e. ,~ <sz + \S. x' = 0--but it degenerates into a

cylmder, as ! <SZ> is mf1n1te

F. Tensor Rotation

Two effects enter into the transforimation of the '<T'JM>" ‘One
of these is the rotation of the coordinate system resulting from deflec-
tion of thé deuteron by the magnetic field; the other is the precession
of spin axes in the plane perpendicular to the field direction. For
relativistic particles, the latter must include the contribution of
Thomas precession. ! (See Fig. 3a) The deflection of the deuteron
in the x-z plane is given by: ' |

_eH
=1/y

ZmpC

t=1/y t=mn.

w t w
cyclotron larmor

The precession of the spin or maegnctic moment is:

'(.f)pr.ec'ess ts [Hd “larmor t-v) wcyclotronil ‘t’
where g is the magnetic moment of the deuteron in terms of the
nuc].ear magneton. Thus the angle through which the spin of the
deuteron (or more exactly the axes of ‘the polanzat]on tensor, as
the spin is on the average parallel to the field) is turned relative

to the final direction of motion z' is:

= (wprecess _wcyclotron) t=y (p-1) m

1.22 (.8565 - 1) n=-1/6 m.
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beam
from
target ©

MU=-17290

Fig. 3 (a) Rotation of deuteron spin under the action
of a magnetic field. - Here z and z' are the initial
and final directions of motion of the deuteron.

(b) Section of polarization ellipsoid in x-z
plane of scattering, describing the state of polari-
zation after single scattering of an unpolarized -
beam. The axis p is parallel to k,. for the dee-.
target beam; the axis p'' is parallel 2 k,. for
the meson-target beam.? (See Fig.- 1)
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-The quantity m is positive if deflection is clockwise along the negative

y axis. '(This.is the.cas\'e for deuterons scattered left in a field di-
rected along the positive y axis.) : A
The equations express1ng the rotated <T2M> - quantities.in /

terms of the original <T2M> may be written

<T21\4‘> = ; At <TgM>,~

- where the a's are trigonometric function-s': of the angle N\ or o/f the

angle of deflection of the beam. Explicitly, the. equations are

<Tzo>, = 99 <T20> +oagy (Tpp) * %02 (T32)

=(1-3/2 sin “\) <T20> - (3/2) 1/24in zx <T >
+(3/.2)1/Z in 4\ <T22> |

<"I‘.21>"" : 1/2,(3/2)1/ sin 2 \ <T20> + cos 2\ '<T21 >
1/zsinen (T,,) N

~<T2‘f2>"‘ = 1/2:(3/2)1'/:2 .sin 2y <T20-> + .1'/2 sin'2 )\<T;21l>
+ 172 (1 '+_.c,~o.s‘2. \) <T22'> o

(Note that the sign of each sin 2 X term is opposite to that given by
Baldwin. 2 ) Several methods may be used to’ der1ve these equat1ons
the s1mp1est belng that of express1ng an S S tensor in terms of the
JM matrices and then transforrrnng thls tensor by
rotation of the S y’ &nd S (or x, y, and z) basis vectors about
the y axis. (See discussion in-Appendix D.1.).

To show that. the transfotmation represented by theiabove: equa-
t1ons 1s equlvalent to the rotation of the polarlzatlon tensor or the
ellipsoid representilng this tensor (see Appendix:D. 2 and Fig. 3b),

it is useful to consider the. special case of a pure spin state m's =0
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along the x axis; this situation gives zero values for <1T1 1> and
for e, but a maximum value for f when double: scattermg at the
same angle is performed. As can be seen by simple calculations
with the ko eigenfunction of S_, the expectation values of spin

products are

. \\

(2) - o

)
@)

by (o) (58 - o) -

The reciprocals of <S >, <S > , and <S >give the el_h'péoid
axes and in this case produce a degenerate ellipsoid, namely, a
cylinder of radius 1 extending to plus and minus 1nf1n1ty along the
x .axis. :

If this cylinder is rotated through an angle N\ (change of spin
direction relative to parti¢le motion) equal to 90 deg, the new el-
lipsoid should be a cylinder of radius 1 exte'nding to inf/initf along

the z axis. . Then the spin-product expectation values are
(s2) -
X
: 5 >
<S )

The tensor components (T, ) may be expressed in texms of these:
(To0) -+ l/ﬁé<sz> 2) I .
(o) =0 (G () v Ga)e 1 (5,8 ))
) A () () ),

|
—

1,

i}

0, with expectation values of other products still zero.
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The values of <T2M ' before magﬁetié-fi’efd fotéticin were

(1,4)

<T22> = -r\/3/2 - - P
The final value of <Si> after rotation gives

<T20>' =12 (0-2) = NZ.

' 1 ) . ..
This agrees exactly with the <T20> found from the first of the

ANZ (3-2) = 1/J}T;

rotation equations above with \ = 90°,
, , , ) , .
<Tzo> = (1-3/2) <T2_0> + N3/2 .<T22>.~ = -2/NZT

. TN )
and calculation of the other <T2M> . values shows the two methods

to be equivalent.

. G. Restrictions of Time-Reversal Invarianhce

ol

Invariance under time reversal is satisfied for scattering
processes if the scattering matrix as a function of the time-reversed
momenta and spins is equal to the adjoint of the original scattering
"&natrix,

_ = = = = =
M (-pz. -py» -S) = M (p), P, S).
Then it follows that '

Tx M{p, 5) MY, 5) 0, = Tr MF(5, ) M (-5, 5) 0,
where 0i is any spin operator used in the description.of scattering.
A more general statement for scatterings complicated by the action
of a magnetic field is the requirement that .the transition probability _
for the forward process equal the transition probability for the time-
reversed process :

-iAS
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where M, is the scattering matrix associated with Target 1-and M,
the scattering matrix associated with Target 2, while the rotation
operator ei)'\sfy aéscfibes the action of the magnétic field between
scatterings 1 and 2. Both of these conditions require.that terms odd

under time reversal,. such as - Sp , not be included in the scattering

matrix, and with parity conservatli{on give the form of M presented by
Stapp (or of MMJr discussed by Lakin). § ' »
Operators which are odd under the parity operation hiave expec-
tation values after single séatfefing which are zero '(Se“cti-on II. D) if
terms violating parity conservation and time-reversal invariance
are not permitted in the scattering matrix M. The same sort of
conclusion cannot be drawn for operators changing sign under time
reversal. In the u-P-K coordinatc syctem (defined in Section TT. (),
the scalar préduct SijPi'Kj = (S P) (§ K) + (§-f{) 7(§- P) or SPK is
odd under time reversal. This means that it cannot appear in the
scattering matrix M. However, pcrmissible terms of M can com-
bine in the product MM+ to give a nonzero expectation value for S1PK
KK and SnSPP terms of MM
reduce to S-PK and therefore give a quantity proportional to the Stapp
coefficients b(8)x:d(8 ) rather than zero for Tr MMfS

after single scattering;.i,e. , the SnS

o PK’
The orientation of the principal .axes of the polarization ellip-

soid in the plane of scattering would have been along the P and K

‘directions, had SPK been required to be zero by timc-reversal

invariance; instead, the vuricutation should in gencral be at some

é.ngle to these directions. This angle can be vuly puuily estimated

' byvthe impulse-approximation evaluation of the coefficients in M ;

it was found experimentally to be about 40 deg (see Fig. 16).
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III. EXPERIMENT

A.  Introduction

A double scattering is necessary to determine the~poErization
components produced in scattering an unpolarized beam of particles.
As has been shown in pfevious sections, the cross section for deu-

teron second scattering (without magnetic bending between targets)

L (€,,4) =1 .(6;) [1'+ <T20>1 <.T-2(:)>Z + 2.<'<1'T11 >1<_1T11t>2
;<T21>1 <T21,>2 ) cosd+ 2 <Tzz> 1 <Tzz >z cos 2 ¢ ij:
or, more s'imply, ‘ - - o :

Ip .:(62, o) = Iu’ ;(62) 1 +.d tecos¢+fcos22é |,

where the parameters d, e, and f contain products of the polariza-

' tion components which would be produced by scatterihgé of unpolarized

beaws at first and at second targets. Ikvidently there is, in addition

to a left-right asymmetry arising from the cos ¢‘fe;-m, a vertical-
horizontal asymmetry coming from the cos2 ¢ éontriﬁutibh. - Further,
the polarized-beam cross section averagé,d over all ¢ is farg'er than
the unpolarized beam cross section by the factor -d. Measurements,
of the polarized cross section for at least three values of ¢ and of
the unpolarized cross section are ne-c,_éss'ary to défer'mine the quanti-
ties d, e, and f for a particular 6,. h '

The usual dp-ublg scattering is n'ot‘s'ufficient, however, to
.d¢t'ermine all tensor components, as it does. not separate <J.iT,11>
aﬂd <_T21> , the vecto"'r and ,tensqr polariiation parts of t}}e parameter
e. To do'this, it is necessary to perform a second scattering of two
different polafizedbearbs, one of. which.has been appreciébly changed
by the action of a large magnetic field between first and second
scafAterings. ~ The <TJM> 1 in the above expression then {beAcome 5

the "'rotated' components discussed in Section II.

¢
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An essential part of the work reported here (the suggestion
of Dr. Ronald Mermod) was the use of the magnetic field of the
cyclotron to produce two external beams of differing polarization;

there were utilized internally first a left-scattering target and then

-a right-scattering target, with the latter located some 230 deg back

of the former so that scattered beams of the same momentum and
magnitude of scattering angle passed through the exit channel to
undergo a second scattering in the cave. -(See Figs. 4 and 5) As
has been shown, the rotation of the deuteron polarization tensor
relative to the direction of motion is given by y (u-1) or about

-1/6 times the angle of deflection; hence, bendings produced by the
large magnetic field of the cyclotron (23,000 gauss) acting over
conoiderably different distances were necessary to praduce sufficiently
different degrees of mixing of the tensor components énd, through
the compar'ison of the differing asymmetries, to permit reasonably
good determination of <T21> .

One set of measurements was made with beryllium targets in
which the internal scattering angles were 11 deg and the energy of
the scattered beams was about 410 Mev. A later set was made with
carbon targets, but with 10-deg scattering angles and higher energies
of about 420 Mev. Second-scattering angles ranged from 6 to 18 deg
and included the diffraction minimum (14.3 deg for beryllium and 13.0
deg for carbon). In both cases, the cross-section parameters d, e,
and f were all found considcrably different from zero; this was not
so at the lower energies of 124 to 157 Mev, at which Baldwin et al.
found only the quantity e different from zero and attributed this
mostly to<iT1§ 2 _

It had been supposed that carbon might show different polari-
zation effects from those obtained with beryllium, since it is a spin-
zeroAnucleus while beryllium is nota.however., the angular variations
obtained were quite similar, with the patterns for carbon a little more
compressed; e values for carbon were generally somewhaf lower than

for beryllium (see Fig. 14).
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184-inch Cyclotron
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.Dee

Magnet pole

Physics cave

Target No.2
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Fig. 4. View of cyclotron and paths of polarized beams.
Designated in the figure are: d, dee target used
for first scattering; m, meson target used for
first scattering; R, regenerator; M, magnetic
channel; S, steering magnet; Q, 4-inch quadrupole;
Cp’ premagnet collimator; and cgs snout collimator.
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Fig. 5. Pictorial representation of dee- and meson-
target double scatterings. Cones represent
" scattering of particles into angle 62 at Target 2,
with the darker portions indicating greater in-
tensity of particles. The value of the deflection
angle m is given in the x]y,z] system in each
figure.



An attempt was made to scatter a beé.m from a target in the
steering magnet (Fig. 4) in order to eliminate the effects of the’
magnetlc fleld and perhaps also some systematic errors, However,
this 'was found impractical: becauoe of an appreciable high-energy ;
tail and also considerable 1'ow‘-.energy contem:ination. (The unwanted
particles appeared to derive from d'eytteronétripping; the method did
subsequently prove ‘use'fu‘l'.for polarizing full-energy or degraded

protons.)

B. -Geometry of Internal Scattering

The first target‘useé the so-called 'dee target, " was located
at an azimuthal p051t1on of 74 deg w1th respect to the center of the
dee and at a rad1us of 81 in. (P051t10n d, Fig. 4). The target was
placed ‘rad;ally just-inside the region vyhere tegeneration starts.

The ‘st;ong regenerator field perttyfrbation (centered at an azimuthal
angle of 116 deg a.nd.'extendihg 8‘"de‘g in either direction) and also the
field variation in the magnetic channel iéad‘ing to the exit pipe required
. some ‘cafrefti'l orbit plotting for the determination of the desired target
position. (See Fig. 6.)

Since pelariz‘ation theory and Baldwin's results indicated that
maximum polarization o'ccurre'c';l“a't approximately the same value
of KR {with K the momentur transfer and R the nuclear radies) for
various energiee and tafget nuclei, an estimate was made from
Baldwux 's. data that the scatterlng angle for maximum polarization
at some 400 Mev would be 10.or 11 deg. To avoid regenerator
act;‘on,‘-‘b:ut obtain’ max;mum energy, 81 .in. was chesen as the
gr'eatest pe,rm_i'ssible radius. These 'choiices, of scattering angle and
i-’adius then det'erfmin'ed the target azimuthal pesition and the morh'er't-
tum of the scattered beam orbits showed that a beam of
Hp = 1.70 x 106 gauss-in, scattered at 11 deg from a target -located.
at 73 degr'e‘es. azimuth passed through the magnetic channel into the
exit tube and through the beam 'def'ining premagnet collimator.

