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ABSTRACT

The efficacy of various types of field-index perturbations (n-bumps)
in effecting an instability potentially helpful for beam utilization is examined
analytically for an alternating-gradient particle accelerator and the results
illustrated by computational examples. The perturbations of interest open
up a stop-band, at the frequency 2/ , within which the solution to the (lire ar)
equations for the radial betatron oscillations soon become dominated by a
solution of exponentially-increasing amplitude. A field-index perturbation
containing circular functions of argument (Ux + r) ©® and (7/x - r) 8 can open
up such a stop-band and a circular function of argument 2 ZJX ©® alone can be
particularly effective. The azimuthal dependence of the perturbation can also
serve to influence the form of the unstable solution, a perturbation which in
particular contains a term of argument (ﬂx + r) 8 serving to introduce a
sine or cosine term of argument r 8 into the solution, and it is suggested
that such terms with r = 1/2 may be useful in some applications. It is finally
pointed out that to achieve some particular features of the solution, such as
meeting the condition dx/d® = 0 at © = 0, careful engineering attention may
be necessary to insure meeting the necessary tolerances for the form of the
perturbation. It is suggested that such tolerances, although not discussed
explicitly, could be estimated by the methods presented in this report. The
analytic work is supplemented by Appendices covering some details of the
analytic work, which employs a variational method, and by Appendix I out-
lining an equivalent approach by conventional perturbation theory.
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I. INTRODUCTION
The use of the half-integral rsonance, yx = 1/2, to effect rapid
beam knock-out, or extracticn, from a normally constant gradient synchro-
tron (or betatron) has been previously published]' 2 and more recently a
convenient analytic description of the method has been reported. 3 Although

4.5.6 {5 study the applicability of the orig-

there were some early attempts
inal method to alternating-gradient accelerators, the use of the analytic
approach to guide a broader reinvestigation of resonant knock-out seems
timely, especially in view of the great enhancement of utility and versatility
which a successful method would provide for alternating-gradient acceler-
ators now nearing completion. e

In the following sections we attempt to make such an investigation,
guided by the analytic approach and with computational tests made through-
out the treatment to check the theory with illustrative examples. It is not
claimed that the knock-out methods examined here are optimum, or even
practicable in all cases, but it 1s hoped that the discussion will stimulate
furthe r consideration and examination of this topic.

It may be recalled that the method used with the constant-gradient

1,2,3 employed an azimuthally-dependent perturbation of the

synchrotron
field-gradient (n-bump ) to drive the operating point into an unstable zone
(stop-band), which opened up with a width proportional to the magnitude of

the perturbation and within which the solution for the exponentially-increas-

ing betatron oscillations attained its maximum value at one particular azimuth

in the machine. In application to an alternaing-gradient accelerator it may

"References are given in Section V.
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not be convenient to retain all the features just mentioned, but we shall
devote attention in what fellows to the dependence of the stop-band width

on the strength of the perturbation and on the manner in which the character
of the unstable orbits can be controlled.

For the purpose uﬁder consideration here the use of an n-bump
appears desirable, since the perturbing windings then have very little
coupling from the main magnetic field of the accelerator. In analogy to the
earlier work, Lad we shall confine our attention in the present report to
the effect of various types of n-bumps, although the possible utility of
field-bumps may deserve attention at a later time. The use of a half-
integral, as distinct from an integral, resonance in the present application
does not seem essential and the selection of the particular resonance to be
employed may be based on secondary considerations peculiar to the partic-
ular accelerator with which the method might be used. With the integral
resonance it will be seen, however, that if the unstable orbits show any
preference for large amplitudes at some particular azimuth, half of the
particles may be driven towards the outer radius at that azimuth and half
toward the inner radius of the chamber: in contrast, with a half-integral
resonance, the particles would go alternately to large and small radii on
successive revolutions. In some cases it may be of importance, from
the standpoint of economy or feasibility of the electrical pulsing equipment,
to open up the stop~band by an adequate amount with relativity modest
perturbations and, in such cases, this consideration may prove to be of

dominant weight. In other cases, however, it may be of interest to insure
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that the beam makes its maximum departure from the equilibrium orbit

at one azimuth within the accelerator, to avoid interference by the injector,
additional targets, or cther structures within the vacuum chamber. As we
shall see, it appears that these features can be realized by a suitable form
of perturbation, or by a combination of such perturbations.

Basically, then, we shall visualize driving the accelerator to a near-
by half-integral or integral resonance and shall direct attention not only to
the stop-band width and associated growth rate of unstable oscillations but
also to the form of the dominant solution for these oscillations. If the in-
stability associated with a readily-accessible stop-band can be effectively
exploited, use of this instability would appear to afford a subtile and
economical way of effecting knock-out.

Attention will be directed exclusively to achieving radial instability,
it being presumed that axial stability can be maintained. Throughout the
report the equations of motion will be taken to be linear, and typically may
be regarded as of the Hill form. It is convenient to obtain approximate
solutions to problems of this type by means of a variational method3’ 9,10,11
and this method will be followed in the body of this report (Sect. II); alter-
natively, however, the use of harmonic balance or, as demonstrated in

12,13

Appendix I, standard perturbation methods may be found equally

suitable.
In some of the numerical examples, the unperturbed accelerator '
will be considered to consist of N identical A-G sectors (full sectors)

with N = 48 and 2 (the number of radial betatron oscillations per circum-

ference) in the range 7 to 7 1/2, while in other examples we take N = 24
7
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and 7J~ 5, In either case, however, the illustrative material thus will
not include the complication of straight-sections, super-periods, or
auxiliary lenses, it being felt that nothing significant is lost in the expo-

sition by omitting such elaborations.

II. THEORY

A. The Unperturbed Problem

The differential equation characterizing the radial betatron oscilla-

tion may be taken to be of the form!4

d%x/de® + [a + m F ()] x = 0 (1)
in the unperturbed case, where

F (@) =+1 for - T/2Ng[6, mod. 2 TUN]| & TU2N

F(0)=-1 for  T/2NL[, mod. 2 TINL 37T/2N .
It is seen that © = 0 then corresponds to the center of a 'radially focus-
ing" semi-sector. In what follows we shall usually neglect, for con-
venience, the constant term "a', thus ignoring the normally-small
"centrifugal focusing' for the radial oscillations.

As noted previously, 3,9,10,11

eigenvalues and, with less accuracy,
eigenfunctions for periodic solutions of equations such as (1) may be con-
veniently obtained by a variational method. This method may be expressed
in the form of the statement
2 2 2 ;
<(dx/d9) > -akx”y - m&x“ F (0)> = min., (2)
where & »» denotes that the quantity within the symbol is to be averaged

over an entire period. 13
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A solution of (2) may be obtained readily by adopting the simple trial

function1 6

x = A cos z/e+Blcos(N-2))e+B cos (N+ 2/ )8 (3a)

2

or

x = A sin 2/9+B1 sin (N - V)9+stin (N + 2/) 6 .(3b)
By substitution of the trial solutions (3a) or (3b) into (2), setting the partial
derivatives of the resultant algebraic expressions separately equal to zero,

and solving the resultant simultaneous equations, one obtains

2 m 1
B, = + —— A (4a)
Sl N T
B =t - A (4b)
. TJC N+ 2/)2 - 4

2

2/2: <2m [ 1 1

a+,}.r (N - Mz-a+(N+D)Z-a ) (4c)

wher2 the upper and lower signs for Bl refer respectively to the even

(cosine) or odd (sine) solutions (3a) or (3b).

In the case of present interest we take a = 0 and we write

2 m 1

Bl—i( ) w7 A (5a)
’ZmEi 1

Bt ) we e i)

= 2 ﬁ> [l y y/N)ZJ A (5¢)
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For this "unperturbed problem, ' the interval 2T( of the accelerator as a
whole plays no basic role and the results (4a - c) or (5a - c) need not be
considered to be restricted to integral or half-integral values of Y --from
another point of view one may reason that the frequencies 2/ of the oscilla-
tion and N of the structure may be regarded as effectively commensurate
in some (possibly large) interval and the variational statement then con-
sidered as applying in that interval [ref., 11, Appendix II], It may also be
noted that, to the degree of approximation employed here, the function F ()
in the differential equation (1) could equally well be replaced by its first
Fourier component, 7‘.1(— cos N 6.

For 2ZJ/«4<N, equation (5¢) may be written in the simplified approxi-

mate forml 7

2 m

> 2
2«2 (ﬁ) . (6)

Although equation (5c) as it stands is a rather accurate relation be-
tween 2/ and m for the parameters of interest here (ﬂe_ Table I below),
it may be presumed that improved accuracy could be obtained by use of a
more elaborate trial function, employing, for example, additional circular
functions of argument (2 N - 2J) 68, 2N+ 2/)98, (3N-2/)08, (3N + 2/) 0,
etc. If we undertake to improve (5c) in this way, and simplify small
correction terms by the aid of (6), it appears that we obtain a more accurate

result of the form given below.

2 2
2 [2m 1+ (2/N) 2
2/ = z(——N) [1 i (JJ/N)ZJZ + 0.015 + 0.06 ( 2//N) - (7)

10
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We present below in Table I the values of m computed by means of

equations (6), (5c), and (7) for a few values of Z/1in the range 7to 7 1/2,

for N = 48. in comparison to the exact results obtained by a direct matrix

computation for the solutions to equation (1).

It will be noted that, although

the results obtained by use of (7) are definitely superior, the relation given

by equation (5c) is fairly accurate.

In the following sections we shall

endeavor to treat the perturbed accelerator to an order of accuracy com-

parable with that used in deriving (5c).

TABLE I

Comparison of Exact Values of m with Values Given by Analytic Formulas

(N = 48)
Exact T’ By (6) By (5¢) By (7)
7 358. 68 373. 5 361:4:4 358.7l
7. 315 376. 53 393., 379. 46 376. 59
15 382. 43 399. 9 385. 4, 382. 51
Error (4 to 5)/10%  <1/,42 (1 to 2)/10%
B. Analytic Estimates of Stop-Band Widths, Lapse-Rates
and Character of Orbits in an Unstable Zone
1. Method:

When a perturbation is applied to modify the coefficient of x in

equation (1), the frequency of the betatron oscillations will be modified

and a zone of instability, or stop-band, may be opened up (Fig. 1). If

11
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the perturbation is an even function of 8 (periodic, with period 2 77 or a
sub-mu.tiple thereof), the periodic eigensolutions which are associated

with the edges of such a stop-band are conveniently even or odd functions

of 8. By use of suitable even or odd trial functions in a variational pro-
cedure similar to that used in Sect. A, the location of the stop-band
boundaries may be determined rather well and the form of the eigensolutions
estimated.

Within the stop-band, moreover, it appears that the solutions to the
differential equation can be rather well expressed in terms of the eigen-
functions associated with the boundary of that particular zone of instability.
This fact, which we develop below, permits us to estimate the rate of growth
of the unstable oscillations, as well as other features of the orbits which are
of interest. We undertake below to develop the general relation which con-
nects the solutions within the stop-band to the associated eigenfunctions,
and then proceed to examine the effect of specific types of perturbations.

2. Approximate Character of Solutions within a Stop-Band:

To obtain an approximate description of the solutions within an unstable
zone, with an estimate of the characteristic exponent which determines the
rate of growth (lapse rate) of the unstable solution, we follow a procedure,

3,11 found

based on a suggestion by McLachlan, L8 which we have previously
useful in similar applications. Although the solutions quite generally could
be written in terms of an ascending (or descending) exponential factor times
a periodic function of 8, where this periodic function could be expanded in

terms of a complete set of eigenfunctions, we assume here that it suffices

12
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to employ only the characteristic solutions associated with the boundaries

of the stop-band of interest. We thus visualize an approximate solution of

the form

x = eL A8 [cC«;e) " 3s<e)] _q (8)
where c (8) and s (8) represent, respectively, the even and odd eigen-
solutions at the boundaries of the stop-band. An expression of the form
(8) is then substituted into the differential equation of interest, which is
of the form

d%x/de* + [m F (@) + f (9)] x=0, (9)
where f (8) represents the perturbation. Use is made of the fact that

c (8) and s (8) satisfy (9) for m equal to m or m

Sidh el respectively.

In this way we find that, if (8) were a true solution of (9), the following
relation would be satisfied identically in 8:
[#2 4 (m - Mgyen) F (0)] Cc (8) + 2 4S s (8)
i[,az +(m-mygy) F(0)]Ss (@) +24Cc' (0)=0, (10)
where the prime denotes differentiation with respect to 6.

