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NUCU3A.R DECAY SCHEME S W I E S  

OF SOME TANTALUM AND !L'EX6IUM ISOTOPES 
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Lawrence.Radiation.Laboratory and Department of Chemistry 
University of California,  .Berkeley, Cal i fornia  

April  1959 

. . 

A previously unreported isotope of terbium, Tb15', was pro- 

duced. I ts  gamma-ray spectrum w a s  s tudied and i t s  ha l f  l i f e  w a s  deter-  

mined t o  be 18.5M.5 hr. The s imi l a r i t y  t o  the  half  l i v e s  of two 

neighboring isotopes,  19-hr Tb151 and 17-hr ~b~~~ , e ~ p l a i n s  why it was 

previously overlooked. 

The decay scheme of Tb161 was s tudied and precise  t r a n s i t i o n  

energies. are  reported. The l i f e t imes  of two excited s t a t e s  were meas- 

ured and used t o  resolve a question of t r a n s i t i o n  sequence encountered 

by previous inve'st igators . 
Three new isotopes of tantalum were discovered. They a r e  

3.7-hr ~ a ~ ~ ~ ,  1.2-hr Ta1749 and 11-hr Tantalum-175 was s tudied 

i n  d e t a i l  and a decay scheme i s  presented using e igh t  of the  t r ans i t i ons  

observed i n  conversion-electron s tud ies .  Four exci ted s t a t e s  are  pro- 

posed, and Nilsson quantum numbers a re  assigned;. 

Electron-sensit ive nuclear t rack  emulsions were used i n  

conjunction with e lect ron spectrographs, and the  usefulness of the  

method of t r a ck  counting i s  discussed. 
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The g rea t  success of a model based on the  col lect ive .mot ion or" 

nucleons i n  predic t ing nuclear proper t ies ,  and pa r t i cu l a r l y  ro t a t i ona l  

energy-level spacings, has st imulated wide i n t e r e s t  i n  the  regions of 

nuclides t o  which the  model appl ies .  These are,  f i r s t ,  the  heavy-element 

region above the closed s h e l l s  at  Z = 82 and N = 126, and, second, i n  t he  

region of r a r e  ea r th s  and neighboring elements between closed s h e l l s  at  

N = 82  and N = 126. A fu r ther  stimulus t o  de t a i l ed  inves t iga t ion  of 

nuclear energy l eve l s  i n  these  regions i s  t he  ' pos s ib i l i t y  of a systematic 

descr ipt ion of the observed i n t r i n s i c  s t a t e s  on the  ba s i s  of wave functions 

i n  a deformed po ten t ia l . ,  It i s  of g rea t  in tese .s t  t o  search f o r  and iden'- 

t i f y  the  s t a t e s  involved, permitt ing a comparison t o  be made with the  

t heo re t i c a l  predic t ions .  A s e t  of quantum numbers i s  thus assigne'd t o  

each.obser\red s t a t e ,  allowing it t o  be characterized throughout the  region 

i n  which it appews. 1 
. . 

Chemical separation of r a r e  ea r th  elements by highly re f ined  

ion-exchange techniques has enabled nuclear chemists t o  study the  prop- 

e r t i e s  of t h e i r  isotopes extensively.  Even so, a g rea t  dea l  of in foma-  

t i o n  remains t o  be obtained by conventional methods. I n  t h i s  study two 

isotopes of terbium were made by 60-inch cyclotron bombardments, and 
. . t h e i r  proper t ies  were characterized.  Of these  two, ~b~~~ had  been pre- 

viously unreported. 

The completion of the  heavy-ion l i n e a r  accelera tor  has made 

poss ible  the  production of many neutron-deficient  nuclides which were 

previously d i f f i c u l t  t o  make. The l i g h t  isotopes of tantalum 

object  of one sect ion of the  study. 



Final ly ,  the  constant e f f o r t  t o  improve .the methods by which 

decay schemes a re  invest igated has l ed  t o  an attempted improvement i n  

t he  s e n s i t i v i t y  and a b i l i t y  t o  measurg r e l a t i v e  i n t e n s i t i e s  of one of 

t he  more usefu l  instruments i n  use at t h i s  laboratory,  t he  permanent- 

magnet e1ectron.spectrograph. Electron-sensit ive nuclear emulsions 

were subs t i tu ted  f o r  ordinary spectrograph .p la tes ,  and the  t racks  pro- 

duced by conversion e lect rons  were counted individual ly  under a micro- 

scope. The range of usefulness, and degree of improvement obtained have 

'been determined . 
. . 
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11. .EXPERIMENTAL METHODS 

A .  Bombardment Procedure 

The isotopes produced i n  these s tud ies  were made by nuclear 

react ions  using lanthanide elements i n  t h e i r  oxide powder form a s  t a rge t s .  

Lutetium and holmium oxides were obtained as commercially pur i f i ed  com- 

pounds. Two s t ab l e  separated isotopes were obtained from Oak Ridge. 
153 These  were 95.4% (3d160 with 3.1% Gd1589 and 9 1 . s  E U ' ~ , ~  with 8.1% Eu . 

Alpha-particle bombardments were ca r r ied  out on the  Berkeley 

60-inch cyclotron, and nitrogen-ion bombardments on the  Berkeley heavy- 

ion l i n e a r  accelera tor .  Target material f o r  both accelera tors  was pre-  

pared by placing a s l u r ry  of the  oxide powder i n  Duco cement d i l u t ed  

with amyl ace ta te  on platinum p l a t e s  having indentations su i t ab l e  f o r  

t he  s i ze  of the  sample and shape of the 'bem pat tern .  The organic 

mate r ia l  w a s  burned o f f ,  before bombardment of cyclotron t a rge t s  o r  a f t e r  

bomb&dment of heavy-ion t a rge t s ,  b,y holding the  sample and p l a t e ,  i n  a 

. bunsen burner flame. The sample was covered with aluminum o r  platinum 

foil,,9 which served t o  .hold the  powder fn .  the  cup and a l so  t o  degrade t he  

bombarding p a r t i c l e s  to the  energy desi red 'for the pa r t i cu l a r  react ion.  

!These p l a t e s  and f o i l  as.semblies were .mounted i n  standard t a r g e t  blocks 

designed f o r  cooling 'w-d posi t ioning the  t a rge t .  

Thermal-neutron react ions  were ca r r ied  out i n  the  Materials  

Testing Reactor a t  Arco, Idaho. Samples f o r  these  i r r ad i a t i ons  were '. 

sealed i n  quartz tubes 6 mill imeters i n  outs ide  diameter and about 1-114 
. i. 

inches long. These tubes were placed ins ide  screw-ikap aluminum contain- 

e r s . f o r  i r r a d i a t i o n  i n  standard sample holders used a t  the  reac tor .  

D. qhemistry 

Terbium was separated from the  other  lanthanide elements by 

rneans of ion-exchange techniques. The bombardment sample of l m i l l i g r a m  

o r  l e s s  was dissolved by adding a few drops of 12 N - HC1,to the  powder i n  

the  sample-plate indentation.. The mate r ia l  dissolved r ead i l y  with gentlje 

heating and t he  solution.was .evaporated t o  dryness. The chlor ide  w a s  ' 

redissolved i n  a minimum of 0.05 - N HC1  and t rans fe r red  t o  the  ion-exchange 



column. This column was 0.3 cm i n  diameter and about 8.cm long and had 

a f r e e  co& volume of 10 drops. The r e s i n  w a s  Dowex-50 200-to-400- 

mesh, 12% cross-linked, and the  column was enclosed i n  a heat ing jacket 
0 

kept a t  82 C by isopropyl alcohol vapor. Elut ion was ca r r ied  out ac- 

cording t o  a method described elsewhere1 with 0.4 M - alpha-hydroxyiso- 
G 

butyr ic  ac id  buffered t o  pH 4 . ~ .  The isobutyrate  was remov~d by acid.i- 

fy ing  the e lu t i ng  solut ion t o  about 0 .1  N - and adsorbing the  terbium onto 

4% cross-linked Dowex-50 r e s i n  i n  a s m a l l  column about 0,5 cm i n  length. 

Following thoro&h!.:wabhAng x i t h  d i l u t e  acid  the  a c t i v i t y  was  e lu ted  . w i t h  

8 N - HC1. 

Separa t io~ l  of tantalum wat; based on a metllud described by 
2 

Stevenson and Hicks. The lanthanide , i s  dissolved, a s  above and t r ans  - 
fe r red  i n t o  a polyethylene cone. About 0.2 mg of tungsten fl11nri.de 

c a r r i e r  i s  added, and the  lanthanum f luor ides  a re  p rec ip i ta ted  with WF 

and are removed f o r  recovery. The concentrations a re  adjusted t o  6 N - 
K C 1  and 2 - N HF, and the  tantalum i s  extracted i n t o  di- isopropyl ketone. 

Tantalum i s  back-extracted i n t o  d i s t i l l e d  water containing a drop of 

sa tu ra ted  H,BO so lu t ion  which has been added t o  complex the  f luor ide  
3 3 

ions .  

C. Source Prepmat ion 

The a c t i v i t y  was prepared f o r  Geiger counting o r  gamma-ray 

s c i n t i l l a t i o n  counting by evaporating e i t h e r  a por t ion of the  f i n a l  

watcr oolution o r  some nf  the di-isopropgl ketone so lu t ion  o r  the  i so -  

butyrate  e luant  on aluminum p l a t e s .  These pl$tes were placed on card- 

board sample holders and were usual ly  covered with a s t r i p  of t ransparent  

Scotch tape.  Samples f o r  a lpha-par t ic le  counting were prepared from the  

f i n a l  water so lu t ion  by evaporating t o  dryness on platinum p l a t e s  and 

flaming i n  a bunsen burner. 

spectrometer samples were evaporated t o  dryness on aluminum 

s t r i p s  welded t o  standard sample-holder r ings ,  Permanent-magnet spectro- 

graph samples were made by using an electrodepos$t..i.on~ 8. technique dbe. t o  .r 

- 

~ a r v e y j  i n  which the  hydroxide of the  metal  i s  p la ted  out  onto a 10-mil 



platinum wire from a buffered p l a t i ng  solut ion.  This solut ion w a s  0 - 1  M - 
ammonium b i su l f a t e  a t  pH 3.6 f o r  t he  terbium and about 40 mg per , m l  of 

ammonium oxalate f o r  tantalum. The p l a t i ng  procedure has previously 

been described i n  d e t a i l .  4 

D. Instruments 

Decay r a t e s  of gross a c t i v i t y  were followed by counting samples 

with ordinary mica end-window;-~ei~er-~uel ler  counters. Gamma spec t ra  were 

s tudied on a 100-channel pulse-height analyzer5 used with a 3-by-3-inch 

N ~ I ( T ~ )  s c i n t i l l a t i o n  c ry s t a l ,  photomultiplier tube, and associated e lec -  

t r on i c  components. Gamma-gamma coincidence determinations were a l so  made 

with t h i s  instrument i n  conjunction with a single-channel analyzer and 

using two c r y s t a l s  1 i n .  i n  'diameter by 1-112 i n .  high. 

Gamma-ray l i f e t imes  were measured by the  method of delayed 

coincidences on apparatus described by Juliano.  6 

Alpha p a r t i c l e s  were counted i n  an argon gas-flow ionizat ion 

chamber with 100% counting effici .ency and 51% geometry. Alpha-particle 

measurements were a l so  11ladc or1 a gas-flow counter coupled w i t h  a 50- 

channel pulse -height analyzer. 7 
' Conversion-electron spec t ra  were s tudied by means of a double- 

8 focusing e lec t ron  spectrometer and a s e r i e s  of four permanent -magnet . 

' e l e c t ron  spectrographs with f i e l d  s t rengths  of 52, 99, 214,. and 340. 
4 gaus s o  

The microscope used i n  electron-track counting w a s  a Bausch 

and Lomb model TBR-8, Eyepieces were Lei tz  12X B perip1a.i lenses  with 

a 6-by-6 g r i d  r e t i c l e .  Objective lenses  included a' Bausch and Lomb 43X 
dry and a 9OX Spencer apochromat oil-immersion. The microscope s tage 

was screw-opepated i n  both t he  X and Y d i rec t ions ,  with micromeder wheel 

and vern ie r  sca les  g iv ing ,pos i t ion  readings t o  one micron. ~ o s i t i o n i n g  

i n  the  X,d i rec t ion  was reproducible t o  4 2 .microns. A.var iab le - in tens i ty  

l i g h t  source, "Ortho-Illuminator B," was obtained from Si lge  and Kuhne of 

San FrapAscv and was modified s l i g h t l y  as t o  angle of emitted l ight .  



E. I n t ens i t y  Measurements 

The r e l a t i v e  i n t e n s i t i e s  of, gamma rays i n  a pulse-height 

spectrum were obtained by .subtracticg pulse -he igh t  d i s t r i bu t i ons  .of 

s ing le  gamma-ray standards from the  complex spectrum i n  s teps ,  s t a r t i n g  

with the highest-energy photopeak seen. Efficieric'y corYections.were 

made accord.ing t o  da t a  taken from ~ e a t h . ~  Escape-peak, corrections were 

made on t he  b'asfs of curves given by ~ x e l . "  Decay r a t e s  of s ing le  

gamma rays  were obtained by in tegra t ing  successive photopeak areas  above 

the observed peak height a t  ha l f  maximum o r  some multiple of hal f  maximum. 

.Relative- i n t e n s i t i e s  of conversior, e lect rons  were obtained when 

possible by i n t eg ra t i on  of peak areas i n  spectrome.l;er spectra .  Closely 

spaced l i n e s  l i n e s  of low r e l a t i v e  i n t ens i t y  were compared with stand- 

a rd  spectrograph pf ates o r  k11~wil lilre darkness . Bcnof tometer tracings 
4 were nade t o  measure r e l a t i v e  exposure. A v i s u a l  comparison method 

was a lso  u t i l i z e d  i n  which p l a t e s  of known exposure times were used a s  
11 standards,  

Development of an e lect ron- t rack method i s  described i n  

Section W:. I n  t h i s  method electron-spectrograph p l a t e s  with I l f o r d  

G 5  emulsion layers  25 microns th ick  were used. These p l a t e s  were 

developed fox 1 hour i n  K0dak.D-19 developer d i l u t ed  t o  1-16 of t he  r e -  

commended s t rength.  P la tes  were f ixed  i n  fu l l - s t reng th  Kodak acid  f i x  

f o r  15 minutes, washed, soa.keil. i n  ?$ glycerine,  and a i r -dr ied.  Counting 

was done by choosing a region a few mill imeters long and making counts 

a t  rmdomly se lec ted  microscope s tage se L L l ~ l g s .  PI-tviaus counting r e  - 
s u l t s  were covered before each new count. Both sf thest! lal;.Lei. steps 

were taken t o  avoid operator b ias .  