Measurements 1ns1de the cyclotron tank indicated that the

dee target could be p051t10ned to an accuracy of better than 1/2 in.
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Fig. 6. Radial variation of cyclotron magnetic field.
(Measurements taken in October 1957.) The
crosses indicate the position of the scattered
beam at6 = 116 and at 6 = 143 deg.
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radially and azimuthally. The uncertainties in scattering angle
arising from target radial and azimuthal positioning errors were

0.12 and 0.03 deg; the uncertainty due to a spread of perhaps 3 x 103

gauss -in. in momentum acceptance of a 2-in. ~-wide premagnet collimator -

"was 0.50 deg; and the error due to radial oscillations was perhaps
0.13 deg. Thus there was an rms uncertainty of 0.53 deg in the
internal scattering angle. The radial pesition'of a copper collimator
("probe") put at 105 deg azimuth to stop regenerated beam served

as ari experimental check on the orbit of the scattered beam from the
dee target. -

_The "meson target" (thus named because of its customary use
 for meson production) was located so as to scatter right through the
same exit channel, again from a radius of 81 in. Several orbifs
at 1.71 x 1 06 gauss-in. momentum were extended back from the dee-
tafget posiition,te determine the azimuthal -s.etting of the meson target
necessary to send an 11-deg scattered beam thi'ough this dee pesition
at il.—deg to the equilibrium orbit. (The azimuthal eonetanc-y of the
cyclotron field between dee and meson targets assured an l1-deg
meson-targe,t scattering angle for an 11l-deg beam angle at the dee-
target position.) A variation of 4 deg in azimuthal setting of the
meson target was found to give a l1-deg change- in acceptable scat-
ter1ng angle. ' '

In practice, the final pos1t1on of the meson target was deter-
mmed by max1m1z1ng beam intensity as a function of azimuthal
position after setting the 105—deg probe as required by the dee-
target beam' this differed slightly from the orbit- defitle.d position in
the case of beryllium, but the dlscrepancy could be well explained
"'by a shghtly lower momentum (1.70 % 106 gauss in. ). The rms
epror in scattering angle was estimated to be perhaps 0.60 deg,

E only slightly greater than that of the dee target beam because of
the focusmg action of the field. 4
The general character of the plotted OI‘bltS is, shown in Fig. 4.

The -high field gradients of the regenerator and magnet1c-channel
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regions gave good momentum sélection. To determine that the meson-
target beam passed through the dee-target position, an attempt was
made to clip the beam at that azimuth; however, the scattered beam
from the.clipper obscured the effect in meson-target beam. The
position of the meson target, the beam momentum, and the probe

position were considered sufficient confirmation of the orbit:

C. Polarized Beams from Beryllium Targets

In the first phase of experimental work done with beryllium,
the internal beam had a calculated energy of 447 Mev at 81 in. radius.
Because of radjal oscﬂlations, the incident beam energy was perhaps
10 Mev lower; ionization loss in the 1-in. target was about 18 Mev
aund recoil loss 3.7 Mev. A rangc curve of the dee-target scattered.
beam (See Fig. 7a) showed' it to have a mean energy of 410 Mev with
a spread of +2.5 Mev. The energy of the beam scattered from the .
meson target was 411 Mév with a spread of ¥4,3 Mev. The degraded
regenerated béam matched the dee-scattered beam almost exactly;
its energy was 410 Mev .with a spread of £2.1 Mev (Fig. 7b).

4 In order to stop the regenerated circulating beam, which was
perhaps fifteen times asllarge as the scattered beam, it was nec-
essary to position a copper block on the main probe at 105-deg

azimuth, the block having a 1.5-in. -diameter hole to pass the

factor of moure Lthan 1.6 x 105. ' . . /../.

scattered beam. This probe reduced the regenerated beam by 2
The procedure in obtaining the dee-target scattered beam was

to optimize the steering-magnetAcurrent, to adjust the probe position
for maximum beam inten-sity, and then to reoptimize the steering
magnet. (See Figs. 8 and 9.). The meson-target beam required

in addition considerable exploration of radial and azimuthal positions
after the copper proBe‘had been set as required by the dee target.
" (See Fig. 10.) Azifnuthally the meson-target beam was especially } .
well defined, with a half w_idth of 3.0 deg, while the dee-target beam 4 e
was much broader (with a peak found at 74 deg, as predicted by

orbits). The 4-in. focusing quadrupole magnet in the exit channel



-33.

2 o4} * -
1S
o‘) «
c 0.3 ® -
—— @
g \"
o N _
O 0.2 x
\
oIk Average energy*‘" i
) l | | | | L %.

O 20 40 &0 80
| Copper absorber (g/cm?)

Fig. 7. (a) Range curve of beam scattered by dee
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Fig. 7. (b) Range curve of degraded regenerated
beam. The energy was found equal to 410+2.1
Mev. This beam was used for beryllium scatter -
ing measurements, :
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Fig. 8. Variation of beam intensity with radial position
of copper probe. The dotted curve represents
one -tenth the intensity of the regenerated beam
observed with dee and meson targets withdrawn.
Circles designate the dee-target beam; triangles,
the meson-target beam. The position of the hole
in the probe was at a radius 5/8 in. greater than
the indicated reading; the edge clipping the re-
generated beam was at a radius of 5 in. less than

indicated.
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Fig. 10. Optimization of meson-target position. The
dotted curve represents beam intensity for all
energies; the solid curve represents only particles

of range greater than the energy threshold of Fig. 7a.
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was set by maximizing the beam after choosing approximate currents
calculated for a focus just b:eyond the point of entry into the cave.

Beryllium targets measuring 1 in. in the beam direction, 1
in. radially, and 1/2 in. vertically were used to obtain the polarized
beams. The premagnet collimator (desighated as Cp in Fig. 4) had
a 2x3-in. horizontal’—ver_tical opening; and the snout collimator (<:s
in Fig. 4) was ! in, in diameter and 46 in. 'long. Beam intensities
obtained were ‘

for dee target, 1.9 x 105/sec;
. for meson target, 2.3 x 105/sec.a‘:

For meas',ureménts-of’;unpo:l;arized cross sections, a regen-
erated heam of about 1.1 x 106/sec was used. .

For characterislics ol the various bcams analyzed, see
Table 1. '

A
%The fact that the meson-target beam intensity was greater than
the dee—target intensity could perhaps be explained b\y a focusing
action of the cyclotron field between meson-and dee-target positions
and perhaps also by slightly greater circulating beam intensity néar

the meson-target location.
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Table I.

Beam characteristics

Dee-target Meson&argét Degraded

scattered =  scattered regenerated

beam . beam : - beam -

A, Beryllium targets

Position 742 81.0" - 205.52 81.0"
‘Scattering ‘ _ ' o - ‘ o
angle 11.0 £ 0.5 - 11,0 £ 0.6
‘Hp (gauss-in.) 1.70 x’ .1'06 1,70 x 1'06
Energy (Mev) =~ 410 =2.5. 411 +4.3 410 £ 2.1
Intensity SEE ,
(105/sec) - 1.9 . 2.3 10

B. Carbon targets

‘Position - 780 81. 7" 2130 81,7
Scattering : 0 ‘ _

angle 10.0 £ 0.6 10.0 = 0.7"
Hp (gauss-in.) .1.78x10% - 1.75x10® =~
"Energy (MevA) 416 :i:'Z._7. 422 £ 6 , «425 :4:21
Intéhsity | ' |

'(105/sec) 4 0.65 0.93A , A ' 1_5.0 "
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‘D. Polarized Beams from Carbon Targets

Extreme difficulty was encountered in extracting polarized
beams for carbon measurements because of changes in the.cyclotron
magnetic field. After beryllium measurements were concluded,
partial shorting of a coil in the main-field windings for the bottom
pole face had necessitated shunting of the lower coils; main-.and
auxiliary-field values required for a good regenerated beam had
changed. The regenerated beam was found to have increased in
energy from 455 to 465 Mev. Changes in field gradients over the
scattered-beam orbit could be only roughly estimated; with further
shunting of the main field and careful tuning l(phases‘and amplitudés
of the reeds controlling the rf voltage), a meson target polarized beam
of intensity almost comparable to the beryllium-scattered beam was
obtained. The momenturn having been determined for this beam, an
orbit was plotted back from the exit channel through the experimentally °
determined probe and meson-target positions. The scattering angle
at an 81 -in. radius was found to be 10 deg rather than 11 deg, as a
slightly higher-energy beam was sélected by the magnetic channel
than for beryllium. : Corroboration of approximate orbits drawn with
estimated field4values was obtained when a beam was extracted from
. the dee target set at the position predicted for a 10-deg scattéring.
Energies of the polarized beams from the dee and meson targets
were 416 and 422 Mev, respectively, with energy spreads comparable
to those for the beams of earlier measurements. Other beam
characteristics are given in Table I. The carbon dee target measured
5/8.in. radially, 3/4 in. vertically, and 2 in. azimuthally; the carbon
meson target had the same radial and azimuthal measurements, but

extended 2 in. vertically,

E. Energy Degradation

In this experiment, polarized and unpolarized beams were
not matched exactly in energy and energy spreads. Greater values
of d and f required less concern over such techniques than in the

experiment of Baldwin et al.z The maximum energy difference was
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9 Mev and the maximum difference in spread (6.0 -2.1) Mev.
Degrading of the regenerated-beam from 455 to 410 Mev for
"the beryllium éxperimé'nt was accomplished by placing sevéeral inches
"of polyethylene absorber at the entrance to the snout collimator
(Position p, Fig.4). In one set of carbon measureménts, degrading
with copper absorber placed in the degrader box (Position q) was
found to produce a beam undergoing greater attenuation than normal
in the telescope absorber (probably because of protons originating
from stripping in the degrader). Satisfactory unpolarized carbon
cross sections were obtained by again degrading with polyethylene

in the snout collimator from an energy of 465 to 425 Mev.
F. .Apparatus

The scattering table used was similar to that described in a h
report of earlier polarization worklo;. it permitted independent '
variation of the polar and azimuthal angles 6 and ¢. Rigidity of
thé table was such that when the counter 'teles.cope was rotated
through azimuthal angles from 0 to 360 deg, front and rcar cross
hairs were displaced by less than 1/64 in.; as the 0-deg line for
the scattering arm was also closer than 1/64 in; to the line defined
by the cross hairs, counter misalignment due to deformation of the
scattering table during rotation should not have been more than 0.02
deg.. Unlike the situation in.nucleon scattering, the 0.l1-deg error
in the setting of the polar angle 62 could produce errors in the deu-
teron cross-section parameters, since the ratio of polarized to
unpolarized cross sections entered into the determination of each
quantity. ' _

To achieve the high azimuthal® symmetry of incident beam espec-
ially necessary in deuteron measurements (done at four ¢ angles) and
also to obtain good energy definition, a l-in. snout col].imator was
used. The second target was generally 1/2 in. th1ck with an
‘additional. 1/4 or ‘1/2 in. added to increase the mtens1ty_ at larger
angles of scattering. | VI

The counter telescope consisted of three plastic scintillators
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~viewed by 1P2 1 photomultiplier tubes; the defining counter measured
1x6 in.and was placed 43.5 in. from the target. Sufficient copper
absorber was put between Counters 1 aind 2 (its position later being
changed to that between Counters 2 and.3 in carbon measurements)

to stop most of the inelastically scattered deutgroné, the amount
being varied slightly with scattering angle to compensate for changing
" recoil loss in the target. The scintillator of Counter 1 was 1/2 in.
thi_ck; Counters 2 and 3 were 3/8 in., in thickness._ Couﬁter 1 was
cent::red on the scaﬁtering arm to within 1/64 in.

The various factors entering into the angular resolution of the
counter telescope were well matched for scattering from the 1/2-in.
target. The uncertainly in angle 0 due to mwultiple scattering, to
" finite counter width, and to beam width were (-).38, Q.:38,“ar'1d 0.53
deg, respectively, for an rms uncertainty of 0.75 deg. (See formulae
in Pettengill thesis. ll) The resolution of the counter system without
target was determined experimentally and checked very well with

the theoretical estimate made:

’ 1.5 '\/,w% + Wi ’
691 = - = 0,57 deg,

/2 g1z 62 in.

Here w, is the beam width at the collimator; w,, the width of the

defining counter; and 62 in,, the distance from collimator to definiﬁg
counter. For comparison, the half widths of the regenerafced beam
profiles given. in Fig. 11 were found to be 0.52 and 0.62 de"g. Reso-
lution in the direction of ¢ variation was, of course, much poorer
because of counter dimensions; however, the cross section varied

much less rapidly with ¢ than with 6,

G. Experimental Procedure

~After the optimizing of various internal parameters such as
target position‘and steering-magnet current, the snout collimnator
was aligned by using x-=ré.y film to obtain as homogeneous a beam
as possible. As in previous polarization experiments, a transit
was placed at the back of the experimental cave for the purpose of

aligning the scattering table. Approximate alignment wés"
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accomplished by taking x-ray pictures of the beam at the front and
back of the table, fixing the transit at the centers of the pictures,
and moving the table to bring the cross hairs marking the axis of
‘rotation .into coincidence with the transit line. The front of the
table. was then assumed well aligned and the rear brought into more
nearly exact alignment by equalizing counting rates both horizontally
and vertically at small valués of 6; for homogeneous beams, this
was done without a scattering target, while for a less uniform beam,
the target was put in place and alignment made on multiply scattered
particles. Thisjbeam profile was taken with telescope absorber of
an amount used for small-angle scattering. The estimated accuracy
of alignment was 0.06 deg with the x-ray pictures and 0.03 deg with
.counters; the latter was [airly consistent with observcd diffcrences
in the ll-deg unpolarized cross-section measurements at various

¢ angles. (See Fig. 12.) '

A range curve was taken at low beam with counters at zero
deg by vérying the amount of copper absorber in the telescope, and
the "energy threshold" necessary to eliminate most of the inelastic-
ally scattered particles was determined. (See Fig. 7.) The pro-
cedure followed was to set the copper absorber at 2 g/cm2 less
than the knee of the range curve for the 1l-deg scattering and then
to add or subtract small amounts to compensate for recoil loss in
the target. . ‘

- - As.the geometry of scattering was such that mwost of the
background, presumably from the snout collimator, could be ex-
pected to pags through the.target, an amount of abs‘orber equivalent
.to the target should have been placed in the telescope for measure-
ments with the target out, This was done for the set of scatterings
with carbon targets and was found to have an effect of not more than
a few percent’in the cross section.

Two scintillation counters, 1l in.. and 5/8 'in. thick, were
placed in the beam incident on the second target as monitors when
low intensity was desired; this was the case when the counters were

delayed and plateaued, the range curve was taken, or the table was
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aligned. (For the first two situations, these monitors were unnec- .
essary and were re‘placed by Counters 1 and 2 of the telescope when
absorber. was put between Counters 2 and 3, as was done for carbon
measurements.) The usual intensity of incident beam used for these
measurements was about 500 counts per second; this gave an inap-
preciable accidental rate, as there were 30,000 to 40, 000 resolving\
times a second for the Garwin coincidence circuit 'used.

