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ABSTRACT 

The equations of the Debye-Huckel theory, modified to include quantum 

statistics, are discussed. It is found that the nonlinear equations used by 

Cowan and Kirkwood are not unique, and that the nonlinear theory can be 

formulated in different ways to give different answers. The linearized equa-

tions of these alternative formulations are discussed, and the correct form 

of the linearized theory is established. From the linear theory, the Helmholtz 

free energy of a stightly degenerate plasma is derived, and from this result, 

useful formulae in the near-classical limit are obtained for the pressure and 

internal energy. 
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I. INTRODUCTION 

In its linearize4 form, the classical Debye-Huckel theory of ionic solu­

tions has, been very useful in providing a quick derivation of the thermodynamic 

properties of a fully ionized gas in the classi,cal limit (n = 0). The results of 

this intuitive theory h<~.ve been confirmed by a rigorous statistical-~echanical 

derivation using the Mayer cluster expansion of the canonical partition func-

1 . l 

tion. It has been shown that the linearized form of the Debye theory is equiva-

lent to the summation of the ring integrals of the classical cluster expansion. 

The theory in its nonlinear form, however, is beset with insurmountable dif-

ficulti~s when applied to a classical multicomponent gas of point-charged par-

ticles. From the success of the Thomas-Fermi statistical theory of the atom, 

it has been expected that by modifying the Debye-Huckel theory to the extent.of · 

describing the electrons with Feuui ~:>Latistics instead of Boltzmann statistics 

the difficulties. of the classical theory could be removed. Recently, Kirkwood 

and Cowan have made detailed numerical calculations of the thermodynamic 

functions of a dense plasma, using the nonlinear equations of a Debye-Huckel­

Thomas -Fermi theory. 
2 

Also, Landau and Lifshitz have indicated how the 

linearized Debye theory may be amended to include the effects of quantum 

1 
E. W. Montroll and J. E. Mayer, J. Chern. Phy.s. ~· 626 (1941). 

2 
R. D. Cowan and J. G. Kirkwood, J. Chern. Phys. 29, 264 ( 1958). 
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statistics. 
3 

Exact results for the thermodynamic functions of a slightly de­

generate gas are now available.
4 

In this note we examine the Kirkwood-Cowan 

theory in its linearized form. It is found that the logic used by them enables 

one to write two alternative sets of equations which give different answers for 

the same problem. Landau and Lifshitz use a slightly different set of equations 

and obtain results t.hat disagree with the exact theory because of the violation of 

·a symmetry requirement. We take the point.of view that the Debye-Hiickel 

theory, when modified with quantum statistics, should, in its linearized form, 

agree with the rigorous results obtained by summing the ring diagrams of the 

quantum-mechanical grand partition function. A form of the linearized theory 

that meets this requirement is given. 

II. THE BASIC APPROXIMATIONS AND THE EQUATIONS OF THE .. 
DEBYE-HUCKEL-:-THOMAS-:FERMI THEORY 

We consider a fully ionized gas composed of electrons with average de.n-

sity n _
0 

and ions of charge zi e and average density n +o. Electrical neutrality 

requires that z. n+ be equal to n Around each ion there is an average po-
l o -o 

tential '11+ due to the ion being a center surrounded by a statistical distribution 

of positive and negative charge; similarly, around each electron an average 

potential '11 is defined. These average potentials satisfy Poisson's equation: 

= 4lT z. eo( r) - 4lT p 
l . + 

( i} 

3 
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergaman Press, 

1958}, pp 229 - 33. 

4
H. E. DeWitt, Thermodynamic Functions of a ~artially Degenerate, Fully 

Ionized Gas, University of c;alifornia Radiation Laboratory Report No. UCRL-

5652, Aug. 1959. 
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The 6 functions express the boundary conditions, which are: 

lim r'ill+ = z.e 
r-+ 0 1 

lim r'ill_ = - e . 
r-+ 0 

The average charge densities are given by: 

n ( r)) -+ . 