A .  Introduction,  

~ e r b i k - 1 5 2  has not been .previously reported despi te  the  f a c t  

t h a t  'I%151, Tb1539 and Tb154 have been known f o r  some time. Handley and 

~ ~ o n l '  s tudied the  neutron-de f i c i e n t  isotopes of terbium and saw no 

a c t i v i t y  with a ha l f  l i f e  t h a t  could be assigned t o  They con- 

cluded t h a t  the  half  l i f e  ' e i t he r  was very n e a r l y ' t h a t  of some other  

isotope i n  the  region or  w a s  l e s s  than 10 minutes or  g rea te r  than 5 

years. Toth a l so  f a i l e d  t o  see a c t i v i t y  t h a t  .could be ascribed t o  
Tb152;13 however, the  r e l a t i v e  i n t e n a i t i e s  of sane of the  gamma rays 

assigned t o  Tb151 seemed t o  vary outside of experimental e r ro r ,  stimu- 

. l a t i n g  fu r the r  invest igat ion of t h i s  isotope. 

I). Results  

Comparisons were made between terbium gamma spec t ra  r e su l t i ng  . 

from alpha-par t ic le  bombardment of europium using the  enriched isotopes,  

EU'~' and  EL^^^^, with bombarding energies of 48 Mev and 37 Mev. A t  the  

higher energy the  most probable react ion i s  ,(a,4n), while the  lower 

energy i s  below the  threshold fbs t h i s  react ion and produced.mostly 

(a93n). 
. . 

I n  Fig. 1, Curve A shows the  gamma-ray spectrum of the  chemi- 

c a l l y  separated terbium'isotopes following 37-Mev alpha-par t ic le  bombard- 

ment of This sample should cons i s t  mostly of with smaller 

amounts of Tb155 and very l i t t l e  and 'I%152. The th ree  peaks have 

energies (determined prec i se ly  by conversion-electron measurements) of 

123.2, 248.1, and 347.1 kev, and have h i t he r to  been ascribed t o  Tb 154 

decay. 14,15 ,. 
Curve B of Fig. 1 shows the  gamma spectrum following 37-Mev 

alpha-par t ic le  bombardment of gu151. Most of the  product should be 

with smaller amounts of 'I%153 and ~ b ~ ~ ~ .  Again a peak i s  seen 

a t  340 kev and i t s  r a t e  of decay i s  obtained from a s e r i e s  of spec t ra  

taken a t  various times a f t e r  bombardment ind ica tes  a ha l f  l i f e  near ly  



FTg. 1. Gamma-ray spectra of terbium isotopes produced by 
a lpha-par t ic le  bombardment of enriched europium isotopes. 
( A )  37-Mev alphas,  on ~ ~ ~ 5 3 ,  3x3-inch NaI (~1) detector;  
(B) 37-Mev alphas on ~ ~ 1 5 1 ,  3x3-inch detector;  and (c)  
48-Mev alphas on ~ 1 ~ 1 5 1 , .  1 ;5x l~ inch .de t ec to r .  - 



. . ,  . .  

t he  same a s  t h a t  of Tb154B That i t  i s  not, i n  f ac t ;  the  same gamma as 

the  347.1-bev one of i s  r ead i l y  seen when its in t ens i t y  i s  compared 

w i t h  the  i n t e n s i t i e s  of the  other peaks seen i n  the  Tb154 spectrum i n  

Curve A. I n  Curve B the  r e l a t i v e  i n t e n s i t i e s  of the  120- and 240-kev 

gammas a r e  g r ea t l y  reduced. This evidence ind ica tes  the  presence of an 

isotope whose decay includes a prominent 340-kev gamma. . Since Tb 153 

i s  known t o  have a h a l f  l i f e  of 60 hr,14 the  isotope must be .Tb15' o r  

perhaps 'Tb1519 which a l so  has near ly  the  same ha l f  l i f e .  Since t h i s  

bombardment was a t  an energy below the ' th resho ld  f o r  production of Tb 15 1 

it i s  most probable t h a t  the  gamma ray  belongs t o  and arldlli 'onal 

evidence i s  obtained .by comparison-with Curve C of Fig, 1, This is. the  

spectrum of gamma rays foliorjing 4 8 - ~ e v  bombardment of ~u~~~ which 

produced an abundance of .~b'~'. .  This spectrum was obta ined with a . 

1x1-112 inch s c i n t i l l a t i o n  c ry s t a l ,  theref  ore i n  a v i sua l - in tens i ty  

comparison with the  upper curves the  d i f f e r en t  counting e f f i c i enc i e s  

must be borne i n  mind. It i s  possible,  however, t o  obta in  r e l a t i v e  i n -  

t e n s i t i e s  of gamma rays and cor rec t  these  f o r  d i f ferences  i n  counting 

e f f i c i enc i e s  i n  order too make oomporioons bel;wcm Curves B and c . ~  This 

having been done, the  corrected i n t e n s i t y  r a t i o  of the  340-kev gamma t o  

t h e  110-kev gamma (even assuming a l l  of the  110-kev peaks i n  Curves B 

and C t o  be due t o  Tb 15') i s  9.5 t o  1 i n  Curve B and 5.8 t o  1 i n  Curve C.  
152 This va r i a t i on  s t rongly supports assignment of the  340-kev gamma t o  Tb 

The spectrum shown i n  Curve B was obtained 32 hours a f t e r  bom- 

bardment, and thus some of the  peaks shown a re  due t o  gamma rays  of 

longer-l ived nuclides.  The peak at  212.2 kev i s  t he  prominent gamma seen 

i n  the  decay of 62-hr Tb153. The peaks near 100 kev a re  complex, con- 

s i s t i n g  of the  97.3- and 103.1-kev gammas from the  decay of Gd153 and 

severa l  weak gammas from Tb153 decay. No gamma rays a re  seen that can 

be assigned t o  lTb151 o r  A spectrum taken at  higher energies shows 

a . large .  number. of low-intensity .gammas which could not .be resolved and 

assigned with ce r ta in ty .  From the  high-energy. s ide  of the  340-kev peak 

may be resolved a gamma .of 415 kev energy with an i n t e n s i t y  about 20% that : 

of t he  340. This i s  doubtless the  ,413-kev gamma ray  seen . in  the. decay of 

t o  the '  same daughter nuclide.  



Several  sources f o r  the  pennanent-magnet spectrograph have been 

made13 from the  terbium f r ac t i on  of the sample obtained i n  the  4 8 - ~ e v  

a lpha-par t ic le  bombardment of Conversion-electron energies were 

cornpaxed wi th  energies  observed i n  the  decay of 3u15' on the same i n s t ru -  

ment, and corresponded exac t ly  t o  those of the  344.1-kev gamma seen here 

elsewhere. 1 

I n  addi t ion t o  the  two gamma rays discussed above, there  a r e  

peaks- at 180 and 265 kev i n  spectrum B which decayed with about the  cor-  

r e c t  ha l f  l i f e  t o  ind ica te  t h a t  they belonged t o  Tb152 decay, and the re  

was some ind ica t ion  t h a t  a gamma around 90 kev a l s o  had a 19-hour ha l f  

l i f e ,  but t h i s  was l e s s  c e r t a i n .  An add i t iona l  gamma was seen n L  125 kev 

which decayed very rap id ly  and whose i den t i t y  ur llalf l i f o  wag  not. ile- 

'termined., 

F ina l ly ,  alpha p a r t i c l e s  from the  'Tb15' decay were sought i n  

the  sample obtained from the  37-Mev bombardment 'of  E U ~ ~ " .  No alpha counts 

were detected,  and es t imat ing the  dis t i i tegra t ion r a t e  of from the  K 

x-ray peak together  with the  s t a t i s t i c a l  uncer ta inty  Ln the  a lpha.counter  

background allowed s e t t i n g  of an alpha-to-electron-capture branching r a t i o  
-7 l i m i t  as  .< 10 . 

This number i s  t o  be compared with the  branching r a t i o  of 3x10 -6 

f o r  ~ b l ' ~ ,  which has been r e c e n t l y  detaruliiied enpurimentally hy Toth. 13  

The ha l f  l i f e  of Tb15' was determined by following the  decay of 

the  gross a c t i v i t y  and by following the  decay of the  344-kev pcalr. It was 

found t.o he 18 .59 .5  h r .  The . s im i l a r i t y  of the  ha l f  l i v e s . o f  two neighbor- 

i ng  isotopes ,  T 'h l5 l  (19-hr) and (17-hr) makes it c l e a r  why t h i s  

isotope has been previously overlooked. . , 



A. Introduction 

Several  invest igators  have s tudied the  decay of 7-day !I%161 t o  

16' l6 In  1956 the  r e s u l t s  of extensive electron-spectrometer s t a t e s  i n  Dy . 
s tud ies  were published by Cork e t  a1.17 and by Smith e t  a1.18 Both found 

25.6- and 48.9-kev t r ans i t i ons  i n  cascade and observed the  74,6-kev cross-  

over, but  t h e i r  decay schemes d i f fe red  i n  the assignment of the  f i r s t  ex- 

c i t e d  s t a t e .  The assignment i s  based on the  r e l a t i v e  i n t e n s i t i e s  of the  

25.6- and 48.9-kev t r ans i t i ons ,  the  most intense being assumed t o  proceed 

t o  ground. Since the  r e l a t i v e  i n t e n s i t i e s  a re  about equal  and because it 

i s  very d i f f i c u l t  t o  make accurate measurements at  the  low energies i n -  

v o l v e d ~  it i s  not surpr i s ing  t h a t  t h e i r  r e s u l t s  l e d  t o  d i f f e r en t  conclusions, 

The study reported here w a s  undertaken i n  order t o  obta in  accurate 

transit ion-energy da ta  and t o  d i s t ingu ish  between the  two suggested decay 

schemes. Conversion-electron da%a were obtafned from permanent-magnet 

spectrograph p la tes ,  and the  l i f e t imes  of two exci ted s t a t e s  were measured 

i n  order t o  resolve the  question of the  decay sequence, 

.B: Conversion-Electron Study 

Spectrograph p l a t e s  were obtained from exposures i n  the  52-gauss 

spectrograph, and energie.s of the  conversion-electron l i n e s  as computed on 

the  IBM 650 computer a re  shown i n  Table I. A small  t r a ce  o f  i n  t he  

sample served as aconvenien t  energy standerd, since it Bas a " t r ans i t i on  

which has been measured on c r y s t a l  spectrometers as 86.7 kev. The energy 

determined by means of the  f i e l d  ca l i b r a t i on  used i n  t h i s  study w a s  86.65 

kev. Rela t ive  i n t e n s i t i e s  me given i n  terms of s - (s t rong) ,  m - 
(moderate ) , and w - (weak), with v meaning "very"; i .e . , vw ind ica tes  a 

very weak l i n e .  

Table I1 comperes transit ion-energy sums and crossover energies 

of t he  seven t r ans i t i ons  seen i n  the  study, These da t a  a re  i n  agreement 

with those of both Smith e t  al. uld Cork e t  aP. except f o r  one case; the  

l a t t e r  reported the  L l i n e  of a 27.7-kev t r a n s i t i o n  which w a s  not  seen 
I 



Table I 

Conversion-electron lines from the de.cay of Tb 
161 

Electron 
energy Visual Transition energy 
(kev) . intensity Assignment (kev) 

16.62 M 25.67 
1.7.11 M 25 70 
17.89 MS 25.69 
23-59 MS ' 25.63 
23.75 w I 25.60 
23 - 95 M 25.63 
24.32 VW 25.64 
25.29 w 25.69 

S 
M 

MS 
S 

VVW 
VVW 
W 

20.81 P/13 
65 . 11.3 S 
65.88 M 
66.66 MS: 
72 37 W 
74.12 VVW 

a. Lines not completely resolved. b. Weighted average. 



'In t h i s  study, but  which f i t s  wel l  i n  the  proposed decay 'scheme, Fig. 2. 

One might expect t o  see the  K l i n e  of a t r a n s i t i o n  from the  proposed 

131.6-kev l e v e l  to ground, but  i n  t h i s  study it would have been masked 
160 

by the  LII l i n e  of an 86.6-kev t r ans i t i on  due t o  Tb present as  an 

impur i ty . in  the  sample. 

Table I1 

Transition-energy sums i n  l'b161 decay 

( kev 1 
-- - ~ 

25.66 . +  48.88 = 74.54 

Crossover = 74.49 

, 7 7 2 5  ..+ 25.66 = 102.81 

Crossover . . .  =lO2.7  

- 
C, Lifetime Measurements 

The t r a n s i t i o n  order of t he  25.66- and the  48.88-kev cascade 

can be es tabl ished by measuring t h e i r  decay r a t e s  and the  decay r a t e  of 

the  74.49-kev crossover. The t r a n s i t i o n  which goes t o  ground w i l l  come 

from a s t a t e  at  an energy equal t o  the  energy of the  t r ans i t i on ,  while 

i t 3  precursor w i l l  decay from the  74.49-kev s t a t e  i n t o  t h a t  s t a t e .  Thus 

the  ha l f  l i v e s  of one of the  t r ans i t i ons  should be i den t i ca l  with t h a t  

at 74.49-kev, while. the  other w i l l  be d i f f e r en t  and c h w a c t e r i s t i c  of the  

lower exci ted s t a t e .  

Experimentally one compares the  aelay curve of the gamma ray 

being s tudied t o  the  curv'e of a standard "prompt" photon of the  same 
x 3.33 

el ergy . Standards chosen were the  28-kev K x-rays.:..o'~j.::I!:i. ,. , , .ad;:  50,-key. 
203 K x-rays of ' I h l 7 O ,  and the  71-kev K x-rays of Hg . Mercury-203 x-rays 

- 10 a re  associated with a kransi t ion whose half l i f e  i s  2 . 9 ~ 1 0  seconds, 



kev 
,131.7 

DY  

M U -  17188 

161 Fig. 2. Decay scheme of Tb . 



and a correction must .be made fo r  t h i s  delay. The other x-ray events 

a re  much fa s t e r  and corrections are negligible. Figure 3 shows the 

curves obtained from the 25.66-kev t rans i t ion  and i t s  standmd. The ' 

average of several determinations gave a half  l i f e  of 29f3x10-9 sec. 

Simf lar cwves fo r  the 74.49- and 48.88-kev transf t ions showed a much 

shorter half  l i f e .  The weighted avwage of several measurements using 
6 both the slope of the curve and i t s  centroid s h i f t  i n  the analysis of 

the data gave 3 .1&~0.6x1~-9  sec as tiae half  l i f e  of the 74.51-kev s t a t e .  

These data  agree with the l eve l  sequence of Cork i n  which the f i r s t  

excited s t a t e  i s  placed a t  25.66 kev, as shown i n  Fig. 2. From thesk 

data  the photon-transition half l i ves  of the 25.66- and 48.88-kev 
-8 

t rans i t ions  are 8 . ' 7 ~ 1 0 - ~  sec and 1 . 1 ~ 1 0  sec respectively, On the 

basis  of Moszkowskigs single-particle half l i f e  estimates19 the photon 
2 

t rans i t ions  are delayed by factors  of about lx lo4  and l x l O  respectively. 