In scattering measurements, an argon-filled ion chamber was
used as monitor; the multiplication tactor for this chamber was
calculated to be 1240 for 410-Mev deutecrons on the basis of cali-
bration infox;mation of earlier proton work. 12 . With the scattered
bcamc obtainable:, this gave an electrometer charging rate of one
full-scale deflection per 3.5 minutes, wilh [ull'scale being equivaldnt
to 00\O4p coulomb of accumulated charge (designated lovsely as an . .
"infé'ié'f:atea volt" or "I.V."). Corrections for ion-chamber drift
were made, and amounted to:as much as 3% of the actual beam rate
for th-e scattered beams. ‘

To eliminate low-energy particles scattered fromn the end of
the snout collifna.tor, 6in. of copper and lead shielding with a 2-in. -
square hole for the beam was placed between the snout collimator

and the target.

H. Counting FProcedure

The object of double scattering was to,deterrﬁine the Crossl
section parameters d, e, and f as functions of 92. Measurements
of the unpolarized-beam cross section Were made first at a scattering
angle of 11 deg with ¢ = 0 deg (left‘), 90 deg {up), 180 deg (right),
and 270 deg (down) to check scattering table alignment. (See Fig.12.)

With good alignment, -as for beryllium unpolarized measur'e,ments»,
: scattering measurements for only one ¢ were considered sufficient
for the unpolarized cross section at other scattering angles 6'2;
for small-angle carbon scattering, the values of Iu'(‘ez) used in
calculations were averages obtained from measurements at all

¢. For the polarized beam, of course, measurements had to be
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made at the four azimuthal angles for.every 62 .Results-for 6
equal to 6 were determined especially-carefully, as the <T M
values obtamed from these were'to be used 1n f1nd1ng S
. from measurements at other 6,

. . Three counting rates were measured at each (0, ¢) setting:
target in'' with normal delay, 'target 'in" with 76 nsec delay
added to one counter, > and "target out.'" Accidentals were generally
about 5% of the normal-delay measurements, while the background
was about 10%. In.the beryllium measurements, eccidentals were
improperly taken: the proton . delay.of 5.2 shakes was used and re-
sulted in an almost negligible raté. Unpolarized-beam results
obtained later.as a check indic,ated,that the accidentals should have
been higher by about 11% of the effect for.the unpolarized beam and
3% of the effect for the polarized beam. Corrections in d, e, and

f were made accordingly’

J. Results of Second Scattering

The subtraction of accidental and background counting rates
from the ''target in'' measurement gave the actual rate of scattering
by the target. . Results for the polarized and u_npolériied beams at
the various ¢ angles were used to obtain the desired cros,s'-section

parameters at each angle. 6,

d= 1 -1 =
, p/1,

(I -T1g9) /21,

f= Ig+lgyrIgg - 1270})/4%

%76 nsec is the time between two rf f1ne structure pulses of deuterons.
Accidentals were measured by delaylng the flrst counter w1th respect
to the adjacent second and third counters when the absorber was be-
tween Counters 1 and 2 and by delaylng the rear counter W1th respect

to Counters 1 and 2 when th_e absorber was placed_ after Counter 2.
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The subscripts designate the angle ¢ or rl,'efer to polarized or un-
polarized measurements. . (Note that the formulae given by Baldwin
for e and f, the .latter being }\ﬁs quantity B, are incorrect, since
the first should contain 1 +d +f and the second 1+d in the denominator;
he did, of course, find d and f to beé zero within experimental
error.)

For the scattering of the polarized beam, a-plot of the cross
section versus azimuthal angle at a scattering angle of 8 deg (Fig. 13)
shows a large left-right asymmetry; f, the cos 2¢ cuellicient, on
the other hand, is given by the difference Letween the horizontal
and vertical averages and is rather small. The 'left-right"
asymmetry_ﬂ__.LSL used in nucleon scattering here is equal to

TL'J IlSO ' I +1

e/(1 +d.+f), and the "horizontal-vertical' asymmetry* I +T180+190+IZ70
180 790 270

equals f/(1+d). These quantities are given with stat1st1ca1 errors

for beryllium and carbon scatterings in Table II.

Because cach of the desired quantities d, e, and f contains
the ratio between polarized and unpolarized cross sections (which
appears in d in such a way as to make this particular quantity
ve’;'y sensitive to any error), a serious problem arises, Carcful
extrapolations to zero absorber to determine the actual elastic-
scattering cross sections (i.e., corrections for nuclear attenuation
in the tclescope absorher) or some sort of normalization of un-
polarized to polarized cross sections: must be made. The former is
ordinarily subject to considerable error; in the beryllium measure-
ments reported.here, the extrapolation factors (ratio of counting |
rate with zero absorber to that with absorber used in scattering
measurements) for polarized and unpolarized beams differed by about
10% and were found to produce a considerable effect in the quantity d.

The variation of extrapolation factors was investigated to
some éxtent. - Displacement of the shoﬁt collimator biy 1/8 in.
caused a 6 Jo change in extrapolation factor extreme changes in

" counter geometry had no effect. That the alignment of the beam in
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Fig. 13. Polarized cross section vs. azimuthal angle
for scattering from beryllium at an angle of 8 deg. '
The solid line represents dee-target scattering;
the dotted line, meson-target scattering.
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Table II.

Asymmetries in polarized-beam scattering

Here e/(l+d+f) is the usual "left-right' asymmetry; £/(1+d) is

“horizontal-vertical" asymmetry, Errors-are statistical.

/"L Dee target ' Meé-on target

0, e/ (1+d+f) f/{14d) e/ (1+d+f) £/(1+d)
Beryllium . '

6°  0.411£.016  -0.003£.012  0.487%.013 0.050%.008

8° 0.555+.014 D.055%.009  0.562%.011 0.041%.008

10°. 0.432 +.024 0.070%.021 0.488+.016 0.078+.012

11° 0.322+.016 0.069%.012 0.448+.010 0.065.010

12° 0.294+.034 0.073+.025  0.312%.022 0.085%.017

14° 0.213%.032 0.105+.024  0.185+.026 0.087%.020

16° ' 0.206£.030 0.101%.024
Carbon .

6° 0.320%.013 0.040£.010  0.444+ 010/ 0.035,009

Y 0.402 2,021 0.096 +.024

9Y 0.329%.023,  0.125+.019 - 0.458+.023 0.054+.017

11° 0.167%,030 0.095 +.025 0.258+.026 0.098.021

13° 0.114%.047  0.022%.035 0.201 #.033 0.069i£.:025

16° 0.170%.084  0.089%.075  0.212£.040 0.065%.030

° e 0.182+.042 0.105=,035
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-then could have been obtained.
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the snout collimator was important was further indicated by the
fact that extrapolation factors for scattered beams centered about
one value and for regenerated beams centered about another value
slightly higher. |

Thus the use of absolute cross sections to find d, e, and f
seemedArather questionable. - As a better alternative, the aséﬁmption
was made that the peiatrized and unpolarized cross sections at 6 deg
should be equal, a and the unpolarized cross section was normalized
to the polarized for all 8. Fi.gure 14 shows the angular depe‘riidences
of the quantities'- d, e, and .f which wel'e obtained through normal-
ization-and also extrapolation of cross sections; the differerces in
(1+d), e, and f values for the two methods were about'Z.S%Ifor

berylliutn and 3.5% for carbon. Had d been taken as smwall and

~ positive instead of zero at 6 deg, f would also have been-increased,

since f/(1+d) depends only on.Ip ( , ¢) and is unaffected by normal=-

ization of I to I ; a behavior closer to s1n2 6 for <T > and <T >
u P 20 22

N - \‘

The unpolarized cross sections as functions of scattering angle
are given in Fig. 15. These were obtained by substituting for the
integrated-volt monitor unit (I. V.) the equivalent incident intensity
of 5.24 x‘107 particles. The unpolarized cross section for scat-

tering by beryllium in a later run.agreed with the values given in

Fig. 15 to within 3.0% at 8 deg and 12% at 11 deg; better agreement

e

could probably not be expected in view of the. uncerta1nt1es discussed

above.

K. Energy Asymmetry, Beam Contaminatio’n’i

Comparison of the range curves taken of the dee-target beam

at 8 =0 and 8 =10 deg left indicated that the beam was low in energy

®This assumptmn was based on the fact that in first Born approx1ma-

tion, <T2(>1s pr0port1onal to terms in sm .8 (Stapp, 3 pp. 17 and 99),

.but is probably a little extreme.
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Fig. 14. (a) Cross-section parameters vs. scattering
angle, with total errors, for the beryllium dee-
target scattering. Solid lines refer to values
obtained by normalization; dotted lines, to values
from extrapolation of cross-section measurements,
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Fig. 14. (b) Cross-section parameters vs. scattering
angle, with total errors, for the beryllium meson-
target scattering. Solid lines refer to results
from normalized data; dotted lines, to those from
extrapolated data.
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15. (a) Cross section for the scattering of un-
polarized deuterons by beryllium at 410 Mev. The
heavy curve represents experimental results, for
which errors were less than the size of the points
plotted. The H designates calculations done in the
impulse approximation with Hafner proton ampli-
tudes, theé solid curve including the effect of
simultaneous scattering. The B indicates impulse-
approximation results obtained with Bjorklund
amplitudes for proton scattering (solid curve) and
neutron scattering (dotted curve); both include
simultaneous scattering. Triangles show the
negligible effect of including the deuteron D state
in the Hafner calculations.
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Fig. 15 (b) Cross sectlon for scatterlng of unpolar1zed
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scattering.
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on the left or ¢ = 0 side. The decrease in average range (corrected

180

for recoil loss at 10 deg)showed that IO -1 or the quantity e re-
quired a 4% correction for this effect.

The ratios of counting rate at the energy threshold to tl;lat at
the average energy were co-mpar'ed.for-'e =0 and 10 deg left. The
amount by‘which they differed indicated that, for 10 deg, there was
an 8% inelastic contamination of the beam above the energy threshold.'
However, un the basis of Tripp's determination of the negligible
effect of inelastic contamination on asymmetry results with nucleons,
it was concluded that the inelastic part of the deuteron beam probably

had little effect on measurements except perhaps in the region of the :ii

diffraction minimum,
L. Errors

Errors in d, ¢, and f derived chiefly from three sources:
statistics of Acounting, comparison of polarized and unpolarized
beams, and misalignment o“f the scattering apparatus., Systematic
errors as well as statistical are given with .values of 'd, e, and
f in Table: III. E,)ipressions for evaluating errors from the three
sources mentioned are given'in Appendix E.

; . 'In the normalization of fhe unpolarized cross section to the
polarized, error was introduced by the statistical uncertainties of
the 6-&ga'g'i¢ross-section measurements. . Relative error in Iu and
hence (14d), e, and f due to normalization amounted to 6% for
beryllium and 2.2% for carbon results. |

The expected misalignment of the scattering table in polarized-
beam measurements could be estimated by observing the horizontal
and the vertical misalignments evident in unpolarized-beam cross |
sections. . For berylliumn measurements, misalignment observed at
6 =11 deg-was only 0.012 deg, while for carbo_n, it was at least 0.06
deg. Misalignment of the snout collimator also produced asymmetric
effects in scattering which were included in these estimates; and
the misalignment error indicated was perhaps an over-estimate for

the polarized beams.’



Table III.

A.

Cross-section parameters with total errors for scattering from beryllium at 410 Mev

Dee-target scattering

Error in dd Error in ed Error in fd
92 statistics ?ormalr misalien- d+Adrms statistics pormal- misalign- e+Aerms statistics porrpal- misalign- f{+ Afrms
_ ization ment ization ment ; ization ment
6° 0.0629 0.0615 0.0016 0.00+.088 0.0305 0.0253 0.0252 0.411+.047 0.0127 0.0602 0.0016 -0.003+.013
g° 0.0204 0.0611 0.0070 -0.006 % .065 0.0146 0.0359 0.0186 0.583+.043 0.0099 0.0031 0.0070 0.050+.013
10°  0.0437 0.063¢6 0.0048 0.034+.077 0.0279 0.0287 0.0163 0.467+.043 0.0156 0.0044 0.0048 0.072%.017
11° 0.0208 0.0670 0.0029 0.090£.070 0.0194 0.0231 0.0130 0.376 £.033 0.0131 0.0046 0.0029 0.075+.014
12° 0.0527 0.0687 0.0029 0.117+.087 0.0636 0.0217 0.0132 0.354+.068 0.0411 0.0050 0.0029 0.081 +.041
14° 0.0731 0.0687 0.0013 0.117+.100 0.0543 0.0156 0.0083 0..2541:.057 0.0371 0.0067 0.0013 0.109 +£.038
Meson-target scattering
"Error ind" Error ine" Error in f'*
6° 0.0620 0.6615 0.0027 . 0.00%.087 0.0336 0.0314 0.0267 -0.510+.053 0.0083 0.0030 0.0227 0.050 £.009
8% 0.0152 . 0.0707 0.0068 ‘ 0.149x.073 0.0149 0.0413 0.0214 -0.671 % 049 0.0092 0.0029 0.0968 0.047+.012
10°  0.0470 0.075¢ .0.0055 0.234+.089 0.0326 0.0399 0.0200 -0.650%.055 0.0151 0.0059 0.0055 0.096%.017
11° 0.0208. 0.0769 "0.0047 0.250+.080 " 0.0177 0.0374 0.0174 -0.609+.045 0.0119 0.0051 0.0047 0.083+.014-
12°  0.0660 0.0860 0.00;}3 0.398+.109 0.0390 0.0291 0.0153 -0.473+.051 0.0240 0.0073 | 0.0043 0.119%.025,
14° 0.0826 0.0785 0.0020 0.277x.114 0.0406 0.0159 0.0109 -0.259+.045 0.0263 0.0079 0.0020 0.128'1.02-7“
16° 0.0959 0.0841 0.0011 0.367+.128 0.0492 0.0192 0.0078 -0.312+.053 0.0341 ‘ 0.0085 0.00¢t1 0.137+.035

-6G-



Table III. B.

