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Abstract

Statistical problems presented by the granularity of nuclear track
emulsion have been treated. In concentrated emulsions a large fraction of the
volume is occupied by solid silver halide crystals of various diameters. This
excluded volume makes inapplicable considerations that presuppose the conditions
leading to simple distributions. An exact treatment of the elementary track-cell
is given. A corrected form of the Jdanov formula is derived. The effect of the
emulsion granularity on the energy-loss straggling is calculated. A general
formulation of the developability cross section of an emulsion grain is made.

The mean primary grain density and the grain-density distribution are calculated.
The gap-length distribution is derived. It is proved that this is exponential for
gaps of all lengths, and that the gap-length coefficient is equal to the true grain
density. The cffect of secundary ionization is discussed,

Parameters have been introduced that can be evaluated experimentally,
Knowledge of these quantities will presumably be useful in further resolving the
problem of silver halide sensitivity. The statistical methods developed may be
useful in other excluded-space problems.
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A, Introduction

When nuclear track emulsion intercepts a charged particle a series of
developable grains is left in the emulsion along the particle trajectory, From
an analysis of the developed track it may be required that the particle charge,
velocity, and.mass be determined with minimum error. To do this entails an
understanding of how these particle quantities are translated by the emulsion
instrument into measurable features of the track. From the track statistics,
a particle quantity can be determined only within a certain confidence interval,
It may often be crucial correctly to estimate what this interval is. On the other
hand, sometimes it is desired to obtain the maximum amount of information from
- tracks with no more than a given amount of labor. An important respect in
which emulsion can be improved as an instrument is in the "information density"
contained in the track. One may ask how, and how much, this can be raised.
‘I'hese examples suggest that to attain mastery of emulsion as an instrument, - ‘
an understanding of its statistical behavior is necessary. That is what is attempted
in this paper.

Silver halide, which is the sensitive component of nuclear track emulsion,
is present as crystals or grains of variable size that are randomly distributed
throughout the gel matrix. Theemulsions are normally concentrated, so that a
large fraction of the volume is occupied by the crystals. This causes the
statistical problems presented by emulsion to be complex. ”

“Electron micrographs have shown, however, that the diversity of '
crystals can be reasonably well represented by a single parameter, the diameter.
Only a few of the largest crystals do not appear to be spheres, and no appreciable
error is introduced in treating them all as if they were,

One always undertakes an analysis such as this with a number of postulates,
stated or implicit. The assumption of a spherical shape for the crystals has been
stated. Some others are also perhaps worth mentioning.

#In principle, an arbitrary distribution of crystal shapes as well as sizes could
be treated with additional parameters. If the crystal shape were described by a -
spherical harmonic analysis relative to the axes of its inertial ellipsoid, a set of
coefficients would be obtained, A joint distribution function of these coefficients
would exist describing the crystal population. For each crystal there would be in
addition three space and two angle coordinates. These could be treated as random
variables subject to the constraint of noninterpenetrability introduced later in this
paper. Perhaps in certain cases such a treatment may become necessary and
practical. It can also be seen that various results obtained in this paper do not

depend critically onthe grainshape, and are true for grain populations on which lrave
been imposed only slight restraints.
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It is assumed, of course, that the mixing is complete; that there is no
stratification or marbling of the emulsion that might destroy the randomness.
The randomness also could be affected in another way if the concentration of
silver halide were so high that locally a further increase might sometimes be
impossible. Were the crystals all of one size, the maximum volume concentration
is w/3\/2 or about 3/4. Because of the size distribution of grains present
in the emulsion, the limiting concentration is considerably higher, and with a
correctly chosen spectrum of grain sizes, the concentration could be made to
approach unity,

Even if the average concentration were not near the maximum, if
attractive forces between crystals caused them to aggregate, the assumed in-
dependence and randomness of the crystals would be compromised. The
assumption has been made in this trealment that the fraction of the total volnme
consisting of such saturated volumes is negligible, The average volume con-
centration of silver halide in standard emulsion is about 1/2, and there is al-
most no evidence for the presence of crystal aggregates, The effect of crystal
clumping on measured variances therefore is expected to be small,

Another assumption is that the volume into which no crystal can intrude
is just the volume occupied by the other crystals, thus neglecting possible effects
of the electrical double layer at crystal surfaces or the protective gel envelope
surrounding each crystal, This is not a fundamental deficiency of the theory,
-and the statistics can be reformulated to permit the excluded volume to be en-
larged if the increased complexity is warranted, and if these effects are
physically important. ‘

-
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B. Statistical Geometry of the Grains

1.Expectation Values

In an emulsion, suppose the fraction of crystals with diameters. éxceeding
[ o)

D is F(D)dD. Let a crystal be penetrated by a particle, th'e segment of:

D .
path in the grain being of length 6. The joint probab111ty, U(6, D), that the
crystal diameter should be in the interval dD and that the path segment should

be in the interval dé is given by

26 db

%)

with the employment of the follow1ng deflnltlons

<D>— f DF(D)dD,

<D2>— D? F(D) dD ='<AD>Z + .02"-‘ A

U (5,D) = . F(D) dD, (1)

Then also - , .

