

ANL-5859
Physics and Mathematics
(TID-4500, 14th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
P. O. Box 299
Lemont, Illinois

RE-34, AN IBM-704 REACTOR SHIELDING PROGRAM

by

M. K. Butler and J. M. Cook

Applied Mathematics Division

June, 1959

Operated by The University of Chicago
under
Contract W-31-109-eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	<u>Page</u>
HISTORY AND ACKNOWLEDGMENTS	3
ABSTRACT	5
I. INTRODUCTION	5
II. DESCRIPTION OF NUMERICAL METHOD	8
III. PREPARATION OF INPUT DATA	16
IV. OPERATING INSTRUCTIONS	20
V. OUTPUT INFORMATION	21
APPENDICES	23
A. Sample Problem Input	23
B. Sample Problem Output	27
C. SHARE Assembly Program Listing	37

HISTORY AND ACKNOWLEDGMENTS

The problem which this program solves was originally proposed in 1955 by J. W. Butler and M. Grotenhuis. At this time the Laboratory did not have a computing machine with a sufficiently large memory to adequately solve the problem; consequently, when the IBM-704 was installed in November of 1957 the problem was reviewed and the program described in this report prepared.

J. Heestand assisted the authors by checking the machine program, while J. W. Butler and M. Grotenhuis, in addition to being very patient, contributed advice and assistance throughout the development of the program.

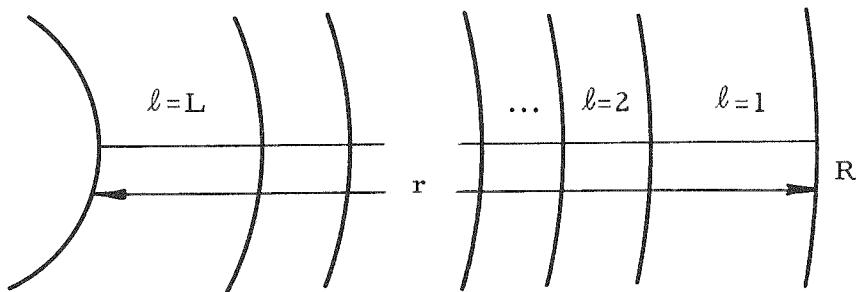
RE-34, AN IBM-704 REACTOR SHIELDING PROGRAM

M. K. Butler and J. M. Cook

Applied Mathematics Division

ABSTRACT

An IBM-704 shielding program is described which solves, by a finite difference method, the multigroup diffusion equation system in slab, cylindrical, or spherical geometry, with a prescribed source distribution given for the highest energy group. A wide choice of boundary conditions has been made available at the outer boundaries and either continuity of flux and current or the "black boundary" condition may be specified at each regional interface.


The machine time required to process an average problem is approximately 1-2 minutes. This includes reading in the program deck.

I. INTRODUCTION

The purpose of this report is to present the IBM-704 program for solving the one-dimensional multigroup diffusion equation system of reactor shielding problems.

The problem originator specifies certain problem parameters, such as the outer boundary, energy group divisions, geometrical and material properties of each region, and the source distribution for the highest energy group which enable the program to solve the diffusion equation system printing the flux distributions, the integrals of the fluxes, neutron leakages and balance checks for each region, as well as the value of the current at the outer boundary and at any regional interface where a "black" sheet has been inserted.

The outer edge of the reactor shield is designated as R and the reactor or the reactor shield whichever is being considered is divided into L regions, ($1 \leq L \leq 100$), numbered from R inward to the inner boundary which may be at the center of the reactor or at the beginning of any shield region.

Each region, ℓ , is divided into H_ℓ sub-intervals of equal thickness, Δ_ℓ . The lattice points in each region, designated by integers, are numbered from the outer edge of the region inward, h_ℓ , ($0 \leq h_\ell \leq H_\ell$). It is at these points that the source for the highest energy group is specified, the fluxes and lower energy group sources are computed, and numerical integration is performed, $\left(\sum_{\ell=1}^L H_\ell + L \leq 1000 \right)$.

The neutron energy spectrum is divided into a set of J energy groups, ($J \geq 1$). In the numerical solution of the problem the set of J diffusion equations of the form

$$\nabla (D \nabla \phi) - \sigma \phi + S = 0,$$

is replaced by a set of J coupled difference equations, where

D is the diffusion coefficient ($= \frac{1}{3\sigma_{tr}}$),

σ is the removal cross section ($= \sigma_{elastic} + \sigma_{capture} + DB^2$),*

ϕ is the neutron flux,

and S is the source term prescribed as input data point by point for $j = 1$, and computed for the lower energy groups, $j \neq 1$, as $S_j = s_{j-1} \sigma_{j-1} \phi_{j-1}$,

where s_{j-1} is the transfer fraction for the $j-1$ st energy group.

Before describing the boundary conditions available it will be helpful to distinguish the inner and outer edges from the interior regional boundaries. This has been done by referring to only the inner and outer boundaries of the problem as boundaries and applying the term interfaces to the interior boundaries.

At the inner edge of the problem, (the point of minimum r value), any of three boundary conditions may be employed. The derivative of the flux may be set equal to zero, the flux value, k , may be specified, or if $r \neq 0$, the "black boundary" condition, $-\frac{1}{\phi} \frac{d\phi}{dr} = \frac{1}{d}$, may be imposed.

*This is not the usual removal cross section as defined for shielding work.

At each interface the problem originator has two choices; he may elect the standard boundary condition of continuity of flux and current or a "black boundary" condition may be chosen. The "black boundary" condition may be written as

$$-\frac{1}{\phi} \frac{d\phi}{dr} = \frac{1}{d} \text{ for the inner region,}$$

and

$$\frac{1}{\phi} \frac{d\phi}{dr} = \frac{1}{d} \text{ for the outer region.}$$

At the outer boundary, ($r = R$), the flux may be set equal to zero, the derivative of the flux may be set equal to zero, or the "black boundary" condition may be applied.

These boundary conditions are specified and applied at each boundary and on both sides of each interface. Obviously, if an interface is a "black boundary" to one of its adjacent regions, it is a "black boundary" to the other, or if the continuity condition is used for one adjacent region it must be used for the other.