Cross-section parameters with totzl errors for scattering from carbon at 429 Mev

Dee-target scattering -

Error in d(I Error in ed Error in fé
62 statistics normal- misalign- d+Adrms statistics rormal- misalign- e+Aer s statistics ‘normal- misalign- T+ Lf
_ ization ment izaticn ment ki ization ment Ims
6° 0.0214 0.0214 0.0054 0.00+.031 0.0162 €.go71 0.0452 0.333+£.049 (.0098 0.0009 0.0054 3.040%.011
8° 0.0290 0.0224 0.0088 0.046 +.038 0.0297 ¢.C099 0_.0406 0.461%.051 0.0241 0.0022 0.0088 3.101+.026
9° 0.0352 0.0229 0.0098 0.068+.043 9D.0342 ¢.0085 0.0409 0.396£.054 0.0210 0.0028 0.0298 J.133+.023
11° 0.0321 0.0234 0.0050 0.094+.040 D0.D367 0.0043 0.0317 0.201 £.049 0.0266 0.0022 0.0050 J.104+.027
13°  0.0441 0.0219 0.0019 0.023+.049 0.04G5 0.0025% 0.0196 0.119£.053 0.0352 0.0005 0.0019 D2.023£.035
16° 0.0858 0.0237 0.0002 0.109+.089 0.1316 0.0044 0.0104 0.205 +.102 0.0797 0.0021 0.0002 2.099+.080
Meson-target scattering )
Error ind™ Error ine™ Erzor inf
6° 0.0165 0.0165 0.0078 0.00 £ .025 0.0151 0.0071 0.0370 -0.442 4+ .041 0.0094 0.0007 0.0077 0,024+.012
9°  0.0309 0.0200 0.0083 0.200+.038 0.0366 0.0091 0.0252 -0.555x,045 0.0273 0.0010 0.0080 0.061+.028
11° -0.0285 0.0215 0.0035 0.284+.036 0.0378 0.0060 0.0182 -0.363 +.042 0.0287 0.0019 0.0035 0.113£.029
13° 0.0519 0.0308. 0.0037 0.424+.060 0.0527 0.0066 0.0274 -0.306+.060 0.0357 0.0021 0.0037 0.098+.036
16° 0.0597 0.0311 0.0013 0.440+.067 0.0646 0.9070 0.0109 -0.326+.066 0.0430 0.0020 0.0013 0.093 +.043
18° 0.1188 0.0304 0.0008 0.407£.123 0.0722 0.00€1 0.0031 -0.281+£.072 0.0499 0.0032 0.0008 0.149+ .050

_.09_
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One other source of systematic error not included in Table II

was that resulting from the uncertainty in internal scattering angle.

For the quantity iT“> » which changed by 13% and 14% per deg
for carbon and beryllium, respectively, this amounted to about a
7% error in the dee-target and a 12% error in the mesotharget
scattering. .

Incorrect quadrupolé focusing or snout-collimator misalignment
was observed to produce a slightly elliptical deformation of the normally‘
round beam pattern incident on Target 2; the possibility.of error from
this was investigated. For an intensity pattern having a '"quadrupole
moment' with separation of 1/32 in., it was found that any vertical-
horizontal difference was negligiblé and corresponded to a misalign-
ment for the scattering table of 5 x107° deg. - | '

Also, if the center of gravity of the beam were as much as
}/64’.—_in. displaced from the cross hairs at the front and at the rear
of the scattering apparatus, the error in angle was only 0.08 deg,
and correction of rear-end alig'nment.with the-usie of .counter measure-
ments as described above generally reducedthis' by a factor of at
least two.

One notable deviation from expected results was a difference
between 90- and 270-deg measurements for the polarized beam.

‘This was observed. first in scattering from the beryllium aee target,
for which 90-‘5'70 deg differences were four to seven standard devi-
ations for angles of scattering ranging from 6 to-14 deg. Relative
differences appeared essentially independent of angle; after sub- .
_:trac;ti«\‘on of the known error dl.J.é.tO misalignment, vertical asymm}eti’ies
%for 'beryllium were found to average.about 7+4%. - Within experimental
terror,'...n‘o differences were observable in meson-target measurements.
In carbon scatterings, there again were found 90-270 deg differences
for the dee-target beam and practiéally no differences for the meson-
target beam. The asymmetries after subtraction of misélignment
errors were found to average about 2.5%. |

- The possibility that the spin (1/2) of the beryllium nucleus
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might cause these deviations from expected cross-section behavior
can be ruled out on theoretical grounds, Thus it would appear that
there was some systematic error inherent-in dee-target scattering
and perhaps associated with vertical misalignment of the fixed
entrance end of the snout collimator;a such. effects migh_?be'expected
to differ for beryllium and carbon scatterings begause of slightly
different conditions, such as source size and position and orientation
of beam in the exit channel. - Since errors in the 90- and 270-deg
measurements cancelled approximately when they were summed for

d and f{ evaluations, no attempt was made at further investigation
of the differences. |

In summary, many pnssihle sources for expefimental error

were investigated. These included counter and cruss-hair alignment
relative to the scattering apparatus, counter geometry, internal
target positions, accidental counting rate, beam attenuation of the
telescope absorber (extrapolation factor), and beam-energy asymmectry.
Extreme changes in counter geometry produced no effect in the range
‘curve; that accidentals were correctly subtracted was verified by
obtaining the same cross-section values at several beam levels.
Measurements.at ¢ anglee of 45, 135, 225, and 315 deg agreed very
well with those at the usual angles.. Double scatterings using a
beryllium internal target and 'carb,on‘sec.ond target gave consistent
results with the_s‘eparate sets of measurements for each element.
-{Section IV. K) .

2If the nonconservation of parity shouldlbe possible in strong inter-
actions, a reasonable explanation of dee_target vert‘ieal asymmetries
and meson-target vertical symmetrles would be the productmn of a
small component of poIarlzatlon in the plane of scattenng (violating
_parity restrictions) such that the d1fference in relat1ve sp1n rotation
angle N\, equal to 60 deg, would cause this component of polarization
to have a near-maximum value for dee-target scattering and a near-

minimum value for meson-target scattering.
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IV. ANALYSIS OF RESULTS

A. Cross-Section Parameters

Measurements of cross sectlons for each of the two polar1zed

beams gave values of
. -
<T20>1 <T20>a’ ’ : .
[ Gy Gmae - (2 ().
f= 2 <T22>'1' (T22)2

where the subscrlpts 1 and 2 refer to 1nterna1 scattermg at angle

d

(4]
1]

61 and external scattermg at angle 6 and primes indicate transfor-
mation of the or1g1nal tensor polarlzatmn components by action of.
the cyclotron field. The beam from the-dee target was scattered .
left and underwent a deflection of about 66 deg before second scattering;
th'e' Bearﬁ from the meson target was scattered right and was deflected
'throﬁgh an angle of about 272 deg. (See Fig. 5.) At the second tar-
get, more particles were scattered left than right for the dee-target
beam (positive asymmetry), and more scattered right than left for '
the meson-target beam (negative asymmetry), as viewed in the usual
coordinate system. with the y axis parallel to the dee-target scattering
nofrb‘al. . _

-Since the tlormal to the plane of scattering at the meeon tar -
get .‘y.v‘alg' opposite to that at the dee target, the coordinate system for
the.'fbr"r"ner was obtained by rotation about the z axis of the dee-target
éy‘stem' and had its y axis directed downward. Thus if the angle of
kdzefl',éc'tion n was defined as positive for the usual left scattering in
the cyclotron field, it was then negative for a right scatttering; N,
t'heA angle of spin rotation relative to particle direction, was negative
- for the left scattering and positive for the right scattering. Values
.of- X were -9.4 and +39 deg for the dee and meson targets, respec-

tively.
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The effect of the cyclotron field then_/\yé;s to mix the <T2M>
tensor components of polarization produced by the first scattering.,

. With the above values of X used to calculate coefficients, the ''rotated'
components characterizing the beam at the point of second scattering -
could be expressed in terms of the <T2M> for angle 61 from the
equations give in Section II. F.

An alternate method of finding the rotated <TZZ‘> is the use
qf the x-z plane ellipse (Fig. 16 and Appendix D). ‘T20> is de-
pendent on <S§>, <T22.> on <Si> , and <TZ].> on <stz> ;
thus their behavior may be easily determined by taking the inverse

-s‘qu’ares of the ro'tated p; and p; intercepts for evaluations of

,<I’20> 'and <T'22> , respectively, and hy suhstituting some associ-
ated P, and Py into the equatiqn of the ellipse for <T21> .

As an example of the use of the ellipse, consider the carbon,

Case B value of <T20 without magnetic field rotation; it is -.405

and gives a P, intercept of

1//3_2 P SRS

N0.476

since

It

<Tzo> l/'\FZ' <5 <bz> - 2).
- Rotation of 39 deg, corresponding to meson-target scattering brings
0

the p'Z axis.into approximate coincidence with the major axis of

Az

Z

the ellipse:

1.58

and’ - S .
<T20> = .1/{/2_ (3%.400-2) = =0.565.

{T.:his increase in.the magnitude of T20> compared to the unrotated
value is reasonable, as <T20> or d is observed experimentally

to be greater for meson-target than for dee-target scattering.)
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Fig. 16. Polarization ellipse in the plane of scattering.
This was determined with tensor components from
carbon measurements with systematic errors.
'Solid\cu,rves represent Case B solutions for negative

(u,urve 1) and positive (T (curve 2); the
d tged curve represents’ ‘Case A with negative gTZO
The principal axes of the Case B elhpses are desig-
‘nated by a and 8. ‘ : T
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The same answer is found by substitution in the formulae given

above: ‘
1
<T20> = 0.158 (-.405) - 1.22 x.255 +0.687 (-.235) =-0.536
As vieweéd in the coordinate system of meson- target scattering,
m' _
""‘"‘" o <‘T11>1<‘T11> 2 - <T21> I <T21> 2"

2

where <T21> is calculated with posu:we X.. (No sign correction has

~to be made in thed™ and ™ expressions, as <TZ.O> and<’r‘zz>

are even under rotation about the z axis. To eliminate <1T1 1> products

" from the e parameters obtained from experiment, the expression

.The difference between

for e,-d was subtracted from that for P‘gfn ‘ for each value 62'
—'::;‘.‘:m d L : 'd 'm T

= = (<T21>1 - <T21>1 ) <T21>z 'i
.2 .

mt and ed was in general sufficiently

great to yield a fairly precise value for <T21>

B. Solut1on of Equat1ons for 6 61

‘Double scattering with the two different internal 'targets gave
six measured quantities at"each angle 62; the values at 62 = 61

(11 deg for Beryllium and 10 deg for carbon measurements) then

'yie-lded six quadratic equations in the four unknowns <iTll>~- ,< TZO ;

T21>- a.nd‘<’ﬁ['22> . Reduced to five equations in three unknowns",

.these were:

a™=(d.158 <TZO> S1.22 <T21> +0687 <T22>) G
£ /2 =(¢.34,4 <T20>-+:"‘0-;496 <T21>+f-0.720 <TZZ>)‘ <T22> :
™l -e%)/2 -(o 855 <T o) +1.04 (T, )+0.698 <TZZ/> (Tpp:
ad (Q 936 <T20> +o494 <T21> +0.052 <T22>> (t,)
; /z 6026 <T20> -0.202 <T21>+0979 <T22/> (T2z)



where the m and d superscripts designate meson- and dee-target
values and the coefficients pertain to the seatterings done with

carbon. 4
The ( |e - /2 equatlon contains the dlfference between

'
dee-target and meson-target rotated <T21 components as indicated
above. Substitution of the numerical values for the TJM of carbon
obtained from the given system of equations’ shows that it was possible

for the |em| and ed quantit.ies to differ appreciably in magnitude:

|eml -ed =

[0.285 - 160)] x 0.255 = 0.114.
2 ' _
Experimentally determlned values for e /2 and e /2 were
-0.235%.040 and 0.140+.035.

The dd and d™ quantities were subject to considerable error,
' espe‘cially:‘because- of the difficulty in matc-hing range cdrves of
Apolar1zed and regenerated beams (Section III. J). Thds there was to
be expected considerable error 1n <T20> However, IBM calculations
showed that these uncertainties in d and d' affected inappreciably
the results obtained from the search program. In other words, the
more accurate determinations of e and f were dominant in the
analys1s and served to determme <T20> even if the d measurements
were ignored. .

" As the system of equations for the <T2M> at the angle 6 was

overdetermined, d1fferent procedures for solution were found to
' give slightly different results. Three methods were utilized:
s1mu1taneous solutions of pairs of equatlons use of d1rect expressmns
for <TJ'M> involving d /d and f /f 2("By5 formulae given in
- Appendix F); and the application of a x search»program. The second
| method, although most direct, gave a rather biased set of results
because of the large errors in the d and f ratios.

The best method of solutlon appeared to be the ;(Z fit, similar

to the Fermi phase- sh1ft determmatmn in plon nucleon scaLttermg,13

applied to the problem here con51dered, it requlred the determination
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of that combination of <T2M> valﬁes for which

i i 2
M = Z <'Xexp_ - ..'.'xéalc) { = XZ) ,
1

Axi'
exp

was a minimum. Here x represents each of the five d, e, and f

.y . 1 ’ 1 . . . . i
quantities given above, xcxp and Axeyp being experimental measure- .

ment and error and X the corrésponding calculated quantity for

al
a partlcul.ar set of <T2M values, ,
To find first an approximate sct of solutions, <T21> was -

plotted as a function of <T for each of the five quadratic equations

in <T21\ll> given by the mze?a.sured parameters and with several .
values gssuwned for <T22> ; 1.c:, two-dimensional cuts perpendicular
to the <T22> axis were taken in thc three-dimensional TZM
surfaces representing the five given equations. (See Fig. 17.) This
preliminary use of a graphical method of solution was.found helpful
.in making systematic errors evident. For example, the sensitivity
of d and d' values to normalization of cross sections was reflected
to some degree in the divergence of the associated curves from those
of other experimental quantities.

Some calculations to minimize M were done by hand (Fig. 18),
but final snlutions were obtained with slightly greatér accuracy by |
setting up an " IBM search program. All IBM work was done with
the d, e, and f quanlities at 92 = 91 obtained by normalizing fn
give equality of polarized and unpvlarized cross sections at 6 &eg. :
Effects of normalization are indicated in the curves used in the
gré.phical analyses of beryllium data, only the d and 4' values
showing appreciable differences. with and without normalization,

IBM f{its to data at 61 were made with statistical errors and with
_systematic plus statistical errors, where the systagatic included
normalization and misalignment errors as given in Téble III.