D. - Recent Work 

Subsequent t o  the study reported above, a number of publfca- 

t ions dealing with .DyfG1 1,evels appeared. McCutchen repurted some 

coincidence and multipolarity studies2' and reviewed the previous work 

i n  de ta i l .  He discussed -possible in t r ins ic -s ta te  assignments but un- 

fortunately chose the incorrect f irst  excfted s ta te , .  given by Smith. A 

theore t ica l  paper by B & s ' ~  described the observed levels ,  as well  as 

others seen i n  Coulomb exci tat ion and the electron-capture decay of 

Ho161, on the basis  of Nilssonts collective-model asymptotic quantum 

numbers." The ground s t a t e  has been measured as 5 1 2 , ~ ~  andlwas as- 

signed as the (642) 5/2+ s t a t e  according t o  the notation (N, nZ, h) I, n. 

The ro ta t ional  s t a t e s  of t h i s  band are  not populated suf f ic ien t ly  by beta  

decay t o  have been seen i n  the study reported herein, but have been ob- 

served i n  Coulomb-excitation experiments. The 25.66-kev l eve l  was as - 
signed as the (523) 512- in t r ins i c  s t a t e ,  with the 102.7-kev s t a t e  as 

i t s  712- band member. The 74 .49-W~ l e v e l  was also called an i n t r i n s i c  

s t a t e ,  (521) 312-, with i t c  512- excited member being the l eve l  a t  131.7 

kev. These assignments m e  shown i n  Fig. 3. 



Delay (mp s e d  

Fig. 3. Co'ncidence delay curves of the  25.66-lrev t r a n s i t i o n  
i n  bkl and t h e  "promptt1 standard.  



Hanse? e t  a l 0  24 reported e lec t ron  spe,ctrograph work i n  agree - 
ment.with t h a t  discussed previously and i n  addit ion measured the  half  

l i v e s  of the  same s t a t e s  measured by us. Their r e s u l t s  were 28+2~10 -9 

sec and 3 . 0 ~ . 3 x 1 0 - ~  sec, which agree very wel l .wi th  our values. 

A recent  Russian publication gave the  r e s u l t s  o f '  a spectrom- 

e t e r  study repor t ing $ very large  number of l i n e s .  Transit ions reported ' 

on ' t he  ba s i s  of these l i n e s  included several  not '  seen i n  previous s tudies ,  

some of which f i t  wel l  i n t o  the. known l e v e l  sequence.. Their suggested 

s t a t e  assignments were e s s e n t i a l l y  the  same as  those previously given, 

and two addi t iona l  l eve l s  were suggested. 

,It i s  i n t e r e s t i ng  t o  note tha t ' . th ree  of the  i n t r i n s i c  neutron 
161 237 22 s ince  s t a t e s  i n  Dy a re  the same a s  the ,p ro ton  s t a t e s  i n  Np 

t h e  well-studied 59.6-ke; E l  t r a n s i t i o n  i n  N ~ ~ ~ ~ ,  which goes' from (523) 

512- t o  (642) 5/2+, i s  analogous t o  the  25.66-kev E l  t r a n s i t i o n  i n  

D~~~~ and shows anomolous conversion coef f ic ien t s ,  i t ~ i s  o f  i n t e r e s t  

t o  compare the  two cases. A theory of anomolous E l  conversion has been 

presented i n  a paper byNi l sson  and ~as rnus sen '~  according t o  which it 

i s  expected t h a t  the  L coef f ic ien t  i s  about normal., while those of 
I11 

t h e  .L and of the  L a re  high. The t r a n s i t i o n  r a t e  i s  re tarded and 
I I1 

these  anomolies appear i n  several  cases of K-allowed t r ans i t i ons  which 
. . 

are  forbidden by other asymptotic quantum-number se lec t ion  ru l e s .  I n  

t he  N~~~~ case the  LII19 conversion coef f ic ien t  i s  normal, whereas t h a t  

of the  LII i s  high by 3.8, and the  LI i s  high by 1.7. Smith e t  a l .  
18 

161 
have measured t he  L-subshell r a t i o  of the  25.66-kev Dy t r a n s i t i o n  

and r epo r t  a value of 1/0.75/1.1. The t heo re t i c a l  value f o r  a pure .El 

t r a n s i t i o n  i s  1/0.70/1.1, which ind ica tes  no anomoly; The t r a n s i t i o n  
4 161 r a t e  i s  re tarded by a f ac to r  of 3x105 i n  N~~~~ and of lxlO i n  Dy . 

This ind ica tes  t h a t  a d i f ference of. 30 i n  re ta rda t ion  and a change i n  

atomic number from 66 t o  93 produces .a wide var ' iat ion in:"the i n t e r n a l  

conversion behavior of the  two t r ans i t i ons .  

The L-subshell r a t i o  has been measured f o r  the  48.88 kev 

t r a n s i t i o n  ~ , l . l s o ; l ~  It i s  given a s  about 1/0.16/0.07, while t he  theo- 

r e t i c a l  value f o r  a pure M1 i s  1/0.08/0.02. This r a t i o  does appear 



anomalous although a small amount of E2 admixture.would improve the 

agreement somewhat. Since the t r a n s i t i o n  i s  from the s t a t e  (521) 312- 

t o  t he  s t a t e  (523) , 5 1 2 - . i t  involves a A A of 2 and a change i n  nuclear  

spin  d i rec t ion  from p a r a l l e l  t o  a n t i p a r a l l e l  with .respect  t o  the  o r b i t a l -  

angular-momentum vector.  'The t r a n s i t i o n  i s  delayed by a f ac to r  of only 
4 237 

70. The analogous t r a n s i t i o n  i n  Np i s  delayed by a f ac to r  of 1x10 
. 

and i t s  conversion coef f ic ien t  a l so  appears normal. 

A t h i r d  t r a n s i t i o n  common t o  the  two nuclides i s  the  E l  

between - the  (521) 312- and the  (642) 5/2+ s t a t e s .  This 267-kev t r a n s i -  
8 

t i o n  i n  N~~~~ i s  re tarded by a f ac to r  of 6 x10 and i t s  4( i s  high by 

a fac tor  of 10. The t r a n s i t i o n  i n  Dy161 of 74.49 Bev energy i s  retarded 
. 5  

by a f ac to r  o f .  1x10 .. The K/L r a t i o  measured by Hansen i s  normal and 

o1.1.r I I - s i~hshe l l  rat io measurement i s  2.4/0.6/1, compared with the  theq;i 

r e t i c a l  value of 2'.8/0.8/1 f o r  a pure E l  t r ans i t i on .  A t  t h i s  lower 

atomic. number .the .conversion coef f ic ien t s  appear normal. These compari- 

sons seem t o  confirm the  suggested Z dependence i n  the  anomalous-conver- 

s ion-coeff ic ient  theory. 



V .  NEUTRON-DEFICIENT ISOTOPES OF TANTALUM 

A.  Introduction 

The Berkeley heavy-ion 1inea.r accelera tor  provides a beam of 

heavy ions with & energy of 10 Mev per nucleon, A. beam of these ,  ions 
18 12 -- such a s  C , N ~ ~ ,  o r  0 -- ky be used 40 bombard t a r g e t  mater ia l  

and produce isotopes very d i f f$cu l t . t o  make i n  r e l a t i v e l y  pure form by 

means of other react ions .  From the  slope of the  . i so tope-s tab i l i ty  l i n e  

one notes t h a t  the  compound nucleus formed by reac t ion  of the  accelerated 

ion w i t h  the  t a r g e t  n u c l e u ~  i o  already neutroii-deficient. A t  the  enesd 

g i e s  needed t o  overcome the  coulomb b a r r i e r  f o r  a given react ion,  enekgy 

considerations show t h a t . t h e  most probable . react ions  are  those involving 

t he  emission of severa l  rieutrons. Thus bombwdment with heavy ions w i l l  

produce isotopes .which a re  very neutron-deficient  and f r e e  from isotopes 

, ne&er s t a b i l i t y .  This -procedure should a l l o y  inves t iga t ion  of shor t  - 
l i ved  Lsotopes i n  t he  absence of long-lived c'ontamination. 

Isotopes of tantalum of mass l e s s  than 176 have not been pre- 
12 

viously reported.  These isotopes  might be formed by C .bombardment of 

holmium, but  i n  t h i s  case react ions  at  energies s u f f i c i e n t l y  above the 

Coulomb b a r r i e r  t o  insure reasonable cross' sect ions  would produce only 

isotopes  of mass about 173 and l e s s .  For t h i s  reason the  reac t ion  

chosen was H O ( N ~ ~ , X ~ ) W .  The tungsten isotopes formed a r e  expected t o  

have shor t  half  l i v e s  and t o  decay t o  isotopes of tantalum. The region 

~a~~~ and l i g h t e r  could be invest igated by varying t he  energy of the  

nitrogen beam, as shown i n  TabIe 111. I n  t h i s  ti3ble the  M-A values a re  

computed from Cameron ' s mass equation?, Exci ta t ion-funct ion peaks were 

approximated as being equal t o  Q + 2xT, where Q i s  the  "Q" of the  r e -  

act ion,  x the  number of emitted neutrons, and T the  nuclear temperature, 

taken as  1.9 Mev. 

Since t he  Coulomb b a r r i e r  f o r  formation of the.compound nucleus 

w~~~ i s  45 Mev, no appreciable a m o k  of Ta176 o r  heavier isotopes should 

be formed. Thin aluminum f o i l s  .were used as a convenient method of de- 

grading the  be- energy t o  the  desi red values. Since there  i s  some un- 

ce r t a in ty  both i n  the  ac tua l  beam energy and i n  the  range-energy r e l a t i on -  



ships  ifor a .heavy-ion beam, the  .energies .discussed are -those taken from 

the  curve shown i n  Fig.  4. 
Tgntalum-175 can a l so  be made -by alpha-p&ticle bombardment 

on the  60-inch cyclotron.  The react ion used was L U ~ ~ ~ ( C X , ~ ~ ) T & ~ ~ ~ ,  This 

reas t ion  should have . a  h igh ,c ross  sect ion a t  the f u l l  4 8 - ~ e v  energy 

avai lable  at the  cyclotron, and the intense beam produces a large  amount 
7 

of ac t i v i t y ,  making possible de t a i l ed  spectrographic s tudies  of the  

isotope: ,  The reac t ion  a l so  produces large  amounts ?f Ta176, but  since 

i t s  con~ers ion-e lec t ron  l i n e s  a re  wel l  known3' they may be subtracted 

out .  

Table I11 

, H?lG5 ( ~ l ~ , x n . ) ~ ~  Bombardment energies 
- ..I_ _ . - 

A M-A x Threshold . Peak 
(MeV) ( ~ e v  ) (MeV) 

A t  bombarding energies of 70 t o  110 Mev the presence of Ta 173 

was observed by  noting the  growth of 124- and 298-kev photopeaks i n  the  

.. gamma-ray spectrum of the  tantalum a c t i v i t y .  These peaks belong .to t he  - 

daughter nuclide, ~ f ~ ~ ~ ,  and were seen t o  decay with t h e  24-hr ha l f  l i f e  

of t ha t  nuclide.  The deca'y r a t e  of ~a~~~ .&as determined from the  growth 

curve of the  -298-kev photopeak, as  shown ,.in .Fig. 5 .  This i s  the  growth 



Fig. 4. Energy of d4 beam a f t e r  degradation by aluminum 
absorbers. 
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Fig. 5 .  The ha l f  l i f e  of ~a~~~ obtained from t h e  growth r a t e  
of t h e  298-kev gamma-ray photopeak of t h e  daughter 
nuclide,  24-hour ~ 1 7 3 .  



portion of the curve obtained i n  a.95-Mev bombardment, and the  curves 

are  drawn-graphically. .For t h i s  pa r t i cu l a r  curve, a least-squares fit 

t o  the data,  performed on the  Livermore IBM 704 computerZ8 wi th  a l l  points  

included, gave a value of 4 . 2 a . 7  hr. I n  t h i s  procedure the  24-hr hal f  

l i f e  of I-IflT3 was held constant while the  half  l i f e  of ~a~~~ and the  

amounts of a c t i v i t y  i n i t i a l l y  present.were varied t o  give the  be s t  f i t .  

A s e r i e s  of determinations from d i f f e r en t  bombardments gave an average 
17 3 value of 3.7 h r  f o r  the  ha l f  l i f e  of Ta 

The gamma-ray spectrum of the  tantalum a c t i v i t y  produced i n  

the  95-Mev bomhasdment i s  shown i n  Fig. 6 .  The spectrum i s  very complex 

and was not resolved i n  g rea t  d e t a i l .  Two photopeaks were i den t i f i ed  as  

belonging t o  ~a~~~ on the  ba s i s  of t h e i r  decay r a t e s .  They had energies ' 

of 90 and 170 kev. Complexity of t he  spectrum made gamma-gamma coincidence 

lneasmements d i f f i c u l t ,  but  r e s u l t s  indicated t h a t  the  two gamma rays  were 

probably i n  coincidence. 

No add i t iona l  photopeaks were seen i n  the  spectrometer at  

e n e r g i e ~  above 500 kev. No add i t iona l  gamma rays were seen at  t he  highest  
' I 

bombarding energies which were not seen at 70 Mev, and from the  time r e -  

quired t o  accomplish the chemical separation and sample preparation a 

ha l f  - l i f e  l i m i t  of l e s s  than 30 minutes may be s e t  f o r  'gamma rays belong- 

i ng  t o  t an tah~m isotopes of mass l e s s  tharl 173. 

A t  bombarding energies of 60 Mev and grea te r  an isotope i s  

formed which decays with a ha l f  l i f e  of about 1 hour, some of whose gamma 

rays  are  shown i n  Fig.  6. From Table I11 one expects t h i s  isotope t o  be 

Figure 7 shows the  gamma-ray spectrum of t a n t a i h  following a 70- 

Mev bombardment 1 This sample should contain only Ta174 and ~ a ~ ~ ~ .  One 

notes t h a t  the  511-kev annihi la t ion rad ia t ion  peak i s  very large  r e l a t i v e  

t o  t h a t  of the  K xsrays, ind ica t ing  a large  r a t i o  of posi t ron emission t o  

e lec t ron  capture f o r  t h i s  isotope.  Cameron est imates the  decay energy of 
- 

Ta174 to be 4.5 Mev and t h a t  of ~a~~~ t o  be 2.8 Mev. 2T 1 f  one assumes 

these  values t o  be approximately cor rec t ,  the  r a t i o  of K-electron capture 
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Fig. 6. Gamma-ray ulse-hcight spectr im of ~a~~~ and Ta 174 
produced by N1' bombardment of h6lmium at 95 Mev. 



Fig. 7. Gamma-ray . ulse-height spectrum of ~ a ~ 7 ~  and Ta 175 
1E produced by N bombardment of holmium at 70 Mev. 



t o  posi t ron emission f o r  allowed decay i s  given by Feenberg and Trigg 

a s  1.6 a t  4.5 Mev, and 20 a t  2.8 ~ e v . ' ~  This i s  consis tent  with t h e  

mass assignment given f o r  the  two isotopes.  No a c t i v i t y  was seen grow- 

ing  i n  other  than ~ f ~ ~ ~ ,  which i s  t o  be expected since ~ f 1 7 ~  i s  s t ab l e .  