The input data may be divided into three categories - the general problem parameters, the point-by-point source distribution for the highest energy group, and the group-region parameters. Included in the general problem parameters are such items as the problem number, the geometry (N), J , L , R , and the interval size (Δ_ℓ), and number of intervals (H_ℓ), included in each region. The group-region parameters for each region and each energy group consist of the boundary condition indicators for both the outer (d_0), and the inner (d_1) boundaries of the region, D , σ , and s . A more detailed description of the input is provided in Section III.

No description of the IBM-704 computer will be attempted here, instead the reader is referred to the IBM-704 Data Processing System Reference Manual, IBM Form A22-6500-0.

II. DESCRIPTION OF NUMERICAL METHOD

We are to solve the diffusion equation $D\nabla^2\Phi - \sigma\Phi + Q = 0$ for three different reactor shapes: slab ($N = 1$), cylinder ($N = 2$), and sphere ($N = 3$).

$$\Phi = \phi(r) \psi(\theta_1, \dots, \theta_{N-1}), \text{ where } \nabla^2\Phi = (\nabla^2\phi)\psi + \phi \cdot (\nabla^2\psi), \text{ and } \nabla^2\psi = -\mathcal{L}\psi$$

The \mathcal{L} corresponds to neutron leakage out of the reactor in directions parallel to the surfaces $r = \text{constant}$. If we consider it as a form of absorption, add it to σ , and factor out ψ ; the diffusion equation becomes an ordinary differential equation $D\nabla^2\phi - \Sigma\phi + S = 0$ in r , with $\nabla^2 = \frac{1}{r^{N-1}} \frac{d}{dr} r^{N-1} \frac{d}{dr}$ and $\Sigma = \sigma + D\mathcal{L}$. The range of r is from b_0 to b_L with $0 \leq b_0 < b_L$. The boundary conditions are of the form $A_0 = A_1\phi(b_0) + A_2\phi'(b_0)$ and $0 = \phi(b_L) + d\phi'(b_L)$.

We use the following difference approximation to the differential operators (see ANL-5437, Sec. V, note (6)):

$$\begin{aligned} \left[\frac{d\phi}{dr} \right]_{r_n} &= \frac{1}{2\Delta r} \left[\left(1 + \frac{1}{2n}\right)^{N-1} \phi_{n+1} + \left(\left(1 - \frac{1}{2n}\right)^{N-1} - \left(1 + \frac{1}{2n}\right)^{N-1} \right) \phi_n - \left(1 - \frac{1}{2n}\right)^{N-1} \phi_{n-1} \right] \\ \left[\nabla^2\phi \right]_{r_n} &= \frac{1}{(\Delta r)^2} \left[\left(1 + \frac{1}{2n}\right)^{N-1} \phi_{n+1} - \left(\left(1 + \frac{1}{2n}\right)^{N-1} + \left(1 - \frac{1}{2n}\right)^{N-1} \right) \phi_n + \left(1 - \frac{1}{2n}\right)^{N-1} \phi_{n-1} \right] \text{ if } r_n \neq 0 \\ &= \frac{N}{(\Delta r)^2} \left[\phi_{-1} - 2\phi_0 + \phi_1 \right] \text{ if } r_n = 0 \end{aligned}$$

where

$$n = n_{\ell, h\ell} = r_n / \Delta r \text{ need not be integral.}$$

The differential system to be solved is given by

$$(b_1) D_\ell \nabla^2 \phi(r) - \Sigma_\ell \phi(r) + S(r) = 0 \quad b_{\ell-1} < r < b_\ell \quad 1 \leq \ell \leq L$$

$$(b_2) D_\ell \left[\frac{d\phi}{dr} \right]_{b_\ell^-} = D_{\ell+1} \left[\frac{d\phi}{dr} \right]_{b_\ell^+} \quad 1 \leq \ell < L$$

$$(b_3) \phi(b_\ell^-) = \phi(b_\ell^+) \quad 1 \leq \ell < L$$

$$(b_4) \phi(b_L^-) + d\phi'(b_L^+) = 0$$

$$(b_5) A_1 \phi(b_0) + A_2 \phi'(b_0) = A_0$$

We replace this system by the following difference system

$$(c_1) \frac{D_\ell}{(\Delta_\ell r)^2} \left[p_\ell(h_\ell) \phi_\ell(h_\ell + 1) - (p_\ell(h_\ell) + q_\ell(h_\ell)) \phi_\ell(h_\ell) + q_\ell(h_\ell) \phi_\ell(h_\ell - 1) \right]$$

$$- \Sigma_\ell \phi_\ell(h_\ell) + S_\ell(h_\ell) = 0 \quad 0 < h_\ell < H_\ell, \quad 1 \leq \ell \leq L$$

$$(c_2) \frac{D_\ell}{\Delta_\ell r} \left[p_\ell(H_\ell) \phi_\ell(H_\ell + 1) + (q_\ell(H_\ell) - p_\ell(H_\ell)) \phi_\ell(H_\ell) - q_\ell(H_\ell) \phi_\ell(H_\ell - 1) \right] =$$

$$\frac{D_{\ell+1}}{\Delta_{\ell+1} r} \left[p_{\ell+1}(0) \phi_{\ell+1}(1) + (q_{\ell+1}(0) - p_{\ell+1}(0)) \phi_{\ell+1}(0) - q_{\ell+1}(0) \phi_{\ell+1}(-1) \right]$$

$$(c_3) \phi_\ell(H_\ell) = \phi_{\ell+1}(0)$$

$$(c_4^*) (d + \Delta_L r) \phi_L(H_L) - d \phi_L(H_L - 1) = 0$$

$$(c_5) a_0 \phi_1(0) + a_1 \phi_1(1) = a_2,$$

where functions of n_ℓ, h_ℓ are written as $f_{n_\ell, h_\ell} = f_\ell(h_\ell)$, and the derivative $\phi'(b_L)$ in the extrapolated end-point condition (C_4^*) is approximated by $(\phi_L(H_L) - \phi_L(H_L - 1))/\Delta_L r$. The quantities p and q are defined by

$$p_\ell(h_\ell) = \left(1 + \frac{1}{2n_\ell, h_\ell} \right)^{N-1} \quad \text{and} \quad q_\ell(h_\ell) = \left(1 - \frac{1}{2n_\ell, h_\ell} \right)^{N-1}$$

The fictitious fluxes $\phi_\ell(-1)$ and $\phi_\ell(H_\ell + 1)$ are defined outside of the ℓ th region R_ℓ by using (c_1) to extend across the boundary.