Best-fit TJM values and their rms errors for the various

cases cbnsidered in IBM calculations are shown in Table IV. The

Case A IBM solutions were quite comparable to the "simultaneous-
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0.2 T T T T
(To»=+0.20 -
+ R R .
_<T2|> <T22.>=to 19
0
i " IBM solution }
(total errors)
-0.2}+ ./,,"’ 4
B IBM solution n
(statistical errors)
-04} \\\ —
-06 ] | | 1 ! | ! | |
0 0.2 04 06 08 10
+
MU-17306
Fig. 17. (a) Plots of <T > representing

cross-section parameters for berylhum scattering
at-angles 6 —6 =11 deg. Signs are those of Case B.
Normahzeé data were used except for the poinis
designated by circles, which were obtained with
nonextrapolated, unnormalized data, (Appreciable
differences were observed only for the d quantities.)
The solid (and the unno-rmalized) curves were
obtained with (T > =30.20; the dotted curves,
with (T =0 25 (Values do.not agree exactly
with f1nafzresu1ts because the relativistic Thomas
precessmn was not included in calculation of the

Sy !
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0.8 T ' ! !
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IBM solution
_ \ (statistical errors) 7]
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MU -17307

Fig. 17. (b) Plots representing cross-section parameters
for beryllium scattering at angles 6, = 6, =11 deg.
Signs are those of case A. Normalized data were
used except for the points designated by circles.

The solid {(and unnormalized)curves were obtained
with (TZZ) =+0.225, the dot@ed curves, with

(1,,) =%0.20.
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Fig. 18. Variation of M with the tensor component <T2>
- in fitting. beryllium unnormalized data (wi
statistiz e>rrors) at 11 deg. Values of { 20

=0.22, and T1]> = £0.52 wére

0.495,
used.



=71~

Table IV.

Best-fit <TJM> values and associated M values for 61 = 62, deter -
mined with cross-section parameters calculated from normalized
measurements. (Solutions with the same magnitudes but opposite | .

signs for the <T2M> components are also possible.)

Bery”il’lm (A = ]]O) C‘afbon (A = 100)
Case A Case B Case A ~Case B

"With systematic and statistical

errors in d, e, and f

<T,O\ -0.305+.070  -0.446 £ .050 -0.420+.090 -0.405 £ 030
[V Y .

51 +0.210+.025 +0.215+ .035 +0.230% 030 . +0.255 3 .N2hA
<T22) +0.230%.012 -0.1852.015 . +0.260%.025 -0.235%.014
<1T11} +0.494%.012. £0.502%.010 +0.425 +.024 +0.465+.020

M 7.61 3.43 31.3 1.80
Q (M) 0.02 : 0.18 ~0 "0.41
With statistical error. in d, e, and f>
<T20> -0.402%.022 +0.438+.007 -0.450+.038 -0.405+.015

(T,,)  +0.233%.013 +0.257%.018 £0.226 +£.,026 +0.270+.026
T, F0.206+.010 -0.196+.009 +0.244%.021 .0.240+.011
QT”> +0.498+ .007 0.515+.007 +0.430+.014 +0.465+.014

M 38.4 14.3 27.3 2.01

QM) 0 .003 0 " .36

%These results differ more from the systematic fits than they should
because the relativistic Thomas precession effect was not included in

calculating the rotated tensor components,
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Aequat1on" and the "Byb-formulae' solutions; but the Case B com-
bination of srgns also appeared acceptable and indeed proved to be

the better: cho1ce, as indicated by.the M values of Table IV.

C. Seérch, P'ro‘grann.
For normally d1str1buted errors in exper1menta1 measurements,

the probab111ty that M lies between M and M+dM is approximately

'1
M.O/Z. I (

PM (M) dM‘=‘

e‘M/Z .M(MO-Z),/Z dM,
"0 "2 :

M,/2)
if'Mo is the number of degrees of freedom or the number of obser-

vations m1nus the number of determined quant1t1es (See Fig. 19.)
The average value of M obtained for many sets of measurements 1s

O’ the probablhty that M is grea.ter than a certaln value M' is

QEM') = P (M) aM

M
M' o

and for M0 = 2 is given in Table IV for the M wvalues found for .
each set of <TJM> solutions. '

. Large M  values. 1nd1cated that actual errors were considerably -
. greater than statistical; but w1th,some systematic errors included, the‘
‘M values were close to 2 for a few cases considered. The.values )
found for Q(PM') showed that the Case B solution was definitely prbea‘
ferred to Case-A for carbon.and at least as good as.Case A for
bery,lhum

. The <TJM> values. found by the IBM search program did not
d1ffer greatly with the inclusion of systematlc errors from values
found w1th stat1st1cal errors alone. Solutions are indicated on the
1 <T21> vs < T3,/ plots of Fig. 17. To ascertain that the IBM
solutions were not appreciably affected by the large uncertainties -
i.n dd "and dm, these quantities were removed from calculatmns
and the search program used to satisfy the remaining three equations.

There'was found only a negligible effect on <T20> and none on <T21>
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Fig. 19. M distribution. M, is the number of degrees
.of freedom, or theAnumODer of observations minus
the number of determined quantities.
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or <T22‘>

GRS RCHIRCY
-0.405 | 0.255 | -0.235

with da%; a™

without d%, d™ | -0.405 | 0.255 | -0.230

(Values obtained are for the carbon, . Case B solution with systematic
errors.) _

. - Also,. to determine that the four éé.ses {two sets of Case A
solutions with opposite absolute signs and two sets of Case.“B solu-
tions with opposité signs) represeﬁted all possible solutions to the
data, the f /2 equation (wh1ch has a neghglble <T20> <T22> term)
was used to plot a < 22> VS, T21> curve on which any _solutilon
had to lie for an arbitrary value of T20>,. Then M ‘was .computed
by IBM program for successive points along the curve between limits
<T21>.= :l:'\f—: Only one minimum M was found, for negatlve or
for positive 20> -on each of the two curves representing the.two
roots. of <T x> obtained from f /2 . Calculations with and without
dd and d™ gave identical solutions. All cases were computed with-
out dd and d™. The four minima found corresponded very closely

. to the four. Case A and Case B solutions.

"D. Error '

After a best fit has been obtained for experimental data giving
. T . 1
‘a minimum M, an "error matrix" Grs can be defined: 5 such that
for variations ¢_ and ¢ _ in the determined quantities (here the

<T2~Iv> ) designatéd by rands, M becomes
M=M . + Z «_ e G
min )

r s rs ’
r,s .

"The invgrse of the error matrix is given by.

Jde, de, - - de

._< > - R n ¢ r.s
= (e e = : A ,
_r S ‘ .

fdeldez-“den e




e

for <"r )
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and its diagonal elements are the mean-square errors of the quanti-
ties determined by minimizing M, -
-1 A
An.IBM program was set up to compute from the G ~ expression

above the statistical and total errors in the \T found by the

v ZM ,
search program. . As is shown in Table III, the largest is about
20%.

2. . Restriction of Solutions

Bjr‘choosing a partic'ular coordinate system, na:mely, that
with the z axis normal to the plane of scattering, Lakin obtains
a sim‘gle form for the density matrix in terms of just three of the

@ ™ .
statistical weights of the pure states of polarization, he is able to

components. - By considering the :limitations on the possible

impose a restriction on t'he<TJM> components resulting from single
scattering such that any possible state must fall within a truncated
cone defined in Lakin's <T10> <T20/ : @22> space. (Appendix C.)

The inequality to be satisfied is

<Tlo>2 + ["H <.Tzz>:|2§ 1/3 [<Tzo>‘ ot “/T]Z' |

In order to apply this to the solutions obtained above, one expresses

the T of IL.akin's éystem interms of S, S, and S . (These
JM : x Vi z

are =-SX, Sz’ and Sy’ respectlively, .in the usual scattering coordinate

system with the SX -and SZ taken along the:principal axes of the

polarization ellipse.in the plane of scattering to give a real quantity

_To this end, it is convenient to construct the section of the

<Sisj> ellipsoid-in the plane of scéttering. (See Appendix D.2 and

'Fig.’3.‘) . Substitution of the Case B solutions for <T JM> in the

equation for the tensor ellipsoid x-z section (usual coordinate system),
_/ 2> 2 <z> 2 < > <
1 = <sx by * 85 e, * ( s.S,) + Ssz> PPy -

gives the curve of Fig. 16. The principal axes of the ellipse,
a and B, correspond to Lakin's x and y axes, and the inverse squares

of thé intercepts are his <Si> and <S§, > As indicated in the
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figure, the major and minor axes of the ellipse are interchanged by
. a reversal in sign of all the <T2M>
For Case B solutions (IBM best fit), the <TJM> of Lakin's

systemn assume the following values for scattering at 10 deg by

carbon:
B Solntion with B Solutlon with
negative <T20> . positive - <T O> (in usual system)
v<T10 = 0.649 0.649 . (in Lakin's system)
. NT '<T22>= 0.392  -0.472
<T20>= 0.4.90‘ -0.489

For Case B solutions, the 1nequahty is def1n1te1y not sat1sf1ed for

; but

positive <T20 , but'is a very reasonable relation for negative <T20>
For Case A, the inequality is not satisfied for negative 5

20
its restr1ct1on is just barely met by the solution for positive <T20>

Concluslons are the same for both beryllium and carbon scatterings.
Quantities appearing in the inequality are tabulated for all possible -

solutions to beryllium and carbon data in Table V.

F.. B-orn-Approximation Predictions of Tenseor Compon'ents

It has been.shown that an 1nequahty of Lakin may be applied
to determme the absolute S1gns of tensor components This predic-
tion of sign and further the ‘prediction of behavior at small angles |
are- poss1b1e also through use of the impulse approxn‘natmn A

The thesis of Henry Stapp treats the 1mpulse approxnnatlon
(see-Secnon V) in the first Born approximation, the-first Born
approximation with the D state of the deuteron included, and the
second Bo_rn.approximation; a Gaussian nuclear form factor and an
integral form of the deuteron wave function are used to estimate
parameters of the scattering matrix. 3 The first Born approximation :
(with simultaneous scattering included) using deuteron-scattering
amplitudes obtained directly from proton and neutron amplitudes is .

. . . . a : :
sufficient to fit cross sections at low energies and also vector

2See introduction of article by Stapp3.



Table V.

Quantities characterizing <TJM> fits.

Tarms of Lakin inequality

Occupation of

m = 0 spin state

Relative Abs lute

(Tanpsiens <Tzo’s”“ <T10) (J?Q’zz). )" (<T20> NZ)/3

Beryllium ..
Case A + 0.483 0.291 0.797
- .- 0.483 0.254 0.550
Case B + 0.503 0.168 0.311
- 0.503  0.158 1,16
Carbon ‘ '
Case A + 0.361 0.406 0.773
- 0.3561 0.327 0.570
Case B + 0.420 0.222 0285
- 0.420 0.154 1.21

1/3 - N(0)/N

+0.061
.-0.061

-0.212

+0.212

+3.051
-D.051
-0.231
+0.231

_lL..
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-polarization at high energies; it appeafs that inclusion of D state
in the deuteron wave fuhction'is unnecessary, but that use of the
second Born approximation.is probably required to bring predlctlons
of <T 0> and <T22> into better agreement with experiment.

- In.the first Born. approximation, the scattering matrix is the "
usual expression pljoportional.to the matrix element of the central
plus spin-orbit potentials taken between initial and final states.

It is necessary to include the D state to obtain tensor terms.c (6)

- d'iJ'
M__ = a(®)+b(0)S5-n+ c\(9)<NiNj«- > )

and d () of the scattering matrix,

+d (6) ,(Pipj - Kin)] ; sij°

In this approximetion, c (@) is found equal to d (8), but very small
_in comparison with a (8) and b .(6).
The second Born approximation is the evaluation' of the matrix

element . H H .
fm mi

- E‘Em +ie
between initial and final states; it indicates that at small angles
there is dominant a particﬁlar tensor term, such that ¢ (8) equals
. -d.(9).
In the first Born approximation, Stapp found

c(6) =d(8) = 1/6 K%L a (6) sin’ _g;

N

where k is the incident momentum of the deuteron and ry = 1. 4x10—13cm.

.For 410 Mev deuterons, this is 9 0 a (6) s1n2 g ; and with the approxi-
mate expressmn for b (8) of 10'7( k a sin @, 'I'20> and T22 may
be calculated from Eqs. (25) ;—J.nd (28) of the Stapp article:

. . v _
2In first Born approximation,. b(6) = i)\i k2 a (0) sin 6 '.___?_r__o.,
. ' lv -
c | r=0
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e =NT (T,) (O
-2/3 Re [c(a{c/3)*]u 1/3dd" - 1/3bb" + 1/3..cc*'} ,

wi6) = 243 <T22> (6)
o >’,<-! *x *
-2 Re {c(a+c/3) i-dd -bb +cc

(I/Iu) {2 cos 6 Rebl I:d,(a*‘c,/.’) + ibr.ta.n' 6)*]

o ' - >!<_]
(l/Iu) -2 cos 6 Re [ d(a+c/3 + ib tan 8)

£

At smallangles, these expressions become

(T,0) O = (/1) (32 2%6%),

<Tzz>_ (6) = (1/1) (-44 a%6%y;

in scattering from beryllium, they yield the values

<TZO> ~-0.16 and <TZZ> ~-0.22 for 6 = 4° lab, and
~ P \ ~_ - 110
<T20> =-0.27 and (T,,) =-0.38 for 6 = 11° lab.

.Comparis_on with éxperim'ental r(isults shows .that Stapp's' first Born-
' approximAationiestimates of <T20> ‘and <T22> are too large at
smafl anglqs and for <T20 too small at larger angles. However,
this approximation definitely substantiates the choice of one of the
Case B solutions as preferable to Case A.

The sgcond Born agproximation:“shou'ld not appreciably chanlge
the estimate of the <T22/ polarization component at small ..aﬁgles;
this results from the fact thal ¢(0) aud d(0) are found to have similar
maggitudes, but ‘opposite signs, so that the first two terms of the

TZ,Z
contributions at small angles. T20> will, however, be affected by

expression above should cancel; and these are the chief tensor
se'c.ofld Born-approximation contributions to its first two terms. At
iarggr angles, <T22> will not become so large negatively as in >'t‘he
first Born approximation because the positive contribution of cc
becomes:large.as Im (a) goes to zero. (The behavior of deﬁteron.
amplitudes is assumed similar to that of proton amplitudes. Seé
Fig. 20 for plots of proton-carbon scattering amplitudes. 16)

In conclusion, it.can be said that the first Born apprdximation
predicts a sin‘2 0 dependence for both“<T20> and <T2‘2>‘ at small
angles; the second Born approximation predicts the same _TZZ> )
but a more complex behavior of T, , approaching a sin~ 6

dependence only for moderately large angles.
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Fig. 20. (a) ‘Spin-independent proton-carbon scat-
© tering amplitudes at 220 Mev. These were.
obtaineéd by Hafner through fitting a Woods -
Saxon pétential to his experimental data with a
".WKB analysis. There is-indicated also g, for
neutron scattering, the amplitude differing most
from that for proton scattering.
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Fig. 20. (b) Spin-dependent proton-carbon amplitudes
obtained by Hafner at 220 Mev.



