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APPLICATION OF A MODIFIED DEBYE-HUCKEL
THEORY TO FULLY IONIZED GASES"

R. E. Kidder and H. E. DeWitt

Lawrence Radiation Laboratory, University of California

Livermore, California

ABSTRACT

<The‘equations of the Debye-Hlickel theory, modified to include quantum
statistics, are discussed. It is found that the nonlinear equations ﬁsed by
Cowan and Kirkwood are not unique,‘ and that the nonlinear theory can be
formulated in different ways to give different answers. The linearized equa-
tions of th‘ese altefnative formulations are discussed, and .thé correct form
of the linearized theory is established. From the linear theory, the Helmholtz
free energy of a slightly degenerate plasma is derived, and from this result,
useful formulae in the near-classical limit are obtained for the pressure and

internal energy.

sl .

" This work was performed under the auspices of the U.S. Atomic Energy

Commission.
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APPLICATION OF A MODIFIED DEBYE-HUCKEL
' THEORY TO FULLY IONIZED GASES

R. E. Kidder and H. E. DeWitt

Lawrence Radiation Laboratory, University of California

Livermore, California

I. INTRODUCTION

In its 1inearize_qy,.form, the classical Debye-Hfckel theory of ionic solu-
tions ha.s\ been very useful in providing a quick derivation of the thermodynamic
properties of a fully ionized gas in the cléssi,cal limit (h = 0). The results of
this intuitive th’eory have been confirmed by a rigorous statistical-mechanical
derivation using the Mayer cluster expansion of the canonic‘al partition func-
'cion.l It has be'elln shown that "che linearized form of the D'ebye theory is equiva-
lent to the summation of the ring integréls of the classical cluster expansion.
The theory in its nonlinear form, however, is beset with insurmountable dif-
ficulties when applied to a classical multicomponent gas of point-charged par-
ticles. From the success of the Thomas-Fermi statistical theory of the atom,
it has been expected that Aby modifying the Debye-Hﬁcléel theory to the extent of :
describing thc clcctrons with Ferini sLaI;‘,istics instead of Boltzmann statistics
the diffi;ultiés. of the classical theory could be removed. . Recently, Kifkwood
and Cowan have made detailed numeérical calculations of the thermodynamic
functions of a dense plasma, using the nonlinear ecjuations of a Debye-Huckel-
Thomas-Fermi theory.2 Also, Landau and Lifshitz have indicated how the

linearized Debye theory may be amended to include the effects of quantum

'E. W. Montroll and J. E. Mayer, J. Chem. Phys. 9, 626 (1941).

R. D. Cowan and J. G. Kirkwood, J. Chem. Phys. 29, 264 (1958).
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staLtistics.3 Exact results for the thermodynamic functions of a slightly de-
generate gas are now available.4 In this note we examine the Kirkwood-Cowan
theory in‘its linearized form. It is found that the logic used by them enables
one to write two alternative sets of equations which give different answers for
the same problem. Landau and Lifshitz use a slightly different set of equations
and obtain results that disagree with the exact theory because of the violation of
‘a symmetry requireme-nt». We take the point.of view that the Debye-Hiickél
theory, when modified with quantum statistics, shoﬁld, in its linearized form,
agree with the rigorous results obtained by summing the ring diagrams of the
_quantum—mechénical grand partition function. A'form of the linearized theory

that meets this requirement is given.

II. THE BASIC APPROXIMATIONS AND THE EQUATIONS OF THE
DEBYE-HUCKEL-THOMAS-FERMI THEORY

We consider a fully ionized gas composed of electrons with average den-

sity n__ and ions of charge z;e and average density n Electrical neutrality

+o’
requires that z'i N, be equal to n__. Around each ion there is an average po-
tential \I’+ due to the ion being a center surrounded by a statistical distribution
of positive and negative charge; similarly, around each electron an average
potential ¥ is defined. These average potentials satisfy Poisson's equation:
N2 -
' 4n‘zie6(r) 41_r Py

) (1)
v U = 4w eb(r) -~ 4mp_

3L D. Landau and E. M. Lifshitz, Statistical Phys1cs (Pergaman Press,

1958), pp 229 - 33.