) ; . : . - \ . |
~<A)=‘ LS <D2>= J o DZF(D) dD = I’.__<D)2(1+ <,

4 4 4 <>Z ,

D .

0
the mean crystal cross section, and
' 00 ' .
2

(vy= = D3F(’.D)dD~——- <D>3 1+ 32 4.,
o o ()%

the me.an'crystalA volume. The mean length, <6/\ , of path segments in crystals.is

B A
<6> - 2 / F(D) dD 8% ds = 2 M/ (2)
<D.Z>‘ 0 0 3- <D2> '

PO
: {1)>(1 +

)

2
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: _ ' . . | )
and their variance, <62>-<6/ 2 = 062 is: ’
/ \ \ / N g . R
0,2__9\1)2/<D4/-8-.D3)2N/\D/2 (1+130 . (3)
5 \ 2 "~ s - 2

The average number n ©of grains encountered in unit path is

=N <A> A—Z ™ <D (1+ i ) . (4)

\ 2
S
where N , the average number ol grains per unit volume, is given hy
2 . '
N 66-(1.,3" ) . (5)
/ :

Here C 1is the volume concentration of silver halide in the emulsion.

" incorrectly to calculate n. Since N(V) =C, and n = N\A

<A> _ 20% 6
Z<D> <D>2 ) . (6)

~ The term - 2 02/ <D> 2 is not present in Jdanov's relation, as usually

" employed, and this may result in a considerable error. For Ilford G.5
emulsion it is about 7% The reason for the discrepancy can be stated quite
simply: The probability for encountering a grain is weighted by thc square of
its diameter; consequently the grains traversed by a particle are on the average
larger than typical emulsion grains.

A formula known as Jdanov's relat1on has frequentl been used
§ one can write

2. Distribution Functions 0 -

Let emulsion containing N/ F (D) dD crystals per unit volume with

D :
diameters exceeding D be traversed by a particle moving in a straight line.
The number of crystals whose centers lie at a distance between P and p +dp
from the particle trajectory, and whose diameters are contained in the 1nterva1
dD, is

2" NF (D)p dDdp ‘(7)

per unit path. A particular crystal of the above descr1pt10n is labeled ''crystal C,'
and any other such crystal is of "type c."

!



S =T7- UCRL-8687

Now one considers a different crystal, C', the diameter of which lies
in the interval d D', and the center of which is removed from the trajectory a
distance in the interval, d-p'. The center of C' may be found anywhere with
equal probab1l1ty except in‘an excluded sphere of diameter -

D + D'
2
dVis'NF(D')d.D'dV

around crystal C. The probability that it be found in a volume element

In order that a segment of the particle path 11e within crystal C, p
must be less than D/2. Therefore, from Eq. (7), the meah number of crystals _
with diameters in the interval dD that are penetrated by the part1c1e in unit
path is

TN DZ

4
and the probability that any particular crystal encountered belongs to class C is

F (D) 4 D,

‘8pdp F(D)dD o - (8)
(09

One measures distance, u, along the particle trajectory from the po1nt
defined by the projection of the center of = C on the trajectory. The ''distance"
between crystals C and C' is the distance between the projections of their
centers on the 'particle path.

The probability that a crystal satisfying the description of C' should
be found at a c)hstance between p and p +d AL from crystals: C is :

1_6<—_112\_Npp"F(D)F(D')dndn'dpdé'due N e
D

One now asks for the probability p that the particle reach a distance
p after traversing C without penetrating a crystal of type C'.  This is formulated
as follows:

dde . TN o v mD)F (D) 4D 4D’ dpdp’. (10)

RIS

The next step is to calculate the probability P that the particle may go
a distance exceeding p without traversing a crystal of any descr1pt1on This is
found from :
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L ap-_ 167N F(D)F(D‘)pp‘dpdp‘dDdD'“
P dp (Dz>
' )