In order to adjust the parameters in (8) so that (10) is satisfied in an
approximate sense, we multiply (10) in turn by c (8) and by s (8) and
integrate, to obtain the conditions represented by the algebraic equations
which follow:

0(4.2(02> tim=m .. 4(:2' F)] C + 2 HULcs'>S=0(1l1a)

2 UL's > C o+ Z/—4{2<sz>+ (m—modd)<s2 F%S=O.(llb)
For the simultaneous homogeneous equations (1la, b) to have a non-trivial
solution, the determinant of the coefficients must vanish, thus determining

M and thereby fixing the ratio of S to C.
13
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Since the analysis described here is no more than approximate, we

regard it as sufficiently accurate to propose the solution

(meven' m) (m - mgyq) 4(:2 F>Ls2F>

2 .
/b( - -4¢c's8» ¢ ?7 \Lenl)
and
1 2 T
C, =y L8> L8 FH m-mgdg ~
/S -/ € 8> ¢ Cc*FDP» mgyen (‘) m : e

For evaluation of the right-hand sides of equations (12a, b) it should
suffice to employ only the dominant terms in ¢ (8) and s (8), namely just
the terms appearing in the unperturbed solutions [(3a, b), with the co-

efficients (5a, b)]. By use of these unperturbed solutions we find

<c2F>’—‘-=’7zir (A By + A B)

even (13a)
- 8 mg 2
e o
8 m
s F)XE - = 2.4 (13b)
T(* N
LesH ¥ TU Agven Aoqq » and (13c)
fod
Zs 8) % - TVAeven Aodd - (13d)
The results (12a. b) may thus be expressed in the convenient form:
8 mg 14
/( 7—.(2————-— ‘/(meven - m) (m = mOdd) ( 8.)
and
C/S=Z/rrr1r; ‘emodd , (14b)
ven

14
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with
4 mg

/('(maxg 2 " | ™Meven - Modd (14c)
© JCeNZ Y

The exponent /L( may be said to be expressed here in nepers per radian--
the corresponding lapse rate in nepers per revolution would be obtained by
multiplying by 2 TU and in decades per revolution by use of the further factor
loglo e (= 0.4343).

From the results (14a - c) it is clear that the lapse rate attains a
maximum value, near the center of the stop-band, which is directly propor-
tional to the width, ' Mevyen -~ Modd I , of the stop-band. The growing un-
stable solution, when the exponential factor is factored out, is seen to have
its azimuthal dependence in the center of the band represented by an equal
admixture of the even and odd eigensolutions which prevail at the edge of
the band. To the extent that equation (6) is an adequate approximate expres-
sion for ¥/ . the maximum lapse rate given by (14c) may be expressed in

the very simple approximate form

P

/amax ~ — Lmeven B mOdd‘ nepers per radian. (15)
. 2 mg

3. Effect of Perturbation

The perturbation applied to n will necessarily be periodic in 8 and
in a typical case might be of the form f (8) = € cosr 0 + g cos s 0,
where f (0) is the perturbation function appearing in equation (9) and the
constants r and s are integers. We shall see that to open up a stop-band
effectively at some integral or half-integral betatron frequency v it is

generally necessary to have present in the perturbation both of the terms

15
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) A2 =

> = y , since the stop-band width depends on the product

shown, with

€ §’ . Before treating this case, however, we shall consider the case in
which a perturbation f (8) = )\cos : Y is applied, since in this special
case the stop-band is found to open up with a width proportional to the first
power of the perturbation. In the interests of clarity we then also discuss
the special case in which f (8) = Y[ cos 2/9, which is a form of perturba-
tion capable of producing a stop-band about the frequency then y is an
integer.

For determination of the stability boundaries and the form of the
associated eigenfunctions for the differential equation (9) we make use of
the variational statement

Z.(dx/de)2> - m&x?F (8) Y - x%£(0)> = min.  (16)
Throughout the analysis we shall presume that 7/(( N. It moreover will
be noted that, to the degree of accuracy employed, F (8) could be replaced
by the first term of its Fourier expansion %— cos N 6.
a. The perturbation )\ cos 2 /8

With f (8) = )\ cos 2 7/9, the variational statement (16) which we

apply at the stop-band boundaries becomes

Z(dx/d0)?» - m L x* F (8)P - AL x% cos 2 20 7 = min. (17)
Trial functions of the form (3a, b) which were employed in the unperturbed
problem (Sect. II) should now be supplemented by circular functions with
arguments 3 2/9, (N - 3 V) 8, and (N + 3 2/) 0 in order that cross terms
in x4 can contribute to  x% cos 2 2/8 > . By insertion of such elaborated
trial functions, one even and one odd, into (17), one is led in each case to

a set of simultaneous algebraic equations for the coefficients and for the
16
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associated values of the parameter m. We list below, in Table II,
approximate solutions to these equations, retaining only terms which are

first order in A (and presuming v<<N), Details are given in Appendix II.

TABLE II

COEFFICIENTS OF cos h8 or sin h® IN THE EIGENFUNCTIONS
CORRESPONDING TO THE STABILITY BOUNDARIES
OF FREQUENCY Z/ FOR THE EQUATION

d%x/de% + [m F (8) + Mcos 22/0] x = 0.

The upper sign is for the even (cosine) eigenfucntion and the lower sign for
the odd (sine) eigenfunction.

h Coefficient of cos h® or sin h®
V4 1 CNormalizedJ
: )
3y |2 L-1TINE oy Xy ] 2
16 Y% 1-21 (YnN)? 16 22 J 16 V2
- 2| f2E) ]
N-spfl+ 25 m 0+3YNLIAN=D) ) o , A m A
| —8 2 T2 1921 (¥/N)? — g 22 TUN? ~ 1672 YN
N-2U | +2 1
| ~ TTN? (1 - /N2
N +2/ £ L
| 7TN2 1+ V/N)?
N+ 3 > m a-sUN[1ir el g X mou A
8 Y% TIN? 1 =21 (VIN)? g2 TN° 1097 N
2
m - mg _i‘ZZIﬂ = lZ'
mg +2<4m0)}'_+47j
Relative - !l 2
. _ Meven odd ’TTN) a1
Wldth, mo G mo -(4 mo % " 5 yz

17
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These results are readily interpretable19

as the analogues of the
corresponding results for the first stop-band of the Mathieu equation if
we replace the rapidly-varying term m F (8) by its smooth-approximation

equivalent constant. The effect of the particular perturbation considered
here is seen to be powerful, in the sense of being first order in A . It
thus affords the opportunity of readily forming large rates of growth if such
should be desired, but it should be noted that the modifications to the orbit
are of high frequency.

By use of the relative width, given in the last line of Table II, and by
reference to equation (14c), one estimates the lapse-rate in the center of

the stop-band to be given by

/C( max.g %— nepers per radian. (18)

b. The perturbation 71 cos 2/

With f (8) = fl cos VG the variation statement (16) becomes
Z(dx/de)2> -m <x*F (8> - )1():2 cos 226 > = min. (19)

In this case the supplementary terms in the trial functions should include
a constant (for the even eigenfunction), and circular functions of argument
2 7/9y (N - 2 U) 9, NO, and (N + 2 V) e. By use of such supplementary
terms the results listed in Table III are obtained (Appendix III).
We note that this perturbation, f (8) = )’Z cos VO, is able alone to

open up a stop-band at the frequency 2/ , albeit with a width proportional

18
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TABLE III

COEFFICIENTS OF cos h8 or sin he IN THE EIGENFUNCTIONS
CORRESPONDING TO THE STABILITY BOUNDARIES
OF FREQUENCY 2/ FOR THE EQUATION

d?x/de? + [m F (8) + 7 cos 2/0]x= 0.

Coefficient of cos h © Coefficient of sin h ©
( ) [1 + U/N»jrl L Efr 4(2//4\)2%’8 e T8 e
1 [Normai.ized] 1 [Normalized]
k.1 1 - 7 (YIN)? 1 1-17(V/IN?%
b6 /2 1-11(YIN)? " 6 U2 1-11(U/N)? )z
g5 1+ 2 V/N)? [1 + QVZ—.%)? - m (1+ 2 2Y/N)? [1 + Z_T
3TC V4N 2 1-11 (/N2 ! 3TC V2N 2 =111 y/N)Z
2 m 1 - 2 m 1
| 2 ~ 2IN)2
[, TN (1 - Z/N)?
2

7C 4 my . A 4

) tamen® 72 SN
2m | 2 m 1
| TN (1 + 2//N)? N2 (1 + YINY?
| {21 2
i m (1-27//anl:l+$ j-’ | m (1-22//N) [1+( )f
e N7 e N ES %
| 3TC N 1-11 ( Y/N)2 Tl 3T ¥°Ne 1- 11 (YIN)? rz
! 4
| s( T\t 2y 5 ‘TCN)Z 34 TN | ~ 1[TIN
[[3(4mo) N =1z o2 (4m n 12 % 4mo) e 4mo) Y(Z

Relative W = Meyen = Modd ( o I
Width, mg mg 4mo 2 2

TrNZ 1 2
mo) 712847/4 n

to the square of the perturbation. In addition to introducing the term of
frequency 2 2/9, and some higher-frequency terms, we note that it intro-

duces a constant term (in the even eigenfunction), with a sign opposite to that

of n, 19
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From equation (14c), and reference to the last line of Table III,

we estimate the maximum lapse-rate to be

2 2
2 (TN ) -ny_ (20a)

/arnax. - 8 mg

2

4 7’( nepers per radian. (20Db)
g Y3

c. The perturbation € cos (¥-r)80 + § cos (+r)0
With £ (8) = £ cos (Z/-1r) 0 + g cos (Z+ 1) 0, the variational

statement (16) becomes

(dx/de)%» - m&x% F (8)> -6<x2 cos (2/-r) 8> - ;(x2 cos ( 2+ r)8y = min, (21)
with r taken different from Z/ and from zero since the special cases
f(8) = A cos 2 29 and f 8) = rl cos 2/ 8 have been considered pre-
viously in (a) and (b). The two terms, of frequencies 2-r and 2/+ r,
are considered together here, since, to open up a stop-band at U both
terms must be present together. 20 The width of the resultant stop-band,
specifically, is proportional to the product E § ; if only one such per-
turbation term is present, however, the results obtained here of course
still may be used to give the m-value associated with the oscillation fre-
quency 2/ and to describe the possible forms of betatron oscillation.
Appropriate supplemental terms in the trial functions are selected
so that such terms will give cross products with the terms of the original

2

(unperturbed) functions when forming x“ such as to contribute to

(xz cos (Z-r)8> or 4x2 cos (Z + r) 8. Suchterms are evidently

of frequency r, Zy-r, 22U+ r, N=1; N + r, N-ZU-r, N - 22/4-1",
20
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N+22V- r, and N + 22/ + r. By inserting such supplemented trial
functions into (21), one is led (Appendix IV) to the results listed in Table IV,
in which the upper and lower signs respectively refer to the even and odd
eigenfunctions. It is seen that, as just mentioned, the width of the stop-
band is proportional toc the product & g , thus requiring the presence of
both a cos (V— r) @ and a cos (Z/ + r) 8 term in the perturbation. To
obtain a simple, low-frequency term (as cos—é— ® or cos 0) in the solution
one would take r = 1/2 or r = 1, although the width of the stop-band and
the consequent lapse-rate may not be as great as with larger values of r.
From equation (14c), and reference to the last line of Table IV, we

estimate the maximum lapse-rate to be obtained with this type of perturba-

tion as

P nepers per
= € g = S radian. (
max. 4U(V%-1r2) 4(U-r)Y(V+71)

M

4. Introduction of a Phase-Shift in the Perturbation

From equation (14b), Sect. II B 2, it is evident that, with the types
of perturbation considered so far, operation in the interior of a stop-band
(where growth can occur) will result in a mixture of even and odd terms in
the ascending solution. In practice, however, it may be desirable that this
solution have zero slope at 8 = 0 (the center of the first radially-focusing
semi-sector) so that a maximum orbit displacement can occur at that azimuth.
An almost equivalent condition, which is slightly simpler to treat, is that
the ascending solution after removal of the exponential factor shall be an

even function of 8. We indicate below some examples wherein this condition

21
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TABLE IV MURA-445

COEFFICIENTS OF cos h6 OR sin h® IN THE EIGENFUNCTIONS
CORRESPONDING TO THE STABILITY BOUNDARIES
OF FREQUENCY 2/ FOR THE EQUATION

dzx/dG2 + [mF(O) + € cos (V-0 +f3 cos (/+ r)@] x = 0.