4H. E. DeWitt, Thermodynamic Functions of a Partially Degenerate, Fully
Ionized Gas, University of California Radiation Laboratory Report No. UCRL-

5652, Aug. 1959.
. 0 Z
153 002
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The 6 functions express the boundary conditions, which are:

lim r¥¢v = z.e,
+ 1
r—~0
(2)
lim »r¥ = - e
r—+0

The average charge densities are given by:

e(z.n

Py = elzyn, () = n (),

(3)

p_ = elz;n, (x) =n__ (),

where .n++(r) and n“+(r) are the average particle-number densities of ions
and eléctrons, respe\ctive_ly, at a distance r from a given ion. Similarly,

and n are the densities of ions and electrons about a given electron.

n, _ _
The average distribution of negative charge about an ion must be the same
as the average distribution of positive charge about an electron; hence, we

’

have the basic symmetry requirement:

n_+(r) = zin+_(r)’. ‘ (4)

Since the electrons obey Fermi statistics, the average density of elec-

trons about ions may be written as:

1

n_,(r) = <3: [1+exp(-a+pp’/zm+pw_ (r,a)] "} >1 : (5)

where w_+(r, a) denotes the energy of an electron at a distance r from an ion,
in the presence of all the remaining ions and electrons in a particular configu-
ration denoted by a. T:he averaging in (5) is taken over all configurations,

with the distance r held fixed. An initial basic assumption of the Debye-Huckel
approach is that Eq. (5) is approximated by:

-1
n_+(r) = Iz;,i [14-‘ exp '<- ae+ BpiZ/Zm + B<w_+(r,a)>a)] . (6)

159 089
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This assumptiqn is rigorously true only to .ﬁrst order in w_+(r, a), since
there is no reason'to expect that <W-+r-1>a is equal to <w_+>1(;'1 for n greater
than 1. Henceforth, the average electroﬁ-ion energy, <w_+(r, a)>a , will be
denoted by \';v‘__‘_(r). If the summation of (6) over mor'nentum states P; is con-
verted .to an integration, the following equation, in the notation of the previous

paper is obtained:

?‘-+(r) =.n-o'g;la?l/z(“e'ﬁw‘.-+(r))"‘ }.(7)
where .
(Z'n'ﬁ)3n_é
= - ) :
e (2s +1) 7w/ ?%2mrT)Y?
e
(8)
J (a) = _A_}_ @ dxxl :
1/2'* Nw o,l+exp(-a'+xz)

Similarly, for the ions, we find:

{

B JI/Z(Qi_6W++(’r)> F.D.

. | (9)
i gl/‘z(ai_,pw++(r)) B.E. ,

n r) =mn L

depénding on whether the ions are fermions or bosons. The charge density
must vanish as r approaches , since the system is electrically neutral;

this requirement. determines thc chemical potentials 'ae and a, in (7) and

(9) from the equations:

ge =J1/2(°’e) ,
(10)

g'iz"ql/z(“i) or ?1/2(%)'

/

In the classical limit, H—+ 0, (7) and (9) reduce to Boltzmann statistics:
n_+( r) = 'n-o exp(- BW_+(r))

. (11)
n++(rA) =n, exp(-ﬁw++(r)) .

159 (66
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Classically, the average energies go fo w_+(r) - - zieZ/r and w++(r) —>.+z.12e2/r
‘as.r approaches 0. Consequently, n++(r) v;nishes as r apprdaches 0, but
n_+(r) has an essential singularify. This catastrophic divergence renders the
classic.:al noniinear Debye-Huckel 'eqﬁations inapplicable to a gés of point charges.
The Fer’mi form (7) of n_+(r) is well behaved at r = 0, since the repulsions due
to the Pauli principle préVent the classical piling-up of negative char'ge around
the ion.