The projected distance A, measured along the particle path, between

centers of crystals successively traversed by a particle in emulsion is the
elementary track-cell. Equation (11) provides the fundamental statistical law
describing how this quantity varies, From Eq.. (11), the probab1hty that the

length of the elementary cell exceed . is

;{ F(D)F(D')p p'dp dp'dDdD' dy

% 7)) ey

Because crystal C occuples a finite volume from which are excluded
The constraint

all other grains, a restriction on the limits of integration exists,

can be written most simply as

2 .. N
(P "’P') ><—D—j—D) '-'pz‘,.f : :

2
(12) one distinguishés two regiori_s of. —Q—i (- D)
2

v To evaluate Eq.
When it is less than p, the above 1nequal1ty imposes no restriction on p and
p', and the integral ﬁp p'dp dp’ has the value ‘ N

2
D (D - —) - The distances p and p' are constrained only to.remain

16 2
lcse than D/2 and D'/2- respectxvely

When D is greater than p three subregions must be distinguished

P

“For. the 'mo'nfx'ent one simply defines

ffp p'dpdp'= —g:-M‘(Q,D, M,

for 1_))' p, and Eq. (11) is written

A_ wo 2D |
~ &L IF aD | F(D)F (2D - D) D*(2D-D)* aDr
P dp 1+ (D%) S . - 3
0 R ¢
~+ | dR | F(D)F(2D - D)M(Q,D,u)dDJ :
! 0

- (14)
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exceeds a certain

The functions F(D) and F(2D-D) fail to overlap.whére: .
' > ‘must

length p,, and the second integral vanishes. For complete rigor,
be set equal to the largest diameter occurrmg in the gra1n size distribution.

In the first 1ntegral when the maximum’ gra1n d1ameter is Bq> and
the integration over D and D' are independent and unrestricted.,

Then Qhe right side of Eq. (14) becomes a constant:

Mo Ho
2 - f " ’t;,_z ? '
D F(D)dD D'+ F(DY)dD.

TN
+ (%)
ﬁN- D" I | o (15)

. The probability P that a part1cle traverse a distance exceedlng P ( p)po ) with-
out encountering any crystal is therefore

P W exp (- np),' (16)

in which the constant factor W is g1ven by
7~
Hq B 2D 5 : 2
du [ 4D { F(D) F (2D - D)D“(2D - D)“ dD

hoh

o 2D ' '
4] dgj F(D) F (2D-D)M(D, D, ) dDj+ n p
o Jo - -

The function M (D, D,p) has a different value in each of three sub-

W = exp ) <D2>

regions in the integration range of D. The three functions M MII’ and
MIII have been evaluated, and are as follows: ‘

I 0<DK2 (D-p) p2 22 pzz '

MI=D4_4_D_D3+4D2D 8/3p
II 2(D-p)<D<L2p:
D4
0=z - 8/3 p D3 +(4M + 16pD - 12 D )_“
2 (17)

+ (32D - 32 pD% - 16 D) D

'+(16'QZHZ-Z4D +éi*3—-, D3)
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I . 2p&DC2D:

M. =-8(D-p)D?

. 2 o
111 t1eD (@D -p)" D

-8/3(@-p)°GBDR+p)

Then, in general, the probability "P "that the elementary cell length
A exceed p is S . 4

[ ol T2 : < |
P=exp |-t 4D | F(D)F (2D.- D) D*(2D - D)?
4 (0% |
v Jo
© 2(D- o 2y
/( p.) . ® lfP
+ dD_ / 'MIF (D)E. (2D-D)dD + dD M, F(D)F(2D-D)dD
" |J" ‘ (..- p)
q', / om—
+ | 4D HIF(D)F(ZD D)dD du y , . (18)
po 72p '
wivtlr_; .p2 = 22 - p,z
The mean-value <A> of A is found froumn
o o= C : :
AN - B -
(A>=- I p—=—  dp, o , (19)
IR Codw o
0. ' ' '
. N /2N /02 2 .
while the v;nance <A>—\A> = A .1s
» oo
.2 / 2 2 2 dP )
> (a)? = P dp. . <A) (20)
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A

3. Heterogeneity Range Straggling

The ré.n~ge: R of a particle is generally calculated from

dT

R = » where T 1is the kinetic energy of the particle and & is a certain

0 o
average energy loss per unit path, If Ry = /gT is the range in pure halide,
T : 0 - ) . . ) -
.dT is the range in pure gel, then g = VQ‘ hC -FQQg (1"-‘- .C~)',* -where

~and R_ =

g
o &

(. is the volume concentration of halide in the emulsion. This insures that

the range in emulsion will be the same as in a homogeneous material of the

same average composition.,

In addition to other causes of range straggling, ! the ranges of a mono-
energetic group of particles in emulsion fluctuate because of the granularity of
the emulsion; the stopping power of the silver halide crystals is greater than
that of the gel in which they are embedded.