·UCRL-565.3 

( 2) 

( 3) 

where n ++( r) and n""+( r) are the average particle-number densities of ions 

and electrons, respectively, at a distance r from a given ion. Similarly, 

n+- and n are the densities of ions and electrons about a given electron. 

The average distribution of negative charge about an ion must be the same 

as the average distribution of positive charge about an electron; hence, we 

have the basic symmetry requirement: 

n ( r) = z. n+ ( r) . -+ . 1 -
( 4) 

Since the electrons obey Fermi statistics, the average density of elec-

trans about ions may be written as: 

n (r) =<~[l+exp(-a +~p.2/2m+~w +(r,o)]-l/<\ - + · p. e 1 -
1 a 

-( 5) 

where w -+( r, a) denotes the energy of an electron at a distance r from an ion, 

in the presence of all the remaining ions and electrons in a particular config~-

ration denoted by a. The averaging in ( 5) is taken over all configurations, 

with the distance r held fixed. An ini.tial basic assumption of the Debye-Huckel 

approach is that Eq. ( 5) is approximated by: 

n -+(r) ~ ~- ~ f exp (- ae + P p//zm + P( w -+(r, a) )JJ 1 

1 

( 6) 
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This assumption is rigorously true only to first order in w -+(r, a), since 

there l.s no reason to expect that (w n\ is equal to (w \n for n greater 
. , -+/a -+/a 

than 1. Henceforth, ·the average electro~-ion energy, ( vr -+ ( r, a) )a, will be 

denoted by vi_+(r). If the summation of (6) o';'er momentum states pi is con­

verted to an integration, the following equation, in the notation of the previous 

paper is obtained: 

where 
'\:;: 3 . 

(21Tu) n 
-o . 

. 00 2 
= 4 s . dxx 

.,[.; . 2 
· o 1 + exp (-a+ x ) 

Similarly, for the ions, we find: 

o:l1; 2 (ai -13w++(.r)) 

~1 ; 2 (ai ~ !3w++(r)) 

( 7) 

( 8) 

F.D. 

( 9) 
B.E., 

depending on whether the ions are fermions or bosons. The charge density 

must vanish as r approaches oo, since the system is .electrically neutral; 

this requirement. determines the chernical potentials a and a. in ( 7) and e 1 . 

(9) from the equations: 

t;e =.J.l/2(ae) 

~i = .Jl/2 (ai) or 

In the classi~al limit, 1i- 0, '{ 7) and ( 9) reduce to Boltzmann statistics: 

n _ + ( r) = n _ 
0 

e xp (- 13 w _ + ( r)) 

n++(r) = n+o exp(-13w++(r)). 

(10) 

(ll) 
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2 2 2 
Classically, the average e_nergies go to w_+(r)-- zi e /rand w++(r) -+zi e /r 

. as r approaches 0 .. Consequently, n ++( r) vanishes as r approaches 0, but 

n -+( r) has an essential singularity. This catastrophic divergence renders the 

classical nonlinear Debye-Huckel equations inapplicable to a gas of point charges. 

The Fermi form ( 7) of n -+( r) is well behaved at r = 0, since the repulsions due 

to the Pauli principle prevent the classical piling-up of negative char.ge ~round 

the ion. 

By the same reasoning, the density of positive charge around an electron 

is given by: 

n ( r) 
+-

- 1 ' 
= n +o ~i 

.Jl/2(ai- f3w+_) 

'fi;2(ai- f3w+_) 

. F.D. 

B.E. , 

and, similarly, for negative charge a:round the electron we have: 

(12) 

(13) 

In order to obtain usable equations, it is next assumed that the various average 

energies are related to the average potentials as follows: 

w_+ 

= z: eW 
1 + 

= - eW + 

= z. e'l! 
1 

( 14) 

. The justification of this basi~ assumption and the other approximations of the 

Debye~Hiickel theory are discu'~·sed in detail by Fowler. 5 

Kirkwood and Cowan form a nonlinear equation for '11+ by using ( 7) for 

,n -+( r) . and the Boltzmann form for n ++( r). The equation for '11 is coupled 

5 R. H. Fowler, Statistical Mechanics (Gam bridge University Press, 19 55), 

second edition, pp. 269 - 74 .. 