By the same reasoning, the density of positive charge around an electron

is given by: ‘
Jl/'z(ai—ﬁw+_) . F.D.

¢, (12)
o1 %/Z(Qi_ﬁw+-) B.E. ,

n+_(r) = n

and, similarly, for negative charge around the electron we have:

n_(r) = n_ ‘IJI/Z( : (13)

In order to obtain usable equations, it is next assumed that the various average

energies are related to the average potentials as follows:

, Wip T 7Y
W, = -el
(14)
w+_ = z.e\I/_
w = - eV

. The justification of this basic assumption and the other approximations of the
Debye-Huckel theory are discussed in detail by Fowler.5
Kirkwood and Cowan form a nonlinear equation for \If+ by using (7) for

n_+(r) ‘and the Boltzmann form for n, (r). The equation for ¥ is coupled

++

5R H. Fowler, Statlstlcal Mechamcs (Cambndge University Press, 1955),

second edition, pp- 269 - 74..

159 €07



-8 - UCRL-5653

to ‘I7+ by the use of the symmetry requirement (4). These equations are:

V¥ = - 4n 2 ed(r) - 4 ez n,_ ;IJI/Z(Q ~pzel)
“n-oéél“‘:l/z(“e*ﬁe‘l’ﬂ]
| (15)
Vz‘\lf_ = 47 eb(r) — 4w e[n lejl/z(a +ﬁe‘1')

-n g ‘IJI/Z(aewe\I/; ] .

(For generality, we have retained quantum statistics for the ions as well as
. electrons.) Using the same logic, however, one arrives at an alternative set
of equations by first writing an equation for ¥ , and then coupling the equation

for ‘I/+ .to that for ¥ with the symmetry requirement. This alternative set
\

is: .
VZ\I/_ = 4w eb(r) - 4n é,[zin+o gi'lo‘ql/z(ai—ﬁzie\ll_)
-n__ ;l.ﬂl/z(a +Be\I/)]
(16)
Vzr\If+ = —4q zie6'(r) - 47 e[zin_*_0 gi—l‘/’al/z(ai— ﬁzie\y_l_)
~ 2Nt 1oel/.?.(a_ﬁz el )] .

Both sets of equations, (15) and (16), reduce to the classical nonlinear equa-
tions of the Debye-Hﬁckel theory in the classical limit, i—~ 0. For positively
“and negatively charged pe.rticles of comparable rﬁaes, there is no reason to
prefer one set over the other. However, for real electrons and nuclei with
their tremendous mass differencel, the set (.15) used by Kirkwood and Cewan
seems more reasonable for approximate'numerical computation of the thermo-
dynamic functions of a dense plasma.

To examine the consequences of the two alternative sets of equations,

we look at the solutions of their linearized forms. The linearized equations

{59 008
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are valid for r* sufficiently large so that 8 z,e¥, and Be ¥, are much greater
than 1. The Jl/z .(or ?1/2) functions may be expanded in Taylor; series to

give:

g;ul/z(ae+se\1’+) 1+Be62\11+ P

(17)

-1 ' 2
C’i JI/Z('ai—pzie\I#) 1—';321e0i \Il++ e ey

o -
]

= g4;,lé.ﬂl_i/z(‘?‘e) = J-I/Z(ae)/(jl/z(ae)

| | |  (1g)
07 - t-"-1"(){/2(“1) - A 1/2"“1)/ 1/2'(“1) :

i i -
1f (17) is used, the linearized equations obtained from (15) are:

22,2 2
| | 4nPe [zi 6,n +6, n_o]qJ+
A 5 (19)
4wpe 0 [zi nf0¢+ -n__¢ ],

<
=

+
0

|
<
I

and from (16):

q
R
"
NS
3
w
g
™
N
[e]
o]
+
@
o}
<

B , . (20)
p l2gn b -n v ]

<
=
+
"
NS
3
W
)
)
o
v
N

The solutions ‘of the line,ar'i'z,ed equalions are design_ated with ¢+ and ¢, to
distinguish them froml\I‘/+ an’d \I'; for the nonlinea}r equations, where _q;+ and
y_ are the asymptotié forms of ‘I’+ and ¥ for large r. The & functions ex-
pressing the boundary conditions at r = 0 have not been written in the linearized
eqﬁations, since these boundary conditions are of no help in deterﬁining the
inteération constants in lp+ and §_.