We now use (c_1) on (c_2) to eliminate these extensions. Then let $\lambda_\ell = (\Delta_\ell r)^2/D_\ell$ and $k_\ell(h_\ell) = p_\ell(h_\ell) + q_\ell(h_\ell) + \lambda_\ell \Sigma_\ell$, and (c) becomes:

$$(d_1) p_\ell(h_\ell) \phi_\ell(h_\ell + 1) - k_\ell(h_\ell) \phi_\ell(h_\ell) + q_\ell(h_\ell) \phi_\ell(h_\ell - 1) + \lambda_\ell S_\ell(h_\ell) = 0$$

$$0 < h_\ell < H_\ell, \quad 1 \leq \ell \leq L$$

$$(d_2) \Delta_\ell r \cdot \lambda_{\ell+1} [-2q_\ell(H_\ell) \phi_\ell(H_\ell - 1) + (k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell)) \phi_\ell(H_\ell)]$$

$$- \lambda_\ell S_\ell(H_\ell)] = \Delta_{\ell+1} r \cdot \lambda_{\ell+1} [q_{\ell+1}(0) - p_{\ell+1}(0) - k_{\ell+1}(0)] \phi_{\ell+1}(0)$$

$$+ 2p_{\ell+1}(0) \phi_{\ell+1}(1) + \lambda_{\ell+1} S_{\ell+1}(0)]$$

$$(d_3) \phi_\ell(H_\ell) = \phi_{\ell+1}(0)$$

$$(d_4^*) (d + \Delta_L r) \phi_L(H_L) - d \phi_L(H_L - 1) = 0$$

$$(d_5) a_0 \phi_1(0) + a_1 \phi_1(1) = a_2$$

Omission of the boundary condition (d₅) gives a system which has a unique solution for each assigned value of $\phi_L(H_L)$. The difference X of any two such solutions is a solution of the following system:

$$(e_1) p_\ell(h_\ell)X_\ell(h_\ell + 1) - k_\ell(h_\ell)X_\ell(h_\ell) + q_\ell(h_\ell)X_\ell(h_\ell - 1) = 0$$

$$0 < h_\ell < H_\ell, \quad 1 \leq \ell \leq L$$

$$(e_2) \Delta_\ell r \cdot \lambda_{\ell+1} \left[-2q_\ell(H_\ell)X_\ell(H_\ell - 1) + (k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell))X_\ell(H_\ell) \right] =$$

$$\Delta_{\ell+1} r \cdot \lambda_\ell \left[(q_{\ell+1}(0) - p_{\ell+1}(0) - k_{\ell+1}(0))X_{\ell+1}(0) + 2p_{\ell+1}(0)X_{\ell+1}(1) \right]$$

$$1 \leq \ell < L$$

$$(e_3) X_\ell(H_\ell) = X_{\ell+1}(0)$$

$$(e_4^*) (d + \Delta_L r)X_L(H_L) - dX_L(H_L - 1) = 0$$

In order to keep the quantities of the problem in range, it is simpler to solve for certain auxiliary functions.

Set $u_\ell(h) = X_\ell(h + 1)/X_\ell(h)$. Then from (e₁) we get

$$p_\ell(h_\ell) \frac{X_\ell(h_\ell + 1)}{X_\ell(h_\ell)} - k_\ell(h_\ell) + q_\ell(h_\ell) \frac{X_\ell(h_\ell - 1)}{X_\ell(h_\ell)} = 0$$

or

$$u_\ell(h_\ell - 1) = q_\ell(h_\ell)/(k_\ell(h_\ell) - p_\ell(h_\ell)u_\ell(h_\ell))$$

From (e₂) we get

$$\Delta_\ell r \cdot \lambda_{\ell+1} \left[-2q_\ell(H_\ell)/u_\ell(H_\ell - 1) + k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell) \right] =$$

$$\Delta_{\ell+1} r \cdot \lambda_\ell \left[q_{\ell+1}(0) - p_{\ell+1}(0) - k_{\ell+1}(0) + 2p_{\ell+1}(0)u_{\ell+1}(0) \right];$$

and from (e₄), $u_L(H_L - 1) = d/(d + \Delta_L r)$. So u is determined by the system

$$(f_1) u_\ell(h_\ell - 1) = q_\ell(h_\ell)/(k_\ell(h_\ell) - p_\ell(h_\ell)u_\ell(h_\ell)) \quad 0 < h_\ell < H_\ell$$

$$1 \leq \ell \leq L$$

$$(f_2) u_\ell(H_\ell - 1) = 2q_\ell(H_\ell)/ \left[k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell) + \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} (k_{\ell+1}(0) + p_{\ell+1}(0) - q_{\ell+1}(0) - 2p_{\ell+1}(0)u_{\ell+1}(0)) \right] \quad 1 \leq \ell < L$$

$$(f_3^*) u_L(H_L - 1) = d/(d + \Delta_L r).$$

Now set $v_\ell(h_\ell - 1) = \phi_\ell(h_\ell) - u_\ell(h_\ell - 1)\phi_\ell(h_\ell - 1)$.

To express it in terms of $u_\ell(h_\ell - 1)$, $v_\ell(h_\ell)$, and $S_\ell(h_\ell)$ we proceed as follows:

$$\begin{aligned}
v_\ell(h_\ell-1) &= \frac{1}{X_\ell(h_\ell-1)} (X_\ell(h_\ell-1) \phi_\ell(h_\ell) - X_\ell(h_\ell) \phi_\ell(h_\ell-1)) \\
&= \frac{1}{X_\ell(h_\ell-1)} \left((k_\ell(h_\ell) X_\ell(h_\ell) - p_\ell(h_\ell) X_\ell(h_\ell+1)) \phi_\ell(h_\ell) \right. \\
&\quad \left. - X_\ell(h_\ell) (k_\ell(h_\ell) \phi_\ell(h_\ell) - p_\ell(h_\ell) \phi_\ell(h_\ell+1) - \lambda_\ell S_\ell(h_\ell)) \right) / q_\ell(h_\ell)
\end{aligned}$$