00'1 
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to ~+ by the use of the symmetry requirement ( 4). These equations are: 

\7 
2 

W = - 4rr + z. e o ( r) - 4rr e [ z. n s ~ 1..J.1 I 2( a. - 13 z. e w ) 
1 1 +o 1 . 1 1 + ·. 

- n s- 1 
<=Q1; 2 (a + 13 e w+ )] -o e . e 

\7
2

·'];1· = 4rr eo( r)- 4rr e[n_o s~ 1.Jll2 (ae + 13e w+) 

- n · s -1.J1 I 2 ( a + 13 e W )] 
-o e e -

( .15.). 

(For generality,· we have retained quantum statistics for the ions as well as 

. electrons.) Using the saipe logic, however, one arrives at an alternative set 

of equations by first writing an equation for w_, and then coupling the equation 

for W'+ t<;:> that for w with the symmetry requirement. This alternative set 

\ 
is: 

= 4rr e o ( r) - 4rr e [ z. n s ~ 1 .J1 I 2 ( a. - 13 z. e W ) 
· 1 +o 1 • 1 1 -

- n-os~ 1 ·~1 I 2 (a e + 13 e w _) ] 

( 16) 

= - 4rr 
- 1 ' 

z. e o'(r)- 4rr e [z. n+ s. J
112

(a. -13 z. e w+) 
l l 0 l l l 

- 1 (J ] - z. n+. s. GX 1 I 2 ( a. - 13 z. e W ) 
l 0 l l l -

Both sets of equations, ( 15) and ( 16), reduce to the classical nonlinear eq1,1a-

tions of the Debye-Huckel theory in the classical limit, ft ..... 0. For positively 

and negatively charged particles of comparable mass, there is no reason to 

prefer one set over the other. However, for real electrons and nuclei with 

their tremendous mass difference, the set ( 15) used by Kirkwood and Cowan 

seems more reasonable for approximate numerical computation of the thermo-

dynamic func;tions of a dense plasma. 

To examine the consequences of the two alternative sets of equations, 

we look at the solutions of their lineari'zed forms. The linearized equations 
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are valid for r' sufficiently large so that f3 zi e '\Tr± and f3 e '\Tr± are much greater 

than 1. The .J l/ 2 .(or ~l/ 2) functions may be expanded in Taylor series to 

give: 

where 

If ( 1 7) is 

2 
l-f3z.e8. '\Tr+ + ... , 

1 1 

'2 1 8 ~ = ~~ .J1>2(a.e) =.J_l/2(a.e)/dl/2(a.e) 

8 i
2 

= s; 1
.Jl{;2<a.i) =..J_l/2(a.i)/J'l/2<a.i)·. 

us.ed, the linearized equations obtained from ( 15) are: 

V'2ljJ 2 2 2 2 
-o]ljJ+ = 4rr f3 e [z. 8. n+ +8 n 

. + 1 1 0 e 
A 

V'2·ljJ 2 2 2 
= 4rr f3 e 8 [ z . n + ljJ + - : n ljJ ] • e 1 o -o -

and from (1.6): 

V'2ljJ 2 2 2 2 
= 4rr f3 e [ z . 8 . n + 8 n ] ljJ 

1 1 +o e -o -
B 

V'2ljJ 2· 2[ 2 ] = 4rrf3e 8. z. n+ ljJ+-n ljJ 
+ 1 1 o -o -

' 

( 1 7) 

( 18) 

( 19) 

( 20) 

The solutions of the linep.ri:Ged equation~;; are designated with ljJ + and ljJ .:.' to 

distinguish them from .. '\Tr+ and '\Tr_ for the nonline~r equations, where .l!J+ and 

ljJ are the asymptotic forms of '\Tr and '\Tr for large r. The 6 functions ex-- + -
pres sing the boundary conditions at r = 0 have not been written in the linearized 

equations, since these boundary conditions are of no help in determining the 

integration constants in ljJ + and ljJ _ . 