Five of the photopeaks i n  Fig. T ' a r e  assigned t o  the  decay of 

Talik on t h e b a s i s  of t h e i r  decay rates. , Tllrse &c at 'enc . re jes  of  90, 

125, 205, ,280, ,and 350 kev. ' I n  addi t ion there  . i s  a peak of lower i n -  

t e n s i t y  of 160 kev energy which i s  clear'ly ,seen only i n  coincidence 

measurements. The spectrum above 500 kev shows a large  number of very- 

Jnw-intensity peaks which could not be well resolved o r  confirmed as  

t o  hal f  l i f e .  Their i n t e n s i t i e s  were l e s s  than about l$ o f  Lhe in tcn-  

s i t i e s  of the  low-energy gamma-ray photopeaks . 
The ha l f  l i f e  of w a s  determined by following both the  

decay r a t e  of the  gross act i t r l ty  ull tui end-window G-M counter and the  

decay r a t e  of the  511-kev photopeak i n  the  gamma-ray spectrum. Figure 

8 shows the  resolved gross decay curve i n  which the  11-hr component 

was subtracted out on the ba s i s  of da ta  taken a t  times longer than those . ,:I... 

shown i n  the  f igure .  Figure '9  shows the  decay of the 511 kev annihi-  

l a t i o n  r ad i a t i on  photopeak. A s e r i e s  of these determinations l ed  t o  a 

measured half  l i f e  f o r  ~a~~~ of 1.230.1 h r .  

Gamma-gamma coincidence measurements were made on t h i s  spectrum. 

Gating on the 511-kev:phdtopeak showed t h a t  the  90-, 205-, i d  160-kev 

gamma rays were i n  coincidence with it. Gating or1 the 205 -?lrev photnpedk 

indicated t.ha.t, the  90- and 280-kev gamma rays were i n  coincidence .with 

t he  one at  205 kev. 

No gamma rays of more'than 1% asundance were detected a t  ener-  

g i e s  above 500 kev. Attempts t o  produce enough of e i t h e r  t h i s  isotope 

o r  ~a~~~ t o  study on the conversion-electron spectrometers hav; not been 

successful .  

A t  bombarding energies above 45 Mev &I isotope whose ha l f  l i f e  a 

i s  11 h r  i s  formed. This i s  presumably ~ a l ~ 5 .  Figure 10 i s  a tantalum 

gamma-ray spectrum taken 10 h r  a f t e r  a 6 0 - ~ e v  N 1 4  bombardment. The time 



Hours 

Pig.  8 .  Decay of ~a~~~ a i d  gross a c t i v i t y  measured by - 
an end-window G-M counter. 



M U -  17192 

Fig. 9. Decay of' the 511-kev photopeak of obtained from - 

successive gamma-ray spectra. 



Gamma energy ( k e v )  ! 

MU- 16775 

175 . .  Fig'. 10. Gamma-ray ulse-height spectrum of Ta 10 hours 
1f after 60-~ev N bombardment of holmium. 



lapse  allowed fo r  the  decay of 1.2-hr ~ $ 7 ~  a l so  formed i n  the  bombard- 

ment. Nearly a l l  the  peaks, including the K x-ray peak, have d i s to r ted  

shapes, ind ica t ing  unresolved components. The 11-hr haXf l i f e  was ob- 

t a ined  by following the  decay of both the  gross' a c t i v i t y  and the  s ingle  

photopeaks. Since no 511-kev annihi la t ion rad ia t ion  i s  observed, a 

s m a l l  pos i t ron branching r a t i o  and consequently a small decay energy 

'are indicated.  This i s  consis tent  .with the  decay energy given by the 
29 

Cameron mass equa t ion  of 1,8 Mev f o r  1a17', which pred ic t s  a ratiocoPii: 
3 . .%e 1e.e t r bn  c,agl;,We;~to pos i t ' rons of 1 . 5 ~ 1 0  . Following the  de.cay of t h i s  

11-hr isotope,  a lung-lived a c t i v i t y  remains which has .a prominent 340- 

kev gamma r ay . ,  This is presumably 77-duy ~f~~~~ which i o  the  dar~&h~e.htor 

of ~ a ~ ~ ~ ,  m,d t he  mass ns~ignment i s  fur ther  confirmed by cross-bombard- 

ment with alpha g a r t i c l e s .  

The maximum energy of t he  a lpha-par t ic le  beam uf the 60-inch 

cyclotron i s  48 Mev. A t  t h i s  energy the  cross sect ion f o r  the  react ion 
175 ~ u l ~ ~ ( a , 4 n ) T a  should be much l a rge r  than the  cross sect ion f o r  e i t h e r  

t he  (a,3n) o r  t he  (a,5n) reaction.; Since lutet ium i s  a mixture of 97.4% 
~u~~~ and only 2.6% ~ u ~ ~ ~ ,  a full-energy bombardment of na tu r a l  lutet ium 

should produce a large  amount of ~a~~~~ The very intense beam of the  - 

cyclotron makes the  production of enough ~a~~~ f o r  conversion-electron 

s tud ies  r e l a t i v e l y  easy. 

The tantalum gamma-ray spectrum r e su l t i ng  from an alpha- 

p a r t i c l e  bombardment of 1 u t e . t l u  i s  sliown i n ,  Fig. 11. Comparison with 

F i g .  10 shows t h a t  the  photopeaks a t t r i bu t ed  t o  ~a~~~ q e  present.  I n  

addi t ion one notes .peaks at 88, 113, and 51 i  kev rlot seen i n . F i g .  10. 

The f i r s t  two a re  due t o  TalT6, and the  511-kev peak i s  from hJ not 

completely removed i n  the  chemical separation.  The peak a t  405 kev i s  

seen,more c l ea r ly  i n  t h i s  spectrum because of b e t t e r  countirlg s t a t i s t , i c s  

and a contr.ibution .from coincidence between the  350-kev photons and K 

" - 

The r e l a t i v e  gamma-ray i n t e n s i t i e s  of ~a~~~ were obtained by 

resolving the  spectrum shown i n  Fig. 10 i n t o  i t s  components. The com- 

p l ex i t y  of the  spectrum makes the  values obtained r a the r  unrel iable .  



Fig. 11. Gamma-ray pulse-height  spectrum.of tantalum produced 
by 48-Mev alpha - p a r t i c l e  bombardment of lu te t ium.  



The energies and i n t e n s i t i e s  of g&a rays obtained on resolving the  

curve a re  l i s t e d  i n  .Table I V .  

The energies 'given were obtained from conversion-electron data,  

and the  i n t ens i t i e s 'we re  normalized as  discussed 'below. 

Energy Relative 
b e d  i n t ens i t y  

E. Tantalum-175 Conversion-Electron Spectrum 

The conversion-electron spectrum pf ~a~~~ produCed i n  the  

a lpha-par t ic le  bombardment was s tudied on three  permanent-magnet e lect ron 

spectrographs. Eighteen t r ans i t i ons  were seen and i den t i f i ed  by t h e i r  

ha l f  l i v e s  a s  belonging Lu L h r  decay of ~ 2 ~ ~ .  The energbeh of the  l i n e s ,  

t h e i r  assignments, and t h e i r  t r a n s i t i o n  energies a re  l i s t e d i n  Table V. 

The transit ion-energy "best  'value: was ob.l;alrled by a weighted averaee 1:n 

which more weight was given t o  the  more in tense  l i n e s  and t o  areas of 

hest f i e ld -s t reng th  ca l ib ra t ion  i n  the  spectrometers. Table V I  l i s t s  a 

r l~ul l~er  of l i n e s  t h a t  were seen bu t  were too weak t o  have t h e i r  hai f  l i v e s  

determined with ce r t a in ty .  The l i n e  a t  38.80 kev was assumed t o  be the 

K l i n e  of a weak 140.9-kev t r a n s i t i o n ,  since it f i t s  we l l  i n t o  the pro- 

posed decay scheme. I n  addi t ion t o  those l i n e s  l i s t e d  i n  the  t ab les ,  

o thers  were seen.and i den t i f i ed  as belonging , to  the  88.44- and 202.2-kev 
176 ..30 

t r ans i t i ons  i n  the  decay of Ta , and the  113.06-kev t r a n s i t i o n  as  

belonging t o  the  decay of ~ a . ~ ~ ~ .  The l a t t e r  has been measured on a 

c r y s t a l  spectrometer31 as  having an energy of 112.97, which adds:;to our 

confidence ir, the  values cf the  t r a n s i t i o n  energies given . in  Tables V 

and V I .  



Conversion-electron l i n e s  .frqp:'the decay. of ~ a l "  
S ~ e c t r o m e t e r  Trans i t ion  

A 

l i n e  energy (kev) Gamma energy 
99 gauss-214 gauss-340 gauss Assignment energy (bes t  value)  

39.24 L~ 50.52 50 50 
39-75 50.50 
.40.91 50.48 
48.04 $1 50.42 
48.26 51 50.38 
48.45 $11 50. 18 
50.11 50.65 



.Table V (cont  ' d. ) 
. . 

Spectrometer " ' Trans i t  ion 
l i n e  energy (kev) . . .  Gamma . - ,  . .energy 

99 gauss-214 gauss-340 gauss Assignment energy . :(,best va lue)  

I( 
T., 
M 



Table V I  
. . 

Unassigned t r ans i t i ons  and e lect ron l i n e s  seep i n  ~a~~~ sample 

Electron 
energy Garma Transit ion energy ' 
(kev A; s ignment ener gg .(best value 1 

Electron l i n e s :  38.80, 55.42, 61.33, 75.58, 110.33, 151.78, 160.43, 

164.42, 185.83, 213.38, 321.54, 410.24, 443.16, 448.26, 638.30, 

645.93, 883.66, 899.32. 
-- - - - - - - 

a .  Assignment questionable s ince  K l i n e  was not seen. 



Auger e lec t ron  1ines.were qui te  prominent i n  the  spectrograph 

p l a t e s  from the  99-gauss spectrograph. Their, energies .&d assignments 

a r e  l i s t e d  i n  Table V I I  along with estimated r e l a t t v e  in tensi . t ies  . 
The r e l a t i v e  i n t e n s i t i e s  of the convers ion.e lectron. l ines  were 

determined, by three  d i f f e r en t  methods: 

A.  In tegrat ion of peaks obtained nn the' double -focusing 

e lect ron spectron~eter,  

B. densitometer t rac ing  of l i n e s  on permanent-magnet 

spectrograph p la tes ,  and 

C .  v i sua l  comparison of spectrograph l i n e s  with 1 ine s .o f  

. . known exposure. 

Since Method A i s . ba sed  on counting.numbers of e lect rons ,  
. . 

&d since therrl a m  no l:&ge .empirical  io,r%ec%idn::;facb~k~:~between l i n e s  

except 'at  low energies a t  ,which e lect rons  are  stopped by the  counter 

window, t h i s  method i s  expected t o  give the  most r e l i a b l e  r e s u l t s .  The 

l i n e  of minimum .energy "whose i n t ens i t y ,  was measured by t h i s  method was 

t he  38 .80 -kev ,~  l i n e  of t he  3104.33-kev t r ans i t i on .  The K l i n e  of the  

81.57-kev t r ans i t i on  was absorbed very s t rongly.  by the counter window. 

The resolut ion of the i n s t r w e n t  i s  such t h a t  the  L subshells  a r e . n o t  

resolved s u f f i c i e n t l y  t o  be determined separately,  and thus values f o r  

t he  L s h e l l  a re  given as  t o t a l  L + L 
I I1 + L~~~ 

i n t e n s i t i e s .  . A summary 

of the  .electron i n t e n s i t i e s  i.s presented i n  Table V I I I .  The L l i n e s  

of the  70.~5-kev t r a n s i t i o n  were not resolved from the  .K l i n e  of the  

1~6.2-1ccv t r ans i t i on  ~ . n d  from a strong unassigned l i n e  at  61.33 kev 

whose vlsaa l  in tcno i ty  was 8.1. The t o t a l  i n t ens i t y  of t h i s  group 

w a s  39, mild i s  t o  be compared tu t h e  t o t a l ,  obtained by Method C of 

43. The K l i n e  of the  162.5-kev t r ans i t i on  i s  mixed with the  L l i n e s  

of the  113.06-kev t r ans i t i on  of ~a~~~ and only an upper l i m i t  can be 

s e t  fo r  i t s  i n t ens i t y ,  although the  amount of the  contribution from 

the  L l i n e s  i s  expected t o  be small.  Only the stronger l i ne s ,  which 

could be resolved and measured a c c ~ a t e l y ,  were included i n  the  summary. 

Method B involves photographic opt ical -densi ty  measurement of 

t he  l i n e s  by an in tegra t ing  densitometer, and i s  subject  t o  large  cor- 

rec t ion  fac tors  due t o  'uncer ta int ies ,  pa r t i cu l a r l y  i n  the  var ia t ion '  of 



s e n s i t i v i t y  of the  photographic emulsion with electr.on .energy. The 

method used was e s sen t i a l l y  t h a t  of ~ l l i t i s  ,32. and can give r e l i a b l e  

values i n  most cases. I n  the  study repor ted 'herein  it was found t h a t  

the  background darkening on the  f ihn  and the  l imi ted energy resolut ion 

of the  densitometer caused wide disagreement between t h i s  method and 

t he  other two. For t h i s  reason.values obtained by Method B were not 
. . 

included i n  the  sumbry.  ' In  cases :involving intense l i ne s ,  values did 

agree r a the r  wel l .  The L l i n e s  of the  126.2-kev t r ans i t i on  by t h i s  

- .Table V I I  -.-,....,,.-....-- . -...-..- ...-,- ,*,. 

Auger e lect rons  seen i n  +he decay of Ta 175 
I 

Electron 
energy Relative 

a 
(kev) interis i t y  Assignment 

,d. 

8W = weak, M = moderately, V = very. 



. ~ a l "  Conversi.on-electron i n t e n s i t y ;  summary 
Trans i t ion  

energy I n t e n s i t y  
(kev). Subshell  Visual  Spectrometer 



method were 19, 4.2; and 9,6, with. a t o t a l  of 'l.g..5, and %he K ' l ine  of 
. . 

the  267.2 t r ans i t i on  was:17. Other k e s u l t ~ ' ~ e r e  . . within a, ' factor of 2 
. . 

of . the  values i n  Tab1.e .VIII. 

Method C :has the disadvantages of  the  same .large photographic 

correct ion fac tors  involved i n  Meth0d.B plus the  f a c t  t h a t  the  compari- 

sons a re  subjectfve i n  nature,  depending on the  judgement of " l fghter"  

and "darker" by the  individual  invest igator .  The method has the  g r ea t  

advantage, however, of "subtracting" background by placing t he  emulsions 

of the  .p la te  and i t s  comparis.on standtzird, In .  c0ntac.t. The s w p r i s i n g l y  

good agreement between the . resu l$s  obtagned by t h i s  me.thod and those of 

M e  Lhud A i nd i ca t e .  t h a t  t he  major uncerta4nty i n  ' t h e  densitometer method 

i s  i n  accurately determining t he  background darkening of the  photo- 

graphic p la te .  The L-subshell r a t i o s  obtained by Method C a re  thus 

expected t o  be qui te  r e l i a b l e .  The only Ecpea i n  which accurate de t e r -  

minations could not be made was a t  low energies below about 35 kev, 

where the  photographic e f f ic iency  correct ion q d  l i n e  shape make any 

measurement very d i f f i c u l t .  The i n t ens i t y  of the  16.19-kev l i n e  i s  

n o t  reported i n  Table V I I I  s ince  it is  not believed t o  be useful ly  

r e l i a b l e .  The da t a  i n  Table V I I I  were normalized so  as t o  give the  

be s t  average f i t  between the  v i sua l  and'spectrome$pic determinations. 