The upper sign is for the even (cosine) eigenfunction and the lower sign for the odd
(sine) eigenfunction.

h Coefficient of cos h® or sin he
= 1 1+ (/% -2r%)/ N2 i |+ 4JIN)2
2(1/2-1"2) 1-(3%% + 2r2/N2 sl z(-,/ - [ +4/ ] (€ +%)
7/ 1 [Normalized]
22-r 1 1- (W2 -8ur +2r?)YN?
2(37-1)-F) 1 - (1172 -8ar+ 20202 € = 33- r)(-z/ rl +4(’//N)§€
- M
R 1 1 = (79% + 82r + 2r%)/N ~ 1 5
2(3Y+ r)(a/+ r) 1 - (1122 + 82k + 2r°)/N* = ~ 2(34/+ r)(J+ 1) [1 +4("//N)J$
N -29/-r 1 29/+ 112 ; (27J+r J < 11ﬂ +87/r+2r
3 ol e R ] [ b ) [_1 J ,i
N-22/4 1 m 27)-r [ Zz!'r>J [ 117}2~87/r+zr
i & (3 -r)(#-r) I N4 bt N ] L N-</ J €
N -2/ + 2m 1
— 7 N° (1 -2//N)?
2r 2
_ = 1 m r 3# +2r
B "2 o127 N2 ( +_) |1 -2 ) ( [1+/N v J(+ [“ () ]ﬁ}
N+r IR | _ B + 2r? ] [ J
Bz 7TN2 (1 ) [1 {[1+N+2}) f+1+H Y
N +=/ 2m 1
N2 (1 +2/IN)?
N+ 29-r 1 m |, 27-r ): J[ 9 119 ° —81)r+2r J
(3Y-r)(x/)-r) 77'N2 ] b N+-u ! €
N+2%+ r 1 m _2v+r] [y (2—1j+r 55 o +87)r+ 2r
3%+ r)(¥/+ r) TTN% [1 N J [ 4 )J[ J r?’
2 2
m - m 1/TTN + &Y ,3
= - 2'( [(37]— AT — P-rZ T B @)
_ e
R ive
, = - 7N F
Width, g mevergo modd (4m /\ e S
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is met by introducticon of phase-shifts into the applied perturbation and by
suitable adjustments of the coefficients.

a. The perturbation - gl(__-sin 60° cos (70 + 5295) + sin 52°5 cos (80 + 600)),

with 2/= 7.5 and N = 48
As a specific example we consider an accelerator with N = 48, and
7/ 1 : 2 . _
make use of a stop-band at = T 3 which results from a perturbation such

that the differential equation reads

d%x/de? + {m F (®) - ‘él ]:sin 600 cos (70 + 5295) + sin 5295 cos (86 + 6003} =0
23a)

or

d%x/de% + {m F (0) - El [sm 60° cos 7 (8 + 795) + sin 5295 cos 8 (@ + 7953% = 0.
23b)

By setting ? = 0 + 795 this is seen to assume the standard form for which
Table IV applies, since, with N = 48, F (0) is periodic with a period 2TTC/48
or 795:

d%x/d ?2 + [mF Q) - gl (sin 60° cos 7§p + sin 5295 cos 850);[ x = 0, (24)
for which € = - El sin 60°, C =- gl sin 5295, r = 1/2.

By reference to the first line of Table IV we note that the coefficient

1 1
of the cos > © and sin 3 6 terms which arise in the perturbed eigenfunctions

may be written as of the form
-k(€+T5)
or, in the present example,
. o 3 O Y
k gl (sin 60~ + sin 5275).
The ascending sclution prevailing in the interior of the stop-band would then

be expected to be of the form [c_f 4f8f;il :
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x = e/'(y{c [cos 7.5¢p + k B (sin 60° + sin 5295) cos 3 &P + - -]
+ S[sin7.5@ + k ‘é (sin 60° - sin 52°5) sin i+ @+ ] (25)
S 4 ; (si -3 > . (25)

Since, by (14b), the ratioc C/S is given at least approximately by

'V({m - Mgqq) / (Mmeyen = M), we can, by suitable choice of m, arrange
to have C/S = tan 33°75. The solution (25) may then be written

: : g il 1 ,
x = Ay e’a¢{sm 33975 Jcos 7. 597 + k %1 (sin 60° + sin 52°95) cos > 50 +

1
+ cos 33975 [sin 7.5¢ + k §1 (sin 60° - sin 5225) sin5 P+ ]}

= Ay eﬂy{cos 56925 cos 7.5 ? + sin 56925 sin 7. 5?

+ k ?1 sin 6795 [cos 3975 cos % §0+ sin 3975 sin% ?]4. . }
= Ay e/‘SOE:os 7.5 (§0~ 7.5) + k ?1 sin 6795 cos%(q - 7.5) + ]

:Aeﬂ'?[cos7,59+k§1s1n6795cos%9+"'], (26)
which is of the form desired. The appropirate value of m would be expected

to be roughly

m = 0,69 mg4q + 0.3l m (27)

even ’
which although not centrally located, is comfortably within the zone of in-
stability and Lby (14a)] should lead to a lapse-rate estimated as some 92.5
per cent of /amax, In practice, the value of m most suitable for the
present purpose might be determined by empirical computation, to achieve

a condition such that the pure ascending solution (which soon becomes the

dominant solution) is characterized at 8 = 0 by zero slope. Z1

b. The perturbation - gz cos (7 6 + 45%9), with U: 7 and N = 48

As a second specific example we consider an accelerator in which

again N = 48, and make use of a stop-band at g+ 4 7 which results from a
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perturbation such that the differential equation is
d%x/de? + [m F (e) - 32 cos (70 + 45%)] x = 0. (28)
By setting ¢ = @ - 45° this equation becomes of the standard form for
which Table III applies, since an interval of 45° corresponds to a whole
number of periods for F (8):
dzx/d¢2+[mF (@) - gz cos 7¢Jx=0. (29)
By reference to Table III and equation {14b) one is thus led to expect an
ascending solution, at the center of the Y- 7 stop-band, of the form
x:Ale'a k§2+(cos7¢+sin7¢)+°-'}
=a, MPSk B, 4 [cos 7 (0 - 45°) + sin 7 (6 - 45°)] + }
= Ay eﬂ?{k ";’2 + [cos (76 + 45°) + sin (7 0 + 459)] + }
= V2 A, Ak EZ/'[/E + cosTO + }
= A e’ag{k 2/'[/2- + cos 178 +---}, (30)

which may be representative of a useful form for the unstable orbits.

The location of the operating point which would be chosen in this case
would be very close to the center of the stop-band [(14b)] and, accordingly,
one would expect a lapse-rate virtually equal to the maximum | cf. (1 4a)} -

c. The perturbation - 23 [_sin 60° cos (60 + 45°) + sin 45° cos (80 + 600)] ,
with &/=7 and N = 48

As another example in which 7/.-: 7 and N = 48 we consider the case

governed by the differential equation

d%x/de? {m F (0) - ?3 Lsin 60° cos (6 8 + 45°) + sin 45° cos (86 + 6o°ﬂ x = 0.
31)

Here, if we set ? =0 + 795, we again obtain an expression of the standard

form for which Table IV applies:
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2 2 # : o : " &

d x/d? +[m F (CP) 53 (sin 60~ cos 6? 4+ sin 45 cos 890)] =05 432)

By reference to equation (8) and Table IV, we see that the ascending
solution prevailing in the interior of the stop-band would be expected to
have the form:

d
% = e’“gaic [cos 70 + k 23 (sin 60° + sin 45°) cos L e i J
: F o) . le) 5

+S[s1n7?+k§3 (sin 60 -s1n45)sm§P+-~J}. (33)
A choice of m such that C/S = tan 37°5 permits one then to write the solution
(33) as
X = Al e'acy[sin 3795 [cos 7P + k 53 (sin 60° + sin 450) cos? 4o J

+ cos 3795 [sin 7? + k ‘?3 (sin 60° - sin 45°) sin@ + - - J}

il

Al e/"'ycos 52°5 cos 7? + sin 5295 sin 7@

+ k ?3 sin 75° [:cos o cos@ + sin 795 sin CPJ + }

il

I o : o o
A, e/léV]_cos 7 (P - 795) + k ‘?3 sin 75° cos (@ - 7%5) + - - -]
:Ae'ae[cos79+k&SSin75°cosG+-~-J, (34)
which is of the form sought. The appropriate value of m to be selected

would be [by (14b)] roughly

m = 0.63 m_qq + 0.37m (35)

even ’

for which [by (14a)] the resultant lapse-rate would be expected to be about

96. 6 per cent of /( In practice, of course, the value of m most

max.
suitable for the present purpose might be best determined by empirical

computation. 21

d. The perturbation - 54 cos 40 - §5 cos (10 8 + 90°), with v: 5and N = 24

An effective and useful perturbation might employ one term of the

form cos (2 Yo+ Sl) to open up a stop-band and a second term of the
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form cos [(f 2 -1)8+ S Z}to provide a term cos 8 in the solution. To
illustrate this possibility we consider a case in which N = 24, the stop-
band of interest corresponds to U-:: 5, and the differential equation is
d%x /de? + [m F (8) - 5’4 cos 4 0 - gs cos (10 © + 900)] x =0, (36)
The last term, of frequency 10 (= 2 7)) in equation (35) will, as noted in
Table II, serve to open up a stop-band at V: 5 with a width directly pro-
portional to the strength of the perturbation ( ?5).

To determine the expected character of the solutions, in regard to
their azimuthal dependence, we put @ = @ + 45° and equation (35) becomes
dzx/dsc'2+[mF(gJ)+ §4 cos460- §5cos 1ogp]x=o, (37)
since, with N = 24, the periodicity of F insures that F (8) = F (Q). By
reference to the first line of Table IV we thus see that in the center of the
stop-band the ascending solution would be expected to be of the following
form, through the lower frequency terms:
x=a e/ Plcos 5+ sin5g -0.025 T (cos P + sinP) + -]

=- Y2 Ay eMPLos 50+ 0.025 f4 cos 0+ -]

= A elue[cos 508 + 0.025 f4 cos © + - J 2 (38)
This may be a useful form for the ascending unstable orbit, with the lapse-
rate controlled by the coefficient % 5 in (36).

We turn now to some computational tests, intended to check and

illustrate the analytic work of this section.
11I. COMPUTATIONS
A. Method
Computations were performed with the MURA IBM 704 computer to

check and illustrate the general character of the knock-out phenomena des-
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cribed by the analysis presented in this report. The examples may not be
ideal for illustrative purposes, since the azimuthal dependence of the solu-
tions may be felt to be not markedly changed by the perturbation in these
examples--on the other hand it may be expected that the theory should per-
form fairly well, in a quantitative sense, with perturbations as small as
those used here and that such perturbations, moreover, should not be ex-
cessively difficult to realize technically.

In performing the computations, solution of the differential equation
for x was accomplished by use of the DUCK-BUMP program, 22,23 in which
integration is by a Runge-Kutta method, in fixed-point, and the square-wave
function F (8) could be generated by use of suitable "bumps' in the 'g]
channel of the program. Fourier analysis of the resulting orbits was
implemented by the FORANAL program. et In one example the particle
motion was also studied by successive matrix multiplications, in which case
use was made of the MESSY-MESSY program. 25

The initial DUCK-BUMP computations were made for U— 7 -;12, with
a perturbation € (cos 70 + cos 8 ©)and € given the values € =6 or

& =6/ '[/?7 =2 1/3— A few side checks were made in addition, however,
(i) to verify that the expected betatron frequency was correctly given by the
program when no perturbaticn was present, and (ii) to compare the results
for € = - 6 with those found for & = + 6.

In the following sections we report the results of computations made,
in turn, for examples in which = 7%, U = 7, and U = 5. In the first
case the perturbation employs cos 7 ©® and cos 8 8, so that circular functions

of argument -lz 9 may be expected to arise in the solution. In the second case
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this same type of perturbation is alsc studied, so that both a constant term
and circular functions of argument 8 may be expected to arise; in addition,
a perturbation in which cos 7 6 is present alone is also studied. In the
case U = 5, the perturbation employs cos 10 8 and cos 4 8 terms, the
first to open up the stop-band and the second to control the solution so that
circular functions of argument © appear. In each case the location of the
stability boundaries and resultant stop-band width are studied, the Fourier
composition of the eigenfunctions examined, the lapse-rate within the stop-
band determined, and the utility of phase-shifts illustrated.

B. Computations in which U = 7%

[N = 48]

1. Stability Boundaries for a Perturbation & (cos 78 + cos 8 9):

1
With U = 7'2', N =48, and f (8) = € (cos 76 + cos 8 8), a number
of DUCK-BUMP computations was made to obtain results suitable for com-
parison with the analytic theory summarized in Table IV. Runs made to

determine the values of m associated with the stability boundaries for

€ (=C) =6 led to

m = 384. 426,
even
moqq = 381.999,

this width is seen, from the summary presented in Table V below, to be in
reasonably good agreement with that expected from the analytic theory.

2. Eigenfunctions for a Perturbation & (cos 7 @ + cos 8 8):

The x-values for the eigensolutions associated with the boundaries of

1
the T=1 > stop-band were entered into the FORANAL program (192 points
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per problem, corresponding to &8 = 4 T() to obtain the Fourier coefficients

for which analytic estimates were presented in Table IV. To insure that terms
which involve the perturbation to first order could be distinguished from higher-
order terms, additional runs of this same sort were made for & (= g) =

6/ 'l/§ = 2 7/3_ It appeared from this work that the terms expected to show
zero- or first-order dependence on the strength of the perturbation did, in

fact, rather accurately show the expected difference, while all other coefficients
appeared to be definitely of higher order.

Before introducing a quantitative comparison of theory with the com-
putational results, it should be mentioned that the FORANAL program, 24
as applied here to half-integral eigensolutions, provides coefficients only
through those of harmonic order h = 47% . It must moreover be noted that
the Fourier coefficients printed by the FORANAL program are necessarily
influenced, because of the discrete nature of the input data, by higher-order

26 In effect, cosine coefficients of order

coefficients for the true function.
h as printed should be interpreted as having been supplemented by the sum
of other cosine coefficients of order 96 M + h (M denoting an integer);
similarly the sine coefficient of order h is to be regarded as supplemented
by other sine coefficients of order 96 M + h and decreased by those of order
96 M - h. A reasonable comparison might thus best be made between a com-
puted cosine coefficient and the sum of the analytic values for h and 96 - h;
likewise a comparison might be made between a computed sine coefficient
and the difference of the analytic values for h and 96 - h.