‘The general solutions’of the linear equations A, subject only to the re-

quirement that ¢+ and ¢y vanish at «, are:
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Z € -Kr
¢+ T TT CA+e
(21)
-k 6 r ' :
- e -e 2702\ -KT|
L '?[CA-e fCA+<9e/ei)e ] ’
where - )
2.2 2 _2A\l/2 _
K.—(K_'ee-i'Kiei), = 1/x
"K;Z = 4 'ezﬁn_o ‘ (22)
2 2 2
ky =4meBzin -
Here, CA+ and CA- are arbitrary constants, and k is the reciprocal of the

Debye‘screening length X\, generalizéd to include the modifications due to

q{lantum statistics. Similarly, the general solutions of equations B are:

_ e KT
/ LIJ- - ;CB-e
' : (23)
2; e TKLOT 2, 2\ -kr
by = 7 [CB+® +_ CB-,<ei /ee>e |-

By numerical integration of the nonlinear equations (15) and comparison of

N and _ with (21) for large r, we may find numerical values for Cas and

C, . Similarly, numerical values of CB and C could be found by numeri-

A- + ‘B -

cal integrat;ion of (16).. The solutions, (21) and (23), of the alternative sets of
linear equations are different from each other, and hence would lead to dif-
ferent answers for the thérmodynamic functions of the gas. Furthermore,

¢+ and §_ have the unsatisfactory feature of behaving differentiy as r ap-
' -k" 0 r
-e

KT. . .
» while y wvanishes as e ,

proaches . In(21), Y, vanishes as e

since 'k ‘Be is less than « .

The only way in which the solutions (21) and (23) can be identical is to
AL T CB+ = 0. If this requirement is made, then (20)

and (23) have the same form and require only one arbitrary constant:

have the condition: C

153 (10
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) zieeiz Sk
y, = ——Ce
(24)
ee.2
e - KT

b

In view of the nonuniqueness of the theory, as illust.rated by two apparently
equally valid sets of equations A and B, the solutions (24) are to be preferred
over (21) or (23). In the classical limit, the degeneracy parameter; eiz and
Oez both reduce to 1. The remaining arbitrary con;tant C is determined by
the fact that the Debye-Huckel theory is rigorously valid at sufficiently high
temperature. The asymptotic forms 4;+ and §_ are valid arbitrarily close to »
the origin, and at the origin we must have r\If+ equal to z; e and r¥ equal to
—¢; hence, C has the value 1 for a nondegenerate gas. It is clear, however,
that for a degenerate 'gas (i. e., Oez' ;f 612 7( 1) the constant C cannot be chosen
so that ¢+. and ¢_ reduce to'vzi e/r and -e/r, respectively, as r approaches 0.
The chief criticism of the two sets of nonlinear equations, (15) and (16),
for the calculation of thermodynamic functions of a aense gas is that they are
unsymmetrical in the way \I/+ and ¥ are treated. With the set of equations
(14) used by Kirkwood and Cowan, \I/+ may be calculated independently of v ,
but the calculation of \Il_ requires a knowledge of \I'+ . The same statement
applies to t.he equations.(16), but in reverse order. The two ways ofkdoing the
calculation, in general, will give different résult‘s. ’fhus, it would seem more
reasonablke to begin with a symmetrical set of equations in which ‘I/+ and v
are treated on ;an equal basis. The first equation of (15) and the first of (16)
are symmetrical in this sense. An objection against this symmetrical set of
equations for numerical calculations of the type done by Kirkwood and Cowan

is that the symmetry requirement, ni+(r) = zn (r), is violated far r small

+ -

enough to cause nonlinear effects to be important. We will show, however,

459 01t
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that the symmetrical equations‘ar'e suitable for developing a linearized Debye--
Huckel theory which gives the correct results for the thermodynamic functions

of a slightly"degenerate gas.