Ifiin a path length u the sum of the halide paths is h, then the energy
loss ¢ in this path is '

€ =h9h+(p-h)$g,

<0 h and 8- g beiﬁg energy losses in unit -paths of halide and gel res"peciﬁveljr.
: 2 : o 2 2

The variance o of the energy loss in a path p is (;Dh -3 g) Op s

g 2 being the variance of h in path .p.. The mean value of h in path p is

{h) = C p.

The variance o 2 of h is calculated as follows: The p'rob‘aBility that
at a distance in the interval dp from crystal - C, a crystal C' may be found
in which the segment of path lies in the interval

. T a1 .
ds" (: 4p0'dpt/ [D'Z - (29')"2J2>

is

TN 0 dp 8 d6" F(D)F (D')ADAD du.

©*).
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- Then Ghz may be calculated from .

(5' <6' )61 a8 p dp F(D)F(D‘)d DAD dp.
<D2> ' | S
/ | | 21)

As in calculating the dlstr1but1on function for the elementary cell
p + p' is subject to a constraint if very short paths p, are of interest.
. Straggling of ranges that are less than the diameter of the largest crystal are
of little importance. Although feasible by the above method, it is thought o
.unnecessary to evaluate this case, and the integtration is performed without
restraints. The result is L : ‘ '

- 4\ .~ ' 3'—‘\ Z Lo .
2= gN oY | (o) c:(22)

[ - Mo
h ’ . ’ . \ .
8 g <D2/
.NOW,. ng = <e2> -:e> z , SO the.t A
\ 2+

: 4 /A3y )

o= wN (& S <D - \D/Z\ b (23)
3 94(\D ’> . &>

This is the variance of the enelégy loss in an element of path p caused
by the emulsion heterogene1ty., If o is the variance of the residual range,
and o.,.% is the variance of the’ resuﬁzal energy of a part1cle from an originally
monoenergetic population, then ' ' ‘ '

H—I;L | - 3 d(oR—Lf

wherew& = (=g l ) C %}1 is the mean space -rate of energy loss.
Therefore the range var1ance ORZ is given by o - AR
TRy 2 R
2 ~ )
2 6)4\ , 3\ - '
o, = rrN —~ 8 ) 4r. (24)
°R s . ( _ S
9 D '
3 J

The ratio ——2&  varies slowly with velocity. If it is sufficiently

accurate to consider it constant, the heterogeneity range variance is
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<D4 A ,

,./TTN ) <D> \9 g ' QB:>, “_(25)
where (R) is the mean range. If ¢ also is suff1c1ently small this may be
further approx1mated by

SN/ o T
6c€h_\_}.i 1+ 11 2 <D\<R> (26)

(n)?

" This is to be added to other variance terms to obtam the total range
variance of a monoener getic group of particles in emulsion, :
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:

C. Theory of Pr1mary Grain Density

1. General Cons1derat10ns

Many] individuals have written on the theory of the emulsion grain

density. While some of these attempts are chiefly of historical -interest,

or contain unacceptable premises, several introduce important concepts and
observations that throw light on the nature of the track-forming process. Their .
results cannot be ignored, and an improved theory must first of all find accord
with what has already been éstablished. :

In this new treatment a determined effort has been made to start with
fundamentals, and to avoid, as far as possible, artificial models. the peculiarities
ot which W111 have unknuwn cuuseyuences, and which must more nr less seriously
destroy one's confidence in the treatment. Good fortune permitted the finding of
means for solving all the mathematical difficulties encountered. This has enabled
a seemingly over-ambitious undertaking to be surprisingly successful. It is too
much to expect, however, that entire generality can ever be achieved, and one
can point out several respects in which the present theory does not make provision
for various complications.

In the title of this section the expression '"primary grain density' is
used because a full and general treatment is yet to be given for the additional
grain density arising from energetic delta rays, and no provision has been made
for the effect of photons produced in the gel. In the theory it is supposed that
grains are rendered developable only by being penetrated by the moving particle.
Certainly, the probability that a grain will develop falls very sharply with the
distance from its surface to the particle trajectory.. Only secondary effects,
such as delta rays, can be of any importance in rendering nonpenetrated grains
developable, as the range of the particle field is only about one atom diameter.
Since the explicit form of this probability function is not known, one replaces
this ""boundary layer' by a mathematical surface. -There is little evidence that
this simplication leads to serious error for normal emulsions, but in very-fine-
grain or hypersensitized emulsions it may be important.

