

OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY

Division of Union Carbide Corporation

Post Office Box X
Oak Ridge, Tennessee

MASTER

External Transmission
Authorized

ORNL

CENTRAL FILES NUMBER

CF-58-10-126, Rev. I

COPY NO. 44

DATE: June 23, 1959

SUBJECT: Eurochemic Assistance: Analytical

TO: E. M. Shank

FROM: L. T. Corbin

ACKNOWLEDGMENT

The attached comments were given by personnel of the Analytical Chemistry Division, ORNL, to questions directed to them for the Eurochemic Assistance Program. The original questions, listed in ORNL CF-58-9-91, are included as Appendix I. Rev. 1 has been retyped to facilitate general distribution.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

The information requested (Appendix I) is attached. We feel that this information is not complete, and we can give you more detailed information as we become more familiar with this project and have more detailed data from you. The information given herein is relative to the analysis of samples from only uranium-aluminum and uranium-zirconium systems. Since the uranium-stainless steel system is still in the developmental stage, methods for this system have not yet been perfected.

The Oak Ridge National Laboratory Master Analytical Manual can be purchased from the Office of Technical Services (OTS), Dept. of Commerce, Washington 25, D. C. Section 9, "Process Methods," of the Manual has not been printed by the OTS, and they cannot yet give us a publication date. Until it is available, we shall be glad to provide this section.

The Analytical Chemistry Division personnel who may be contacted on specific problems are:

L. T. Corbin	--Process Control
P. F. Thomason	--Ionic Analytical Procedures
S. A. Reynolds	--Radiochemical Procedures
C. Feldman	--Spectrographic Procedures
M. T. Kelly and	--Remote Equipment and Instrumentation
D. J. Fisher	

They should be contacted by letter, a copy of which we would like to receive.

A large percentage of the instruments and equipment were either developed or modified here at ORNL. Complete sets of drawings and specifications are available. There is a complete description of each instrument and piece of equipment that was developed at ORNL in the ORNL Master Analytical Manual.

Chemical Requirements

1. The following analytical procedures are used routinely:

<u>Title</u>	<u>Number</u>
a. Uranium, Spectrophotometric Ammonium Thiocyanate Method	9 052205
b. Free Acid in Purex Process Solutions	9 052200
c. Density (Specific Gravity), Fall-Drop Method	9 00600
d. Total Plutonium, Thenoyltrifluoracetone Extraction Method	9 008621
e. Tributyl Phosphate in Tributyl Phosphate-Amsco Solutions for Purex Process, Dielectric Constant Method	9 052101
f. Uranium, Fluorimetric Method	9 00719240

g.	Uranium, Automatic Potentiometric Ferric Sulfate Method	9 00719224
h.	Plutonium, Potentiometric Ceric Sulfate Method	9 0432620
i.	Plutonium, Lanthanum Fluoride Method	9 008620
j.	Gross Alpha	9 0733000
k.	Gross Beta Activity in Aqueous or Organic Solutions	9 052302
l.	Gross Gamma, Scintillation Counting	9 0733002
m.	Specific Gravity of a Liquid, Westphal Balance Method	9 00601
n.	Ruthenium Activity in Aqueous or Organic Solutions	2 21731
o.	Niobium Activity in Aqueous or Organic Solutions	2 21551
p.	Zirconium Activity in Aqueous or Organic Solutions	2 21981
q.	Trivalent Rare-Earth Activity in Aqueous or Organic Solutions	2 21992
r.	Controlled Potential Coulometric Titration of Uranium	Not Completed

2. The following types of determinations are required:

- a. Uranium
- b. Plutonium
- c. Tributyl Phosphate
- d. Radioactivity (alpha, beta, and gamma)
- e. Density
- f. Free Acid
- g. Fission Products.

It would be impossible at this time to estimate the average number of each determination per month that is required for startup operation, etc. During startup and maloperations, etc., 25 to 50% more determinations will be required than are required for routine operations; 10% more will be required for SSNM and criticality controls.

3. The critical aspects associated with each analysis are discussed very thoroughly in each method contained in the ORNL Master Analytical Manual; the Status section of the method is given over to this discussion.