The general solutions'of the linear equations A, s·ubject only to the re-

quirement that ljJ + and ljJ vanish at oo, are: 
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z. e 
.1, 1 C - Kr. 
'~'+ - -r- A+ e 

( 21) 

where 

K = (K 2 e 2 + K ;2 e. 2y 1 2 = 1/A. - e + 1 

.. 2 
41T e 2 ~n K = -o 

( 22) 

2 2 2 
K = 41T e ~ z. n 

+ 1 +o 

Here, C A+ and C A- a~e arbitrary constants, and K is the reciprocal of the 

De bye screening length X., generalized to include the modifications due to 

quantum statisti~s. Similarly, the general solutions of equations B are: 

( 23) 

By numerical integration of the nonlinear equations ( 15) and comparison of 

4;+ and 4; _ with ( 21) for large r, we may find numerical values for. C A+ and 

CA-. Similarly, num·erical values of CB+ and CB- could be found by numeri­

cal integra~ion of (16). The solutions, (21) and (23), of the alternative sets of 

linear equations are different from each other, . and hence would lead to dif-

ferent answers for the thermodynamic functions of the gas. Furthermore, 

4; + and 4; _ have the unsatisfactory feature of behaving differently as r ap­
-·Kc 9 r 

· -Kr. - e 
preaches oo, In (21), 4;+ vanishes as e , while ljJ vanishes as e 

since K · 8 is less than 1< • 
- e 

The only way in which the solutions ( 2.1) and ( 23) can be identical is to 

have the condition: CA._ = CB+ = 0. If this requirement is made, then ( 20) 

and ( 23) have the !?arne form r:~.nd require only one arbitrary constant: 

159 010 
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2 
z. e e. . 

ljJ = 1 1 C e -.Kr 
+ r 

2 
e e. = ___ e_ C e- Kr 

r 

UCRL-5653 

( 24) 

In view of the nonuniqueness of the theory, as illustrated by two apparently 

equally valid .sets of equations A and B, the solutions ( 24) are to be preferred 

over ( 21) or ( 2?). 
2 In the classical limit, the degeneracy parameters e. and 

1 

e 2 
both reduce to 1. The remaining arbitrary constant C is determined by 

e 

the fact that the Debye-Huckel theory is rigbrously valid at sufficiently high 

temperature. The asymptotic forms lj.J+ and lj.J_ are valid arbitrarily close to 

the origin, and at the origin we must have r'Ir+ equal to zi e and r'Ir equal to 

- e; hence, C has the value 1 for a nondegenerate gas. It is clear, however, 

that for a degenerate gas (i.e., e 2 i e.2 I 1) the constant C cannot be chosen 
e 1 

so that lj.J+ and lj.J_ r.educe to· zi e/r and - e/r, respecti~ely, as r approaches 0. 

The chief criticism of the two sets of nonlinear equations, ( 15) and ( 16), 

for the calculation of thermodynamic functions of a dense gas is that they are 

unsymmetrical in the way 'Ir+ and 'iir are treated. With the set of equations 

( 14) used by Kirkwood and Cowan, 'Ir+ may be calculated independently of '¥_, 

but the calculation of 'iir requires a knowleqge of 'Ir+. The same stat~ment 

applies to the equations.( 16),,. but in reverse order. The two ·ways of doing the 

calculation, in general, will give different results. Thus, it would seem more 

reasonable to begin with a symmetrical set of equations in which 'Ir+ and w_ 

are treated on an equal basis. The first equation of ( 15) and the first of ( 16) 

are symmetrical in this sense. An objection against this symmetrical set of 

equations for numerical calculations of the type done by Kirkwood and Cowan 

is that the symmetry requirement, n ( r) = z .. n ( r), is violated for r small - -+ . 1 +-

enough to cause nonlinear effects to be important. We will show, however, 



F;.;~ 

- 12 - . UCRL-5653 

that. the symmetr~cal equations· are suitable for developing a linearized De bye-· 
,, 

Hucke! theory which gives t~e correct results for the thermodynamic functions 

of a slightly" degenerate gas. 