A related limitation on the generality of this work is that it assumes that
each crystal is completely independent of others. This is not true, for example,
when depletion of developer restricts the degree of development of strongly exposed
portions of emulsion. The theory makes no provision for proximity deveclopment
induced by a conceivable emulsion additive which would provide conduction bands
for low-energy electrons to migrate from one crystal to the next, or from gel to
crystal. It is also possible that the enlargement of a grain on development may
cause protuberances of silver to intrude on an adjacent grain and break through
its gelatin envelope. This could cause the neighboring grain to develop. The
influence on the grain density of infectious development has been considered by
Ahmad, The effect should be chiefly to reduce the number of short gaps.

Provision has been made in deriving expression (41) below for the
enlargement of the diameter, ¢, that takes place on development to be a
function of the grain diameter, but the additional implicit postulate that the
enlargement is symmetrical perhaps reduces further the generality of the
calculations.
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No attempt has been made to allow for the possibility of nonuniform
development, etching of surface grains, fog background, mechanical distortion
of the emulsion, and many other conceivable compllcatlons that might affect
empirical data.

It is also supposed that the sensitivity is the same from grain to grain,
To treat mixtlires of two emulsion types, such as have been used by
Vanderhaeghe®~ and his collaborators, would require additional terms and
cross-product terms in the final equations. The case of a partial population
of totally inert grains, as postulated by Baillard, 14 here would require that
the emulsion be treated as if it contained a second group of grains that is -
peculiar only in that its sensitivity vanishes.,

2. Creation of Developability

All current theory of the latent image c0ntemp1ates the initial creat1on
of a free electron-hole pair in the crystal lattice. This is the primary act,
and it is immaterial for this treatment whether the electron is captured in an |
impurity center or whether imperfections in the crystal lattice or on the surface
(as proposed by Mitchelll ) serve as points where free silver atoms aggregate.
The detailed mechanism will, however, affect the coefficients A1 ! introduced

below, and it is to be hoped that fundamental problems of silver halide sensitivity
may be resolved by a study of the influence on the A, {ik of physical and chemical
conditions, for example, the temperature. g

In this treatment it is assumed that the effect of a moving charged particle
is as follows: The virtual photons of the electric field of the particle disturb
the electrons of a silver halide crystal and induce transitions between their
energy states. This produces electron-hole pairs in the crystal lattice, as
free photons do. Some of the electrons released are given sufficient energy to
produce further electron-hole pairs in the crystal, just as an x-ray photoelectron
is capable of doing.

dz . . et e e

Let Iw dw be the cross section for a moving charged particle to
transfer energy in the interval dw to the electron in the crystal, and let
ng be the electron density. Then 4 o

w
maXx

<O, = ng w Z aw (27)

0
is the energy loss per unit path in the crystal. (For the purpose of this

discussion one need not distinguish between the different classes of electrons—
a separate integral over each class would in general be required. )

In the above formula Woax is the maximum eﬁergy that the electron
can absorb frorn the field of thé mioving particle. This may be so large that
the range of the electron far exceeds the dimensions of the crystal. For this
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. reason Messel and Ritson suggested that the upper-limit-of ‘w be cut off at
some value w,, correspondingto the electron energy requlred for escape

from the crystal. 20 Then
\ . - e
‘5\' = no [ W(—i—z—: dw , ) (28)

the restricted rate of energy loss, ‘was to be considered the’ approprfate
variable for determining the effectweness of a charged particle in creatmg

developab111ty

This procedure does not yet seern correct. It is suggested that one
cannot weight equally all transfers of equal amounts of energy irrespéctive of
its form. There is certainly a quantily of energy, Wi of 0pt1mum size, so
that per unit of energy a highest probab111ty of development 6ccurs.” A relatwe
efficiency E (w) for _energy.utilization should then be defined. (E (w) may be
calculable from the spectral sensitivity curve for the emulsion obtalned by

measuring its sensitivity to photons of all energies.) Then

W
max

o . ds
= <noj Wiw Ewrdw (@)

: 0
is the function affecting the probability of development of a crystal traversed
by a charged particle. This one may call the effective rate of energy loss.

The function E(w), however, is probably peaked well below. W and
since the veloc1ty dependence ol dw occuret chleﬂy as a factor, one may

expect a large range ul high velociticc over whichwh " is proportional tO\Q
The distinction between them nevertheless should be retained.