Physical Requirements

1. In order to estimate manpower requirements, we need the following information: a schedule of control sampling which includes the (1) sample codes, (2) sampling frequency, and (3) desired analyses. Also a list of priority samples, etc., would be helpful.
2. The charge list issued by the Analytical Chemistry Division on January 1, 1958, could be used as a guide if the facility and methods used are similar to those used at ORNL. The analysis time for determinations being done in the HRLAF is also included in this list.
3. The time lapse between sample delivery and submission of results will vary greatly depending on the type of sample, that is, whether it is aqueous or organic, radioactive or nonradioactive, etc., and also on the priority to be given to each determination. For example, the time lapse between sample delivery and submission of results for a uranium determination by spectrophotometric method on a hot dissolver solution would be ~1 hour.

4. Suggested space allocations follow:

- a. Counting and instrument room: 24 ft x 36 ft.
- b. Laboratory space for analysis of nonradioactive samples:
one room 16 ft x 12 ft for storage of samples
six laboratories 24 ft x 24 ft.
This includes room for high-alpha, emission-spectrographic, and radiochemical work.
- c. Laboratory space for analysis of radioactive samples:
one room 44 ft x 48 ft.
This includes three high-level cells and one storage cell.

5. The following analytical instruments would be required:

- a. Alpha Proportional Counters
- b. Beta Counters
- c. Gamma Scintillation Counters
- d. Multichannel Gamma Scintillation Spectrometer
- e. Survey Meters and Probes
- f. Spectrophotometers, Beckman Models DU and B
- g. Alpha-Energy Analyzer
- h. Dielectric Constant Meter and Cells
- i. Balances
- j. pH Meters
- k. Emission Spectrograph and Accessories
- l. Falling-Drop Densimeter
- m. Velocity-Servo Potentiometric Titrator
- n. Electronic Controlled-Potential Coulometric Titrator
- o. Filter Photometer
- p. Beckman Model K Titrators
- q. Polarographs
- r. Argonne Model 8 Master-Slave Manipulators
- s. Calculators
- t. Fluorophotometer
- u. Flame Spectrophotometer

APPENDIX I

Information for the use of the Eurochemic Company is desired on the analytical requirements for a combination control and development laboratory which is to be associated with a Purex-type solvent extraction processing plant. This information is to be made available to the Eurochemic Company through E. L. Nicholson. The scope of the information needed, as outlined below, is somewhat tentative and will be modified later as required. It was assumed in preparing the outline that the ORNL Master Analytical Manual is currently available to Eurochemic personnel.

Chemical Requirements

1. What analytical procedures are routinely used?
2. What type of analyses and the average number of each per month are required for startup operation, routine operation, decontamination, and periods of maloperation? (This should include analyses for SSNM and criticality controls, as well as process control.)
3. What are the critical aspects associated with each analysis; i.e., are certain reagents sensitive or unstable and are interfering ions troublesome?

Physical Requirements

1. What are the manpower requirements?
2. How does one apply the charge list as issued by the Analytical Chemistry Division; i.e., what increased time is required per analysis for high-radiation-level samples?
3. What is a realistic time lapse between sample delivery and submission of results?
4. How much space should be allocated for a counting room, for nonradioactive analyses, and for radioactive analyses?
5. What analytical instruments are required?
6. What instruments give particular trouble and what are the maintenance problems?

In addition to the above information, we would like a list of Analytical Chemistry Division personnel who may be contacted on specific problems, such as radiochemical, spectrographic, or ionic analytical procedures and techniques. The desired contact procedure would also be indicated. Any additional information or suggestions will be appreciated.

Internal Distribution

1. E. M. Shank
2. R. E. Blanco
3. J. C. Bresee
4. K. B. Brown
5. F. R. Bruce
- 6-9. L. T. Corbin
10. F. L. Culler
11. W. K. Eister
12. H. E. Goeller
13. D. E. Ferguson
14. A. T. Gresky
15. M. T. Kelley
16. R. B. Lindauer
- 17-18. M. J. Skinner
19. Central Research Library
20. Document Reference Section in Y-12
- 21-28. Laboratory Records
29. Laboratory Records-RC

External Distribution

- 30-31. F. L. Cuthbert, FMPC
- 32-33. I. G. Dillon, ANL
- 34-35. O. F. Hill, HAPO
- 36-37. B. Manowitz, BNL
- 38-39. V. R. Thayer, du Pont
- 40-41. M. E. Weech, ICPP
42. Technical Exchange Branch, DIA
43. Research and Development Division, ORO
- 44-58. TISE