F. ~a~~~ Decay Scheme 

Mul t ipo la r i t i e s  of t he  more.intense t r a n s i t i o n s  i n  t he  decay 

of ~a~~~ t o  l eve l s  i n  ~f~~~ were determined from 'conversion-coefficient 

data .  The t h e o r e t i c a l  conversion c o e f f i d e n t s  used i n  t h f s  study were 

those calcula ted by S.liv and  and.^^ .Electron screening and f i n i t e  

nuclear s i z e  were included i n  these  , re la t ivLs t ic  c,alculat ions.  Multi- 

p o l a r i t y  assignments are given i n  Tablk IX. The mo'S'.t . .  . obvious ass.ign- 

ment i s  f o r  t he  126.2 -kev t r ans i t i on ,  where ' the  L--s.ubshell r a t i o  of 

1/4.7/3.7 s t rongly ind ica tes  an e l e c t r i c  ,quadrupole . case,., s ince  f o r  

t he  E2 t r ans i t i ons  t h e  5 conversion coef f ic ien t  i s s m a l l e r . t h a n  t h a t  
. . 

of the  L or LIII. The observed K/L r a t i o  o f  1.0 i s  a % m a l l  number,; 
11 

a l s o  ind ica t ing  an E2 t r ans i t i on .  The theoret . ica l  values,  a re  1/6.1/5,1 

and 0.86 f o r  pure .E2. . . 



Table I X  
I . . .  . - 1 - C  

. . . .-, Ta' 13 
. . 2onversi 0 x 1  c o e f f i c i e n t s  and mul t ipo la r i ty  assignments. 

TransitZen ,Relat ive . Normalized 0 1 .  K/L ' ..Lz/LTI/LTTT 
&ergy e lec t ron  ga'ma Multi- Theoret - Theoret - .Theoret - 

a 
(kev) i n t e n s i t y  i n t e m i t y  po1arit.y i c a l  .Observe6 i c a l  .Observed i c a l  - -Observed.' -- 

a .  Camma i n t e n s i t i e s  normalized t o  e l ec t ron  i n t e n s i t i e s  t o  give c o r r e c t  a f o r  the  126.2-kev 
t r a n s i t i o n .  



, , . . . .  . . .  : 
. . . , . .. , . 

Evidently the t r a q s i t i o n  i's .nb%;. pwe. .Eel. but  ,.has ,some M l  ad; . -.  ~. , . .. ,.: . . 
mixture, and a 94$ ~ 2 ,  and '6%: Ml 'ph6tbn, m i x i n g  r a t 5 6  gi:ves a fit t o  the  

. I .  . . 
experimental data with agreeye* that .  . .  i s  . . . .  . ~ o r t d . t o k l ~ , ~ ~ o o d  , . .. . considering 

. . 

the  uncer ta in t ies  .in, the  . in tensi ty '  ra t io  . .me.asweme&ts. . . Since the f i t  

i s  very good not o n l y  f o r  .the t r i p l e  subshel l  Saki? .  but  a l sq  f o r  the  

K/L r a t i o ,  t h e  q u l t i p o ~ a r . i t y  assignment 6f t h i s :  t i%ps i t i~ .~  . .. .. . 
seems qu i te  

ce r t a in  and i t s  ' t o t a l '  t heo re t i c a l  ' c o n v e ~ ~ i o n  c'oe.ff$cient .. . of .1.35 i s  

used a s  a bas i s  f o r  nofmalizing the  gamma-ray ~e l . akfve .  i n t ens j t i e s .  t o  
. . . . 

those of the  conversion .e lect rons:  ili o ' r d ~ i  'to obtain t o t a l  .cpnversion 

coef f ic ien t s  f o r  t he  other  t r ans i t i ons .  This assumes t h a t  the  e n t i r e  

should be noted t h a t  t h e r e  i s  an e:lect?un l i n e  l i s t e d  Table V which 
. . . . 

i s  assigned as. the  K l ine. .  of a 126.7-kei tr~aA~.itidn:whose L l i n e s  axe 
, . .  

not  seen. I f  t h i s  i s  t rue ,  then from i t . s  i n t e n s i t y '  bne can say t h a t  

the  t r a n s i t i o n  has a high K/L ?a t id  and . thus , !ay be e l e c ' t r i c  dipole.  . .. 

I f  so  i t s  g v a  i n t ens i t y  I s  about 50, &d thus no f i a l i z ing  i n  t h i s  

manner may produce~.convers.ion-coeffi.c.ient values t h a t  are  low by a  

fac tor  of a s  much as  8.5/3,. These ,norm+kzed gamma-ray i n t e n s i t i e s ,  
, . 

given i n  Table I X ,  a re  used i n  computing t o t a l  conversion coef f ic ien t s  
. . .  f o r  the  other  t r ans i t i ons .  : . .. . : 

Three of the  l i s t e d  t r a n ~ i t 3 o n  ~inultipdlar.i . ties. a re  very de- 

pendent upon the  t o t a l  conversion coef f ic ien t .  These a re  of 162.5-, 

207~9- ,  and 267.2-kev energy. I n  these cases the  L-subshell r a t i o s  

could not be de te r i ined  and therefore  the.on1.y ,other evidence i s  from 

K/L in t ens i t y  r a t i o s .  . In a l l  th ree  ca se s . t he  K/L r a t i p  w a s  r a t h e r  

l a rge ,  being &bout 8, 5 t o  and 6  re.spectiyely. . ,' . Table X l i s t s  the 

K/L r a t i o s  f o r  t he se . t h r ee  t r ans i t i ons  f o r  d i f f e r en t  mul t ipo la r i t i e s .  

Theoret ical  K/L rat,zo.s of some t r ans i t i ons  i n  hafniim 
. . Energy .(:kev) 

Mult ipolar i ty  162.5 207.69 , ' 267.2 



From t h i s  t ab l e  it i s  obvious t h a t  the  . t i&si . t ions  can pot be of the 

quadrupole type, since both:E2 and M2 ..haye Ga.$ios too low t o  agree with 
. . . . . . 

t he  experimental values given, '  This l&aves t he  c5h~$c5e.'betkeen.electric 

and magnetic d ipole .  The eonvecsion coef f  i'c.i.ents. are  very.  d i f  f.e,rent f o r  

t he  two., therefore  it . should'be . ea5.y t o  s e l e c t  the cor rec t  assignment on 

t h i s .  bas i s  provided the  g-a-ray '2ntens.f t i e ?  have: been cor rec t ly  normal- 

ized.  The .converslpn c6efflci.ents. i n  a r e  given &rlTable.XI.  

Conversion c o e f f i c i e ~ ~ l ; ~  of some t r ans i t i ons  i n  hafn im 

Energy (kev) 

Mult ipolar i ty  - 162.5 207.9 267.2 

~1 0,096 0,053- o .028 

Observed 1.7 2.2 0.85 

The agreement between t heo re t i c a l  and observed'values i s  not  very good, 

bu t  i s  s u f f i c i e n t  t o  ind ica te  s t rongly t h a t  ail three  t rans . i t ions  .are 

magnetic d ipole .  A l l  a p p e a  ra ther  high, bu t  the  complexity of the  gammsr- 

r ay  spectrum and the  question of the  pu re i t y ,  of the  126-kev photopeak ars 

expected t o  produce uncer ta inty  i n  da t a  such a s  these  which depend upon 

gwua-ray in t cno i t i e c .  Ass~unine t,he correct ion value of 8.5/3 gives muc:rl 

b e t t e r  agkeement. 

'" The . ra ther  weak t r&s f  t i on  a-I; 179.4 kev , i n  a ~ e i g n e d  as . R 2 .  The 

low K/L r a t i o  of 2.8 ind ica tes  t h i s  assignment, and supporting evidence 

comesfrom the  f a c t  t h a t  ne i ther  the  LI nor the:% l i n e  was seen i n  the  

conversion-electron spectrum although the  LII, LIII, and MIp were a11 

e a s i l y  observed.  his ind ica tes  a low L I /L I1 ra t i o ,  . which. . i s  character-  

i s t i c  of E2 t r ans i t i ons .  The t heo re t i c a l  value i s  0.35 . i n  t h i s  case. 

The observed L-sub.shell r a t i o  of the  81,6-kev t r a n s i t i o n  i s  

1/0.31/0 30. This agrees . reasonably wel l  with the  t h e o r e t i c a l  r a t i o  f o r  

an E l  t r a n s i t i o n  of 1/0'.35/0.42. I f  t h i s  t r a n s i t i o n  were an .El, however, 

th.e gamma-ray i n t ens i t y  would'have t a  be about 550, q d  t:he observed 



value i s  l e s s  than 9. This assignment i s  c l e G l y  not compatible .with 

t h a t  of the  126,. 2-kev t r ans i t i bn .  . . Therefore o t h e r  p i ~ s i b i l i t i e s  were 
' (. I.  . . 

invest igated.  The subshell' , r a t ios  .for M l ,  E2, 'and M2 are':.1/0;095/0.0'11, 

1/18,.1/18.1, and  l/0.10/0.27 . . , respe.c t i v e l y ,  and none' bf these values by 

i t s e l f  seems close t o  the  observed one.. It i s  f , d ~ . d ,  however., t h a t  a 

mixture of 7% E2 and 93% ~ ' ~ i v e s  a value v e ~ y  Close t o  t h a t  observed 
.. ' 

experimentally, as shown i n   able I X .  It i s  m f b , ~ t u n a t e  . . t h a t  the K-line 

energy i s  too low t o  give an accurate K/L r a t i o  a s  fu r ther  evidence. 

The t heo re t i c a l  conversion coeflficient of t h i s  mixed t ~ a n s i t i o n  i s  6.2, 

which i s  apparently not i n  disagreement with the gamma-ray i n t ens i t y  data-, 

A sL11ltu. argument t o  t h a t  above .may be given f o r  the  104.3.-kev- 

t r a n s i t i o n  and the  same mixing r a t i o  i s  found f o r  it a s  f o r  t he  one at 

81.6 kev. The assignments of the  50 .,5- p d  70.5;kev. t r ans i t i dns  are  

based on L-subshell r a t i o s  alone, s ince  t h e e  photopeaks a re  bu+ed under 

the  K x-rays i n  the  gamma-ray spectrum and a re  thus- not observed. The 

mixing r a t i o s  observed i n  t h i s  study f o r .  the  81.~6- and. 104.3-kev t r a n s i -  

t i ons  are  very s imi la r  t o  those found i n  the  analogous'trans~i.t50ns i n  

the  only other 103-neutron isotope known, a s  i s  discussed below. 

Table X I 1  l i s t s  transit ion-energy sums obtained from the 

energies determined i n  conversion-electron s tudies .  

From Table X I  it may be seen t h a t  t he  most intense t r a n s i t i o n  

i s  the  one at  81.57 kev, and thus one may assume t h a t  it proceeds t o  the  

ground s t a t e .  The f r i s t  exci ted s t a t e  i s  then at  81.57 kev, and from t h e  

f i r s t  sum i n  Table X I I  it i s ,  seen ' t h a t  there  ' i s  a second s t a t e  a t  186.0 

kev whose t r ans i t i on  t o  ground i s  observed i n  addi t ion t o  i t s  depopulation 

t o  th.e f i r s t  exci ted s t a t e  by means of the  104.3-kev t r a n s i t i o n .  These 

.data  a re  shown i n  the  proposed decay scheme given i n  Fig. L2. Two other  

s t a t e s  may be located on the  ba s i s  of sums i n  Table X I 1  a t  energies of 

207.~8 and 348.8 kev, since both sum groups include the  81.57-kev ground- 

s t a t e  t r ans i t i on .  

A double sum without crossover i s  seen whose energy i s  261.4 kev, 

Only one of f t s  t r ans i t i ons ,  the  one a t  104.3-kev, has a known posi t ion i n  

- the  decay scheme. These .data may be in te rpre ted  as  ind ica t ing  a l e v e l  a t  

343.0 kev and a t  e i t h e r  152.1 c r  272.4 kev. The sitilatio,n i s  



Table .XI1 

Transition-energy 

sums in Ta 175 decay 

81.6 + 104.3 - - 185. g 

Crossover - - 186.0 

Crossover - - 207.9 

140.9 + 207.9 

162.5 + 186.0 

Crossover 

104:. 3 + 157.1 

70.5 + 190.8 

190.8 + 235.6 

77.4 + 349.0 

70.5 + 186.0 

77.4 + 179.4 
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. exac t ly  the  same f o r  the  double sum . a t  426.4 kev, where i n  t h i s  case a 

l e v e l  i s  indicated at 426.4 kev and e i t h e r  235.6 o r  190.8 kev, with only 

the  pos i t ion  of the  349.0-kev t r ans i t i on  being known. Both of these two 

sum groups use the  190.8-kev t r ans i t i on ,  and since they cannot both be 

used i n  the  decay scheme, no decision could be reached as  t o  which, i f  

e i t h e r ,  represents  ;the t r ue  l e v e l  sequence. The l a s t  sum a t  256.5 and 

256.8 kev i s  near the  maximum expected e r ro r ,  and since it i s  not com- 

p a t i b l e  with e i t h e r  of the  two previous sums it i s  believed t o  be 

fo r tu i t ous .  

Eight of the  t rano i t ions  beLongin8 t o  tohe decay of ~ a " ~  have 
, I . .  

been 'es tabl ished i n  the  decay scheme by the above procedure. ' In  addit ion 

t~ these a weak 75.58-kev e lec t ron  l i n e  i s  l i s t e d  i n  Table V1,whosq. 

energy is .iust t h a t  expected for Llie IC l i n e  of a t r a n ~ i t i o n  .between t ,he  

348.8- and 207.8-kev leve l s ,  therefore  it i s  thus t en t a t i ve ly  assigned. 

G. S ta tes  i n  Hf 17 5 

175 The decay of ~a~~~ takes place t o  l eve l s  i n  the  nuclide Hf , , 
which i s  composed of 72 protons and 103 neutrons. These numbers are  f a r  

removed from the  regions of closed s h e l l s  and consequent spher ical  sym- 

metry. Yhe .nucleus i s  expected t o  be opheroidal i n  shape, highly prolate., 
n n C. L 

with a deformation of about 8 = 0.27. Low-lying excil;ed s.t;u.tes of the  

r o t a t i o n a l  type a re  t o  be expected whose energy spacings are  given t o  

f i r s t  approximation by 

fi2 T ( T + s )  BI = EO + 7- 

f o r  s t a t e s  with K #  1/2. By use of t h i s  equation, where I = 512, and 0 
ca lcu la t ing  3 from the  energy of the.81.57-kev s t a t e ,  the  energy of the  

912 s t a t e  i s  ca lcula ted t o  be 187 kev, i n  good'agreement with the  ob- 

served value. The energy of t he  11/2 s t a t e  i s  ca lcula ted t o  be 31% kev. 