. The linearized symmetrical equations, namely, the first of A and the

"first of B, have the solutions:

-

e ) R | -KTr
R by = 7 C,e
' (25)
o = - % c o~ KT
The .syrn'rn.etry requirement',. n_+(r) =z n+_(r), gives a relation between the

two arbitrary constants C+ and C_ in (25). The expansions of these charge

densities are:

2
-
n_+(r) = n_o‘{l + Beee 4}+ + ..
, (26)
zin+_(r) = z;n, {l—ﬁeei g+
The two densities, n_, and zn,_ _, can be equal to 0(y) only if eez C+ is equal

to eiZC_, and (25) may then be written as (24). Thus, the equality of the solu-
tion of the unsymmetrical sets of linearized equations, A and B, is equivalent
to preserving the _charge-dénsity symmetryrin O(y). The symmétry is violated
in O(upz) for a degenerate gas, and hence the usefulness of the nonlinear sym-
metrical equations for numerical calculations is questionable.

Landau and Lifshitz, in their discussion of the degenerate plasma, used
the symmetrical linearized equations and obtained the solutions (25). They
used the boundary conditions at r = 0, however, and so put the constants C+
and C_ equal to 1. This choice violates the symmetry requirement, even to

first order in .
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1

CIIIL CALCULATION OF THE THERMODYNAMIC FUNCTIONS

The average potential energy of the gas is given by:

T -

o) —

N, ng p+(zie/r) +%Ne Sd—; p_(-e/r)
(27)

. +.U .
1 e

cl

The solutions of the linearized equations (24) are valid for sufficiently large
r, and with Poisson's equations, they give the asymptotic forms of the éharge

-densities as: o

z.e 0, 2
p+ asy - - 411‘1- VZqJ+ - - r1 Ce-‘Kr' .
‘ L o=t -
p-asy=-4wv¢-_ r Ce

The asymptotic forms (28) are accurate for distar;ces from the central point
charges .greater than some limit to be denoted as r_. Inside the sphere of
radius T the average potential and charge density are not known, though
presumably they may be c‘alculated approximately from the nonlineér equations,
either (15) or (16). The aver’ége energy integral is thus a sum of two parts:

[>¢]

Ui = 7Nj.41rSv drr P+RYRCt(Zi e/r)+ENi41r 5

2
. drr P+aoy(zie/r) . (29)
o r

[of

The quantity ﬁi may be estimated by using Py asy for the entire volume, even
for r less than r. where it is not accurate, since the main contribution comes

from r greater than r.. “With this approximation and using (28), we find:

N an ( arr? (z.e/r) = - LCN.z2e%0.5k ( 30)
i " Ptasy'?i® BT S T T

1 1
o

g. = 1
1 2

Adding a similar result for Ge’ we have, for the potential energy of the gas

due to the particle correlation,
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u/v

f
{
!
O
o
N
v
o)
-
5
+
o))
5
=

(31)

We have s'een‘that t}}e remaining arbitrary constant C must be | in the classi-
cal limit, but for a degenerate gas, wé cannot fule out the possibility that C
is a function of temperature in such a way tflat lim C(T) is equal to 1 as T
approaches . Equation (31), however, agrees with the exact near-classical-
limit resu}t for U as derived from the grand partition function (Eq. lAZZ'of
the previous paper) when C is equal to 1. -