G. Physical Inte.rpretatfion'. .

An examination of the physics of the scatter1ng process may
‘help further.to select a umque set of <T JM> signs. Such an argu-
ment has.been. appealed to before in choos1ng the s1gn of T11
to be positive on the ba51s of the type of interaction observed in

?

shell-model spin-orbit couphng° Here certain conclusmns may
be drawn upon consideration of the occupation of Quantﬁm' -mechanical
states and the behavior of the cross-section para,mete'r d with in-

- creasing scattering angle. .

. Some indication of the proper <TJM> signs is given by the
values of <T20> and <T22> under. the assumpt1on that there are
p0551b1e only.the three pure spin states assqc1ated with the normal
to .the--scattering plane. The occupation of the .'.rnS = 0 spin state

.associated with the y ax1s in the usual coordinate’system can be

shown to differ from the unpolarlzed value of 1/3 by an amount

1/3 - N(0)/N = 1/3 (3<sy>~z),

173 - 0)/N _‘; <Tzz> »\7'2_< 20>

- For the sign comb1nat1on Case A, N(O)/N is.very close to 1/3, ‘while
for.Case B, it is. 0. 55 or 0.10 for the two choices of absolute 51gn {
(S_ee Table V.) As is further confirmed by estimating the occupation

of the +1 and -1 spin states through the combining of the measured
<1TIl with N(0) values, neither set of signs for Case A seems to ‘
give unreasonable results, but for Case B only the negative <T20>
negative <T22> solution appears acceptable, the fractional occupations

being

N :N'<:2.”; N(0)
N N N

It has been shown through analysis of experimental data that

= 0.70 : 0.20:0.10.

L

the major and minor axes of the polarization tensor .ellipse in the

x-Z scattering plane differ appreciably and.for some sign choices
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indicate a predominant spin a\lignment along the x or z axis. It
seems possible to relate the direction of predominant spin align-
ment to the behavior of the cross-section quantity d (or ofl<T20> )
with variation in scattering angle; d is observed to increase from
practicé.ll.y zero, or perhaps slightly negative values, to appréciable
positive ones as 6 increases. To explain this increase in polarized
over-unpolarized cross section, there should be a predominant spin
alignment transverse to the direction of motion, giving a greater
effective geometrical cross section than for the unpolarized beam.
(Thié assumes single scattering or the usual impulse approximation.
Stapp says that simultaneous scattering predominaies al large angleo;
- but calculations indicate this to be less important than his formulae
suggest. )

The deuteron is a prolate spheroid with its long axis coinci-
dent with the axis: of spin, the length being 1.14 times the average
radius of the deuteron; in a simple picture, one can think of the
loosely bound nucleons as being placed one after the other along the
spin axis. Then it is evident that with this axis preferentially trans- '
verse to the direction of motion, there is greater pdability for pol-
arized than unpolarized scattering and hence a posi‘tive valuc for d.?

The above argument does not support the positive <T202 signs
of Case A, ac <s§> / <qi> is 0.86/0.71, For the negative _TZO> -
negative T22 set of Case B solutions favored by the IBM f{it and
Lakin inequality, it can be seen from Lhe pularization cllipsoid
section in the plane of scattering that there is suwe preferencc for
alignment along the x axis in that plane; also, there is predominant
an alignment normal to the plane. ( <Si>¥0;63 and <S§,> = 0.90,
while <Si> = 0.48.) Thus, for this set .of solutions, the polarized
should be greater than the unpolarized cross section, as observed in

experiment,

(1,00

tend toward a maximum negative value with increasing d.

1 2
_— (3 <S >-2), which indicates z-axis alignment, would
,.’ 2 \ z .
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H. . Choice of.Signs -

It has been shown that experlmental results determine the
relative but not the absolute signs of the - <T M> polar1zat10n com-
ponents. . In fact, .even the relatlve 51gn_s were .not definitely deter-
miﬁéd and two possible sign combinatious were found, because of
the small magnitude of cross teafms in the e-d-f quadratic equatlons
. Thus it has been necessary to discuss theoretical and phys1ca1 inter -
pretations of the various sets of expemm.entally possible solutions.

In conclusion, there have been a nur'pber cf considerations
‘mentioned that should permit a defini_te‘ statement as to the absolute
signs of the tensor components. Thesé support predominantly Case
B relative signs with <T20> and <T22>- both negative and <T21"
positive. .Only the By 0 formulae, which involve consideralle error,
tend to favor the positive <T'2(‘)> signs. Tue negatiye <T2(5 —Case
B solution must be chosen on the basis of

(a) minimizstion of M,

(b) application of Lakin inequality,

(c) predictions of Stapp's Born aéproximatiou,

(d) physical interpretation of spin alignment,

(e) results of impulse approx1mat1on with the use
of nucleon-~ nucleus scatter1ng amplltudes

(Sectlon V)

J. Determ1nat1on of <T

The.experimental.ly determined functions of second scattering

l dee" ;>onta1n products of the various

(6 ) . For the berylhum

angle, d, f, andl
T > (6 ) and the rotated <T

measuremonts, o o

TARRCIS <ii‘°'> '<T'za> ‘<5 ),

£(6,) = 2 <T22> ), <T22> (6,),

dee(e ) = 2[<T21> (11°%) - <T21>”m(11 ) <T21> (92)

')

I mes
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Also,
e(f, )-2 <T21> (11°) <T21> + 1T11> 11°) <1T11> (6,)

The rotated <T > (911) quantities can be obtalned either from the
x-z ellipse or from their expressions.in terms of the untransformed
2M> and functions of the tensor rotation angle \; another method,
simply the division of parameters obtained at _62 = 6] by the <TJM
(62) obtained from the search program, was thought preferable in
perhaps minimizing systematic error. TJM (6) values were then
calculated from the d, e. and f values for various 62 ; and averages
of dee- and meson-target results were plotted with the total errors

of Table IIl. (kig. 21 and 22.)

K. Consistency of Results

.The sets of measurements for beryllium and for carbon were
made at different times and under somewhat different cyclotron field
conditions; orbits had been known quite exactly for the beryllium
measurements, but were less dependable for carbon because of lack
of exact field information following the change. Thus it seemed of‘
consi.derable importance to compare beryllium and carbon results.

This was done By determiniﬁg cross-section parameters for
a beryllium-carbon double scattering (beryllium as first target and
carbon as second target) at three different values of.GZ; two of these
measurements were taken in the carbun run and onc in the beryllium
run. Tensor components giving internal .consistency for beryllium-
beryllium &nd for carbon-carbon results were used to calculate the
beryllium-carbon parameters; and these were found in good agreement

with measured values. (See Table VI.)
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21. (a) Polarization components for 410-Mev
deuterons scattered by beryllium. Errors on.
experimental points include statistical and
systematic effects. Impulse-approximation
calculations were done with Hafner proton amplitudes

The vertical arrow indicates the position of the
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21l. (b) Polarization components for 410-Mev
deuterons scattered by beryllium. Errors on
experimental points include statistical and
systematic effects. Impulse-approximation cal-
culations were done with Hafner proton amplitudes.
The vertical arrow indicates the position of the dif-
fraction minimum. g’i is zero in the usual
impulse approximati
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‘Table VI,
Beryllium-carbon double -scattering results T
Cross-section Séat_tering angle, 6,
. parameters (deg) - lab
6 o 11 14
measured Oi.OZZ‘ 0.142 +£.032
¢ calculated 0o - 0.197
measure.d - 0,572x.017 0.354*.039 R
v " calculated  0.552 0.520
measured  0.041+.011  0.060 +.026
f calculated  0.026  0.075
measx'lred'. 0.199 + .-034
T‘ﬁ%f. ~  calculated 0.177 |
measured 0T088 * .027 4
'—1"%3' ~ calculated 0.058

Errors indicated are statistical only.
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V. IMPULSE APPROXIMATION

A. Born Approximation in Scattering of Nucleons

A complex spin-dependent potential is neces$ary to account for
the observed polarization of nucleons scattered by nuclei. The general
form representing a scattering interaction may be written 8as

' 2

-V(r)=VC (r)aﬁ-Vp'x—p <),

where Vc (r) is a complex central potential,

V p represents the gradient of nuclear density,
T and P are the spin and momentum of the incident
nucleon,

- is the proton Compton wave length.

Expressed in its more usual form, with ‘Vs {r) as the spin-orbit

interaction, the potential is

av_ x) _ _ [+
V (r) =‘VC (r) -1/r ——— -0 - 1 <

dr "

T'he Vc (r)'must( have real and imaginary pa'rts to acco&n; for
scattering and absorption processes; further, an imaginary part is .
necessary to produce the interference with the spin-dependent term
w}xicl1 is manifested in polarization phenomena. Extensive optical-
wodel studics havc.been made to determine the general form and
magnitude of the central potential. !

The existence of a spin-orbit term is suggested by the observ-
ance of spin-orbit coupling in bound nuclear systems and by the
presence of the Thomas term in atomic interactions; also, it can be
shownhby optical—-model,considera_tionsl9 that the term is a necessary
consequence of the spin dependence of nucleon-nucleon interactions.
The spin-orbit pptential Wwas first proposed by Fermi as giving rise
to polarization phenomena, and its form has since been determined

by many authors through analysis of scattering data.
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The Born approx1mat1on, which is va11d for energ1es greater
than 300 Mev, for forward scattermg angles and for 11ght nucle1,
permits the determination of the scattermg matr1x from the 1nter—
action potential: ' o

l ‘ m . e .o 'A B
10 () [y e

with 't the nucleon mass and by and §, the final 'a'n‘db initial wave

functions. If the scattering mat'rix Msc is de'fi'ned as.

M__ = g(K)+h(K)6-n,

and if there is made the usual assumption that V (r) and V (r)
have the same radial dependence, the quantities g(K) and h(K) are
seen to take the forms v
- m T = =
-ike - .. _
g = <‘—> e T V. (xr) el T dr

2h®

Ql
=l
=

m o _ '
= [—) * [ &FT @ v xE)ar
21

i(;m ) =2 ’ KTy (0 - Rxk,) dF

e s
m K—
=1 -2.17'52> 7(2 -k xk e ™ Ty gr
c i f s

Thus there results’

w iK- T -
g (K) =<—2Th-é> e - VC (r) dr
= . v =0

h (K) = 7ix° k® sin 0 g:.(K)' |




-93-

(Stapp chooses to define the spin-orbit potentlal as. V =G Re VC,
and finds that G is approxrmately 20 for fits to proton data at
300 Mev and about 24 for deuteron data at 165 Mev.. The 410 Mev

deuteron measurements reported here give a G value of about 19.)

B. Born Approximation in Scattering of Deuterons

The impulse approximation can be applied to deuteron scattering

by assuming_chargé independence and a Hamiltonian of the form

%= T_l + T2 + Ud (rlz) +_4V1A(r1, pl,Ol) + V2 (rz,pZ,U'Z),

%‘%Jf %1

or

with
9{/ 0° T1 + TZ + Ud 'andQQl:'V1 + V2 N

where the 1 refers.to Nudbeon ‘1 and the 2 to Nucleon 2 of the deu-
teron; Ud represents the interaction between the two nucleons, and
V, the interaction between the nucleon and the nucleus The idea of
the 1mpulqe approximation is contained in 3-@ 1 whose form indicates
that an impulse given by the nucleus to eithcr Nucleon 1 or 2 produces
scattering of the whole déuteron (unless dissociation occurs), but has
no direct effect on the partner nucleon. |

As a first approximation, the 1nterna1 wave funct1on x (r 12‘)
is assumed to represent just the deuteron S state. Then, with the

assumption that - V, is equal to ..V2 and that the nucleon potential

has the - form given above, the ‘scattering matrix in Born approximation

becomes
T\ | % k- (1/2) (r, +T,)
- .k . -1 e r r
My = <2?2> drpdrpx brpp) e bl

———

™4 d 2(‘ ) i%"r
2] T2 X 1/ ©-

2h
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2 V () -5V V, xp] ,

or

M, = £1/2 (®) [2g4(1) + by (K105 - 7

(This corresponds to Stapp's M=a+b S . _r{.) The sticking Afactor

f(K), whose square root is the Fourier transform of the square of

the deuteron ground-state wave function, 20 represents the probability

of the deuteron's staying intact during the scattering process.
Evidently the gd(K) and hd'(K) of the deuteron scattering

matrix can be expressed in terms of the nucleon scattering amplitudes:

e
g4(K) =<—m—> g, (K
0,

hy(K, kg) =[—) ——— [—| B, (K k).
‘ k sin Gn m

n

Thus the values for g4 and hj (hcnce those for I, and the polari-
zation components) may be predicted from known values for g a‘nd .
hn; the nucleon data used should be for nucleons of momentum about
half that of the deuteron and scattering angle twice as large, so that
the momentum per nucleon and the total momentum transfer are the

same in both nucleon and deuteron scatterings.

By using the above expression for Msc and the expression for

T IM. expectation values,
- v
I, <TJM> = (1/3) Tr MM'T ),
2

it can be shown that in first Born approximation,

.13 = (1/3) Tr Mim = f(K) [4 gfl + (2/3) hi] ,
I <iTl>= f(K) (2/N3) 2 Re g:; hy= W3/2 1, <sy> ,

I <T20>.=. -£(K) (1/3N72) lhdl 2,
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Iu <T2]> =0, A

1, (Ty,)= £ ®) (1/23)] hd'lz,

' C.. Detérmination of g4 and hd

in First Born Appfox{mation

Cross-section and polarization data from the scattering of
nucleons can be used to determine the values of nucleon and deuteron
scattering amplitudes if there is some meaﬁs of éstimating the
relative phase of the spin-independent and spin—depéh‘de’ﬁt*nuc leon
.amplitudes. - Alte;‘hatively, nucleon scattering amplitudés may be
obtained dirvc':"c-tly from phase shifts determined through the fitting of
a potential to séattering data.