Table V summarizes this computational work and compares the results

with the theoretical expressions listed in Table IV. For the odd eigenfunction
30



d%x/de? + [mF(G) + € (cos 78 + cos 892] X =

| TABLE V
- COSINE COEFFICIENTS, Ch’ AND SINE COEFFICIENTS, S, OF ORDERh

IN THE FOURIER EXPANSION OF EVEN AND ODD EIGERIFUNCTIONS
FOR THE EQUATION

MURA-445

0, with2/=7 1/2 and N = 48.

[The digitally computed coefficients are based on € = 2'/??; the stop-band widths, one = 6J
[ =382.429]

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION
Value Value
Coefficient | From Analytic | From Digital Coefficient From Analytic | From Digital
Result (Table 1V) { Computations Result (Table IV) | Computations
h'sr =172
-0. -0.020 - - -
1C 020 o 02 Lee 0
= 'LJ= e ! T i
C7. 5 1 E\Iormalizecg l[Normalize(ﬂ 1 S7. 5 1 [Normalizecg 1[Normalizeg
h=292/-¢%
=14.5
lC14°5 0.0037 0.0037 éSl4'5 0.0037 0.0037
h=22+r
= 15.5
_1_C15.5 0.0031 0.0031 £815.5 0.0031 0.0031
€ €
h=N - 2y/-r |
= 32,5
; -0. 0
ic,, - 0.00080 gL 18, . 0.0008
¢ | €
h =N+ 2']J+ r ?
= 88.5 ‘
1C3 5 |  0.00020 1S¢3.5 0. 00020
€ | | €
i i, ,
C32.5+C63.5/  0.00100 0.00096 [S32.5 ~Se3,5| ~0-00100 0.00096
€ 3
h=N-2J+r
=.33.5
‘ -0.00088
lC33. 5 0,00088 _1=S33° 5 0
€ €
h=N+2V-r
= 62,5
;Céz.s 0.00024 lS62°5 0.00024
o €
C +C S -8
oM7) S TR 0.00109 g 56 8288 9, 00112 ~0.00108
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(continued)
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FOR EVEN EIGENFUNCTION

FOR ODD EIGENFUNCTION

Value Value
Coefficient From Analytic | From Digital || Coefficient From Analytic From Digital
Result (Table IV) Computations Result (Table IV); Computations
h =N-2/=40.5
C40,5 Oa 148 84005 'O. 148
h = N+2/=55.5 !
C5505 0.079 i 855'5 0.079
C40.5+ C55,5 0. 227 0.221 840“5-855.5 -0. 227 -0, 220
h=N-r=47.5
1C47.5 | -0.0021 i _1_347.5 o ) TR
€ | €
h =N + r=48. 5]
1Cy4g 5 ; -0.0020 —1—848.5 —~ 0 il
€ |
C47.5+C4805 1 —0,0041 _Ou 0039 S47,5_S48.5 o O i R
€ ’ €
i~ m, ; 1 m - m
€ = t0.000145 0.000145 5_2 oy -0,000029 -0. 000031
o | o
Analytic: Observed:
L . (Relative width)= 1, ™even ~ ™odd 0.000174 0.000176
€ € m_

obtained with € = g = 6, the Fourier coefficient associated with sinl e

2

is, as expected, quite small (2 -5.6x 10"4 in comparison to the unit co-

efficient taken for sin 7.5 0).

For the even eigenfunction, the coefficients

corresponding to h = 6.5 and h = 8.5, although varying as € 2, were found

to become virtually as large in absolute value as the coefficient correspond-

ingto h = 14.5 (+ 0.021 vs. 0.023), for € (=C) = 6.
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3. Computations Near the Center of the Y = 7% Stop-Band, for a

Perturbation 6 (cos 7 8 + cos 8 9):

With € = lf = 6 and no phase shift present in the perturbation,
computations made with m = 383, 213--i.e., near the center of the Z)r?. 7%
stop-band--indicated that the ascending solution could be obtained by use
of initial conditions such that pO/xO =03 0320350 The lapse-rate was found
to be given by

0.1632 nepers/revolution, or 0.0709 decades/revolution,
corresponding to an increase by a factor 1.1773 each revolution. This com-
putational result for the lapse-rate may be compared with the value

0. 137 nepers/revolution, or 0.059 decades/revolution,
implied by the value AL = 0.0218 nepers/radian given by the analytic result
(14a) when using the observed values for m at the boundaries.

When the exponential increase was divided out from the solution, the
remaining periodic azimuthal dependence was found to be a sum of even and
odd functions which were respectively very close in form to the eigenfunctions,
c (8) and s (8), found at the zone boundaries in the previous computations.
For the value of m employed (m = 383.213), the ratio C/S = 0.994, or
virtually unity, was suggested by forming the ratio of the coefficients of
cos 7.5 6 and sin 7.5 0 in the Fourier analysis of the computational results.
In terms of equation (14b), this ratio is consistent with the fact that m was
taken virtually in the center of the stop-band.

4, Computations with a Phase Shift Present in the Perturbation:

Motivated by the development outlined in Sect. II B 4a, a computational

investigation was made for the perturba‘cion27
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f(8) = - 7.231 622 101 [s;'n 60° cos (7 8 + 5295) + sin 5295 cos (80 + 60°)]
= - 6.262 768 45 cos (7 6 + 5295) - 5,737 231 55 cos (8 8 + 50°) .
: ot 2 g , : 2/ 1
For this perturbation, the boundaries of the = 7> stop-band were found
to be located at

384. 427 and m =1382,001 ,

Meyven = odd

corresponding to a widtk mgyen - myyqd = 2 426, This width may be com-
pared with the value expected from the analytic theory, namely 2. 38.

It was then determined from the computations that selection of the
value m = 382.9145 would lead, for this perturbation, to the ascending un-
stable solution being characterized by dx/d8 = 0 at 8 = 0, as desired. A
run made under these conditions exhibited a lapse-rate

0. 1582 nepers/revolution (M =0.0252 nepers/radian)

or 0.0687 decades/revolution,
corresponding to growth by a factor 1.17135 per revolution. With the
exponential factor divided out from the solution, the azimuthal dependence
with this strength perturbation was found to be such that the coefficients of
cos—é— 0 and cos 7.5 0 terms were roughly in the ratio 0.069. These results
are illustrated in Fig. 2.

As we have seen previously [_c_f_ (22)] , one expects the rate of ex-
ponential growth to be proportional to the product & § By comparison
of the parameters in the present case with thoseemployed in the tests
reported in sub-section2 above ( € = § = 6) it is therefore to be expected
that the lapse-rates would be similar in these two cases; specifically, we
are not operating quite in the center of the stop-band and may expect the

34



MURA-445

present lapse-rate to be 0.97 (E.?/Bé) times that found previously, so
that we indeed may expect 0. 158 nepers/revolution on this basis. From the
observed values of m at the stability boundaries, equation (14a) would give
/": 0.0211 nepers/radian, or 0.133 nepers/revolution, directly.

By reference to equation (26), and taking k = 0.010 [from Table V,
in which results for € = g are summarized] , we would expect the ratio
of the cos % 8 to cos 7.5 6 coefficients to be given by

k '?;’1 sin 6795 = 0.010 x 7.231 622 101 x 0.9238 7953 = 0.067.
From these results we infer that the development of Sect. II B 4a is at least
semi-quantitatively valid.

Additional computations for a perturbation of essentially this same
form were performed by matrix multiplication, using the MESSY-MESSY
program, and are reported later (Sect. E and Fig. 3).

C. Computations in which YV

[N = 48]

1. Stability Boundaries for a Perturbation Y[ (cos 78 + cos 8 8):

with 2/= 7, N = 48, and f (8) = T\ (cos 78 + cos 8 8), a number
of DUCK-BUMP computations was made to obtain results suitable for
comparison with the analytic theory summarized in Tables III and IV, It
will be recognized that for U = 7 the term Y( cos 8 8 in the perturbation

f (8) is expected to affect the location of the stop-band boundaries, but not

contribute to the width of the resonance; the term 7’l cos 7 8 is expected
to lead to the appearance of a constant term in the Fourier expansion of the
even eigenfunction, while the )’( cos 8 © perturbation would engender a

cos 8 term in the solution.
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Runs made to determine the stability boundaries for )2 (= g ) =6

led to
m_ o = 360. 349,
myqq = 398. 943,

this width (and the location of the individual boundaries) is seen, from the
summary presented in Table VI below, to be in reasonably good agreement
with the analytic theory. With the magnitude of the perturbation reduced
by a factor 1/ 7/3_ so that Y( (= g) =6/ 7f3: 2 '}rS, it was found that the

boundaries were given by

m = 359. 234,
even
mOdd = 358. 765,
Width = m - = 0.469;

m
even odd

the width is thus seen to be proportional to the square of the perturbation,

as expected.

2. Eigenfunctions for a Perturbation TL(cos 708 + cos 8 0):

The x-values for the eigensolutions associated with the boundaries
of the 2/ =17 stop-band were entered into the FORANAL program (192
points in an interval &8 = 27T() to obtain the Fourier coefficients desired
for comparison with the analytic theory. Output from the FORANAL runs
then gave values for Fourier coefficients ostensibly through the 96 order.
Only for the coefficients listed was the dependence on the strength of the
perturbation found to be of order no higher than the first, save for such
higher Fourier coefficients as that with h = 89 (the cosine or sine co-

efficients amounting to + 0.0037 in this case, relative to the component
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TABLE VI

' COSINE COEFFICIENTS, C,. AND SINE COEFFICIENTS, S,, OR ORDER h
IN THE FOURIER EXPANSION OF EVEN AND ODD EIGENFUNCTIONS FOR

d®x/de2 + [mF(8) +n (cos 70 + cos 86)] x = 0, withy/= 7 and N = 48,
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[, = 358. 676]
FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION
Value Value
Coefficient From Analytic From Digital || Coefficient From Analytic | From Digital
Result Computation | Result Computation
(Tables III & IV) (Tables II & IV)
=10
18 -0.0113 -0.0110 - - - - - ---—
®
=] i 1
i, |*“ip oits ~0.0112 | 0.0114 0.0113
ey ; i 1
n _H LY
e a | |
C7 f 1 [Normahze(ﬂ § 1 [Normahze@;; S7 1 E\Iormahzecﬂ 1 [1-\Iormallze§
h=2v =14 !
1 Cqyyg O.,00378 0.00381 » 1 814 0.00378 0.00380
i | | I
h=.i_1/c+r=15 0.0031 | 0.00315 1S 0.0031 0.00319
A | ; il ‘ 31
—="1D i A
. 7 | w15 7
h=N-2v-r=33 !
1 C33 0.00074 0.00072 1 8 -0.00074 -0. 00073
R z : ek
h=N-2/=34 | 1
1C 0.00082 - 0.00081 1 £8 -0.00082 -0. 00081
LT ! | | 34
n | i w
h=N-V/= 41 |
i i - -
Cyqq 0.1358 g 0.1338 i S41 0.1358 0.1336
h=N-I"=47 i |
1 -0.00115 ¢ -0.00111 : 1S -0.00115 -0.00112
47 ! | 47
R A
h=N=48 : f
1 Cyg -0.0021 i =0.00206 i 1 Syg -0.000013 -0.0000133
T i | -
h=N+r=49 i
1C -0.00106 -0,00100 ¥ 18 0.00106 0.00101
49 i 49
" |
h=N+2/= 55 i
C55 0.0755 0.0721 5 Sg g 0.0755 0.0720
h=N + 2/=62 |
1C 0.00024 0,00022 1S 0.00024 0.00022
— 62 i t — “62
M " | S
h=N+2/+r=63 I
1 C()3 0.00019 0.00018 ? 1 S¢q 0.00019 0.00018
i | n
1 m-mp 0.000143 or 0.000130 |1 m-mg 0.000 023 0.000 021
N2 Tmg 0.000136 Iwe g
1. (Relative Width)=— 1 Meyen -~ Modd An&l&)l&:lzo or Observ_ed:
72 — a2 = 0.000 109

(0]

0.000 113
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with h = 7, independent of '2’? ) which corresponds to h = 2 N - 2/ and may
be omitted from our summary since such terms were ignored in the analysis.

The comparison of the computational and analytic results is given in
Table VI. The theoretical values are obtained by substitution into the for-
mulas listed in Tables Il and IV, with Y\= G and r =1, so that (for ex-
ample) one expects the stability boundaries in this case to be given by the
sum of the analytic expressions shown in these Tables.