A theory that does not take account of thc statistical nature of the cnergy-
loss process can have no fundamental validity, The loss of energy when a
charged Bartlcle traverses a grain, as has been ethas1zed by Barkas,
Brown, 10 Fowler and Perkins, 13 and Bogomolov, is a highly StOChaStIC
process., The mean rate of energy loss has little direct connection with the
energy loss in a particular grain. Suppose one considers a 100-micron path
of a 3-Bev proton in an emulsion of standard composition with a root-mean-
square grain diameter of about 0:17 micron {Ilford L-type emulsion). The
average energy loss in a grain will be about 100 ev, and the proton will
encounter about 440 grains in this element of path. Now, whereas in about
190 such traversals the proton will lose more than 100 ev , in about 19 the
energy loss will exceed 1000 ev. Therefore, at least in fine-grain emulsions,
a large fraction of the grains rendered developable at the minimum of ionization
can.be attrlbuted to the relatively rare traversals w1th large energy transfers
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3. De velopability Coefficients and the Grain Density .

When a charged part1c1e penetrates a S11ver hahde crystal it transfers
energy to electrons until, after a certain such collision, the crystal may for the
first time be in a developable condition. This point may be called the conception
point.

We assume that in any element of path the probablhty for such an “act
that of itself is sufficient to render the crystal developable depends on the.
product of three factors: s, a measure of the local sensitivity and the degree
of development; D", the effective rate of energy loss; and dy, the element of
path length. First one treats the simplest model that may have some validity:
A probability § is defined that a crystal of diameter D remain undevelopable
. after being penetrated a distance y by a charged particle with an effective rate

of energy loss D ", One assume s

ay = - yod ay
or

o= exp (—SA” v). . . S | (30A)

The probability G that the crystal be completely traversed without be1ng
rendered developable then is G = exp (- a9 8), : (31)
where 6 is the length of the track segment in the crystal

In effect, this model assumes that there is a mean free path, (sc\"), -1
for developability. It is unlikely, however, that matters are that simple, . A
mean. free path for developability will exist only if the rendering of a crystal
developable by an electron collision is solely determined by this event, and .
is not influenced by a cumulative conditioning effect in the crystal brought
about by the prior passage of the charged particle through parts of that crystal
or surrounding matter.

It is also unlikely that s can be independént of position in the crystal.
Bogomolov has put forward evidence that the sensitive volume of a crystal is a
thin surface layer. 11 Certainly surface sensitivity centers are more
accessible to the reducing action.of the developing agent, and such centers
probably are more abundant on the sufface. The migration d1stance of
electrons and silver ions is not known,

The true physical situation cannot be stated precisely at-present, and
in a general theory one must simply make appropriate allowance for any
reasonable form the facts ultimately may be found to assume. This is done by
the introduction of free parameters, the presence of which in the theory will
offer the possibility of their experimental evaluation.

If a radial variation of sensitivity is to be taken into account, then
the traversal of a crystal of diameter D with a path se ment in the crystal
of length & would lead to a probability exp l: s & ("2 )] that the crystal

would not be rendered developable. Here b is a character1st1c length describing
how rapidly the sensitivity varies with radius, and the function f is unknown

i
35
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except that it is expected to increase with.an incréasing argument.. Since one

- cannot in general overlook the possibility of cumulative effects, as mentioned
above, the quantity NUTL 6f,_(Db;§—) must be multiplied by still another function
of §&. T ' ‘ ) c

One must also now introduce a second characteristic length, a, which
has the significance that the effect of the passage of a charged partlcle through
a segment of the crystal will have little effect on conception points more remote
than the distance a. - L

Then to allow for all these possibilities one expresses the probablhty of
nondevelopab111ty, G, by the following series: :

K i :
A (-2—) (6s3y . . (32)

VS

) - o0
G=1- 2 = R )
i=1 =0 0 ijk " b

Thls may be compared with the simpler form, Eq. (31), obtained by
using the mean-free-path model. This 1s

i-1 ;
o0 .
G=exp(-6sdry=1- = & (58sd"
i=1 i
From Eq. (32) the total cross section, Q, for developability of a crystal

_ can be calculated: » D

Q= /2 (1-G) 646 (33)

or

‘ A, . : i :
o= T ijk DP+J+k+2‘rb-J a—k (&R&“) . (34)

= = =
2 i=1l j=0 k=0 i+k+2

The true mean grain density, g, in a track then is also calculable:
) o - D :

™N
2

g= N [ @F(D) dD = F(D)dD | 6(1-G)dé T (35)
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or _ " . .
e e -A..k<D”J+k+2>a'kb"J(sJ )b o
g = z > 3 1) . . (36)
i=1 j=0 k=0 i+k+2