(where we have solved (e₁) and (d₁) for X_ℓ(h_ℓ-1) and φ_ℓ(h_ℓ-1) to insert in the first equality)

$$\begin{aligned}
v_\ell(h_\ell-1) &= \frac{1}{X_\ell(h_\ell-1)} (p_\ell(h_\ell) (X_\ell(h_\ell) \phi_\ell(h_\ell+1) - X_\ell(h_\ell+1) \phi_\ell(h_\ell)) \\
&\quad + \lambda_\ell X_\ell(h_\ell) S_\ell(h_\ell)) / q_\ell(h_\ell) \\
&= u_\ell(h_\ell-1) (p_\ell(h_\ell) v_\ell(h_\ell) + \lambda_\ell S_\ell(h_\ell)) / q_\ell(h_\ell).
\end{aligned}$$

To carry v inwards across an interface, we follow the same procedure, using (e₂) and (d₂) instead of (e₁) and (d₁):

$$\begin{aligned}
v_\ell(H_\ell-1) &= \frac{1}{X_\ell(H_\ell-1)} (X_\ell(H_\ell-1) \phi_\ell(H_\ell) - X_\ell(H_\ell) \phi_\ell(H_\ell-1)) \\
&= \frac{1}{X_\ell(H_\ell-1)} \left(\left[k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell) + \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} (p_{\ell+1}(0) \right. \right. \\
&\quad \left. \left. + k_{\ell+1}(0) - q_{\ell+1}(0) \right] - X_{\ell+1}(0) \phi_\ell(H_\ell) - X_\ell(H_\ell) \left[k_\ell(H_\ell) + q_\ell(H_\ell) \right. \right. \\
&\quad \left. \left. - p_\ell(H_\ell) + \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} (p_{\ell+1}(0) + k_{\ell+1}(0) - q_{\ell+1}(0)) \right] \right. \phi_{\ell+1}(0) \\
&\quad \left. - \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} 2 p_{\ell+1}(0) X_{\ell+1}(1) \phi_\ell(H_\ell) - X_\ell(H_\ell) \left[-\lambda_\ell S_\ell(H_\ell) \right. \right. \\
&\quad \left. \left. - \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} (-2 p_{\ell+1}(0) \phi_{\ell+1}(1) - \lambda_{\ell+1} S_{\ell+1}(0)) \right] \right) / 2 q_\ell(H_\ell) \\
&= \frac{1}{X_\ell(H_\ell-1)} \left(p_{\ell+1}(0) \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} \left[X_{\ell+1}(0) \phi_{\ell+1}(1) - X_{\ell+1}(1) \phi_{\ell+1}(0) \right] \right. \\
&\quad \left. + X_{\ell+1}(0) \left[\frac{\lambda_\ell}{2} S_\ell(H_\ell) + \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} \frac{\lambda_{\ell+1}}{2} S_{\ell+1}(0) \right] \right) / q_\ell(H_\ell) \\
&= \frac{u_\ell(H_\ell-1)}{q_\ell(H_\ell)} \left(p_{\ell+1}(0) \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{\Delta_\ell r \cdot \lambda_{\ell+1}} v_{\ell+1}(0) + \frac{\lambda_\ell}{2} S_\ell(H_\ell) + \right. \\
&\quad \left. \frac{\Delta_{\ell+1} r \cdot \lambda_\ell}{2 \Delta_\ell r} S_{\ell+1}(0) \right) \quad \text{for } 1 \leq \ell < L
\end{aligned}$$

(where we have used (d₃) and (e₃)).

At the extrapolated end-point $v_L(H_{L-1}) =$

$$\frac{1}{x_L(H_{L-1})} (x_L(H_{L-1})\phi_L(H_L) - x_L(H_L)\phi_L(H_{L-1})) = 0 \text{ because both}$$

x and ϕ obey the same homogeneous linear condition on their values at H_{L-1} and H_L .

So v is determined by the system:

$$(g_1) v_\ell(h_{\ell-1}) = u_\ell(h_{\ell-1})(p_\ell(h_\ell)v_\ell(h_\ell) + \lambda_\ell S_\ell(h_\ell))/q_\ell(h_\ell)$$

$$0 < h_\ell < H_\ell, \quad 1 \leq \ell \leq L$$

$$(g_2) v_\ell(H_{\ell-1}) = \frac{u_\ell(H_{\ell-1})\lambda_\ell}{2q_\ell(H_\ell)} \left(p_{\ell+1}(0) \frac{2\Delta_{\ell+1}r}{\Delta_\ell r \cdot \lambda_{\ell+1}} v_{\ell+1}(0) + S_\ell(H_\ell) \right)$$

$$+ \frac{\Delta_{\ell+1}r}{\Delta_\ell r} S_{\ell+1}(0) \quad 1 \leq \ell \leq L$$

$$(g_3^*) v_L(H_{L-1}) = 0$$

After u and v have been found from the systems (f) and (g), then ϕ is found by means of the following system:

$$(h_1) \phi_\ell(h_{\ell+1}) = v_\ell(h_\ell) + u_\ell(h_\ell) \phi_\ell(h_\ell), \quad 0 \leq h_\ell < H_\ell, \quad 1 \leq \ell \leq L$$

$$(h_2) \phi_1(0) = (a_2 - a_1 v_1(0))/(a_1 u_1(0) + a_0),$$

where (h₁) is obtained by solving for $\phi_\ell(h_{\ell+1})$ in the definition of v , and (h₂) by solving for $\phi_1(0)$ in (h₁) (evaluated at $h_1=0$) and (c₅), considered as a set of simultaneous linear equations in $\phi_1(0)$ and $\phi_1(1)$.