· ., The linearized syl?metrical equations, namely, the first of A and the 

first of B, h~ve the solutions: 

z. e 
ol, = _1- C e- Kr 
'~'+ r + 

( 25) 
e -Kr. = -- C e r 

The .symmet:ry requirement, n -+(r) = zi n +- ( r), gives a relation between the 

two arbitrary constants C+ and C in (25). The expansions of these charge 

densities are: 

n ( r)' = n -+ -o 

2 
zin+_(r) = zin+o {l-j3e8i l!J_ + 

( 26) 

·The two densities, n and zn , can be equal. to 0( l\J) only if 8 
2 

C is equal 
-+ .... +- e + 

to 8~C , and (25) may then be written as (24). Thus, the equality of the solu-
1 -

tion of the unsymmetrical sets of linearized equations, A and B, is equivalent 

to preserving the charge-density symmetry in O(l!J). The symmetry is violated 

in O(l!J
2

) for a degenerate gas, and hence the usefulness of the nonlinear sym-

rpetrical equations for numerical calculations is questionable. 

Landau and Lifshitz, in their discussion of the degenerate plasma, used 

the symmetrical linearized equations and obtained the solutions ( 25). They 

used the boundary conditions at r = 0, however, and so put the constants C+ 

and C equal to 1. This choice violates the symmetry requirement, even to 

first order in 4J. 
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III .. CALCU~ATION OF THE THERMODYNAMIC FUNCTIONS 

The average potential energy of the gas is given by: 

u = -21 
N. Sdr p (z. elr) +.!. N sd; p (- elr) 

1 -+1 2 e -

= U. +-U 
1 e 

( 27) 

The solutions of the linearized equations ( 24) are valid for sufficiently large 

r, and with Poisson's equation~, they give the asymptotic forms of the charge 

·densities as: 

P+ asy = 
l 2 

41r \/ ljJ + = 

2 
Z.'e 8. 

2 
_1 __ 1 __ C e -.Kr: 

r 

8 
2 2 

e . 
( 28) 

_l \/2~ = 
P- asy = - 41T -

e C e -.Kr 

r 

The asymptotic forms ( 28) are accurate for distances from the central point 

charges greater than some limit to be denoted as r c. Inside the sphere of 

radius r , the average potential and charge density are not known, though 
c 

presumably they may be. calculated approximately from the nonlinear equations, 

either ( 15) or ( 1~). The average energy integral is thus a sum of two parts: 

- l sr c 2 . .. l . s 00 
2 

U .. = - N. 41T d r r p + t ( z. e I r) + - N. 41T d r r p + ( z. e I r) . 
1 ?. .l . . P.¥rlC. 1 2. 1 aoy 1 

o r 
( 29) 

c 

The quantity U. may be estimated by using p+ for the entire volume, even 
1 asy 

for r less than r where it is not accurate, since the main contribution comes 
c 

from r greater than r . With this approximation and using ( 28), we find: 
c 

- l soo 2 l 2. 2 2 U. = - N. 41T dr r p ( z. e I r) = - - C N. z. e 8. K 
1 2 1 + asy 1 2 1 1 1 

0 

( 30) 

Addi11g a similar result for U , we have, for the potential energy of the gas 
e 

due to the particle correlation, 



U/V = 

= 

- 14 -

1c 2( 2 9 2 9 2 ) .. - e z. . n+ + n K 
2 1 1 o e -o 

CkT 
8rr 

K 
3 

UCRL-5653· 

( 31) 

We have seen that the remaining arbitrary constant C must be 1 in the clas si-

cal limit, but for a degenerate gas, we cannot rule out the possibility that C 

l.s a "function of temperature in such a way that lim C( T) is equal to 1 as T 

approaches oo. Equation (31), ~owever, agrees with the exact near-classical-

limit result for U as derived from the grand partition function (Eq. 122 of 

the previous paper) when C is equal to 1. 