For a particular emulsion type, the moments <D"L> of the diameter distribution
may be established by a grain- d1amete€ alnalys1s The coefficiznts A 00
can be identified with the quant1t1es_n,_ . The product sV "

must be expressed in.’ reciprocal length units; s is therefore a reciprocal
energy. ‘ :

The remainder of the coefficients is to be determined from experiment,
but they are dimensionless and assumed to be independent of -D and ) ';
s and j appear only in the product relationship. The coefficients can be studied
" by measuring g while varying0", s, and the ('D'“? séparately.  The
sensitivity s is maintained constant when the crystal precipitation, sensitization,
. and development procedures are fixed. It is'not known how varying these
procedures affects the quantities a,b, and A..,. In the Iford G, K, and L
series of emulsions the standard compos1t1on I]erna1ns the same in all, and
the grain-size distribution in each series is kept constant, but is different
for each.series. The sensitivity varies through each series, being maximum
for sensitivity 5-emulsion and decreasing as one goes through the K series,
for example, from K.5 to K.4.to K.3, etc. The concentration of each emulsion
type can also be varied. It appears that these emulsions might be suitable for
investigations on the cross section for developability of a silver halide crystal.
The variabled " is of course under the control of the investigator, as is the
physical and chemical environment.

4. Structure of the Developed Track

Whatever its form, one can symbolize by

G =G (5,D,b,a, s ")

the probability that crystal C w111 not develop when traversed by a charged
particle. The quantity

7# N(l - G)&dé F (D) dD (36)
2g ' '

then,‘is'the prohability that any particular cfystél encountered will be of class C
and will'be rendered developable by the charged particle.

Now fthe probab'ilitir that a crystal: of class. C' in the interval of p_é.rtiéle
path dp will also be rendered developable is
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2.2

68'd6ds' (1-G)(1-G')F(D)F(D')dDdAaD dy.

Then the probability is q that the particle render cfyétél C developable and
traverse the emulsion a distance exceeding p _without rendering developable
.a crystal of class C'. The probability is found from

1d e\ | . o \ o
_.._.=-,EL 66 dé ds' (l-G)( - G') F(D) F(D')d D d D'.
q 4g ‘ ‘
» (37)

One now is in a po_sitioﬁ to calculate the probability Q, that the

- .particle, after rendering a crystal developable, may go a distance exceeding -

p without creating develop'ability in any other crystal. This is formulated .

! '.. ’ i . // ) - -
/ oo |
14 .o N [ 1| &% d5ds' (1-G)(1-G')F (D) F(D')4DaD,
Qe BN SR
: - -Z— / Cao (38

- ———— ——"- ¥

Mt 4s P was calculated in q

L 7 2 > J - . ’ J/ L
Q-z.exp -‘ J//fa d6d6(1-G)ll-G)F(D)F(D')dDdDdHJ-
S S (39

The var1ance of the spac1ng of developed grains then is found from

- e

-....‘

(40)

This quantity;” like g, is not directly observable because 1ndef1mtely small
grain spacings are included, and many of the grains cannot be separately '
resolved with a microscope. A more useful approach is to study the gaps in
the track. '

Suppose that when the developed grains are pro_]e(ﬁed on_the partlcle
trajectory a gap exists between C and C' only for |.1,> + Q— + y
where € and ¢' (the enlargements of grains C and C') are funct1ons og
- their respective grain diarneters D and ‘D', but also may contain additive
terms which vary with the optical condition's‘. This differs from the rule
introduced by Fowler and Perk1nsl3 chiefly by allowing for a distribution of
grain sizes.
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After development of crystals C and C' a gap of length £ =
D D € €' ., . S
p-—-— - —— is left between them. Therefore, on integrating Eq. (37)
2 2 2 2
with respect to p, one has, for the probability that a gap with a length exceeding
£ will be found between C and C',

a N D D € € [ t '
exp - £+._.+—— + = + —=). (l‘—.G)dﬁ'ﬁ'(l—G)dﬁ
kﬁ s o\ » —‘-r—’-—"t'
l
F (D) F (D')dDaD" |. R C 39

(In order to facilitate comparlsons we shall use the notat1on ‘of Fowler
and. Perk1ns13 for important gap-density quant1t1es) ‘

-Considering crystals of all classes, the density H ~of gaps with lengths
exceed1ng £ is ‘

. e
22 g ] :
. (D+ ¢ )F(D)d D . G)d6 F(D)dD §(1=G)dé
4g R S :
0 0 RV 0
_orNTE | F@)dD| s (1-Gds| -\ . - 7 (42)
4g =
rl — e . o ’f
This can be written S -~
H =B exp (- gf), ' (43)
with ' ‘
’ w . D o o D
2N2 | ‘ o - / -
=gexpl! - TN __| | (D+€)F(D)aD]| 6 (1 - G)ds||| F(D)AD |&(1-G)ds
" . A |
0 0 - 0

. and
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g= ™ . FD)aD | 8 (1-G)ds ,.
: 2

the expression giving the true grain density.