I n t r i n s i c  s t a t e s  i n  t h i s  region may be described i n  the  Nilsson 

scheme i n  which they a re  designated by the quantum numbers K n ( ~ , n  , A ) .  
z 

Here K i s  the  project ion of the  t o t a l  nuclear angular momentum I on the  

nuclear symmetry ax i s ,  K i s  the  p a r i t y  of t he  s t a t e ,  N i s  the  number of 



nodes i n  the  odd-nucleon o r b i t a l ,  nZ i s  the  number of nodal planes per-  
* 

pendicular t o  the  symmetry ax i s ;  and A , i s  the; component of the  o r b i t a l  

angular momentum of the  odd p a r t i c l e  along the  symmetry ax$.s. Using t h i s  

notation and the  s t a t e  sequence given. by Nilsson a s  shown i n  Fig. 13, one 

notes t h a t  the  s t a t e  of the  103-neutron nucleus t s  probably e i t h e r  . 

512- (512) o r  712- (514); The 105-neutron i ~ o t o n e s  ~f~~~ and ' w ~ ~ ~  have 

been assigned ground-state. spin and pa r i t y  of 7/2-, and therefore  are 
. . 

presumably i n  the  7/2- (514.) s t a t e .  The only known spin f o r  another 103- 

neutron isotone i s  t h a t  of Ybs73,. which h a g  been measured as  512. It 

exhib i t s  two exc2ted ' s ta tes  at 79 and ,180 kev, which' a re  doubtless the  

712- and 91.2- r o t a t i ona l  band members based on the .512-  ground leve l ,  

which i s  almost certai.nly the  5/2-. (512) neutron .orbi ta l .  This.energy 

spacing i s  qu i te  s i m i l a r  t o  t h a t  : i n  ~ f ~ ~ ~ ,  and thus the  f i r s t  three  

l eve l s  i n  Fig. 10 are  assigned as  the  5.12,) ,712,. and 912 r o t a t i o n a l  band 
. . .  . 

. . . . 
... . 

l eve l s  of the  512- (512) s$&%e. ' .'. 

34'3' '.&on:~e,~ning the  l e v e l s  i n  yt3IQ3 l i s t  a Recent pub l i . ca t io ,~s  , . . .  

l e v e l  a t  ,272 kev which i s  assigned a s  .'%he 7/2+ (633) s t a t e ,  previously 

observed as  the  ground s t a t e  of the  107-neutsnn i s o t ~ e s .  The papers 

a l so  give the  mixing r a t i o s  f o r  the  912 ->.TI2 and the  712 -> 512 

- t ransi t ions  as  5% E2,, 95% Ml, whach i s  very s i m i l a r  t o  the  ra tzos  found 
175 f o r  t r ans i t i ons  between the  .same s t a t e s  .in:%he Hf . case a s  discussed 

, previously. 

The s t a t e  at  348.8 kev decays -by M1 t r ans i t i ons  t o  t he  912- 

and 712- s t a t e s  of t h e  ground i o t a t i o n a l  band, and must thus be of even 

1)arity and spin 912 o r  712. The 126.2-kev. s t a t e  decays by a M l  t r an s i -  

t i o n  t o  the  512- s t a t e  and p a r t l y  by M1 t o  the  712- . s t a t e ,  and thus must 

be of odd p a r i t y  with a spin  of 512 o r  712. 

Some other  i n t e r e s t i ng  comparisons can be made between the ex- 

perimental r e s u l t s  and the  .predic t ions  of the  BO&-~otte. lson model f o r  

spheroidally deformed nucle i  :j6 The theory al lows one t o  p red ic t  the  

r e l a t i v e  i n t e n s i t i e s  of t r ans i t i ons  from a' common s t a t e  t o  d i f f e r en t  

members of a ro t a t i ona l  band when the t r ans i t i ons  a r e  of the  same multi-  

po l a r i t y ,  This may be done f o r  the  p a i r s  af  M l  t r an s i t i ons  at  267.2 and 



Fig.  13. Nilsson , diagram of odd-neutron s t a t e s  i n  deformed 
nuclei .  



162.5 kev and a t  207.8 and 126.. 2. kev i f  only the  M1 component of the  

l a t t e r  i s  considered. The in tens f ty  ra t ios .  are  proportional  t o  the  

t rans i t ion  energy t o  the  2L , + . . I  . ,  power (where L i s  the' t r ans i t i on  multi-  
. .. . . . 

.$dik%ty)  and the square  of the  Clebsch-Gordan coef f ic ien t s  between 

I .  and I with K-quantum n ~ b e r s -  K and K f , i . e . ,  
. 1 '  f i 

For the  f i r s t  case the  energy dependence i s  
=? 

and the r a t i o  of the  squared ~leb:sch.-~6rda;n coef f ic ien t s  i s  

assuming t h a t  the  i n i t i a l  s t a t e  i s  I = 7 / 2 ,  K..=.7/2ti I T  the  s t a t e  i s  

I = 912, K = 712 the  reduced t r a n s i t i o n  probabi l i ty  i s  
, . .  2-:' . 

M 1  , . .  
B (912 -> 7/21 - - ( 9/2,1,7/2,-1 1 .  7/2,5/2.) 

. . , '  = ,1.9, 
M 1  

B (712 -> 912) ' 4 9/2,1,7/2, -1 1 9/2,5/2)2'i 

so t h a t  the  .predicted i n t e n s i t y  rati;o'::;is 1/36 f o r  the  712, 912- case 

and 1i8.5 f o r  the  712, 712- case. The experimental r a t i o  of about 1 / 3 , i s  

much c loser  t o  the  second case than the  f i rs t ; ,however ,  the  agreement i s  

no t  espec ia l ly  good. I n  t h i s  comparison one should remember, however, 

t h a t  e i t h e r  or  both t r ans i t i ons  may have some E2 admixture and t h a t  the  

l i m i t s  of e r r o r  of the  experimental r d t i o  are ' ra ther  l q g e ;  . . . since the  

r a t i o  i s  based on the  i n t e n s i t y  of the very weak 162 .5-k~v  gamma .yay: A 

'small amount of configuration mixing can a l s o ,  a l t e r  the  predicted r a t i o  

r a the r  ser iously .  

I n  the  case of the  207.8-' and 126.2-kev pa.ir,, the  ener;gy- 

dependence f ac to r  i s '  
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. . .  . . 

The only' s t a t e  t h a t  seems reasonable i s  the:: one $n which::..fi= : 7 /2  and 
. . , . 

K = 712, s ince  no K = 312 s take . . appeel-s i n  t h i s  reg$ and M l  . t r & ~ s i , -  

t i o n s  from a K = 1 / 2  band a r e  K-forl~idden, A K being 2, and thus the 

Clebsch-Gosdan . coef f ic ien t s  vanish ident ica1lyi  me redu'ced t r ans i t i on  

probabi l i ty  r a t i o s  based on s t a t e s  of 3/2, 5/2- andt 3/2, ,712- a re  5/2 

and 10.211 respect ively ,  ne i ther  of whtch give reas6n.able agr.eement with 

experiment .' The reduced t r a n s i t i o n  probabi l i ty  fqf 712, 7/2- gives a 
, . '  . 

value of 1/3.b9 tpus predic t ing a t o t a l  i n t ens i t y  r a t i o  of3:i;i'pg. The 

experimental value, assuming 6% M1 f o r  the  7/2-' -> 7/2-- t r ans i t i dn ,  

i s  1/14. 
One i s  .Lernplsed fro111 the  above calcu.lations t o  ass:ign the 

l e v e l s  as 7/2,9/2- and 7 /~ .~7 . / 2 -  respect ively ,  bu t  .it should be noted 

Lilat tlic cncrgy separation of the  two i s  141-0 lrcv. The e f f ec t i ve  moment, 
Z of i n e r t i a  parameter fi. 12% calcula ted from t h i s  separation i s  15  ...7 kev, 

while a l l  previously repopted values f o r  t h i s  s t a t e  are  about 12.6 kev. 

T h i s  plus the  f a c t  t h a t  the  lk0k'l-kev t r a n s l t l o n  ,is.vrYy'.w8eak t l w d s  sm;e 

doubt on the  assignments. These e f f e c t s  might be explained by 'n9 t ing  
. . 

t h a t  some rotat ional-band in te rac t ion  pe'sterbations are t o  'be eipected.  

Since the  Ml-E2 mixing r a t i o  of the  712- -> 5j2- intraband 

t r a n s i t i o n  seems t o  agree wel l  between t h e  t'wo isotones,  it i s  of i n t e r -  

e s t  to C R Z C I . I ~ ~ ~ ~ P  wha.t, i to w m ~ l d .  he from thc  theory a d  comp,we the  resul ts . ,  

Rohr m d  ~ o t t e l s o n ~ ~  give the  t r w s i t i o n  p robab i l i t i e s  f o r E 2  A d  M 1  

t r ans i t i ons  within a r o t a t i o n a l  band between . s t a t e  '2. i 1' .and .I.. .as 

n 

where I, Q,  and K' are  t he  quantum numbers previouSly .defined, M i s  the 

Illass of t he  proton, c i s  the  speed of l i g h t ,  ga i s  the  gyromagnetic r a t i o  

of the  l a s t  odd p a r t i c l e  t h a t  associated with the  co l lec t ive  motion 

of the  nucleus, and Q the  i n t ~ i n s l c  quadrupole morngr1.L. 
0 

A number of the  parameters needed i n  the  calcula t ion have been 

measured f o r  Tne p i n  has ,Seen deterfi2ne.d as j/2 by severa l  



. . 

Tnvestigators, 23r 37'38 and the  magnetic moment obtained' from atomic 

spectroscopy i s  given as  -01 .67~~  and -0.6537 nuclear magnetons. The 

published measurements of the  quadrv.pole moment a re  i n  wide disagreement, 

giving Q values from 6.7 $0' 10.9 and therefore  were nbt used. The i n -  
0 

t r i n s i c  quadxupole moment i s  given from the  .theory by 

<. 

and using values or 6 = 0 .  z~~~ and RZ = 1.2 x 10 -I3 A f o r  the  nuclear 

radius  gives a value of 

Qo 2 8.3 barns. 

The fac tor  g i s  given approximatel,y a s  

Bohr and M ~ t t e l s o n ~ ~  give the  magnetic moment as 

1 
0 

I 
4- 

0 
P = I o + l  % ' 

where I i s  t he  ground-state spin.  Using the  measured value f o r  I and 
0 0 

. . 
. . the  above value f o r  gR9 one obta ins  from t h i s  equation a value of . ' ,. 

. . 
Eeturning t o  the  equations f o r  the  reduced t r a n s i t i o n  p robab i l i t i e s  and 

.. , 

. . .  . -taking t h e i r  r a t i o ,  one obtains the  expression 
. .  ' 

. .  . 

. . 

Noting. that  K = .Q and subs t i t u t i ng  the  values obtained above i n t o  t h i s  
. 8 

- .  equation, one obtains a mixing r a t i o  of 
. . 

8 - -2 - = 2 . 0 x l O  , 
m-1 . . . . 

. . . . 
which i s  t o  be compared t o  the  5% o r  6% found experimentally. The agree- 

ment i s  qu i te  good cocsidering the  zpprax5natiscs in -~s lvcd  i n  3t;tzining 

values of Qo and 6 ~ .  



A;  Introduction 

The permanent -magnet e lec t ron  speckrographs are  among. the more 

u se fu l  and v e i i a t . i l i  t oo l s  airailable t o  the nuclear spectrpscopis t .  The 
,-- 

acc'Ukacy with which . t r a n s i t i u n  . energies ' c 6  be deti.&ined . . i s  second only 

t o  Such instruments as ben t -c rys ta l  spectromk t e r s ,  .,.bhich &e g rea t l y  

PSmited"oy t he  large  amount of a c t i v i t y  necessasy f o r  t h e i r  use. The 

ke'solutian of the  spectrographs i s  about 0.1%; which allows separation 

of L.-. md M-subshall I!nes a t  energies commonly.encomtered , _  experimentally. 

They w e  r e l a t i v e l y  inexpensive and a re  dependable over iong periods of 

time, the  only po.ssible breakdown being .due t o  f a i l u r e  of the vacuum 

.system. Their only se r f  ous drawback i s  the  d i f f  i&lty encountered i n  

measu~ing  r e l a t i v e . l i n e  i n t e n s i t i e s .  It would a l so  be desirab,le, of 

course, t o  r e t a i n  the  above fea tures  and s t i l l  decrease the  necessary 

amount of sample. This investigation w a s  undertaken with b6th these 

p o s s i t i l i t i e s  f o r  improvement i n  mind. . . 

A s  discussed . in  the  sec t ion  dealing with the  conversion- 
1-75 e lec t ron  spectrum of Ta , the  major d i f f i c u l t i e s  encountere'd i n  r e -  

l a t i v e  - in tens i ty  measuremhnts a re  due t o  t he  uncer ta in t ies ,  involved i n  

measuring photographic o p t i c a l  densi ty .and converting these  da t a  i n t o  

of r e l a t i v e  numbers of e lec t rons  incident  upon the  photographic 

p l a t e .  Since t h i s  problem was previously d e a l t  w i t h  i n  the  spec i f i c  

case, the  discussion i s  not rcpcaLed here,  It i s  ohvj:mls t h a t  a method. 

i n  which indivldUal even'ls ut. c o u ~ t e d  -- f .c., un e lec t ron  s%.r i l r ing  
a t he  photographic p l a t e  -- e n t i r e l y  elilllinates the problems usual ly  as- 

socia ted with the  photographic method, 

The technique of counting individual  t racks  of ioniz ing p a r t i -  

c l e s  i n  photographic emulsions has been used extensively  i n  other  f i e l d s  

of invest igat ion.  Alpha-particle spectroscopis ts  have developed the  

method i n t o  a widely used technique f o r  the  inves t iga t ion  of heavy- 

element decay schemes. It was f e l t  qu i te  des i rable  t o  attempt adaption 

of the track-counting method t o  conversion-electron spectroscopy. 