‘ Various methods were used to estimate the phases.of the
" amplitudes for nucleon scattering by beryl.l.iurh and carbon at 220
Meyv: comparison of potentials fro‘m Riesenfeld-Watson calculations,
Hafner experimental data, 16 and the Ferbach-Serber-Taylor model. 21
The average phase difference between spin-dependent and spin-
independent amplitudes at small angles was about 20-deg. -

;. Calculations for deuteron.cross.sections and.polarization com-
por{:e;\t‘s were carried out.for the cowplete range of experimental
angles with nucleon scattering amplitudes obtained from Hafner at
. Rochester (I'ig. 20) and Bjorklund at Livermeore.  (See Figs. 21, 22,
and 23.) Both.used a Woods-Saxon potential to fit experimental data,

but with somewhat differing parameters:

-
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Fig. 23. (a) Calculated polarization components for
410-Mev deuterons scattered by beryllium.
Bjorklund amplitudes for proton scattering were
used in the impulse approximation with simultaneous
scattering included.
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Fig. 23. (b) Calculated polarization components for
410-Mev deuterons scattered by beryllium.
Bjorklund amplitudes for neutron scattering were’
used in the impulse approximation with simultaneous
scattering included.
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3

Hafner Bjorklund Rigsenfeld-Watson

‘Re V_ 10 Mev 3 Mev 35 Mev
Im V_ 25 16 ' 13
‘Re V_ 225° 450 45, .
ImV_ 0 240 61
a - o . : MR
o (1.09 a3 a) ¢ 1.0 4%

a 0.1f 0.5.f

qusenfeld -Watson potentlal wells determined by superp031t10n of
nucleon-nucleon amphtudes are indicated for compar1son The
Hafner amplitudes gave a con51derably better f1t to the Rochester
nucleon-nucleus cross sect1ons than d1d the BJorklund amplitudes,
which were too small at all angles; the former also gave a some-
what better fit to nucleon polarization. ' A . .

- Calculations to determine the characteristico of deuteron
scattering W'ere done first in the simplest approximation with only
the S-state deuteron wave function and without the inclusion of
simultaneous scattering effects. These results are indicated in
Figs. 18a and 18b.. The deuteron cross section as calculated with
_Hafner ,amplitudee was larger than experimental measurements by a
factor of five or six at small angles in the simplest approximation
for Both beryllium and carbon scatterings.

Deuteron cross-section results for beryllium using B_jorklund
amplitudes dropped much too rapidly with angle. However, cross-
section and polarization calculatmns with Bjorklund proton and neutron

amphtudes did indicate that charge independence could be approximately

#Note that the value of g used is swmall. Hafner found it to give a
low absorpt1on cross section and suggested that his ch01ce of Im V
as zero had perhaps requlred a small ro to f1t Cross sectlo'n end
polarlzatlon. Bjorklund, however, also found a small r, hecessary

even with a nonzero Im V-
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assAumed, even though Coulomb interference was eff‘e'c‘ti.ve out to
rather -iarge angles. The real part of the spin-independent amplitude‘
was foand to go negative (at angles below the diffraction m1n1mum) and
the real part of the spin- dependent amplitude somewhat reduced for
proton in comparison with neutron scattering; but real amplitudes.
were much less than the unchanged imaginary parts of the amplitudee
at all angles except very small ones. Thus Coulomb interference had
very little effect- on polarization, where it entered into the product' of
two small terms, and no appreciable effect on cross section. In
other words, the Coulomb effect was inappreciable because the phases
of the scattering amplitudes were close to 90 deg.

'l"‘h'eAmagnit'ude of {iT, was well predicted by the impulse
approx1mat1on at small angles <T22 was given reasonably well,
and the sign and general behav1or, if not the magnitude, of <TZO>
were corroborated (again 1nd1cat1ng Case B signs to be preferable

to those of Case A). <T was zero without simultaneous scat-

21/
tering. :

D. Higher-Order Approximations

‘Tensor terms in the scattering matrix resulting in appreciable
tensor polarization eompo.nentsf arise either from a higher-order
.Borﬁ approximation or from the inclusion of the D state in the deu-
teron.wave function uséd in the first Born approximation.  In.the
latter case, the scattéringmatrix-takes the particularly simple form

My, =2 (0) b (6) S n; +c (0) S, K Ky,

with a (6) and b () as gi\}en ebove in terms of the gd(@) and hd(e)
amplitudes. (K represents the unit vector in the direction of momentum
transfer.) The sticking factor becomes much imore c:ornp.lex3 and
includes various orders of Bessel functions taken between S- and
D-state wave functions. o o

 Calculations utilizing the D-state wave function were done for .
tv\;)o ang?les‘of scattering and gave results for cross section and polari-

zation components differing inappreciably from those for the S-state
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wave function alone. :

Tensor terms of the scattering matrix arise also from simultan-
eous scattering of both particles in the deuteron with a contribution
to the..‘t__;"ansition matrix element proportional to V1 VZ in addition to
the linear combination of V, and V2 describing scattering in the
usual impulse approximation. Stapp treated this effect in some
detail with the use of timéadependent. perturbation theory and found
expressions for the additional elements of the. scattefing ‘a.mplitude;
he determined simultaneous scattering to be the dominant effect at .
large angles and was able to obtain good agreement with experimental
cross section at low. energies (near 150 Mev) orily with the inclusion
of this effect, which infreased the large -'an‘gle and decre'ased the
stmall-angle estimate of scattering.’

Stapp's formulae were used to calculate the contributions of .
simultaneous scattering to the amplitude»s'forr.deuteron scattering
from cafbon and berylliu;rn at 420 and 410 Mev, respectively. Re-
sults obtained for cross%section and polarization components, -as
calculated with the Hafner proton data and with the Bjorklurid proton \
and neutron data, are given in Figs. 15 and 21 through 23. Calcu-
lations with the impulse approximation including simultaneous scat-
tering are nof given beyond the diffré.ctio'n minimum, as unredsonable
results were. obtaineAd—=probab1y because the assumptions made by
StAapp that the amplitudes for nucleon scattering did not change phase
rapidly with angle were not good in the region of the diffraction
minimum. .

Inclusion of simultaneous scattering effects reduced beryllium
and carbon-cross sections to within a factor of 2.5 to 3 of experiment
at small angles and brought agreement at moderate angles. However,
the inclusion of simultaneous scattering effects gave rather pobr results
for tensor components of polarization. T2‘1 values predicted were

much smaller than expetrimental results.
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VI. ‘CONCLUSIONS . . . .

A. Values of Tensor Components' i -

The vector polarization <1T11> , proportibnral-}t'o'tl-ie"probabitity

of finding deuteron spin normal to the plane of scattering, reaches

a maximum at 8 deg, with behavior similar to that of the ciuantity

e; its value indicates that the maximum <Sy> polar'iZation is 73%

for beryllium and 62% for carbon. Although scattering could not be
done at angles smaller than 6 deg, measurements suggeoted that

<1T probably rises rather rapidly with angle, as in Baldwin's
experiment. at l,nwer enerdles <1T11X for the various energies of
scatterlng on berylliumm and carbuu is plotted as a function of angle

1/3

(proportional to momentum transfer times nuclear radius); this

in Fig. 24. Figure 25 gives its dependence on the quantlty KA

graph shows that at the higher energies, <iT11> is displaced from
the function of KA ! obtained at the lower energies and is perhaps
less uniform for different scatterers. ‘

For deuterons‘ of about 100 to 150 Mev, > was estimated
by Stapp as less than 15% of the quantity <1Tll> and was assuimed
equal to zero by Baldwin and Tripp for purpose of calculations. Here
it is evidently a considerable fraction of the vector polarization, as
"much as 30 to 40% at moderate a'ngles of scattering'. The tensor
components <'1’20> and <T22> also assumeé values appreciably
different from zero; they increase uniformly with scattering angle,
<TZO> approaching 70% and <T22> going to.approximately 30% at
16 deg.

B. Utilization oiResults

Complete knowledge of the tensor cocmponents in deuteron polar-
ization provides a useful tool for the. determination of transition

amplitudes in the reaction

p'+p-*Tr++d.
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If only S- and P-wav'e pions are produced, fiue parameters serve to
describe the three. possible types of transitions and th,us t~odgi\(/e
information on differences between p-p phase shifts. 4"22"2\'3 These
five 'quantities can be taken as the parameters a and B of the

total cross section in terms of the center—of—mess pion momen,tum;a
“the A defined by the unpolarized differential cross section
(0(0)= A + cosz 6)' in the center-of-mass system; the Q which
derives from the asymmetry of pions produced by an 1nc1dent
unpolarized beam (e - PQA sin0/A + cus 8); and f1nally a quantlty
wg which enters into the expression for vector polarization <1T11>
of the outgoing deuterons produced by an unpolarized proton beam,
Analyses for these last quantities were performed By Crawford and
S‘tevenson24 and Tripp4 at protonben‘ergies of 315 and 340 Mev; the
latter was forced to accept an estimate by Stapp thet <T21> was
much smaller than <iT“> as he-could analyze only for a combination
of these components by ut1l1z1ng Baldwin's results.

Deuterons of 435 Mev would be produced by the p + p - 1r +d
reaction with the 740-Mev protons now available at the cyclotron
However, a determination of deuteron polarization using the known
analyzabilities of carbon or berylllum at 410 to 420 Mev would be of
no value unless the p + p -~ w++ d formalism could be revised. As
suggested by Wolfenstein Za'and c'onfirrped by Akimov, Savchenko,
and Soyoko; 25 the D-wave production of pions becomes important
above 400 Mev, as shown by the variation of asymmetry wit:h angle;
and further it becomes impossibvle to describe the p + p ~ n++ d
cross section as an + Bn3 for a plon momentum above m = 1.2
(oz 'proton energy above 490 Mev). Thus the parameters defined
above can no longer describe the reaction.

Breakdown of the formalism at very hlgh energ1es does not,
vhowever, preclude the poss1b1l1ty of extending knowledge of 1r+-d

transition amplltudes and p-p phase shifts above 400 Mev. Scatter'ingf

For S- and P-waves, 0 (n) = an + 67]3, with 1 the pion rnomerrtum in

units of m C.
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of deuterons on carbon at an energy of 420 Mev, degrading, and ana-
lyzing at a mucH lower energy of 235 Mev could be done to obtain
values of polarization components which would be useful for analyzing
.the p+p~— 1r++d reaction at proton energies of 415 Mev. The
quantities a, B, A, and Q are already known at this energy; A
i‘s.approximatcly 0.22 and Q is 0.45:0:.0&26 A maximum <iT11
would be obtained at a center-of-mass angle of about 60 deg,; for .
which the deuteron would" be emitted at an angle of about 7 deg in
the laboratory system. The <T2L> produced in the reaction could
be estimated in terms of iTll) ; and with knowledge having been
obtained separately of the analyzing 'T2]> and <i’I‘11> , the <iT11
produced inthe p ¥+ p =7 + d reaction could be definitely delerinined.
Other polarization components could also be utilized for analysis.
Usually there is calculated from the quantity A a value for the ‘para'ltm-=
eter X, where the cross section for P-wave mesons produced is
op = X+ cos‘2 0. <T22> , which is proportional to X/A at 6=_90
deg, might give a value for X more nearly exact than asymmetry
experiments with polarized protons, (Crawfofci and Stevenson found
X =0.082%.034 from the latter.) <I‘22> should have an appregiable
value of approximately 0.33/3 ata proton energy of 440 Me'v;23
howe‘ver, . T22 for the analyzer (e.g., beryllium or carbon) would
very likely not have a value greater than 0.25 at a reasonable deuterun
~analyzing angle. TZO measured at 6 = 0 deg could also give X/A
and would be approximately equal to -0,6\[—2-, but somewhat larger '
errors would be involved in the analysis;, as it depends on absolute
cross section, <T21> measurements probably would not be helpful.
In conclusion, deuteron.polarization components at the energies
reported here are not directly useful for p + p - w++d work unless
the theory can be reformulated. Double écattering as described in
this report could yield useful information through a degraded second
scattering for p +p — 1r++d analysis near 400 Mev; or remeasurement
of tensor components at about 150 Mev through'a degraded second
scattering could be ﬁtilized to check the 315-Mev a_nal;zrsis with greater

accuracy.
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APFPENDIX A.

Formulae f_d_r Nucleon aggc_i Deuteron Scatteron

As an aid in comparing nucleon and deuteron polarization on
a mathematical and physical basis, the more important formulae

are here summarized.

General Formulae

.Density matrix de_scr'ibirig final polarization state of a beam of -
particles: C Y '
 Trp, }.
. 1 .
T <3H> st or Mp; M,
’ Expécéati'onfv'al.tle'of any operator in terms of density matrix: -
Tr(pA) |

e

Wolfenstein-Ashkin rela‘tionb describing beam after scattering:
N . 1 . .
1.
I <s“> - — Z <R'*>. Tr (MRY Mmts™).
f n, v i : (

Here n, is the dimensionality of the initial spin space, M is the
scattering matrix, and R or § is a oct of basis operators in terms
of which the ‘density or scattering matrix may be expressed (for-

example, the Pauli matrices or the TJM)'

Nucleéon Formulae: (spin-zero nucleus)

: "1 : I
ity matrix: p = =% - 5.
Density matrix: p = =5 (1 + z<(-)l> O’i) =5 (L + P . 0).
: ‘ N, -N_
" Polarization of singly scattered beam: P = ——————
: ' N, + N _

(with N+ the number of particles with spin up;

N _; 'the number with spin down). ‘
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Cross section after second scattering: L =1, (1 +ecos 8).

I, -1 ;
Asymmetry: e ='P1P- = —I-J—&- LR
I. +1 '
L 'R
In terms of quant1t1es obta1ned from 1mpulse approx1m ation,

M, = (9)+h(9)0'n,
2.2

Iu =g +h

P, = ZRe ¢ “h/(g?+h%)

Deuteron Formulae (spin-zero nucléus)

: L , ot
Density matrix: p = 1/3 :L;/I <TJM> TJM

Polarization of singly scattered-beafn; Py = gi m 11:11: TN,
(with N, the particles having spin in |
plane of scattering). ’

Cross section after second scattering: L =1, (l+d+ e cos .4)

+fcos 2 $).