The Helmholtz free energy may be obtained from U by an integration 

with respect to the coupling constant from 0 to e2
; this calculation is ·equiva­

lent to the Debye, charging process. Noting that U is O(e
3

), we easily find 

the contribution to the Helmholtz free energy to be: 

2 
F = se d( e I 2-) u . . = 

e · 2 e 1 

o · ( e 1 
) 

VkT K
3 

12rr 

or, in the notation of the previous paper, 

where 

N = N + N. , 
e 1 

n = n+ + n , o -o . f = N /N e e 

2 2 2 
1/J = z. e. f. + a f 

1 1 1 e e 

( 32) 

( 33) 

( 34) 

If the free energy due to the interaction_is added to F.
0

_, the free energy of an 

ideal quantum gas which is given by: 

F 
0 

kT 
( 35) 

01~. 
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then the total -free energy is given by: 

F=F.+F +F 
01 oe e 

The pressure and internal energy are obtained from the expressions: 

PV' = _ V ~ (F \ 
kT av \k.T/ 

E a (F) 
kT = l3. 813 \k.T . 

( 36) 

The differentiations of ( 36) are easily' carried out by noting that from the 

defining relation for the chemical potential ( 10) we obtain: 

v aa.;av = - 1/9
2 

13 8a./ 813 = 3/29 
2 

. ' 
( 3 7) 

( 38) 

From ( 36), using ( 37) and ( 38), we obtain the following expressions for the 

pressure and energy: 

PV 
kT 

E 
kT 

( 39) 

where the sums are over the particle species of a multicompone.nt gas. Ex-

pressions (39) are identical with (127) and (128) of the previous article, except 

for the absence of the exchange interaction-terrp. 

-i; ~!\!)'\ 
JtLd··:Y· 

trr 1·. ~ u : _,. 



- 16 UCRL-5653 

IV. CONCLUSION 

The pre!' sure and internal energy formulae ( 39) are exact in the near-

. . . 3/2 
classical limit defined by high temperature and low density such that /\.¢ = 

3 - 1 . .1 
( 8rr p A. ) << 1, but n t 0. In this limit, the ring. diagrams of the expansion 

of the quantum-mechanical grand partition function give the leading contribu-

tion to PV /kT after the ideal gas term (namely, 0( /\.)), and the next contribution 

fr~m non-ring ~erms is 0(/\.
2
). We have thus shown that the lineari~ed De bye-

Huckel-Thotpas-Fermi theory is exact i~· the near-classical limit in the same 

wa¥ in which the Debye-Huckel theory is exact in the classical limit (n = 0). To 

distinguish between the various ways of building up such a theory, we must re-

quire that the Poiss·on equations be symmetrical in the treatment of the average 

potentials, and preserve the charge-density symmetry, n -+ = zi n +- to 0( 4J). The 

usefulne-ss of tl).e Debye-H~ckel method has thus been extended to more dense 

plasmas, but at the same time the limitations of the. method are more apparent. 

The linearized theory gives the thermodynamic functions of essentially 'classical 

, particles whose velocity distributions are slightly modified from the Boltzmann 

form, du~ to quantum-statistics. Exchange interactions and wave-mechanical 

' 
effects are in no way included in either the linear or the nonlinear equations. 

Furthermore, it is not clear that the nonlinear equations give any more i·!'lforma-

tion than is contained in the linearized forms. The nonlinear effects of the sym-

metrical nonlinear equations (the final equation of ( 15) and the first of ( 16) are 

not believable, since the charge symmetry, n_+ = zi n+-, is violated in 0(4J
2
). 

Th~ :set of nonlinear equations ( 15) used by Cowan and Kirkwood are better in 

that tl1~ dLdr·g~ :symmetry is preserved, but the set { 16), which gives different 

answers, would seem to be equally valid. Until more exact results have been ob-

tained from the non-ring terms of the partition function,· and can be used for com-

parison, we ·conclude that the' Debye.-H~ckel-Thomas-Fermi theory, as applied 

to plasmas, is useful only in its lineariz~d form. 

. . ~ . 15-·.g· 016 

.. 