Instead of approximating the derivative $\phi'(b_L)$ by the two-point formula $(\phi_L(H_L) - \phi_L(H_{L-1}))/\Delta_L r$ for the extrapolated end-point condition (c₄'), it would be more consistent with the rest of the calculation to use the three-point formula

$$\left[\frac{d\phi}{dr} \right]_{b_L} = \frac{1}{2\Delta_L r} (p_L(H_L) \phi_L(H_L+1) + (q_L(H_L) - p_L(H_L))\phi_L(H_L) - q_L(H_L)\phi_L(H_{L-1})) .$$

If (d₁), evaluated at $\ell=L$ and $h_\ell = H_L$, is used to eliminate the fictitious flux $\phi_L(H_L+1)$, we get

$$\left[\frac{d\phi}{dr} \right]_{b_L} = \frac{1}{2\Delta_L r} ((k_L(H_L) + q_L(H_L) - p_L(H_L))\phi_L(H_L) - 2q_L(H_L)\phi_L(H_{L-1}) - \lambda_L S_L(H_L)) .$$

The corresponding expression for X is

$$\left[\frac{dX}{dr} \right]_{b_L} = \frac{1}{2\Delta_L r} \left((k_L(H_L) + q_L(H_L) - p_L(H_L)) X_L(H_L) - 2q_L(H_L) X_L(H_L-1) \right).$$

Now the general boundary condition

$$(b_4) B_0 \phi(b_L) + B_1 \phi'(b_L) = 0$$

is expressed in difference form as

$$(c_4) (2\Delta_L r B_0 + B_1 (k_L(H_L) + q_L(H_L) - p_L(H_L))) \phi_L(H_L) - 2B_1 q_L(H_L) \phi_L(H_L-1) = \lambda_L B_1 S_L(H_L).$$

For X it is

$$(e_4) (2\Delta_L r B_0 + B_1 (k_L(H_L) + q_L(H_L) - p_L(H_L))) X_L(H_L) - 2B_1 q_L(H_L) X_L(H_L-1) = 0.$$

Then the initial value for u is given by

$$(f_3) u_L(H_L-1) = 2B_1 q_L(H_L) / (2\Delta_L r B_0 + (k_L(H_L) + q_L(H_L) - p_L(H_L)) B_1),$$

and that for v by

$$(g_3) v_L(H_L-1) = \lambda_L B_1 S_L(H_L) / (2\Delta_L r B_0 + (k_L(H_L) + q_L(H_L) - p_L(H_L)) B_1).$$

To check the computations we integrate the diffusion equation over each region R_ℓ .

$$\int_{R_\ell} (D_\ell \nabla \phi - \Sigma_\ell \phi + S) \frac{\frac{N\pi^2}{2}}{\Gamma(\frac{N}{2} + 1)} r^{N-1} dr = 0$$

i.e.

$$0 = \left[\frac{\frac{N\pi^2}{2} D_\ell}{\Gamma(\frac{N}{2} + 1)} r^{N-1} \frac{d}{dr} \phi \right]_{b_{\ell-1}}^{b_\ell} - \Sigma_\ell \frac{\frac{N\pi^2}{2}}{\Gamma(\frac{N}{2} + 1)} \int_{b_{\ell-1}}^{b_\ell} \phi \cdot r^{N-1} dr + \frac{\frac{N\pi^2}{2}}{\Gamma(\frac{N}{2} + 1)} \int_{b_{\ell-1}}^{b_\ell} S \cdot r^{N-1} dr$$

or

$$(i_1) E_\ell - E'_\ell - \Sigma_\ell \frac{\frac{N\pi^2}{2}}{\Gamma(\frac{N}{2} + 1)} \int_{b_{\ell-1}}^{b_\ell} \phi \cdot r dr + \frac{\frac{N\pi^2}{2}}{\Gamma(\frac{N}{2} + 1)} \int_{b_{\ell-1}}^{b_\ell} S \cdot r^{N-1} dr = 0$$

where E_ℓ and E'^ℓ are the leakages radially outward thru the inner and outer interfaces (respectively) of R_ℓ . All integrals are computed trapezoidally, and the E 's are given a difference approximation which makes (i₁) an algebraic identity as follows:

$$\int_{b_{\ell-1}}^{b_\ell} \nabla^2 \phi \cdot r^{N-1} dr = \frac{\Delta_\ell r}{2} (r^{N-1} \nabla^2 \phi)_{n_\ell}(0) + (r^{N-1} \nabla^2 \phi)_{n_\ell}(1) \Delta_\ell r + \dots$$

$$\dots + \Delta_\ell r (r^{N-1} \nabla^2 \phi)_{n_\ell}(H_{\ell-1}) + \frac{\Delta_\ell r}{2} (r^{N-1} \nabla^2 \phi)_{n_\ell}(H_\ell)$$

$$\begin{aligned} \text{But } (r^{N-1} \nabla^2 \phi)_{n_\ell}(h) &= \left(n_\ell(h) \Delta_\ell r \right)^{N-1} \frac{1}{(\Delta_\ell r)^2} \left[p_\ell(h) \phi_\ell(h+1) - (p_\ell(h) + q_\ell(h)) \phi_\ell(h) \right. \\ &\quad \left. + q_\ell(h) \phi_\ell(h-1) \right] \\ &= (\Delta_\ell r)^{N-3} \left[\left(n_\ell(h) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(h+1) - \phi_\ell(h) \right) \right. \\ &\quad \left. - \left(n_\ell(h) - \frac{1}{2} \right)^{N-1} \left(\phi_\ell(h) - \phi_\ell(h-1) \right) \right] \\ &= (\Delta_\ell r)^{N-3} \left[\left(n_\ell(h) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(h+1) - \phi_\ell(h) \right) \right]_{h=1}^h \end{aligned}$$

Therefore

$$\begin{aligned} \sum_{h=1}^{H_\ell-1} (r^{N-1} \nabla^2 \phi)_{n_\ell}(h) \Delta_\ell r &= - (\Delta_\ell r)^{N-2} \left(n_\ell(0) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(1) - \phi_\ell(0) \right) \\ &\quad + (\Delta_\ell r)^{N-2} \left(n_\ell(H_\ell) - \frac{1}{2} \right)^{N-1} \left(\phi_\ell(H_\ell) - \phi_\ell(H_{\ell-1}) \right), \end{aligned}$$

and

$$\begin{aligned} \int_{b_{\ell-1}}^{b_\ell} \nabla^2 \phi r^{N-1} dr &= \left[\frac{\Delta_\ell r}{2} \left(r^{N-1} \nabla^2 \phi \right)_{n_\ell}(0) - (\Delta_\ell r)^{N-2} \left(n_\ell(0) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(1) - \phi_\ell(0) \right) \right] \\ &\quad + \left[\frac{1}{2} (\Delta_\ell r)^{N-2} \left(n_\ell(H_\ell) - \frac{1}{2} \right)^{N-1} \left(\phi_\ell(H_\ell) - \phi_\ell(H_{\ell-1}) \right) \right. \\ &\quad \left. + \frac{1}{2} (\Delta_\ell r)^{N-2} \left(n_\ell(H_\ell) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(H_\ell+1) - \phi_\ell(H_\ell) \right) \right]. \end{aligned}$$