3. Computations Near the Center of the -7 Stop-Band, for a

Perturbation 6 (cos 70 + cos 8 9):

With Yl = § = 6 and no phase shift present in the perturbation,
computations made with m = 359. 646--i.e., at the center of the 2 - 7
stop-band--indicated that the ascending solution could be obtained by use
of initial conditions such that py/x, = 0.34455. The lapse-rate was found
to be given by

0. 0934 nepers/revolution, or 0.0406 decades/revolution,
corresponding to an increase by a factor 1.0979 each revolution. This
computational result for the lapse-rate may be compared with the value

0. 080 nepers/revolution, or 0.035 decades/revolution,
implied by the value /L( = 0.013 nepers/radian given by the analytic result
(14a, c) when using the observed values for m at the boundaries.

When the exponential increase was divided out from the solution, the
remaining periodic azimuthal dependence was found to be a sum of even
and odd functions which were respectively very close in form to the eigen-
functions, c¢ (8) and s (8), found at the zone boundaries in the previous com-

putations. The ratio C/S = 0.996, or virtually unity, was suggested by
38



MURA-445

forming the ratio of the coefficients of cos 70 and sin 7 8 in the Fourier
analysis of the computational results. In terms of equation (14b), a ratio
near unity is in accord with the fact that m was selected to lie at the center
of the stop-band.

4., Computations with a Phase Shift Present in the Perturbation:

a. The perturbation - 8 cos (7 6 + 459)
To follow up the development outlined in Sect. II B 4b, a computational
investigation was made of the perturbation
f(8) =~ 8cos (70 + 45°) .
For this perturbation, the boundaries of the y 248 7 stop-band were found
to occur at
= 360. 830 and mgqq = 358.219,

Meyen

corresponding to a width m - mgy4q = 2.61,. This observed width is

even
in fair agreement with the values 2.80, 2.59, and 2. 39 suggested by the
analytic formulas presented in the last line of Table III for )’Z = - 8.

For the ascending solution to be correctly launched within the V=1
stop-band at 8 = 0 with dx/d® = 0, it was then found that one should take
m = 359.653. A run made under these conditions showed a lapse-rate

0. 1721 nepers/revolution ( (£ =0.0274 nepers/radian)
or 0.0747 decades/revolution,
corresponding to growth by a factor 1.188 each revolution. With the
exponential factored out from the solution, the ratio of the constant term
to the coefficient of the cos 7 8 term was 0. 0654. These results are

illustrated in Fig. 4.
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The expected lapse-rate, computed from the location of the operating
point with respect to the observed stability boundaries, is found, from (14a),
to be given by

ﬂ = 0.0234 nepers/radian, or 0.147 nepers/revolution.
By reference to (30) and Table VI, the expected ratio of the constant term
to the coefficient of cos 7 8 would be 0.062 or 0.064. Again there appears
to be reasonably good, semi-quantitative agreement between the expected
values for these quantities and the values found computationally.
b. The perturbation -7.628 093 8847 [sin 60° cos (6 8 + 45°)+sin 45%c0s(8 6 + 60°)|

As an example of the development presented in Sect. II B 4c, a series
of computations was made with a perturbation given by28
f (8)=-7.628 093 8847[sin 60° cos (6 8 + 45°) + sin 45° cos (8 0 + 60°)]

= -6.606 123 0865 cos (6 8 + 45°) - 5.393 876 9135 cos (8 8 + 60°) .

For this perturbation the boundaries of the U = 7 stop-band were found to
lie at

Mg en = 361.122 and m s = 358.155,
corresponding to a width 2. 967. This width compares well with that expected
on the basis of the analytic theory [from the last line of Table IV and ref. 28] s
namely 2.94. For the ascending unstable solution within the stop-band to be
characterized by dx/de = 0 at 8 = 0, it was then found that one should select
m = 359. 494. With this value of m, a lapse-rate

0.1958 nepers/revolution (,Ll = 0.03116 nepers/radian)

or 0.08504 decades/revolution,

corresponding to growth by a factor 1.2163 each revolution, was obtained.

40



MURA-445

The azimuthal dependence of this solution, with the exponential factor
divided out, was found to be characterized by a ratio of the cos 8 and

cos T 8 coefficients given roughly by 0.091 These results are illustrated

53
in Fig. 5.

The resonance width for the present type of perturbation is expected

= y 2 2 €S 98 € 'S .
iTables III and IV, to be about v = T e s ey i 4 LT
» - -,, ~ rZ ]’2 48 )1

as great as for a perturbation 7! cos 7 6; ﬁence, to compare with the

present results with these found in sub-section 3, we may (taking account

of the lecation of the operating points within their respective stop-bands)

-~
multiply the lapse-rate in the latter case by 0. 995 8 636 2 to obtain

an expected 0. 201 nepers/revolution for the present problem. More

directily. from the observed values of m at the stability boundaries, equation
(14a) would predict

A4 = 0.027 nepers/radian, or 0. 17 nepers/revolution.
By use of the theoretical solution (34), and by reference to Table VI to obtain
k =2 0.0113, the theoretically-expected ratio of the cos 8 and cos 7 6 co-

efficients is

k :’3 sin 75° = 0.0113 x 7. 628 093 8847 x 0. 9659 2583 = 0.083.

Again we infer from these results that the theoretical development is valid,

at least in a semi-quantitative sense.

D. Computations in which 2/ = 5

o
=

’N':Zél_

—

Computations in which a cos 10 8 term was present in the perturbation

were made to illustrate the effectiveness of such a term in opening up the

=5 stop-band. In some of the computations a cos 4 8 term was also
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introduced in the perturbation, in order to engender in the solution cosine
or sine terms of argument 8, and phase shifts were also introduced. In all
this work N = 24, and mg = 123.7355 for ¥/ = 5.

1. Computations Without Phase Shifts in the Perturbation:

a. The perturbation - cos 10 ©
The 7): 5 stability boundaries for the perturbation
f (8) = - cos 10 O
were found to occur at
ot = 125, 0048 and myqq = 122. 4396,
corresponding to a width megyen - mggq = 2. 565,. This observed width is
in fair agreement with the values 2. 87 or 2. 47 obtained from use of the
formulas listed at the bottom of Table II ( A = - 1); since the width involves
A to the first power, a substantial width is obtained with a relatively modest
perturbation,
The Fourier coefficients for the eigenfunctions corresponding to these
stability boundaries were determined with the DUCKNALL program24 and
the results for the prominant coefficients, through the 29th, are listed in
Table VII. For the example with which we are concerned here, 2/ is not
sufficiently small in comparison to N that the results given in Table II are
trustworthy--accordingly we include in Table VII numerical estimates ob-
tained by solving equations (II, 4 d' - f') of Appendix II explicitly. The co-
sine and sine coefficients of order h = N + 3 2/ = 39 were found to be
-0.00026 and -0.00024, respectively, in good agreement with the value

-0,00025 calculated from (II, 4 da' - f'); these results are not included in
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Table VII, however, because the magnitudes are so small, and terms of

order 2 N + 2, 2N + 3 Y, 3N + 2/ ., etc. are likewise omitted. The

distinction between m

even

and m ;4 was not made in solving equations

(I1, 4 d' - f'),. since this distinction would make only a second-order effect,

but was considered in calculating the large coefficients of order N + Z.

TABLE VII

COSINE COEFFICIENTS, Cj, AND SINE COEFFICIENTS, S,, OF
ORDER h IN THE FOURIER EXPANSION OF EVEN AND ODD
EIGENFUNCTIONS FOR THE EQUATION

d%x/d8% + [m F (8) - cos 10 8] x =0, with 2/ =5 and N = 24

‘m = 123.7353 ]

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION
Value Value
o= Calc. from From Digital Calc. from From Digital
Coefficient (5a), (5'b) ar'ld Computation Coefficient | (5a), (5b) and Computation
(I, 44 -1) (11, 44d' - £')
h = y =5 ! i
1 1i A . ! /| . ‘ .
C5 [Norma ize _} 1 [Norrnahzed] l S5 ; 1 [_Normallzed] ; 1 LNormallzecﬂ
h = N - 3V. 9 ! ‘;
-000054 -0.0063 Sg ! +0,0054 i +0,0060
Cg f
?
h - 3 V - 15
-0.004 -0.0046 S -0.004 -0.0044
huN-ﬂ:lQ i
0.220 0.222 i s -0.216 -0.218
Cig 19
h=N+2/ =29
C2g9 0.095 0.094 Sz9 0.093 0.092

Information concerning the ascending solution within the -5 stop-

band is presented later, in sub-section 2a below, for a perturbation of this

same character and strength, save for the introduction of a phase shift.
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b. The perturbation - cos 108 + 7.5 cos 4 0
The Z/— 5 stability boundaries for the perturbation
f(8)=-cos 108 + 7.5cos 486
were found to occur at
Meyen = 125.99,¢ and mgy4q = 123. 382,
corresponding to a width mgyepn - Mmgygd = 2. 6097. This width, as expected,
is little different from that found previously for the case in which the term
- cos 10 8 was present alone in the perturbation, although the stop-band as
a whole is of course displaced towards larger m-values by an amount (0. 97)
which is in close agreement with the shift predicted by the é,z term of the
analytic formula listed in the next to the last line of Table IV. Without
attempting to account at all quantitatively for the slightly greater width in
the present case, we may point out that the parameters of the present ex-
ample are somewhat special in that 3 Z/=N-22)+rand N - 3 Z/ =2V -r;

as a result, certain terms in our trial functions can receive contributions

from both terms of the perturbation and, without recourse to higher-order

effects, one can recognize that the width may receive 'cross-term' ( X€ )
contributions.

The chief value which may be attached to the cos 4 8 term of the
perturbation is its effectiveness in introducing cos 6 or sin 8 into the
solutions of the differential equation. The Fourier coefficients of interest
in this case were again obtained by the DUCKNALL program and are listed
in Table VIII. The calculated values which are listed for comparison are
those of Table VII, supplemented by the contributions suggested by Table IV

(€ =17.5).
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AND SINE COEFFICIENTS, Sh’ OF ORDER h

IN THE FOURIER EXPANSION OF EVEN AND ODD EIGENFUNCTIONS FOR THE EQUATION
dledQ2 + EnF(G) - cos 100 + 7.5 cos48]|x =0, withy/=5 and N = 24.

[m, = 123,7353

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION
Value Value
Coefficient Calc. from |From Digital || Coefficient Calc., from From Digital
TablesIV & VII|{ Computation E TablesIV & VII | Computation
Y=r=1
Cy -0, 190 -0.186 S1 -0.190 -0, 200
h=9/=5 [
C5 l[Normalized] 1 [Normalized]% 85 1E10rmalizecz| 1 E\Iormalize@
h= Z'[j— =
N - 39/=9
Cq 0,080 0.086 89 0.091 0.091
h=37)=N- 2
+r=15
Cis 0.029 0.033 815 a -0.038 -0.038
h=N-4=19
C19 0.220 0.224 S19 -0, 216 -0.219
h=N-r=23
C23 -0, 027 -0.027 S‘23 +0.027 +0.028
h=N+r=25
C,5 -0.023 -=0.023 825 -0, 023 -0.024
h=N+v/=29
ng 0.095 0.095 829 0.093 0.093

Information concerning the ascending solution within theg/= 5 stop-band is presented
later, in sub-section 2b below, for a perturbation of this same type but with phase-
shifts present.
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2. Computations with Phase Shifts Introduced into the Perturbation:
a. The pertrubation sin 10 6
The perturbation
f(8) = sin 10 8
considered here is seen, by the substitution 8 = ¢ - 45°, to be - cos 10 g
the perturbation is thus, in essence, exactly that considered in sub-section
la above and must lead to the same stability boundaries (eigenvalues of m).
With N = 24, the ascending exponential solution within the V=5 stop-band
was found to be characterized by dx/d8 =0 at 8 = 0 when m = 123. 75¢ -
Under these conditions the lapse-rate was found computationally to be
0. 3775 nepers/revolution (M= 0.06008 nepers/radian)
or 0.1639 decades/revolution,
corresponding to growth by a factor 1.4586 per revolution. With the
exponential growth factored out, Fourier analysis of the periodic azimuthal
dependence indicated a character substantially the same as that for the even
eigenfunction (sub-section la), the dominant terms being those which appear
in the even solution for the unperturbed problem:
cos 50 + 0,220 cos 196 + 0.093 cos 290 .
Using the observed values of m at the stability boundaries (sub-section
la), the lapse-rate suggested by equation (14a) is
A = 0,045 nepers/radian, or 0. 28 nepers/revolution,
which is about 3/4 of the amount found computationally. The absence of
any strong Fourier coefficients other than those noted is to be expected
from the theoretical analysis (Sect. II B 3a).
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b. The perturbation sin 10 8 - 7.5 cos 4 6
As noted in Sect. II B 4d, the perturbation
f (@) =sin100 - 7.5 cos 480

is seen by the substitution 0 = ¢ - 459 to be - cos 10 ? + 7.5 cos 4 y f
which is of the form considered in sub-section 2b above. With N = 24, the
ascending solution within the /=5 stop-band was found to be characterized
by dx/d® =0 at 8 = 0 when m = 124.759,4.