"Asymmetry of second scatterlng

<<1T.1 1>1 <i‘?1 1>z <T21> <T21 >>

(I; -Ig)/2 1,

e

N3 -

P .
Yy

‘where <iT 1 1> equals

In terms of quantities obtained from impulse approximation,

: et T T V7 . “‘.“]
M, =a+bT - W+C S or =f (I&){:ng+hd5 n |,

r, 2 2
s [4gd + 2/3 nS),
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'~ 4/3 f(K) 2 R *h/l
P, = 4/31(K)2Re gy hy

u

(f(K) being the sticking factor).

Polarization expressions may be written in terms of spin wave

functions:

i
a
n. l for the ith nucleon,-
1 al o

2
ai-

1

X; ~ az for the ith deuteron.
o \ai
¢ +(1 0\ 5
Then Z M Oy R zm .<0‘.='1 N Zallz - al2
_ Pn _ i i ] _
- T i2 i2
4 Z”f”i Z"t 4 2 a) + a;
1 1
and- : Z +/100
t g Xiloo0-0)Xi zaiz iz
pd - in y X4 i \oo-V 1 3
y t + iz 2, i2
in Xj >.—_X-i X3 ap ta,ta, .
1

with the sums taken over all particlcs in the beams. !
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AL

. APPENDIX B. l.

Operators in the Deuteron Spin Space

Usual Spin Operators

. . . ~
1 010 1 0-10 ) .
s, = —|[101 5, = — |1 0-i s, =
NZ o100 N2 iy o
101 ‘ i 0-1
! 2
SZ -1 020 S = L 020 S;=
x 2 y 2 . z
101 -l 0.1
- = L J
_ 1 . . 4'-. -
1 i0-1 1 000 1.
stsz 000} Sysz=ﬁ101 _ Ssz='JT
i0-i 0.0 0
[ (0.1 0
. Fi 0-1 1 o 1
i 03 o 0-i
'I.‘JM» (Irreducible) Operators
100
T0‘0i=1= 010
- 001
W3 NI R +
TG (sx+1sy)=--—é- 001 =-T
S 000

T

3
10 A2 Sz

—

00
000
00-1

100
000
001

000

10-1
000

000

LO-1 QU
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= 001
T. . = > (S +iS8)% =N3 |o00| =T
22 3 x y ’ 2, -2
0 0.0
J : |01 0
— . . _ B ot
Ty - [(sx £i8) S, +5 (S i sy)] =500 - =-T]
- | 0.0 0
( . .
, ™ 100
T,o -1 3% -2)=2 |o-20
N2 “ N2

001

-
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APPENDIX B. 2.

. Eigen_functions\_i_g &e;Deuteron. Spin Space

It is con}v,en_i.enfc to know the.e.igenfuin;tiéns .of the spin oper-
ators in a rei)resentatic_m having the z axis as the axis of quanti-
zation. . These may be found by solving eigenvalue equations or by
transformlng the usual S e1genfunct10ns by performlng a rotation
about the x or Yy ax1s for example

Y: . = | p - ,2 + . . ) .: ’ 'Z
X; = exp '(1Sx 8) Xi \l\\+ (cos 6-1) Sx ki sin 6 ij| X3 -

~ The eigenfunction’s found are giveri in the followi/'_g table. Those

associated with - S g1ve the sp1n functions used by Baldwin, ! while

the usual S e1genfunct10ns are special cases of the functlons

~discussed by Lakin,

Eigenvalues Operators
S S
-y LZ
‘ 1 - 4 :
1” 1 ‘ Fl
1 > NZ : .
: -1 0 ’
1 [0 -
0 — 0 1 :
CNZ ol \
1 1 FO |
-1 S |-iN2 ol - '
- -1 1
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APPENDIX C. 1.

Density'Matrix

The density matrix in the representation.in which the z axis

is the axis of quantization and is parallel to incident momentum,

hut the y axis is the normal to the scaffering plane, takes the form

p=1/3 ;/1 <TJM> TTTM , :
T
| =}% VC<<T11> <T21>> 1'_“’?<'?20> JZ:<<TI><T;1>>
N A A J—%< @) e i

(Iuis‘taken as 1; <T1(> does riot appear because. it is zero in this
The deuteron wave function in this system for

representation).

timme = 0 (or’x =4 Hzt/'h =0) as expressed by Baldwin is

- = (a-h)
N2
yd = a+b
- (a-b)
L Ve i

and follows from the C»ombinétion of y-axis wave functions (Appendix
'B.2) given by '
' s ¥ iA Yy ES 0N
BT (e, ey, o e).
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Taking c as zero and hence eliminating the trivial case when <Sy>

must equal zero gives the self-adjoint form of the density matrix:

d . . ‘N
a% + b WZ (a2 b% sal bl
* # * *# * *
-a b - ab +ab-ab) - +a b'+ ab
1| =iNZ @%b N P
p = — | % % % % - % *
2 -a b+ab) ~ +a b +ab -a b +ab)
a® - pt GNZ (a2 -nl a% + b’
s * Sk % *. Ak
+a b+ab +a b - ab ). -a.b - ab

N .

where the definition of p given-in Section II. B has been used.
Comparison of these two.for_mé of the ‘density matrix yields
values of the tensor components for special states, for example,

. the +1 state when b =0 anda = 1 /N 2. (Compare Section IL. E.)
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APPENDIX C. 2.

Lakin Inequality

In another representation, that with the z axis along the normatl
to the scattering ialane, the density matrix takes quite a different
form and permits the derivation of an inequality given by Lakin and
useful for restricting the values uf tensor comiponents. If the pure

states of polarization are described by
. ljf,l = XO '

b, = AXH +DX_, .

with X+"i 'y Xg and x _; the éigénstaﬁes of Sz , and if these
states have statistical weights of )‘l Y X—Z , and )\3' , the density

matrix has the form

” . ]
A, A%+ x, B 0 A,AB" - >\3B*‘A

p = 0 )\1 0
)\ZBA% - X3A*B 0 xZBZA ¥ >\3AZ |

‘Equating terms in this matrix to those in the TJM representation
and noting that <T11> = <T21> = 0 (also making A and B real
by choosing the X and Y axes.in the plane of scattering as the tensor

principal axes) gives .
' A/i L( > _ 2 2
1/3 (1445 <T10> +77 (T20) ) = A% + 4B,
T e) 1 ) 1t 0t
1/3 (1_ > T10> +5 (T, ) = %A%+, BC,

<T22> =3, - x3) AB,
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Obviously, then, since ()\Z - )\3)2 < (‘)\2 + )\3)Z there results

<T}o>Z + [«17 <T22>]Z$%[<T;O> f\/?]:z -

This inequality is represented by Fig. 26, which shows the cone
containing all possible states. Pure states are at extreme points

on the cone, as indicated.
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MT-17320

Fig. 26. Lakin cone svhowing restriction of <}’{‘
values in the spin space defined by the choicCe
of z axis normal to the scattering plane. The Y's

refer to the pure polarization states described in
the Lakin article. ' :
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APPENDIX D. 1.

Rotation of the Polarization Tensor by a Magnetic Field

Three methods may be used to transform the <TJM> :
(2) - Finding the expectation values of spin operators as
transformed in coordinate space with the use of precessed spin wave

functions; i.e., making separate spin-system and coordinate-system

transformations.

(b) Transfo'rming the <TJM> directly for a relative spin rota-
tion ‘A =-y(r-1) n by means of the Kramers method of transforming

the spherical harmonic .Y » which uses the analogy between the

JM
three -dimensional rotation of the Y .. and a two-dimensional trans-

J+M J-M IM

formation of § ", where £ and m are unit vectors of the

spinor plane. - (An eqL_uvalen't method is the tise' of the /" ‘rotation

' matrix given by Fano and Racah. 2'7)

(c): Expressing S, S (l1ke Stapp's . S; S _but without his
-2/3 6 ) in terms of the TJMi

transformatmn representing rotation through the angle A.

And carrylng out.an Olthuguudl

The last is most easily understood physically. . Just as a spin

-vector .expressed in the x-y-z coordinate system can be transformed

for rotation \' about the y axis by taking

|cos X 0 -sinX -1 S

1 ‘ 1 x
S7:= Za. S or S = 0 1 -0 S :
i im m - VA
m sin A\ "0 cos\ _SZ

so the tensor spin products can be transformed with the same

matrix A:

1 . .
o < ] 't . -1
(Sisj) = Z L aim amn .SnSJ. or (S85) = é | (§§) é )

The first problem is to express. Sisj in terms of . T,JM .
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By using
s®+8%+s% = s (S+1) =2
X Y z

and

SS -S S =iS , etc.,

Xy Yy o xX- 0z
1-t r.an‘be shown on combining the TJI\II and TT —M te“rms', that

s = 1/N3 T,, * 2/3 - (1/35‘/:’)}'.1720 .

SS =0
8,8, )

. stz_ (]_/rﬁ) (-‘Tzl 2 Tll) , ete,

Carrying out the above transformation, one obtains (S S)' in terms

of the original S. S' (TJM) and trigonometric fu.uc.tlons of \.

Equating the TJM expression for each (S S) term to the associated
(T M, \) expression then gives the formulae included in Baldwin's
appendix. (though w1th opposite signs for the sin2\ terms) For

3

example, the S S element gives

A3 (- <T - 2<IN> [ (1/\/— <T (>+ 1/'\/-3)<T22>}(s1n zx/2)

+ (1/a3) (<TZ]> - ;-<T11>) sin®\ + (1/«!‘3‘) ' - <T21> -2 <fr1>) cos?h.

Thus,

<TZ.1>.": <T20> (1/2) «/_3772" sin 2\ +<T;2_1> co‘sj‘zx - <T22>(sin 2)\/2).

)
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'APPENDIX D. 2.

©

Polarization Ellipsoid
The ellipsoid representing the polarization tensor provides a
simple way of performing the above transformation by vgeon"J‘etry -
‘rather than algebra. . This ellipsoid is analogoﬁs to the moment of
inertia ellipsoid. ‘ ‘
. The moment of inertia for rotation of a body about an axis n is

xz + 21 yz,

Yz

I =1 x°41 yo+1 2°+21 xy+2I
n  xx . yy zz Xy X2z

and if an ellipsoidal surface is represented by
2 2
= 0. + : R P . °
1. Ixxp)(-. Iyy py + 2 Ixypxpy_;'
with p = ﬁ/'\/—I: then I for this particular axis n can be.
found by taking l/p‘2 in the direction of n.

Similarly, the spin tensor SS can be represented by a surface whose

equation is : ' :
R R A LR PR ) P

The effects of rotating' the polarization tensor (with .a magnetic
" “field) about one of its principal axes can.be easily determined by
consideration-of the effect of rotation of the ellipsoid cross section

in the plane perpendicular to this axis. (See Fig. 3b.)
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' APPENDIX E.

Errors in Cross-Section Parameters

The express1ons for the d e, and f cross-section parameters
were glven in Sect1on III. J. Errors enter1ng into the determlnatlon
" of these quant1t1es were Laused by three factors tat1st1cs, normal-
ization, and misalignment. : ‘ (
| For statistical error, the usdéi-ekpr'e‘sé'ion for error in a
quantity Avdependent upon variables x1 was .usedé’

ISV (a%,)%

This rcaulted in the following expl‘re's_sions for the errors in the

_ quantities d, e, and f:

Ad = 1/1u '\/(AI ) 1+d) (ar )™,

fe = 1/21, 'a/(—AIO) + (AIlBO) +':("2e)2 (z;lu)z, .

e = 1A 2 2 W, 2 2 2
CAf = 1/4Iu «/(AIO) (Al gg) +(L\190) +(A127Q) +(af)"(21)

'I“he polarized and r'eger}eratéd‘beams.diffei-ed in their degree
of contamination by low-energy partic‘le.s, and in calculations which
cbfnpensated for this by "nor‘rnalizing”}the unpolafiz_éd to the polarized’
cross sections by the ratio of vilues at 92 = 6 deg (Whére d could
be considered almost zero), the error was at least that resulting from
the .statistical uncertainty of the ratio of the 6-deg cross sections.
It f /Iu was equal to r + Ar , the relative error in 144, Ve, 'and'
f due to normalization was Ar/r .
| "For error in alignment, I, and I 44 and also 190 and I, 14
could not be considered as independent variables, as the associated
errors were detgrmined by horizontal and by vertical alignments,
respectively. The effects of the latter cancelled, sincé

9 I, = __8_ I 70 ° and because the unpolarized cross section
5 6 2

90 56
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was corrected for mis'alli'ghm'ent oﬁ*,the..b:asi's of the. q)—depende:r;ce
" at one. 8 (beryllium)'or by averaging over ¢ for every 8 (c.arbbn),
only the horizontal setting for the polarized beam caused-error.

. The expressions:for the misalignment errors.obtained were

1 5 : \ e,
] g . 986

De = N ‘ I0 + — .1180 AG.
a .
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APPENDIX F,

. Formulae for TJM '(91) in Terms of Cross-Section Parameters

("gyd F(‘)rmulae").

If internal and external angles of scattering are the same,

oy am| od 1/2
<T21)' (6y) =+ Q‘J_’>

2m

) .
a\.1/2

'<T20> (8y) = £v/p (?éz-he > ,

o) 0y ogp (ETe2) 2

Ve
) o= [+ g bt ]
where

o 0‘d __d_d__am o.d _fam
p= OOd“m 00 22 m 22

o<

|
A;\
[N
[\

]
oA
g (<2
3
o
149}
N~
/P\
N
—

(2 s
3| B
o
™ g
e
1
O -
o -
=
]
|rL

D
cp
< B
v
<
N
o
]

h
3| o
N E
\/
AV

d f
5 = Qld ad am) Qd fd am) (ad ad am) (Qd 4 am)
Y —— —_— - - — - —
017 “0y Y20 m %20 00" " Tm 00 217 m %2l
(. d m> + d m’> +( d m) 5
T51\%10 -~ %10/ — 7 \%11 T %11 Y12 " %12/ g,
6.
d,m_ d,m _Y_ + d,m + d,m X~
€ *10 3 %11 212 By

with.the a coefficients defined as functions of tensor rotation angle
by

' ;
<TZM,> = Z L <12M> (Section II. F)

O
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Although these expressions give direct <T JN> evaluation, they are
not very useful because of producing considerably biased results

owing to the combination of 4 and f errors.

)
]
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