$$\begin{aligned}
\text{So } E'_\ell &= -D_\ell \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} \frac{1}{2\Delta_\ell r} \left[(\Delta_\ell r)^{N-1} \left(n_\ell(H_\ell) - \frac{1}{2} \right)^{N-1} \left(\phi_\ell(H_\ell) - \phi_\ell(H_\ell - 1) \right) \right. \\
&\quad \left. + (\Delta_\ell r)^{N-1} \left(n_\ell(H_\ell) + \frac{1}{2} \right)^{N-1} \left(\phi_\ell(H_\ell + 1) - \phi_\ell(H_\ell) \right) \right] \\
&= -D_\ell \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} r_\ell(H_\ell)^{N-1} \left[q_\ell(H_\ell) \left(\phi_\ell(H_\ell) - \phi_\ell(H_\ell - 1) \right) + p_\ell(H_\ell) \left(\phi_\ell(H_\ell + 1) - \phi_\ell(H_\ell) \right) \right] \frac{1}{2\Delta_\ell r} \\
&= -D_\ell \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} r_\ell(H_\ell)^{N-1} \left[(k_\ell(H_\ell) + q_\ell(H_\ell) - p_\ell(H_\ell)) \phi_\ell(H_\ell) - 2q_\ell(H_\ell) \phi_\ell(H_\ell - 1) - \lambda_\ell S_\ell(H_\ell) \right] \frac{1}{2\Delta_\ell r} \quad (\text{by (d}_1\text{)}) .
\end{aligned}$$

Similarly, if $b_0 > 0$, then

$$\begin{aligned}
E_\ell &= -D_\ell \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} r_\ell(0)^{N-1} \left[(q_\ell(0) - p_\ell(0) - k_\ell(0)) \phi_\ell(0) + 2p_\ell(0) \phi_\ell(1) \right. \\
&\quad \left. + \lambda_\ell S_\ell(0) \right] \frac{1}{2\Delta_\ell r}
\end{aligned}$$

On the other hand, if $b_0 = 0$, then we must use the formula

$$\begin{aligned}
[\nabla^2 \phi]_0 &= \frac{N}{(\Delta_1 r)^2} \left[\phi_1(-1) - 2\phi_1(0) + \phi_1(1) \right] \\
&= \frac{2N}{(\Delta_1 r)^2} \left[\phi_1(1) - \phi_1(0) \right] \quad (\text{since } \phi_1(-1) = \phi_1(+1)) .
\end{aligned}$$

Therefore

$$E_1 = D_1 \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} \left[\frac{\Delta_1 r}{2} (r^{N-1} \nabla^2 \phi)_{r=0} - \frac{(\Delta_1 r)^{N-2}}{2^{N-1}} (\phi_1(1) - \phi_1(0)) \right]$$

$$= D_1 \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} \left[0 + \frac{(\Delta_1 r)^{N-2}}{2^{N-1}} (\phi_1(0) - \phi_1(1)) \right]$$

$$= D_1 \frac{\frac{N\pi}{2}}{\Gamma\left(\frac{N}{2}+1\right)} \frac{(\Delta_1 r)^{N-2}}{2^{N-1}} (\phi_1(0) - \phi_1(1)) .$$

III. PREPARATION OF INPUT DATA

This program has been designed to accept the problem input from the standard SHARE symbolic coding form, (IBM Form 12-6809-1), and will be described in that format here. The input sheet for a sample problem has been included in Appendix A. SHARE subroutine NY INP1 is used.

In the listing that follows the quantities are listed either with or without a decimal point. If a decimal point is included it indicates the quantity specified must either contain its decimal point or be written in the standard floating point notation as a fraction and E followed by the base 10 exponent. For example, π may be written 3.14159 or .314159E1 or 31.4159E-1. In addition, when quantities are listed successively on a card, (or line), a comma must be used to separate items. The last item on the card, (or line), must not be followed by a comma.

<u>LOCATION</u>	<u>OPERATION</u>	<u>ADDRESS, TAG, DECREMENT</u>
1000	DEC	XX.YYYYY, J, L, N, R., P Here, XX.YYYYY is the problem number, XX = the problem originator's code number and YYYYY = the chronological problem identification. J = the number of energy groups included in the problem. L = the number of regions into which the problem is divided. N = the geometry of the problem, N=1 for a slab, N=2 for a cylinder, and N=3 for a sphere. R is the outer edge, (cm.), of the problem. P is the total number of intervals.

$$P = \sum_{\ell=1}^L H_\ell$$

$$\text{DEC} \quad \Delta_L, \Delta_{L-1}, \Delta_{L-2}, \dots, \Delta_1.$$

The Δ_ℓ value is the size of the interval spacing, (cm.), in region ℓ .

These values are given from the innermost region, $\ell=L$, to the outermost, $\ell=1$.

<u>LOCATION</u>	<u>OPERATION</u>	<u>ADDRESS, TAG, DECREMENT</u>
1106	DEC	$H_L, H_{L-1}, H_{L-2}, \dots, H_1$
		The H_ℓ value is the number of intervals into which region ℓ is subdivided for the solution. These are given from the innermost region, ($\ell = L$), outward through region 1, the outermost region.
1206	DEC	$S_{L,H}, S_{L,H-1}, \dots, S_{L,1}, S_{L,0}, S_{L-1,H}, \dots, S_{\ell,h}, \dots, S_{2,0}, S_{1,H}, S_{1,H-1}, \dots, S_{1,0}$
		These are the lattice point source values to be used as the source value in the diffusion equation for the highest energy group, $j = 1$.
	TRA	3,4
		This card always follows the specified general problem parameters and point source values.