Under these conditions the lapse-raté was found computationally to be

0. 3980 nepers/revolution (M = 0.06334 nepers/radian)

or 0.1728 decades/revolution
corresponding to growth by a factor 1. 489 per revolution. With the ex-
ponential increase factored from the solution, the chief Fourier coefficients
for the periodic azimuthal dependence are as listed in Table IX and are seen
to be substantially the same as those shown in Table VIII for the even eigen-
function when no phase shift is present, save for a change of sign for those
coefficients which depend on the strength of the perturbation. These results
are illustrated in Fig. 6.

Since, as noted from sub-sections la, b, the width of the stop-band
in the present case is only very slightly greater than for the perturbation
sin 10 © alone, it is not surprising that the lapse-rate found here is not
much different from that reported for the computations of the preceding
sub-section (2a). The effect of.the additional term - 7.5 cos 4 8 which
has been added to the perturbation is to introduce an appreciable cos ©

term into the solution. From equation (38) we expect, with 24 = 7.5, the
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coefficient of cos 8 in the solution to be 0.025 x 7.5 = 0. 19 relative to the
cos 5 8 term. In summary it is clear that the relatively modest perturba-
tion sin 10 ® has engendered an instability characterized by a marked rate
of growth and that the additional perturbation -7.5 cos 4 8 has introduced a
noticeable fundamental azimuthal dependence of a type which favors the attain-
ment of large displacements at 8 = 0.
TABLE IX
COSINE COEFFICIENTS OF ORDER h IN THE EVEN
ASCENDING SOLUTION FOR THE EQUATION

d%x /de? + [m F (8) + sin 10 8 - 7.5 cos 4 e] x =0,

WITH /= 9, N = 24, AND FOURIER ANALYSIS
MADE AFTER DIVISION BY exp (4 6) .

C | Value of Cosine Coefficient
h from Computational Solution

Cy 0.191

Cs 1 [Normalized}

Co -0.085

Cis -0.032

Cig 0.221

C23 0.026

C2s 0.022

C29 0.093
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E. Matrix Computations for a Piecewise-Constant Perturbation,

with 7/:7_12and N = 48

1. Motivation:

It will be readily appreciated that in practice it could be considerably
more convenient to provide a perturbation (n-bump) which is piecewise-
constant, rather than a continuously-varying function of azimuth. Specifi-
cally in many cases it might prove most convenient to employ a perturbation
for which the change in focusing index, n, is constant over each individual
semi-sector. Detailed examination of such an arrangement would most

14

naturally be carried out by the standard matrix methods~* and for computation-

al work the MESSY-MESSY program25

is helpful. With a large number of
sectors in the accelerator one would expect, however, the results to differ
in no essential way from those obtained by study of differential equations of

the type considered heretofore.

2. The Stop-Band for U = 7% with Piecewise-Constant Perturbation:

In analogy to the computational example of Sect. III B 4, for which
the analytic theory of Sect. II B 4a was intended to apply, the response to
a similar piecewise-constant perturbation was studied by matrix multiplica-
tions, aided by the MESSY-MESSY program. The quantity designated by §

25 representing the square root of the

in the description of this program,
magnitude of the focusing constant, was given values in accordance with the

expression

S :V | m F (6) - 6.262 768 45 cos (7 8 + 52°5) - 5. 737 231 55 cos (8 8 + 60°)],
(39)
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specific individual values then being obtained by substitution into (39) of the
values of 8 corresponding to the mid-point of the individual semi-sectors
of a structure for which N = 48 and for which © = 0 corresponds to the
center line of one of the radially-focusing semi-sectors. Appropriate
matrix multiplications (with t = TT/48 for a full semi-sector, or t = (/96
for one-half of a semi-sector) were then made to obtain the matrix repre-
senting an entire revolution, from 6 = 0 to 8 = 2 T(.

By interpolation of the results of three such runs, made with m
successively given the values 383.3, 382.9, and 382.5, it appeared21 that
the pure ascending exponential solution would be correctly launched with
(dx/de)0 = 0 if m = 382. 983, and these same orientation runs suggested
that a lapse-rate of

0. 162 nepers per revolution
would then be expected. A MESSY-MESSY run made under these conditions,
strictly with m = 382.982 67, indicated a lapse-rate

-1 Trace -
Z'TC/A'.ECOSh 1 ———— = 0.160 nepers per revolution,

it will be noted that this value is close to the result 0. 158 nepers per revolu-
tion reported in Sect. III B 4 for DUCK-ANSWER computations pertaining
to a similar (but continuous) perturbation.

From the matrix element "A'" of the successive cumulative product
matrices printed out at quarter-sector intervals, in the course of the last-
named MESSY-MESSY run, one in effect has the coordinates of a repre-
sentative pure ascending solution, with (dx/de)0 = 0., A Fourier analysis
of these data, taken at half-sector intervals and with the exponential increase
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factored out, led to the major cosine coefficients for the periodic azimuthal
dependence (period 4'1'() listed in Table X, wherein, for comparison, we also
include the corresponding results for the DUCK-ANSWER run described in
Sect. III B 4. It is noted that in either case the coefficient of cos% 0 is
about 7 per cent of the dominant cos 7.5 8 coefficient. These results are
illustrated in Fig. 3.

TABLE X

COSINE COEFFICIENTS, OF ORDER h, FOR THE ASCENDING

SOLUTION WITHIN THE 2/ = 7—;— STOP-BAND, WITH N = 48 .

Results for the solution, with the exponential factor removed, as obtained

by the MESSY-MESSY program for the perturbation implied by Eqn. (39).

" Value of Cosine Coefficient

Chp
or MESSY-MESSY solution] for DUCK-ANSWER solution

ol

C1/2 0.072 0.069
1 [Normalized] 1 [Normalized]
c40 5 + c55 5 0.221 0.219

>pSee note, Sect. III B 2, on the interpretation of FORANAL output data. &5

TFor purposes of comparison with analysis of MESSY-MESSY computation.

IV. SUMMARY AND DISCUSSION

It appears from the foregoing work that a perturbation which changes

the field index of a particle accelerator (n-bump) can create a stop-band
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within which. as a result cf the perturbation, a substantial rate of growth
of oscillaticn amp.itude will occur. It moreover appears that the form of
the ascending sciution, which is the solution that soon dominates the motion,
can be contro!led to some extent by the nature of the azimuthal distribution
-of the perturbation. Specifical.y, a perturbation whose spatial dependence
contains a circular function of argument 2 /o will open up the stop-band
in first order, in that the width of the stop-band is directly proportional to
the strength of the perturbation, whereas otherwise a combination of functions
with arguments ( 2/ + r) @ is required and such a combination produces a
stop-band width proportional to the square of the perturbation. Terms with
argument ( U+ ri®@or (U -r)8 may be useful, nonetheless, in intro-
ducing into the solution (orbit) a spatial dependence which includes circular
functions of argument r 6.

The use of such instabilities may be effective in achieving rather
economically a rapid knock-out of a beam onto an internal target. It may
also be usefu. for extraction of the beam, either by moving it rapidly into

a ''peeler"

structure or possibly by directing the beam through the fringe
field of the magnet itself. In the case that the fringe field is involved,
specific computations including the non-linear features of the motion in
such regions would be desirable, but in any extraction method the intro-
duction of 4 term such as cos% @ into the growing solution would seem to
afford an azimuthal dependence which would be helpful. It may be noted
that, as is the case for some of the examples considered in this report, the

exponential growth of the sclution may be sufficiently great in one revolution

1
as to outweigh the azimuthal variation introduced by the cos 3 ® term (and
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by the other terms of some importance which are associated with this term

in the solution)-~such a situation should be avoidable, however, if that be
desirable, by proper adjustment of the relative magnitudes of the coefficients
of thoseterms in the perturbation which create the stop-band and those which
primarily influence the form of the solution. Such ''tailoring'' of the pertur-
bation may be possible, of course, only at the expense of heavier currents

(or ampere turns) in some portions of the perturbation windings, but it is
hoped that the analytic discussion contained in this report will provide a help-
ful perspective concerning the role played by the various terms under con-
sideration.

In the body of the present report, the location and width of the stop-
bands have been specified, for convenience, in terms of the parameter '"'m'';
in practice it may be more economical to 'tune'' the accelerator to the desired
resonance by use of the constant "a' (representing an azimuthally constant

addition to the field index), and actually a combination of changes in "a'' and

"m' may be desirable to keep the axial motion free of resonance effects while
exploiting the desired radial resonance. Such possible perturbation arrange-
ments, however, should be readily investigated in any specific case by methods
paralleling those presented here.

As a final caution it should be noted that, in order to achieve ascending
exponential solutions for which (in our illustrations) dx/d® =0 at 8 =0, a
very definite perturbation schedule should be followed. Thus one might best
undertake to perturb the accelerator to the vertex of the stop-band and then
proceed up a definite central curve in its interior. Departures from the in-
tended central curve will introduce phase shifts into the solution, such that
the orbit maxima are shifted or, otherwise expressed, dx/d® will differ from
zero at the azimuth 0 = 0. Such control of the perturbation currents may, then,
require fairly careful programming and electronic engineering, and the toler-
ances necessary to achieve desired limits of performance could be estimated
for a specific case by application of methods similar to those discussed in
this report. Such planning of the design, and the requisite engineering effort

may, however, be well warranted if the obtainable performance is felt materi-

ally to enhance the versatility and usefulness of the accelerator.
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E.D. Courant and H. S. Snyder, Annals of Physics 3, 1 (1958).

Strictly tlgle variational statement might best be regarded as an isoperimetric
problem, © with "' - a'" playing the role of a Lagrange Multiplier.

It may be pointed out that a general solution of the form
R{cos720 + ﬂ cos (N -72J)6 +b/ cos (N +-y')9] + S[sinz)e -ﬁsin (N-i))(-)
+ ¥ sin (N+7/ )Gﬂ

can be written
R - iS exp (i29) [1 + lg(cos NO - i sin NO) + ¥(cos NO + i sin NG)J

2
+R +1S
2

which is clearly of the Floquet Form [E T. Whittaker and G. N. Watson,
"Modern Analysis' (Cambridge University Press, 1927), sect. 19.4]{.

exp (-i2/8) [1 + /K(cos NO + i sin NO) + ¥ (cos N® - i sin NQ)] iy

This result is identical to that obtained by applying the '"'smooth approxima-
tion" to the equation d2x/de2 + (4m/7r)(cos NO)x = 0. K.R. Symon,
MURA Report KRS(MURA)-1 (July 1, 1954); K. R. Symon, et al., Phys.
Rev. 103, 1837 (1956), Appendix A]] kil

N. W. McLachlan, ""Theory and Application of Mathieu Functions"
(Clarendon Press, Oxford, 1947), sects. 4.90 - 4, 91.

The basic differential equation governing the radial betatron motion when
the perturbationf(e) = A\ COS 228 is present, namely

d%x/de? + [mF(Q) + N cos 26 ]x = 0,
may, by use of the smooth apgrommation, 17 pe replaced by

d%x/de? + [z (% + A cos 2:/9} x = 0.

2
Since, to this degree of approximation, -2)2' = 3 (Zmo) ,
TN

this becomes
2
d%x/de? + [2)2 + (4m0) M~Mo 4 X cos 27/9] x = 0.
TN mg
In the standard Mathieu Form, obtained by the substitution 22/6 = 27,
the last equation may be written

2 -
d%x/dz? + [1 " 4m°) m-Mo . A cos zz] x = 0.
TN, m 22

For the first resonance of this equation, which corresponds to the situation
of interest here, it is well known that the stop-band opens up linearly
with A in the manner

2
4mg) m-mo _ 1 A or m-mg Y ('n'N)z
ﬂ'z}N) m, =t 29t m =+ 2 4m0 A
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The eigenfunctions, moreover, may be approximated by

[cos Tk cos 3’2’] = A [cos'()e + A cos 37J9]

even

1672 s 1672
and
Asai [sin‘[+ A - ain 3’27-! = A aq [sinﬂe + A sin 37/9]
-

162 162
[ﬁ Ref.11, Appendix I; or Whittaker and Watson (ref. 16), Ex. 1, Sect. 19. 3]
These results are thus seen to be consistent with the corresponding results

listed in Table II.

20. We wish to record that the dependence of stop-band width on the product éf
in cases of the type discussed here was pointed out to us by Dr. Parzen prior
to completion of the analytic work described in the present report.