Several  inves t iga tors  have published the  r e s u l t s  of sh i l a r  
40 s tud ies .  Both Antonova and ~ l e i r i ! ! e i n s ~ ~  used an e lec t ron  t rack  method 

and reported studying the  conversion e lect rons  of ~s~~~~ Antonova r e -  

ported an increase i n  s e n s i t i v i t y  f o r  h i s  spectrograph by a f ac to r  of 

300 t o  500 when the  counting method w a s  used. These s tud ies  were at  
. % 

higher energies than 0-i.i.r invest igat ion and magnification was thus l e s s ,  

being from 300 t o  450. Kleinheins a l so  invest igated the  be t a  spec t ra  

of Co60 and The instruments i n  both cases had low resolut ion 

and high transmission, the  opposite of our case, 

A nethod more analogous t o  o m s  w a s  reported by Reitmann e t  

a ~ . ~ '  i n  which the  l i n e s  of the  411.8-kev t r a n s i t i o n  in were 

s tudied by using 100-micron-thick I l f o s d  G5 emulsion at 2000-power 

magnif i cat ion,  

B, Description of the Method 

Standard spectrograph-size p l a t e s  were obtained with a 2.5- 

micron-thick layer  of I l f o r d  G5 nuelem emulsion from I l f o r d  Ltd. of 

England; The p l a t e s  were s tored i n  the  laboratory" underground film- 

storage cave unti l  needed. Ordinary exposure methods were used i n  the  

spectrographs, and. development procedures were as described previously 

i n  the  experimental sect ion.  

I n  order t o  have p l a t e s  f r e e  f'rom background t racks ,  a method 

of background eradicat ion .was invest igated.  P l a t e s  were placed .inside 

a s t a i n l e s s  s t e e l  l i g h t t i g h t  tank i n  an atmosphere sa tu ra ted  with water 
0 vapor s;t 35 C f o r  periods of one t o  several  days. The emulsion sof tens  

a t  these  temperatWes and the  . l a t e n t  images of t racks  formed i n  .it are 

destroyed, There w a s  no noticeable decrease' i n  emulsion s e n s i t i v i t y  due 
, ? 

t o  t h i s  procedure fo r  treatment periods of up . t o  3 days, Following -::a.:. 

s e r i e s  of t e s t s  on background contributions it w a s  fourid t h a t  the  .movlnt 

of background i n  the  .p la tes  a t  .the time they were used w a s  negl igible  

cornpaxed with the  contr ibut ion from 'sc.at tering and contamination within 

the  spectrograph camera, and' therefore  e rad ica t ion  was not  rou t ine ly  

performed. 
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I n  addi t ion t o  the contri.buti'on of t rue  e lect ron tradks,  there 

was a decrease i n  "signal-to-noise" s a t i o  because of sprnious developed 

gra ins  i n  the  emulsion; these a re  always present,  and are  a function of 

development time, development conditions, and other var iables .  The 

heaviest  concentration of develope6. gra ins  i s  at the  surface of the 

emulsion ( p a r t i c u l a r l y  i f  the  film i s  not ca re fu l ly  handled, s ince  s l i g h t  

pressure on the  emulsion f o q s  some l a t e n t  image), and two methods were 

found t o  el iminate most of these surface g ra ins ,  F i r s t ,  the  addit ion of 

ammonium th io su l f a t e  i n  varying concentrations t o  the  f i x ing  solut ion 

seemed t o  help somewhat, and second, it was found t h a t  a damp t i s sue  

riibbed gent ly  over t,he cupface of the  p e l l i c l e  could pol ish  away the  

~~nwanted laycr  without a f fec t ing  the  i r i  Lerior of the emulsion. The 

~lunlber of gr~inr, remaining J11std~: was s t i l l  qui te  larage, about 2x10 
4 

grains  per  mm2 I n  t h e  ku241 pla te  diocuoocd belorr. 

Wh.ile , t racks  were being counted the  focus depth of the  micro- 

scope i n  the  emulsion was continuously var ied up and down i n  order t o  

de t ec t  t r acks .  t h a t  ,penetrated a t  s t eep  angles. Some previous i nves t i -  
2' 

ga tors  have t i l t e d t h e  f i lm with re.spect t o  the e lec t ron  t r a j ec to ry  

q i s ,  but  t h i s  was not  done i n  t h i s  study. Because the paths of the 

e lec t rons  i n  the  medium were very crooked it was not considered t o  be 

of s i gn i f i c an t  benef i t ,  and futhe~n~nlore would have added a compll cat,i.on 

i n  l f ne  shape and posi t ion.  The ac tua l  thickness of the  emulsion layer  

could be i n c r e a ~ e d  by soaking the p l a t e  i n  glycerine p r io r  t o  counting 

i f  des i red.  

Of c r i t i c a l  importarlce t o  Lhe usefulness of a counting metb.oil 

a r e  the t r ack  length and grain  spacing of the t rack.  Grain spacing i c  

o f '  i n t e r e s t  since it becomes' increas ingly  d i f f i c u l t '  t o  recognize t racks  

when the mean dis tance betweeri the  grains  i n  a t rack  approaches the mean 

 ando om grain  spacing. Zajac and  ~ o s s ~ ~  reported a study of mean range 

and number of gra ins  developed per t rack  i n  a s imilar  emulsion, Kodak N T ~ .  

Their e lec t ron  energies varied from 30 t o  250 kev and the  r e s u l t s  seem i n  

gocrd agreement with out  observations on 1 l f o r d  G5. Some of . t h e i r  da t a  

a r e  shown i n  Table X I I I .  



Table X I 1 1  . 
. . 

Electron ranges and numbers of gra ins  per t rack  
i n  photographic e lec t ron  'emulsion 

Electron.energy Mean range Mean No. of 
' (ke'v) (microns ) grains.  per t rack  

From these one can calcula te  the grain  densi ty  along a t rack ,  

and the  r e s u l t s  a re  shown i n  Fig ,  14. It i s  seen t,hat, tthp track densi ty  

through t h i s  energy region i s  not  changing very rapidly ,  so t h a t  it 

should.be possible t o  extend the method t o  a few hundred kev by su i tab le  

va r i a t i on  i n  the  degree of magnification of the  counting microscope. I n  

order t o  record a l l  o r  most of the  t rack  it would ne necessary, however, 

t o  increase the  emulsion thickness fo r  e lect rons  of higher energy. So 

f a r  our invest igat ions  have been with the  t h i n  emulsions i n  t he  low- 

energy region. 

. Figures 15, 16, and 17 a r e  photomicrographs of e lec t ron  t racks  

i n  a t y p i c a l  p l a t e .  This p l a t e  i s  from.'a shor t  exposure t o  an Am 
241 

source. ~ a ~ n i f i c i t i o n  i s  about 1000 x. Figure 15 shows an g e a  of high 

t rack  densi ty  near the  maximum of t he  LI l i n e  of t he  59.6-kev t r ans i t i on .  

The energy of the  incident e l e c t r o n s ' i s  about 38 kev and t he  t r ack  

lengths a r e  about 10 microns, i n  agreement wi th  the  da t a  of Table X I I I .  

I n  a rea  1 the individual  t rack  loc~. t , ions  have been dcabn i n .  Onc notes 

. t h a t  most of the  tracks' i n  t h i s  a rea  can be reqognized with t h i s  s ing le  

depth se t t ing ;  however, the  dark spots numbered 4, 5; 6, m.d 7 are  t y p i c a l  



Electron energy ( k e v )  
M- 17194 

Fig. 14. Grain spacing ' in e l e c t r o ~ - . t ; ~ a c k  nuclear photographic 
emulsion. 



MU- 17202 

Fig. 15. Photomicrograph of electron tracks in a region of 
high t rack  density. 
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.,- , , Fig. 16. Photomicrograph o r  electron track$ i n  s region OF - -- moderate t rack density. 



Fig. 17. Photomicrugraph of electron tracks in a line-free 
background region. 



examples of darkened areas not recognizable as tracks. By moving the 

focus-depth se t t ing  of the microscope up and down it is easy t o  decide 

i f  they are random spoiis or  tracks, since the l a t t e r  are seen t o  have 

extensive depth in to  the film s o  tha t  a short portion of the track i s  

i n  focus for  several microns. Provided there i s  l i t t l e  overlapping, a 

continuous s l ight  up-and-down motion while counting makes it very qasy 

t o  distinguish t&,cks. 

Area 2 i n  Fig. 15 shows the probable location of the individual 

tracks giving r i s e  t o  an extensive darkened area. This area woad be 

part2l.y T C S Q ~ V C ~  by vertical-focus -ar ia t ion  but there wrs117A still be some 

uncertainty as  t o  the actual  number of tracks i n  the group. The presence 

of such groups, with the i r  overlapping tracks, indicates the approach t o  

the maptimm track dens1 Ly LhaL c*i l i  LC counted. It ha$ becn fauna tha t  

the maximum number t h a t  can be counted without appreciable uncertainty 
4 i s  about IQ tracks per square millimeter of p la te  surface, for  electrons 

of t h i s  energy. It may be noticed tha t  most of the spurious 'tfog" grtrfns 

i n  t h i s  figure are out of focus. This is because focus i s  rather  deep i n  

t h i s  photomicrograph and gog grains are m o s t  always mas the  surface. 

Number 3 i n  the f igure desig3.lates an alpha-particle track. These tracks 

are occasionally seen because of the presence i n  the  spectrograph cameras 

of contamination by alpha-particle-emitting isotopes from prdv5flw samples, 

and perhaps also because of s~;~~%t,ering from the source i t s e l f  i e ' i t  emits 

alpha par t ic les .  Tlzere is  no danger of mistaking the alpha-particle tracks 

f o r  electron tracks,, .l%nce the farmer are long, derlue, m(1 versy str&igI~t 

compared with electron tracks. The only undertainty i s  due t o  me alpha- 

par t ic le  t racks crossing electron tracks i n  a s m a l l  angle, thus causing 

electrons t o  be overlooked i n  the count. This part icular  alpha-particle 

track is seen t o  cross at l e a s t  one electron track. 

Figme l6 is a photomicrograph taken i n  an area of lower-track- 
F 

density i n  the low-energy ta i l  of the conversion-electron l ine .  There 

are roughly 15 tracks i n  the figure from electrons of about the r ight  

energy. In  addition, a t  the positions lalieled 1; 2, 3, and 4 one sees v 

tracks whose grain spacing i s  too wide t o  be at t r ibuted t o  electrons of 

40 kev energy. These are probably a l l  high-energy Compton electrons and 



photoelectrons produced i n  the  camera by. the.gamma rad ia t ion  from the  

sample. On the  ba s i s  of gra in  spacing one may discriminate against  the  

high-energy e lect rons  s t r i k i n g  the  p l a t e .  One may discr iminate .against  
. , 

low-energy ones r e su l t i ng  from elect ron s ca t t e r i ng  by t he i r .  shor t  length 

and dense'g'rain spacing. This i s  an advantage of the  method; it i s  

almost unique t o  t rack  counting. I n  addit.ion t o  these events there  i s  

a t rack  a t  posi t ion 5 which i s  undoubtedly an alpha-particl 'e t rack,  and 

t h i s  can be e a s i l y  seen by varying the v e r t i c a l  focus, since Lt would 

appear as, a long, s t r a i g h t  and irery dense . l i n e .  

An a rea  a t  a higher-energy spectrograph.plate - s e t t i n g  where 

the  background i s  very low may be seen i n  Fig. 17. Tracks labeled 1, 

2,  and 3 are  e a s i l y  recognized a s  due t o  s ingle  e lec t rons .  ., . Numbers 5 

and 6 are  probably t racks  of low-energy scatter~ed;.ele.cBrons. Number 4 
may be e i t h e r  two t racks ,  each p a r t l y  out  o f .  focus, o r  a s ing le  t rack  

w i t h ' a  'sharp co l l i s i on  angle. The question could be e a s i l y  decided by 

changing the v e r t i c a l  focus. This wpuld probably not be necessary i n  

p rac t ice ,  s ince the  region of the  emulsion t h a t  appears i n  focus on t he  

photomicrograph i s  significant81.;y l e s s  than t h a t  i n  focus v i sua l ly  when 

one i s  counting. It should be mentioned a l so  t h a t  t he  photomicrograph 

equipment produced.magnification only 70% t h a t  of %he counting micro- 

scope used i n  co l lec t ing  t he  da t a  presented below. The 6-by-6-square 

g r i d  r e t i c l e  was not reproduced i n  the  photographs, e i t h e r .  This g r i d  

i s  a grea t  help i n  ac tua l  counting, s ince  the  counting a rea  was thus 

conveniently divided i n t o  smaller areas which allowed one t o  make a 

count i n  a s e r i e s  of s i x  hor izon ta l  o r  v e r t i c a l  sweeps of the  eye f o r  

a s ing le  microscope stage s e t t i ng .  

Two d i f f e r en t  magnification s t rengths  were used i n  t h i s  study. 

The 12 x eyepieces were used i n  conjunction with a 90 x oil-immersion 

object ive  t o  give a f i e l d  of view s imilar  t o  t h a t  seen i n  the  photo- 

micrographs, and a l so  i n  conjunction .with a 43 x dry object ive .  These 

arrangements w i l l  be re fe r red  t o  as "highff and "low" power respect ively .  

The counting .area under high power w a s  a square 85.7 microns 

by 85.7 microns divided i n t o  36 equal smaller squares. When counting 

through a given region, one 'took counts each 100 microns, and thus there  



was - no overlap. When a rea  knowrl t o  contain a peak was being counted 

' t he  stage s e t t i n g  was made every 50 microns i n  order t o  obtain more 

c lose ly  spaced points .  The extent  of overlap i s  show i n  Fig. 18 along - 
with the counting areas  under low-Gower magnification. .When low power 

. w a s  .used the  countifig f i e i d '  was ' 168 by 168 microns squale, giving a . . 
2 .  

. - t o t a l  a rea  of 0.0282 rnm . .Stage se t tzngs  were made a t  200-micron i n -  
- 

" t e r v a l s  when t h i s  magnification was used, except t h a t  i n  known peak 

a reas  s e t t i ngs  were reduced t o  100 microns. Alternately,  at low power, 

t h e  f i e l d  was counted a s  s i x  v e r t i c a l  s t r i p s  t o  decrease the  point  

g p n c i n ~ .  A discussion nf the r e l a t i v e  advantages of each method ap- 

pears  i n . , t he  following sect ion dealing with experimental r e s u l t s .  

' '2. L-Subshell Rat ios  at  30 kev 
. . . . 

One of the  saplples se lec ted  fo r  t e s t i n g  the  e lec t ron  t rack  
241 

lur  Lllod was Am . This isotope pnpul.at.es l e v e l s  i n  ~p~~~ by alpha decay, 

and the  subsequent gamrna-ray t r ans i t i ons  include one of 59.6 kev. The 

energies of the L-subshell conversion-electron l i n e s  a re  37.2, 38.0, and 

42,0 kev, and t h e  r e l a t i ve - in t ens i t y  r a t i o  of t he  three  l i n e s  has been 

we l l  'studied. Table X I V  summarizes the  r e s u l t s  given by some of the  

inves t iga tors  who have determined t h i s  r a t i o .  

Tab l ~ - ~ I V  --- .--- 
59.6-kev ~p~~~ L-shell  conversion-electron i n t e n s i t i e s  

--.-.*- ". 

Relat ive  I n t e n s i t i e s  ...-. ".- -. - 
Reference 

L~ L~~ L 1 ~ ~  
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. . . . . . . --- Low power ------ 

Mill imeters 

Fig. 18. Diagram nf c'ounting f i e l d s  used under high- and low- 
power magnification, showing va r ia t ion  used i n  the region 
of a suspected l i n e .  