Next, in ascending energy group order, the group-region parameters must be listed for each region from innermost, $\ell = L$, to outermost, $\ell = 1$. These are, in the SHARE coding form format:

<u>LOCATION</u>	<u>OPERATION</u>	<u>ADDRESS, TAG, DECREMENT</u>
2999	DEC	$k, d_0(L), D(L), \sigma(L), s(L), d_I(L)$
		These are the parameters for region L. k is the value to be used as the value of the flux at the inner edge of the region if the boundary condition, inner edge $\phi = k$, was chosen. Otherwise, it is irrelevant and may be given as zero. d_0 is the boundary condition at the outer edge of the region and here the choice of interface boundary conditions is indicated. $d_0 > 0$ indicates d_0 is the extrapolation distance, (cm.), to be used for the "black boundary" condition. $d_0 < 0$, usually given as -1, is used if the flux and current are to be continuous across the interface. D (cm.) is

<u>LOCATION</u>	<u>OPERATION</u>	<u>ADDRESS, TAG, DECREMENT</u>
		the diffusion coefficient, σ (cm. ⁻¹), the removal cross section, s , the transfer fraction, and d_I , the boundary condition at the inner boundary of the problem. If $d_I > 0$, then d_I represents the extrapolation distance of the "black boundary" condition and r at this boundary must be greater than zero. If $d_I = 0$ the flux at this boundary is set equal to the value of k specified, or if $d_I < 0$, the derivative of the flux is set to zero.
		For regions $\ell = L-1, L-2, \dots, 2$ the group-region input can be described generally as:
3ccc	DEC	$d_0(\ell), D(\ell), \sigma(\ell), s(\ell), d_I(\ell)$.
ccc=000+5(L- ℓ)		These parameters are as described for region L , except that since d_0 and d_I apply only to interior regions they can never equal zero and hence, no value of k is permitted. If d_0 or $d_I > 0$ their values are taken as the appropriate extrapolation distance value, d , (cm.), for the "black boundary" while if d_0 or $d_I < 0$, usually given as -1, the continuity of flux and current is preserved across the interface.
		For region $\ell = 1$ the only change comes in the specification of d_0 since this is the boundary condition indicator for the outer edge, $r=R$. Here, the value of $d_0 > 0$ corresponds to the "black boundary" extrapolation distance, d , (cm.), as before, $d_0=0$ indicates the flux is to go to zero at $r=R$, and $d_0 < 0$, usually given as -1, requires the cell condition, that is, the derivative of the flux equal zero at $r=R$. Obviously, in the case of a one region problem the description of the $\ell = L$ group-region parameters must be altered to permit d_0 to specify the $r=R$ boundary condition rather than the interface condition.

<u>LOCATION</u>	<u>OPERATION</u>	<u>ADDRESS, TAG, DECREMENT</u>
-----------------	------------------	--------------------------------

The group-region parameters for all regions for energy group 1 are followed by

TRA	3,4
-----	-----

After this the group-region parameters for the next group are enumerated in the same manner, until the group-region parameters have been given for all J energy groups.

IV. OPERATING INSTRUCTIONS

This program requires an IBM 704 equipped with the 8K memory and input and output may be on or off-line determined by sense switch settings. No tapes are required although both an input and output tape may be used.

The standard 72-72 board is used in the card reader, the SHARE 2 board in the on-line printer. If tapes are available, tape 2 may be used as a BCD output unit, tape 3 for the BCD input unit. Sense switch 1 is down if card rather than tape input is to be used and sense switches 3 and 5 are down if on-line rather than tape output is desired.

A. Operating Procedure:

1. Mount tapes, if required, set tape selector switches and ready tape units.
2. Ready the printer.
3. Ready the binary program deck followed by problem input, if on cards, in card reader.
4. Clear and load cards.
5. STOP 6662₈. Problems are completed.

B. Program Stops (Octal):

- 4653 Illegal operation code specified on input data card.
- 5171 Out-of-range input data.
- 5452 Illegal punch in problem input card.
- 7766 "Black boundary" condition requested at inner edge and r=0.

C. Off-line Printing:

Tape 2, the output, should be printed on single space, off-line. An end of file follows each problem so that the paper may be restored, if desired.

V. OUTPUT INFORMATION

All of the input information is printed as well as the problem solution so that the problem originator will have a complete record of the problem for later reference and checking, if desired.

The problem solution provides a listing for each energy group, $j = 1, 2, \dots, J$, of the radius and flux value at each lattice point from $r = R - \Delta_L H_L - \Delta_{L-1} H_{L-1} - \dots - \Delta_1 H_1$, in steps of Δ_ℓ through each region to $r = R$.

The integral of the flux, the leakage, and the value of the neutron balance check equation for each region is given, as is the value of the current at the outer boundary, ($r = R$). In addition, if a "black boundary" condition was imposed at an interface the value of the current at this interface is computed and printed. If the current was not computed a zero is printed in that position.

An output listing for a sample problem is included as Appendix B. SHARE subroutine NY OUT1 is used.

APPENDIX A

Sample Problem Input

Share Symbolic Coding Form

Problem Coder	TEST			PROBLEM			Comments	Identifi- cation
	Date	2-12-58	Page	1	of	1		
1.000	DEC	99.91234, 3, 3, 2, 30, 30						RE34T000
	DEC	1, 1, 1,						RE34T001
1.06	DEC	10, 5, 15						RE34T002
1.206	DEC	1, .95, .93, .90, .85, .83, .8, .79, .77, .75, .73						RE34T003
	DEC	.7, .6, .5, .4, .3, .2, .15, .14, .13, .12, .11, .1						RE34T004
	DEC	.08, .05, .03, .02, .01, .005, .001, .0005, .0003, .0002						RE34T005
	TRA	3, 4						RE34T006
2.99	DEC	0, -1, .06, .21, .2386952, -1.						RE34T007
30.05	DEC	-1, .025, .18, .3888889, -1.						RE34T008
30.10	DEC	0, 10, .24, .125, -1.						RE34T009
	TRA	3, 4						RE34T010
29.99	DEC	0, -1, .08, .19, .0263158, -1.						RE34T011
30.05	DEC	1, .03, .16, .0625, -1.						RE34T012
30.10	DEC	0, 12, .22, .03636364, -1.						RE34T013
	TRA	3, 4						RE34T014
29.99	DEC	0, -1, .04, .33, 0, -1.						RE34T015
30.05	DEC	-1, .06, .30, 0, -1.						RE34T016
30.10	DEC	0, .08, .36, 0, -1.						RE34T017
	TRA	3, 4						RE34T018