X
21. If the matrix which serves to carry the vecto (p’"") of a particle through one
revolution is written in the form | cf. ref. lfl] it

+ Cosh M + ok Sinh X /& sinh A
b’lsinh A + Cosh 4 — &k Sinh & ;

where [ = L , the general solution after n revolutions, for a particle
starting with initial values Xy Pg 1S

X, = (i)rl +1 g[(ot + 1) Xo +/5poj e "M -[(04,7- 1) Xq + ﬂpo] e‘h}.l.}

2 &=
Bl Fw” -1 B - ol - 1 P
P, = (1) {-E——)Z— Xo + (X + 1) po] e B +[——)5_ Xo t (¢ £ 1)poJ e @o
2

Here the upper and lower signs correspond, respectively, to operation in an
integral or half-integral stop-band. For a solution launched with p =0 to
correspond entirely to a rising exponential, it is therefore necessary that

O~ = + 1, the product of the main-diagonal matrix elements must then be unity,
and one of the two coefficients,é’or}f must vanish. It is, in fact, evident

that it is " which must vanish in this case, as clearly can be established
directly from the observation that a "pure'' exponential solution, if correctly
launched with Py = 0, would continue to give p = 0 after one revolution. The
sign of A(= + 1) can serve as noted here, to distinguish between the cases

in which po:: 0 will lead to an ascending or decreasing exponential:

Character of Exponential Solution Arising when P, = 0 and (= +1

Resonance
I~ Integral Half-Integral
+1 Rising Falling
-1 Falling Rising
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The matrix element b/ Sinh M can, of course, be determined directly
by a one-revolution computation for an orbit launched with Po = 0, since
it is then given simply by Py / X, The parameters of the differential
equation (e. g., m) can be adjusted to make this matrix element vanish.
We. consider that the condition (dx/d6) = 0 for the rising exponential.
which is the condition adopted here, is not only simpler to apply but

probably preferable to the condition «d/de)(e - A0 Xyo v OJ

22. J. N. Snyder, DUCK-ANSWER (I. B. M. Program 75), MURA-237, Int.
(1957). In the use of this program for examples in which N = 48, T=16806 with 16
steps of the variable 7 in each intervalAy =7 . Thus 5376 steps were
made per revolution, or 112 within each full sector. The square-wave
function F(8) of unit amplitude (+1) was generated in the -channel of
the program by use of the "bump' feature, and introduced into the
/9- or x-equation by se’cting/‘(2 = 1. Accordingly one set S g -(1/2)(m/ 28224).
A perturbation € cos 78 + /7 cos 66 can be represented by setting

B, = - €/282240 with N; = 96
and B, = -1 /282240 with N, = 126.

Similarly, a perturbation & cos 68 + 30 cos 86 can be obtained by

B, - €/282240 with N, = 112

—f/282240 with N, = 126.

and B

2

For examples in which N = 24, 192 Runge-Kutta steps were employed in
an intervalA7 =77, corresponding to 1920 steps per revolution or 80
steps per full sector. ’,‘f{/' was again obtained by use of the "bump'' feature,
but with values + 20. 1In this case 814 = -—m/1000 and a perturbation
€ cos 40 + f cos 60 + N cos 100 was representable by

Ay = - A/250;

By = —€/250, with N; = 5; and

c, = -¥/250, withN, = 5.

Phase shifts can be introduced into the arguments of the circular functions,
when desired;, by use of the parameters OLP ,515 and 3/1

23. J.N. Snyder, Invariant Duck-Bumps (I. B, M, Program 77), MURA-238,
Int. (1957), With the Runge-Kutta interval chosen as noted in reference
22 for N = 48 sectors/rev., we set N_ =112, 77 = 28, 77'= 84, 2”5A1F'
= ~.03125, 27 °AY"= . 03125, and launch the " solution with 410 %=, 01
to generate the desired unit square wave., In the examplesspértaining to
N z 24, sectors/rev., we set Np = 80, 77 = 20, 7' = 60, 27°AY = . 625,
- &\7} =, 625, and 'Llfc 1072 = . 2 to generate the desired square Wave('zlf:: +20).

24. J. N. Snyder, FORANAL (I.B. M. Program 52), MURA-228, Int. (1957).
With a large number of input data the limitation of the original program to
output coefficients of order not to exceed 24 was not considered to be a
necessary or desirable limitation. We are indebted to J. McNall of the
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MURA Computer Division, for relaxing this limitation and, more
recently, for incorporating the Fourier-analysis methods of
FORANAL directly into the DUCK-ANSWER program [John McNall,
DUCKNALL (I. B. M. Program 219), MURA-438, Int. (1958)].

25. Elizabeth Zographos, MESSY-MESSY (I. B. M. Program 78), MURA-239,
Int. (1957). Matrices of "Type 1'" and ""Type 2'" respectively describe
the passage of a particle through a focusing or defocusing section.
Matrices of ""Type 3" may also be used, if desired, to represent either
a lens or a straight section. We are indebted to Mrs. Zographos
Chapman for preparing an overwrite to the MESSY-MESSY- program so
that the elements of the successive cumulative matrix products can be
printed. A test of the program in its present application was made by
a routine run for an unperturbed A-G structure for which/= 7. 375.

26. L. Jackson Laslett, MURA-435, Int. (1958).

27, For this perturbation, in which the coefficient ’ of equations (23a,b)
has the value 7.231 622 101,

€ = —17.231 622 101 sin 60° = — 6.262 768 45,
‘f: ~7.231 622 101 sin 52°.5 = - 5,737 231 55, and

e-r‘f: i £

28. For this perturbation, in which the coefficient ?‘3 of equation (31) has
the value 7. 628 093 8847, .

€ = -7.628 093 8847 sin 60° = — 6,606 123 086,
C = —7.628 093 8847 sin 45° = — 5. 393 876 913, and

€+f = - 12.
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APPENDIX I. PERTURBATION METHOD

The analytical problem of solving the Hill equation

Y _ful (e) + T cosN9+; gmcosm(? % 8) =0 (I-1)

for the eigenfunctions % can also be accomplished for small én through

the use of stationary state perturbation theory. 12 As the unperturbed

equation, one considers the Mathieu equation

d2 4
HO ¢U,l = d¢gy2”6 + ;rtll cos N 6 ¢2/)£ =-ay¢y”‘ (1-2)

where for certain ayy and my , the ¢Vat are periodic. Comparison of
this equation to equation (1) with Em = 0 shows that
(I-3)

bp = W

if m[ is chosen so that al = 0. The eigenfunctions ¢Vﬂ for yand ﬂ
J

either integer or 1/2 integer are given to a good approximation, for

Y < N, by

, cos 2/ 9 cos (N - ) @ cos (N + 2/) 9
¢V,It 'AZ{L{sin 2/ 0 +B24L {sm (N -2/ g t Cy {sm (N + V)G(I 4

where the notation means either the even or the odd functions are to be used

and where

& o 2 my A ) ) + for even solutions;
YA ~ 9T (N-17)2- a?/ - for odd solutions.
Cug -~ L 2y 3
2 T (N + V)Z -ay

2 b3
2 2 m 1 1
= —L I-5
y v +< TC )%(N' ‘U)Z-ay+ (N - U)Z—au e

*These equations are the same as eqns. 3, 4 and 5 of the main text. They
are repeated here only in an attempt to draw more closely the parallel to
the familiar quantum mechanical progasla.em through the use of similar notation.



Setting Z/,_/Z and ay = 0 gives the condition

2
z(ﬁ.%) . g2 (N2 - g2 2
TC
Z+ _ZZ

¥ % (1-3L%/N% .

A good approximation for a 2) is given by

2 mp \2
ay = v - o{f75) a+ s 2w z - 4°
L 2 m ¢/ 2 & 1l
1+ Z(Eiqéj)//N' 1+4L£°/N

Assuming the perturbation term to be

2L

Hy = S ? cos m 6
1 Lol m
misl

first order

Uy © = Ly 40 + z; [<Hl>w/ay] ﬁzﬂw),

#L

where

2 L

(Hl’/ZU

&
Z o) de ¢y)£(9) gm cos m © ¢L)'@(9)

MURA-445

(1-6)

Sw e N . ATT)

(I-8)

so that both first and second order effects will occur and applying stationary

state perturbation theory one obtains the solution of equation (1) to be to

(I-9)

(I-10)

The change in the eigenvalue ag to second order is given by

canp sy, v ) [ey, )% e

vie

@ M)y pem = & /2

(I-11)

For ,E(( N, the only matrix elements of importance are, to terms in 1/N3,

| a = |
(b) (Hl?,é/ri o ml = m/z + C;Zﬂ,- m/z R 3¢ /

-
(c) (Hl)/, 0~ ‘;l/}/z;
d 0
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for the even functions and

® 6 gofg - m) = (Smf2- 54 . of? L miffL- nf L pom
(c) (Hy) TR (1-13)
for the odd functions.
The negative differential of equation (7) gives approximately the change

in the eigenvalue mp equivalent to the change Aal as

J 2
( Dap /4) (N TT/2 my o413 L4/NZJ[2 m% /N'TT_] KU
1+ (@/N%) (L% -[2mg/NTT]")

Amy fmg
Z(aay /2) (1+ 323N 2% (1-14)
Changing m/z by this amount approximately adjusts 2 ay to zero in the

final differential equation so that 'CPz is the solution of equation (1) with

my replaced by (mj/ + A my ) instead of being the solution to the equation
2 , 4 = ‘
£T¢£+(Qa£+?mLCOSN9+ bmcosmel %Z« =0,
m

A splitting of the m'z level (removal of the parity degeneracy)., that is, an
opening of the my stop-band, will occur to first order only when
m = 0 ( go = 0), as can be seen from equations (12b) and (13b) because

of the presence of the cos 2 £8 term in the perturbation. The magnitude

of the splitting as obtained from equations (11) and (14) is

[§2£/4}E‘Tm2m/;}f [} + (4/N%)(2 my ./N7T,ZJ

[(Amp)gien - (Amlggg fmy = - 7
L L'even odd/ y A AR [4/N2][:&'2' (2 my /NT[,‘"Z_]

2 S
= - §2£/2) (1+3L2/N%)/ L%, (1-15)
where the subscript ""even'' refers to the matrix elements using the even

¢I/£ and the subscript "odd" referséto the matrix elements using the odd
’ i
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¢y£ . This result is identical to the one obtained using the variational
}

.
Ll

method if terms of order l/N‘2 are dropped as can be seen from Table
An opening of the mgy stop-band will occur to second order only when

terms of the type, g}acos e or [gm cos m 0 + 5:2[,‘- m COS (2£ - m) 9]

are present in the perturbation. The magnitude of this splitting is

[-(Amﬂz)even T g )odd_} /mL " _,)"VELZ/Z %

K 1 TC/2 mgl?[1 + (4/N)(2m 2] )
[ - R

m 1 + EI/NZ_] EZZ- (2 mi_/NTf)ZJ J

K ) [ 5
a, ({ELZ/Z LZ + HZI ):zg:m ?Zﬂ_m}/[f - (- m;]j L[1 + 7,&2/1\1‘;,7 Z«;‘fﬁf

where K = ( - 1 if £ is integer or
1 1
K kL = it £is 2 odd integer.
This result is to be compared to those shown in Tables III and IV again for
the case where terms of order l/N2 are ignored.
For the application discussed in this paper, that of finding a perturba-
tion that can be used for the resonant extraction of a beam from a conventional

A.G. synchrotron, it would appear from equations (4) and (15} that the maxi-

mum effect is obtained for a perturbation of the type

- TR <l 2 L6 + 0s - 8)6 + '3 cos( L+ s)0 (I-17)
1 2,7 00824 gﬁ- ghe (£ ) P L+ s) (I-17)
where
s = 1 if fis integer
1 1 _
8= < i £ is 5 odd integer ,

=t
since the first term opens the stop-band linearly in §2£ and the second

and third terms give rise to a cos s 6 term in the solution Tﬂg(@}n It is

interesting to note that for the special case of £ = 5. a single perturbation

.(","
term djl cos © accomplishes both ggfects.
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APPENDIX II. VARIATIONAL SOLUTION FOR THE PERTURBATION f (8) = Acos 2 2o
We employ the variational statement (17) of Sect. II 3 Ba,
L(dx/doY > -m Lx2 F(0)> - A<x%cos2 Y07 = min., (11-1)
and employ as trial functions

X == A cos V(H—Bcos (N-2)0+Ccos (N+ V) 0+ Dcos3 220+ E cos (N -3 2/)0+F cos (N+32/)0

(I1-2a)
or a similar expression containing sine functions. (I1I-2b).
The variational statement (1I-1) then becomes
%22 N-202 B2 N+ 32D (N-3U2EZ (N+ 32)2
+ + + + + F2
2 2 2 2 2 2
2
e [_-tAB + AC + DE + DF]
s
+ A . - —zi [AD + BC %+ BE + CF] = min., (I1-3)

where the upper and lower signs respectively refer to the even or odd trial functions. Differentiation

with respect to the parameters A through E, in turn, leads to the simultaneous algebraic equations

2 m 2 m
(22T 22 Y SARL - __2AD =0 (ll-4a)
-2 m 2 A
e ri A P - - — = -
= + M-8 - ¢ —~ E 0 (II-4b)
_2m e i 2
A o B +N+PY)YcC --ZA F =0 (II-4c)
_ A .2 m m
S A +B3 V)2 D *ZTT_ B - 2/ F =0 (II-4d)
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A — 2m TR . g
e B + g D +(N-3U)E =0 (Ii-4e)
b 2 m uy 2 Sl
.t - = (N+3 U F 0  (I1-4f)
i 7T D +(N+37%) = ;

The coefficients D, E, and F will be of order >\ and, to this order, it will suffice to use the

unperturbed values of B/A and C/A in solving (II-4d-f):

5 2 2 m 5 2 m g S P
32)° D F ‘TT_E —=——W F a A (I1-4d )
+g—,r—§_-n D + (N - 37> =+t 27%1 (N Av)z (I1-4e ')
2 2 .
* T;-_n + (N+3U)2 = (N + ?/)2 (IT-4f ")