2 41 
I n  our invest igat ion a s t rong Am source was recorded on the 

99-gauss spectrograph f o r  1 day. The r e su l t i ng  p l a t e  shoyed the  L and 1. 

L~~~ 
l i n e s  a s  jus t  ba re ly  v i s i b l e ,  the  LII being ra ther  e a s i l y  seen. An 

exposure of the  same length of time us ing . the  same source with Kodak 

Noscreen x-ray fi lm, which i s  rou t ine ly  used i n  t he  spectzographs, gave 

near ly  i d e n t i c a l  v i sua l  darkening. This ind ica tes  s imi la r  o p t i c a l  sensi -  

t i v i t y  of the  two fi lms t o  e lec t rons  of t h i s  energy. The e n t i r e  a r ea  of 

the  th ree  l i n e s  was counted under high magnification four times a t  d i f -  

f e r e n t  v e r t i c a l  s tage s e t t i ngs .  The number of t racks  at each hor izontal  

pos i t ion  was summed f o r  each s e t t i n g  and the  r e s u l t s  were p lo t ted  as  

number of t racks  counted i n  the  four scans, versus distance along the 

p l a t e  ( i n  mi l l imete rs ) .  This curve i s  seen i n  Fig.  19. Limits of e r r o r  

are not given, s ince  the  standard d e v j ~ t ~ i n n  due t o  the  number of t racks  

counted i s  obvious and the  contr ibut ion from uncer ta in t ies  i n  t rack  

recognit ion i s  d i f f i c u l t  t o  es t imate .  

The maximum number of counts shown i~ 310, which represents  , 
about 80 t r acks  per f i e l d  of view. This i s  very close t o  the  maximum 

elect ron- t rack densit>y t h a t  can be counted a t  t h i s  magnification. The 

background counts i n  t h e  a rea  around 6 mm on the  sca le  show11 i s  about 

25 elect rons .  The maximum signal-to-noise r a t i o  t h a t  one can obtain 

under these  condit ions i s  thus about 12. The peak a t  7.5 mrn i s  e a s i l y  

seen even a t  these  r a t h e r  low counting s t a t i s t i c s ,  and it has a r a t i o  

of l e s s  than 2 .  The shape of the  peak can presumably be improved s ig -  

n i f i c a n t l y  'try I1lul.e com.ts, thuo decreasing t he  i.lnr.~rt,ai.nty due t o  

s t a t i s t i c a l  f luc tua t ions .  A number of l i n e s  m e  seen.between t h e  

l i n e s ,  and one between the 5 and LII;--, 
41 

and L~~~ 
These are a l l  known 

. l i n e s  and groups of l i n e s  from other  t r ans i t i ons  i n  N ~ ~ ~ ~ .  The peak 

at 7.5 mm i s  assigned a s  the  sum of the  M l i n e s  of a t r a n s i t i o n  at 43.5 
kev . 

The r e l a t i v e  i n t e n s i t i e s  of the  three  .conversion-electron l i n e s  - 
may be obtained by taking a r a t i o  of the  areas  of t h e i r  peaks corrected 

f o r  differences: . in spectrograph geometry. This procedure r e s u l t s  i n . &  

r a t i o  of L ~ / L ~ s / L ~ ~ ~  = 1.0/2.1/0.50, i n  good agreement wi th  the  o ther  



Millimeters 
M U -  171.96 

Fig. 19.  Track dens i ty  of t h e  59.6-kev t r a n s i t i o n  L-subshell 
l i n e s  i n  Np237 counted under high-power magnification. 



values i n  Table XIV. I n  t h i s  t ab l e  one notes t h a t  a l l  va lue s  of L ~ / L ~ ~  

a r e  i n  exce l len t  . agreement. . The var ia t ion  i n  the  r e l a t i v e  i n t ens i t y  

of t he  l i n e  i s  p a r t l y  due t o  i t s  smaller value and consequent .. 
grea te r  uncer ta inty ,  and a l so  due i n  p a r t  t o  t he ' f a c t  t h a t  i n  most i n -  

tensity-measurement methods the  weak l i n e  on i t s  low-energy s ide  would 

no t  be resolved out .but would be i~ ic luded  i n  the  reported intensj.t,y of 
L- 

the  l i n e .  T h ~ i  &h&'repor&d .values ,fo? the L l f ne  expected t o  I11 
vary with .the reso lu t ion  of the  instrument used i n  i t s  determination. 

. . 
This i s  v e r i f i e d  by the  f a c t  t h a t  our value qf 0.50, i n  which the  l i n e  

i s  completely resolved, i s  among the  lower ones reported.  

The came spectrograph pla lk  was a l so  counted a t  low mae;nifi- 

ca t ion .  Only two count ing.areas  per  stage s e t t i n g  were counted, a s  

opposed t o  fdm' areas  urlder h i g l ~  magnification, The ,I.arger counting . 

a r e a  allowed a'maximum of 575 t racks  t o  be counted i n  t h i s q e t h o d  com- 

pared wj.t,h only 310 f o r  the  previous one, even with half  t he  number of 

counts .being made. This gives a calcula ted courlting-area r a t i o  of 3.71, 

while the  measure'd a r ea  r a t i o  i s  3.83. The di f ference i s  wel l  within 

t h e  l i m i t s  of e r r o r ' . i n  the  f i e l d  measurement and counting s t a t i s t i c s ,  

ind ica t ing  t h a t  t he  same numbers of e lec t rons  were counted per u n i t  a rea  

with both mappifri.cations. The signal-to-noise r a t i o  has a maximum value 

of 6.7 a t  t h i s  magnification, r e f l e c t i n g  the  g rea te r  d i f f i c u l t y  i n  d i s -  

t i n g u i ~ h i n g  between t racks  of the  cor rec t  energy and sca t te red  e lect ron 

t racks .  The curve , i n  Fig. 20 a l so  demonstrates the  l o s s  of reso lu t ion  

wi th  lower m'agnificat'ioril,; 

Do Higher-Energy Conversion-Electron Lines :/ 
In  order t o  explore the  s e n s i t i v i t y  of' t he  method and t o  look 

a t  t r a c k s  of higher -energy e lect rons ,  a sample of was invest igated 

on a 160-gauss ~ ~ e c t r o ~ r ~ ~ h .    he l i n e s  chosen t o  count .were the  198-kev 

K l i n e  and the  291-kev L l i n e s  .of the  313-kev t r ans i t i on ,  and the  280.-kev 

L l i n e s  of t h e  301-kev t r a n s i t i o n .  . These l i n e s  a re  shorn i n  Figs .  21 and 

22. Three count ing,areas  per microscope s tage s e t t i n g w e r e  scanned. 

Since areas  o f '  d i f f e r e n t  dimensions were experimented with during, , these 



Millimeters 

Fig. 20. .Track dens i ty  of t h e  59.6-kev t r a n s i t i o n  L-subshell 
l i n e s  i n  ~ ~ 2 3 7  coun;ted under low-power magnification. 



Millimeters 

M U -  17198 

Fig. 21. 198-kev conversion-electron line in the decay of 
~ a 2 3 3 .  



M U -  17199 

23 3 Fig. 22. Conversion-electron lines in the decay of Pa . 



counts, t he  r e s u l t s  are  normalized t o  give the  numbers of e lec t ron  t racks  

per  square mill imeter.  A l l  counting was done under low-power magnification. 

Exposure time was 15 minutes. 

The 198-kev 1ine.was e a s i l y  v i s i b l e .  It may be seen i n  Fig. 23, 

where the  t rack  p l a t e  t h a t  was'counted i n  t h i s  experiment , i s  compared with 

a p l a t e  exposed on the  same spectrograph f o r  a longer period u f  t b c .  The 

l i n e s  a re  a l l  e a s i l y  seen i n  the  l a t t e r  p l a t e .  Only those sect ions  of the  

p l a t e s  a r e  shown in.which the  l i n e s  appear. The l i n e s  a t  226 and 291 kev 

can jus t  be seen i n  -the t rack  p l a t e  under good condit ions,  but  the  l i n e s  

a t  280 kev are not v i s i b l e ,  

Figure 21 shows the  r e s u l t s  f o r  t h e  198-kev l i n e ,  which i s  the  

most in tense  l i n e  i n  the  spectrum. It was immediately obvious t o  

t h e  inves Ligator t h a t  i n  the  m e a  of g rea tes t  t r ack  densi ty  the  number 

of t racks  could not be accurate ly  counted because of grebt u e c r t a i n t y  j n  

resolving separate  t racks .  . This f a c t  i s  d e f i n i t e l y  seen i n  t he  f igure ,  
2 

s ince  a l l  .counts . above 7,500 t racks  per mm are random and obviuusly low. 
4 

This again ind ica tes  an upper l i m i t  of about 10 t racks  per mrn2 a s  the  

maximum countable t rack  densi ty .  T h e  maximum signal-to-noise r a t i o  i s  

apparently near 1 2  o r  s l i g h t l y  higher.  Since the  spectrometer used f o r  

t,hi.s sample was new and r e l a t i v e l y  f r e e  from contamination, and since the  

exposure time was shor te r  by a f ac to r  of 96, it i s  believed thaL ~ o s t  of 

thc  background, comes from e lec t rons  sca t te red  from the  source and not  

from camera contamination. 

T'he de11t;i Ly of tsaclr ,~ ncc?ssn.ry t o  give a v i s i b l e  l i n e  can be 

seen from Figs.  22 md 23. Tl~e 291 kev linc i F, v i s i b l e  and the  226-kev 

l i n e  i s  j u s t  a t  the  lower l i m i t  of v i s i b i l i t y .  This ind ica tes  %hat a 

densi ty  of aboul: 1,500 t racks  per mm2 makes the  l i n e  v i s i b l e  a t  t h i s  

energy. It i s  a l so  noted t h a t  t he  presence of a l i n e  whose maximum t rack  

densi ty  i s  around 400 i s  e a s i l y  confirmed by t h i s  method. 



Fig. 23. Sections of the electron-track plate  of used 
i n  t h i s  study and a standard p la te  exposed for  a much 
greater length of time on which a l l  l ines  are  easi ly 
visible'. . 



E. Discussion 

One of the objectives of th i s  study was t o  determine the feasi- 

b i l i t y  of obtaining accurate relat ive intensibies of conversion-electron , 
1 

.I 

l ines  by track counting. The good agreement between the value obtained 

for the L-subshell r a t i o  i n  the N~~~~ transition and values reported by 

others shows that  the method can give rel iable results.  The labor in- 

volved i s  considerakly greater!- fm other methods. The time neces- 

sary t o  obtain I& data on the ItPz3' t ransi t ion was several hours. This 

i s  offset t o  so& extent by the greater accuracy possible. Fi rs t?  the 

ree;.~1zrOiclll. ~ 9 .  %he s p - c t ~ ~ g r a g h  can be gully utili-zed as an a i d  i n  avoid- 

ing uncertainty caused by contributions t o  observed gakensit le~ Prom 

other close lines. This w a s  seen clearly i n  the LIII l ipe i n  the N~~~~ 

t ransi t ion,  !I& second factor i s  that one cw, Ly repeated esmting over 

a given area, &prove the s t a t i s t i c a l  certainty of the resul ts  to  any 

desired degree. Third, the great uncertainty due t o  mathematical, con- 

version of optical density t o  nmbbr of electrons &a entirely removed. 

This is  very important when l ines  &re wtdely separated i n  energy. The 

fourth possltble4 advantage comes fram the fac t  that  l ines are countable 

even though they are very much &ss intense than i s  usually necessary, 

so that ra t ios  can still be oqtained although the amount of exgosure i s  

limited by short half l i f e  ar'small amount of activity, 

TLLa sectma p a ~ f b l e  ueefuLness of the method was t~ incregse 

the effective sensi t ivi ty of the spectrographs. The increase actually 

seen is rat he^ disappointing. All three l ines  in the Lransifion 

could be seen visually and the other l ines seen i n  the area beccsne ob- 

vious only a f te r  repeated counting. These l ines would probably not have 

been seen i n  a single count bhrough the studied film area i f  they had 

contained less  than 50 tracksibn the scale used.in Fig. 1 Since 8 l ine  

needed only about 100 tracks 20 be visible,  the sensi t iv i ty  increasei a t  - 4 , -= .A 

30 kev is a factor df only about 2. It s h o d  be fu r ther  noted that  the 

area counted was about 1/2 inch out of a t o t a l  of 15 inches of the spectro- 

graph plate. The labor involved in  counting an en t i re  plate is  obviously * 

prohibitive for  most cases, and r e s t r i c t s  the method t o  seqrching Sn 



area  i n  which ,one has reason t o  expeqt the  occurrence of l i ne s .  Of 

course, t h i s  i s  usual ly  the  case, slnce gamma-ray spec t ra  can be ob- 

t a ined  on samples of l imi ted s ize ,  and conversion-electron energies 

may be estimated from them. 

. 'The increased s e n s i t i v i t y  -is ra ther  b e t t e n  ... at higher energies ,  

From Fig. 22 one sees t h a t  the t rack  dens i t y  of 1,500 per mm2 i s  jus t  

v i s i b l e ,  and the  l i n e  of only 400 per rnm2 i s  e a s i l y  located.  This i n -  

d ica tes  an increase i n  s e n s i t i v i t y  by a f ac to r  of about 4. 
I n  comparing the  two degrees of magnification used, it i s  

notcd t h a t  a t  low power one car1 count much l a rge r  numbers of t racks  per 

s tage s e t t i n g  and thus per u n i t  time. The disadvantages are  i n  decreased 

signal-to-noise r a t i o  because of l o s s  of discrimination a b i l i t y  and de- 

creased resolut ion.  A combination of the two might be used where a low- 

power scan determines the  pos i t ion  of l i n e s  and a high-power count 

confirms them and measures r e l a t i v e  i n t e n s i t i e s ,  

Of general  i n t e r e s t  t o  those who use these spectrographs i s  t he  

number of e lec t rons  needed t o  produce a v i s i b l e  l i n e  on t he  spectrograpll 

p l a t e .  Since the  l i n e s  are  about 15 mm long, the  number needed at  30 kev, 

deduced from the  Am241 sample, is  about 13,500 e lec t rons  per l i ne ,  A 

s imi la r  calcula t ion a t  2;0 kev f o r  gives a value of about 12,000 

e lec t rons  per l i ne .  Also of i n t e r e s t  i s  the  f a c t  t h a t  even near 300 kev 

the  paths of the  e lect rons  I n  the  emulsions a re  such t h a t  most ,of  t h e i r  

energy i s  degraded within  the  emulsion layer .  

I n  summary, the  method seems useful  i n  cases involving l imi ted  

a c t i v i t y  where an increase i n  s e n s i t i v i t y  by a f ac to r  of 2 t o  4 j u s t i f i e s  

t he  time necessary t o  count the  p l a t e ,  o r  where complexity of the  spectrum 

demands maximum energy reso lu t ion ,  The i d e a l  sample should have a low 

b e t a  background and the  energy of the  l i n e s  should be a few hundred kev 

ar l e s s  with present emulsion thickness and degree of magnification. 
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