"The form of these .equations displays two important new results.

The gap-length distribution is exponential, and the true grain density and the

gap-length coefficient are the same quantity.-

The first result was shown émpirically by O‘Ceallalgh to be true over a
‘range of gap lengths. 12, Fowler and Perkins. extended the interval over which
it has been tested, Joutthe" complete"’va'lrdlty of the exponent1a1 gap distribution
has not previously b(-'en demonstrated nor has the _gdp length coeff1c1ent heen -
shown to be the true graln densny\.‘}’ : ’

The quantxt‘y B is also known as the 'blob'" density becanse it is A’_ﬁhe
density of clusters of unresolved grains in the track, It is of course numerically
equal to the gap density.

If. o D, "

[ (D+e)F(D)de 5(1-G)ds.
— 0 . 0 '

o D
/F(D)dD/é(l-G)dé
o 0 "

LIS the average diameter of a developed graln then the blob densitly B canbe:
Written o ’

=gexp(-gD).- ‘ : 4 (44)

D is therefore to be identified with the quantity a defined by Fowler and
Perkins. It should be noted, however, that D has not a purely geometric
meaning unless the grain-size d1str1butmn is very narrow. In general it will be
sl1ghtly1dependent on g. The mean gap length,’ <G> , is found from

G)=¢

The lacunarity L -of a track segment is the mean linear fraction of it
that is occupied by gaps. From Eq. (44) this is

L= eXP (-g D). - V) ' S (45)

It may be noted that this is a very sensitive funct1on of g, and that it remains
useful when g 1is large. . -
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The variance o 2 of the blob density, B, can also be calculated in
good approx1mat10n It is [

T

\mar.... .

L (1-L+L£nL) + L —J i (46)
ny ] oo

N ] ,ﬂ:

Some remarks on the effécts of secondary 1omzagxon a;e required because
under extreme'conditions the secondary ionization influences the gap-length.
coefficient. Consider a cylindrical volume, the axis of which is the particle
path and the radius of which is defined by the consideration that any grain whose
center lies within this distance from the particle path is considered a track
grain. Now, the linear density of developed grains within this cylinder,
irrespective of whether they are grains traversed by the moving particle or
grains rendered developable by secondary effects, will be the observed gap-
length coefficient. Consequently, if the particle veloc1ty is high enough for
delta rays to be produced, and the emulsion is of a type that is sensitive to
electrons, the saturation value of the gap-length coefficient can be expected to
exceed n, the total linear density of grains traversed. An interesting example
of this effect was reported by Fowler and Perkins, 2 who from the tracks of
relativistic magnesium and silicon nuclei in G.5 emulsion found a saturation value
of the gap-length coefficient equal to 5 per micron, whereas n in G.5 emulsion
is only about 3 per micron: :

. A further remark on experimental results should also be made. . Whereas

all ohservers find an exponcntial distribution of long gap lengths, a number of
1nvest1ga’cors2 eport deviations at short gap lengths contrary to the data of

Fowler and Perkins and the general theoretical result obtained here. In the
published cases it seems as if the log frequency vs. gap-length curves might X
be straight lines if a few tenths of a micron were to be subtracted-from all gap
lengths (exclusive of zero which corresponds to the blob density). The p0551b111ty :
that the effect is an optical one suggests itself. What one sees is the superpos1t1on
of grain diffraction patterns, and the measured length of short gaps can be -
strongly affected by the microscope numerical aperature, as well as light wave
length and intensity. In addition, when the length of the gap is measured by

the length of time that a key is depressed, as in many automatic instruments,

the observer reaction time, the width of the hair-line in the eyepiece and the
instrument reaction time also may introduce an additive constant to the gap
lengths. If the effect is optical, it may be simply that a -gap between C and
C' is not recognized as such unless the distance between centers exceeds
D+D!' + € + ¢!

) + '..ZO, but when the distance is greater than this, say

\
D+D'" +€ +¢€f

> + £ , the gap iength is measured to be £ . Then the gap (blob)

density is really the density of gaps whose lengths exceed Io.
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