The determinant of the coefficients is
9 Uz (N2 - 9 U2)2 - (%%—rl)2 [ (N+3 U)Z + (N -3 2/)2) , of which the lastterm is the smaller,

This last term may be simplified, by use of equation (5c), to become approximately

2

2 1+9

Y Nt Tl A T y2N4[1+6(U/N)z] u
1 +3 (YIN)2

Hence the determinant may be expressed in the form

9 V2Nt - 162 AN% - 22n% - 6 ANZ
=8 22N* - 188 Y*NZ = 8 2 N4 [1 - 21 (V/N)z] , (11-5)

In solving equations (I1-4d'-f') by determinants, one obtains

2
Numerator for D: _ZA S\ (N2 - 9 7/2)2 +(27TIB) [ (N+ 5 I) (’\T+3 12 :, A

= —275[1\1‘l -18 22 N2 -a—yzNz] A = ‘zh N4[1—17(V/N)2]
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‘ ; y 3 2 (N+3 U)z (Zm3 1 | 1 2m 3 2 A
Numerator for E: + =5 —ﬁ, (32)) N - 2))2 + 7T e V)2 . 'U)z}'- 7T N+ 32)
m 2 3V 2 2[ 3. 2 2] .
_’—‘_ﬁ.—_{:?“-ﬁ(N-PBV) [1+(N v)] A —t%T— (1+3 V/N) H'NT?]—) A;
2m (N - 322 /2 my3 1 3 1 2 m
; L B WL TS i 2
Numerator for F: =L AT (3 2 RFE D +< 7T) [ R EORE )2} + 7T (M -3 }A

Ay M 2 3500 ye S iaami Y 2 3 U \2
._7\,7.Z(N—37/) [1 S }A..?-Tr 1 - 3YIN) E+N+2J>]

Hence we write

£2)]
N Lad 17 (1012 A~E’¥.+l——-m—-—- (1+37//N)2[1+N__y
162 1-20(¥N2 " T 8 N2 |9 (/N)2

Al A S (1*37//1‘”2[ GV‘—ZT) ]A (II-6a-c)
8 W N2 T 1-21(n)

{Pd

D

A;

The solutions for B and C, as given by (II-4b, c), will be modified to first order in A by the

presence of the terms ~ (A/2) C and - (A/2) B, respectively. A more marked first-order modification

of the values for B and C arises implicitly, however, from the first-order change of m, which then

affects the terms + (2 m/77) A and - (2 m/77) A in (II-4b,c). We believe it permissible to disregard

here the first-mentioned effect.

The locations of the stop-band boundaries may now be determined, through use of (II-4a). Since D

is of order A- , the term - (A/2) D will be disregarded. Moreover the explicit correction terms of

order A arising in B and C will affect the location of the boundaries by an amount which is of order
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{ 7_//N)2 less than the main effect, and hence (as stated above) will also be disregarded. With m  denoting
that value of m which in the unperturbed case gives the same integral or half-integral value of 2/ as is to

be employed with the perturbation, equation {II-4a) becomes, with the simplifications noted above,

2 2 m
s — M - O
F £ -5y >
or, treating m - m, as smalil,
4mg\2 m - mo = PN
TN Tl o < g
2
m - mg w' 1 TN 11-7)
mg - 2 4 mg 7\ : ( )

These results are those listed in Table II.
APPENDIX I1I. VARIATIONAL SOLUTION FOR THE PERTURBATION f (8) = Y( cos 2)9
We employ the variational statement (19) of Sect. II 3 B b,
& (dx/de’> -m L x2F (0)> - N {x%cosY0> = min., (I11-1)

and employ the trial functions

x =Acos 20+ Bcos (N- 2))0+Ccos (N+2/)0 + R + S cos 2 2o

+Dcos (N-2 )0 + EcosN@ + F cos (N+2 2J)0 (I11-2a)

or a similar expression involving sine functions [With R absentJ . (II1-2b)
The variational statement (III-1) then becomes

2222 N-U2B2 N+VU2 @eV)Rs? N-22)2D2 NZEZ (N +22))2 F2
+ 3 b Taat et * 5 +iaaoen 2

-27.—rrn—[iAB+“AC+ 2 RE + DS + FS]

- —%1— [ 2AR + AS 4+ BD + BE + CE + CFJ = min,, (III-3)
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with the upper and lower signs referring respectively to the even and odd eigenfunctions and with the

terms in R omitted in the latter case. The simultaneous algebraic equations which result are

= 2 m 2
T2 A +(v- U2 B -L® Lo = 0 (IlI-4b)
2m 2
TP A +(N+2)* C ——;Q—E —ng =0 (IlI-4c)
! . ) 4m o &
_215_ B -+ C +N¢ E e R =0 (III-4d)
4 m
- NA - E =0 (III-4e)
n i d
-3¢ A +@eths Fig D ~Fg F =0 (II-4f)
_—)ZIL B y 2%1 S +¥N-22/)2D =0 (III-4g)
. %L C - 2—,7%“ S HN+2 )2 F =0, (ITI-4h)

with the term 4—,,_%1- R in (III-4d) and the entire equation (III-4e) omitted when seeking the coefficients
of the odd eigenfunction.
For the even eigenfunction, equation (III-4e) immediately gives E = - —g— --I—I—ITE A and, ignoring
quantities of order le, equation (1I1-4d) then gives
- 4—75 [—7’1 (B+C) - N? E.l u<4—";(;)2 [Uz-rNﬁ M A= ~<—Z(T%)ZE+(U/N)2] QA‘,

For the odd eigenfunction, on the other hand, R does not enter and equation (III-4d) gives

= :"—-’_ my 3 av4 2m 3 __{ ]
E Z—YZ—NZ (B+C) = 4-7_(—N5— Q A, by taking B:«W 142 V/NJand c¥ 2 VIN
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Through first order in [F] . the solutions for B and C will be the same function of m as in the . ¢
unperturbed case, as can be seen by inspection of equations (III-4b-c).
The last thiree equations. (111-4f -h). are quite analogous to the equations {I1-4d-f) of Appendix Il and

may be solved in a similar manner. Thus the determinant of the coefficients, which enters in the denominator

of the solutions, is approximately 4 22 N% - 32 Y% N2 - 52 N4 . 2AN2=3 »2N4 - 33 U4N2:=3y2N4[1 ~11(7J/N)2],

A

Then one finds 9 2) 4
1 -7(2 /N2 m (1+27)/N)2[1*(N ?/)JI |
S=..1 na; D=t A;
6272 1 -11 (YIN)2 ~ = 377 )2 N2 1 -11 (PVIN)2 "
2. J
o a8 (1 -2 UIN)2 [14'(1‘1_'_1— z))
3T 22 N2 1 - 11 (V/N)2
Finally, by use of (1II-4a), in conjunction with B :‘Ji —’27:;;—72- A and C= —%rlr\}—z- A, one obtains

2 A - R+rs)= - 2] > A,
("rE’N | 2 WN)

- 4m02 m - mg S YL(R+
'T?"N T § o O

The shift of the stability boundary corresponding to the even eigensclution is then obtained by substitution

1 T
of the appropriate expressions found above for R and S, rewriting 3 S/A = 1272 Q in the approximate
\2

1 Tt N - _
form 6 %(—)—) YL to simplify combination with R/ A. Likewise the shift for the odd eigenfunction is
: /

2 12 V2
The prcedure outlined in this Appendix leads to the results listed in Table III. It may be of interest

i {r
obtained by ignoring R and substituting the appropriate expression for 7 S/A (f"—J ——L> .

to note that the net width of the resonance arises from the term R in the even eigensolution, since S does

not change sign in passing from the even to the odd solution.
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APPENDIX IV, VARIATIONAL SOLUTION FOR THE PERTURBATION f(8) =€ cos (Z-r)o+ gcos (ﬂ-f-r)e
We employ the variational statement (21) of Sect. II 3 B c,
2 = 2 = 2 2/ . . 2 2/ . 2
Z (dx/do)* > m < x4 F (0)> & ¢ x* cos ( r) 0> L x% cos (¥+r)0 >=min.,(IV-1)
and employ the trial functions

X = Acos 270 + B cos (N

V) o 4+Ccos (N+V) o

2Y+r) 0 +Fcos (N+22)-1) 0

2 -r) 04l cos (N+2%+1r)0

r) 9 +L cos (N+r ) o {IV-2a)

!

+Dcos 2V -7r) 0 +E cos (N
+Gecos 2YV+r)0 +H cos (N

i

+Jcosr @ + K cos (N

or a similar expression involving sine functions. (IV-2b)

The variational statement, (IV-1), then becomes

Y2a2 & (N - ¥)2 B2 + N+ /)2 2
5 2 2

@¥-r2D2 | (N-22/4r)? E? +(N+2‘z)r—-r)2F2
3 2 3

LYy r)? G2 (N - 22/ - r)2 g2
3

+

(N+2 D +1)2 12

7 o i 3
r2 J2 (N - I')2 K2 (N + r)2 1.2
t T et il i My
2.1 i
- [*AB+ACtDE+DF_—_f-_GH+GIj_—_JK+JLJ
- u [AD+AJ+BE+—BK+CF+CL]
2
"‘éi | AG +AJ+ BH + BL + CI + CK] = min., (IV-3)
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where the upper and lower signs respectively refer to the even and odd eigenfunctions.

Differentiation with

’

MURA-

4

respect to the coefficients A, - L, in turn, leads to the simultaneous algebraic equations
o - 2m 2m € g _g—.-y -
2} A -+ T B - —fﬁ"c 5 D s G [2 o =0
(IV-4a)
-2 m €
_7)2 L —= L B e A
+r A +(N-V°B 5 E ;B 5 K -—5-L =0
. (1V -4b)
2
E= A +(N+'l))2C —iF 1 _—gK LN
Uus 2 2 2 2
(IV-4c)
-l 2
_75_ A +#22-1)%D +71.(.I3E-T¥-1 F =0
(IV-4d)
€ -2 m
-~ B F5F D +(N-2Vhr)2E =0
c . (IV-4e)
m
-5 C-F D +(N+22D- r)2F =0
z (IV -4f)
-5> A H2V+rr)2c 320y - —27? I 8
= 9 T( (IV-4g)
> m
e F5E G (N-22-r)2H -0
< (IV-4h)
2
- " —-—7%“(; (N+22+1)21 =0
3 . (IV-4i)
L€.5]a gy <R ke
2 =2 +r°J +'77 e 1 D)
L A T =
¢ (IV-4j)
i B"‘iz c Ford +N -1 At
c & (IV -4k)
= B-Soc 2my +(N+ r)2L =0
i, (1v-49
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The coefficients D, ... L will be of the order of the perturbation ( € and/or %o ), while, as in
Appendix 11i, the solutions for B and C will be the same function of m as in the unperturbed case (ignoring
effects of second order). Equations (IV-4d-f) may thus be solved, in groups of three, for the coefficients
D, .-+ L in the same way as in the previous cases. The results are those listed in Table 1V,
With the coefficients so determined, equation (IV-4a) then serves to give the location of the stability
boundaries. Although the shift, m - m,, is second order in the perturbation, we again ignore in this

computation possible second order terms in B and C because of the presumption that LLEN. Accordingly

2 m\2 ¥ - 4 ¢ §’ L 2 mg\2 '

“z(ﬁf\f- B D——z_G_(z t 2)‘1’-27‘[1\1) o
2

4_7:1;’_) ﬁ“;moni =-%[€D+§G+(éi§u]/a, (IV-5)

leading directly to 9

i il WN)Z[ e LI el ol :

THigTs 2 \(4mg BY-r)(Vsr) — zjz_rz 32+ r) (¥ -r)

as entered in Table IV. It may be of interest to note that the splitting of the m-values, to produce a

(IV-6)

stop-band, arises from the term of frequency r, whose coefficient (J) is proportional to (& % f )
The width of the resultant stop-band is proportional to the product € S‘ ., thus requiring the presence
of both a cos ( 2/ - 1) 0 and a cos ( 24+ 1) 0 term in the applied perturbation. If only one such term
is present, however, the results obtained here of course still may be used to give the m-values

associated with the oscillation frequency 2 .
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CAPTIONS FOR FIGURES

Fig. 1. Stability Diagram for

de/dg2 ¥ [mF(Q) + € (cos 76 + cos 89)] x =0
N = 48.

Fig. 2. )((9) = -6.262 768 45 cos (76 + 52°.5)
-5,737 231 55 cos (80 + 60°), g/=7-1/2, N = 48,

Fig. 3. f(O) given piecewise-constant values in accord with

/(e) = -6.262 768 45 cos (78 + 52°.5)
-5.737 231 55 cos (80 + 60°), ¢/ ="7-1/2, N =48,

Fig. 4. [(9) = -8 cos (70 + 459), V=17, N =48.

o
[=]
(101
-
\.‘\
_
-
|

= -6,606 123 0865 cos (60 + 459)

-5.393 876 913_ cos (86 + 60°), 1/="7, N = 48,

Fig. 6. /(9) = sin 108 - 7.5 cos 468, 2/ =5, N = 24,
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