The Helmholtz! free energy may be obtained from U by an integration
with respect to the coupling constant from 0 to éz; this calculation is - equiva-
lent to the Debye, charéing process. Noting that U is 0(e3), we easily find

the contribution to the Helmholtz free energy to be:

e? . 2 3

\ 2 |

F, - g d(ez‘) T = - YRTk | (32)
o (el ) € ].ZTT_

’ ' \ .
or, in the notation of the previous paper,

F .
e 2 3/2
— = —£4£NA . . 33
T 3 ¢ | (33)
where,. ‘
‘N = N_#*N., n=n, +n , f =N /N
e 1 +0 -0 - e e
, (34)
A = N e3 63/2n1/2, ¢ = z.ZG.Zf.+ G&f .
i i1 e e

If the free energy due to the interaction is added to F'o’ the free energy of an

ideal quantum gas which is given by:

¥

T Nle-dy @@, ()

159 014



-15 - ' * UCRL-5653

then the totalfree energy is given by:

F=F .4+F +F .
oi oe e

The pressure and internal energy are obtained from the expressions:
Pv:_ v ) F
kT oV \kT/

E ﬁi@_)
kT 9B \kT/ °

The differentiations of (36) are easily carried out by noting that from the

|

(36)

defining relation for the chemical potential (10) we obtain:

Y% 3(1/3V. = - 1/e2 .
. 2 3
Bda/Op = 3/207.
Also, we need the relation: . > )
(38)

- n(a) .

) <J_1/Z(a) | J_3/Z(a)>
1 /20) J_l'/z(a) )

From (36), using (37) and (38), we obtain the following expfessions for the

pressure and energy:

N/, (a.)
PV _ o . 3/2'7% 0 3/2 1/2 . 2,
»/2 i :
o A 4 . (39)
E _3 3/21%) 3/2 .3 1/2 2 :

where the sums are over the particle species of a multicomponent gas. Ex-
- pressions (39) are identical with (127) and (128) of the previous article, except

for the absence of the exchange interactionterm.
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IV. CONCLUSION
The pressure and internal energy formulae (39) are exact in the near-

classical limit defined by high temperature and low density such that A¢3/2 =

3
(8rpr7)” !

<<'1, but B # 0. In this limit, the ring diagrams of the expansion

of the quantum-mechanical grand partition function give the leading contribu-
tion to PV/kT aft.er th;a ideal gas term (namely, O(A)), and the next contribution
frc;mnon-ring ';errr;s is O(AZ). We hav-e thus shown that the linearized Debye-
H{ickel-Thomas-Fermi theory is exact 1n the neari-classical limit in the same
way in which the Debye-Huckel theory is exact in the clas(sical limit (h = 0). To
distinguish between the various ways of building up such a thebry, we must re-
quire that the Poisson equations be symmetrical in the treatment of the average
vpotential's, and preserve the charge-density symmetry, n_,=zn to O(¢). The
usefulness of the Debye-Huckel métho;i hais thus been extended to more dense
plasmas, but at the same time the 1ifnitations of the method are more apparent.
The linearized theory gives the thermodynamic functions of essentially classical
;particles whose velocity distributions are slightly modified f‘rom the Boltzmann
f01_'m, due to quantlim‘statistics. Exchange interactions and wave-mechanical
effects are in no way included in either the linear or the nonlinear equations.
Furthermore, it is not clear that the nonlinear equations give any mc;re i'«p’forrﬁa-
tion than is ccl)ntained.. in the linea\rized forms. ”The nonlinear effects of the sym-
metrical nonlinear equations (the final equation of (15) and the first of (16) are
not believable, since the charge symmetry, n_ =zmn _, is violated in O(LIJZ).
The set of nonlinear equations (15) used by Co‘wan and Kirkwood are better in
that the cliarge symmetry is preserved, but the set (16), which gives different
answers, would seem to be equally .valid‘. Until more exact results have been ob-
tained from the noh—ring terms of the partition function,' and can be used for com-
parison, we conclude that the/Debye,-Htlckel-Thomas-Fermi theory, as applied

to plasmas, is useful only in its linearized form.

159 016