APPENDIX B

Sample Problem Output

R.E. 34 PROBLEM 99.91234

J= 3 L= 3 N= 2 R= 30.000 P= 30

MESH SPACING
1.000000 1.000000 1.000000POINTS PER REGION
10 5 15

POINT-WISE	SOURCES
1.0000E 00	9.5000E-01
7.3000E-01	7.0000E-01
1.2000E-01	1.1000E-01
5.0000E-04	3.0000E-04
	9.3000E-01
	6.0000E-01
	10.0000E-01
	2.0000E-04
	8.0000E-01
	5.0000E-01
	8.0000E-02
	5.0000E-02
	8.0000E-02
	4.0000E-01
	3.0000E-01
	2.0000E-01
	3.0000E-02
	2.0000E-02
	8.0000E-01
	3.0000E-01
	2.0000E-01
	7.0000E-02
	5.0000E-03

GROUP-REGION PARAMETERS
K= 0.
D OUT DIFF. COEF. SIGMA

	TRANSFER	D IN
-1.0000E 00	2.1000E-01	-1.0000E 00
-1.0000E 00	1.8000E-01	-1.0000E 00
0.	2.4000E-01	-1.0000E 00

RADIUS	FLUX	FLUX INTEGRAL	LEAKAGE	CURRENT	BAL	CK	J= 1
0.	4.6214E 00						
1.000	4.4985E 00						
2.000	4.3986E 00						
3.000	4.2548E 00						

4.000	4.0593E 00			
5.000	3.9436E 00			
6.000	3.8208E 00			
7.000	3.7536E 00			
8.000	3.6680E 00			
9.000	3.5969E 00			
10.000	3.6176E 00	1.2002E 03	-1.0076E 00	0.
10.000	3.6176E 00			1.9073E+06
11.000	3.2986E 00			
12.000	2.7680E 00			
13.000	2.2124E 00			
14.000	1.6294E 00			
15.000	8.2801E-01	9.1340E 02	4.2268E 00	0.
15.000	8.2801E-01			3.8147E+06
16.000	6.2975E-01			
17.000	5.5155E-01			
18.000	5.0084E-01			
19.000	4.5483E-01			
20.000	4.0300E-01			
21.000	3.2168E-01			

4.000	1.0687E 00	
5.000	1.0368E 00	
6.000	1.0084E 00	
7.000	9.9090E-01	
8.000	9.8264E-01	
9.000	1.0142E 00	
10.000	1.1946E 00	3.2802E 02 -2.3093E 00 0.
10.000	1.1946E 00	4.7684E-07
11.000	1.3756E 00	
12.000	1.1964E 00	
13.000	9.5645E-01	
14.000	6.7546E-01	
15.000	2.2117E-01	3.7077E 02 2.3054E 00 0.
15.000	2.2117E-01	4.7684E-07
16.000	1.1994E-01	
17.000	8.5389E-02	
18.000	7.0943E-02	
19.000	6.1999E-02	
20.000	5.3472E-02	
21.000	4.2711E-02	

22.000	3.0382E-02
23.000	2.0063E-02
24.000	1.02766E-02
25.000	7.4132E-03
26.000	3.9214E-03
27.000	1.07474E-03
28.000	7.04047E-04
29.000	2.08291E-04
30.000	0.

GROUP-REGION	PARAMETERS						
K= 0.	D OUT	DIFF. COEF.	SIGMA	TRANSFER	D IN		
-1.0000E 00	4.0000E-02	3.0000E-01	0.	-1.0000E 00			
-1.0000E 00	6.0000E-02	3.0000E-01	0.	-1.0000E 00			
0.	8.0000E-02	3.6000E-01	0.	-1.0000E 00			

RADIUS	FLUX	FLUX INTEGRAL	LEAKAGE	CURRENT	BAL	CK	J= 3
0.	1.07903E-02						
1.000	1.07697E-02						
2.000	1.07329E-02						
3.000	1.06804E-02						
4.000	1.06192E-02						

5.000	1.5706E-02				
6.000	1.5293E-02				
7.000	1.5048E-02				
8.000	1.5101E-02				
9.000	1.6800E-02				
10.000	2.9523E-02	5.4210E-00	-1.4880E-01	0.	2.9802E-08
10.000	2.9523E-02				
11.000	4.2599E-02				
12.000	3.8977E-02				
13.000	3.1316E-02				
14.000	2.1499E-02				
15.000	7.4552E-03	1.1611E-01	7.5600E-02	0.	1.4901E-07
15.000	7.4552E-03				
16.000	3.2831E-03				
17.000	2.0602E-03				
18.000	1.6181E-03				
19.000	1.3823E-03				
20.000	1.1784E-03				
21.000	9.4131E-04				
22.000	6.8087E-04				

23.000	4.5709E-04
24.000	2.9239E-04
25.000	1.7277E-04
26.000	9.3293E-05
27.000	4.3974E-05
28.000	1.9172E-05
29.000	7.2512E-06
30.000	0.

1.7805E 00 1.0752E-04 5.7043E-07 2.2352E-08

APPENDIX C

SHARE Assembly Program Listing

R. E. 34 REACTOR SHIELDING PROGRAM M. BUTLER + J. HEESTAND 2289
 04573 ORG 2427 RE34SR00
 04573 INP1 LIB RE34LIB3
 00613 ORG 395 RE34SR02
 00613 OUT1 LIB RE34LIB4
 06654 ORG 3500 RE340000
 06654 P HED RE340001
 04573 INP1 SYN I\$INP1 RE340002
 00613 OUT1 SYN O\$OUT1 RE340003
 06654 0 76400 0 00361 WPR SELECT PRINTER RE340004
 06655 0 76000 0 00165 SWT 5 IS SFNSE SWITCH 5 DOWN TAPE OUTPUT OR NOT RE340005
 06656 0 02000 0 10153 TRA TAPE RE340006
 06657 0 76000 0 00361 SPR 1 SFNSE PRINTER EXIT HUB ONE RE340007
 06660 0 07400 4 04573 I0 TSX INP1,4 READ IN PROBLEM PARAMETERS AND SOURCES RE340008
 06661 0 00000 0 01750 1000,0,0 RE340009
 06662 0 42000 0 04622 HPR INP1+23 RE340010
 06663 0 50000 0 04402 CLA 2306 1 GOES TO J RE340011
 06664 0 60100 0 17527 STO 8023 RE340012
 06665 0 50000 0 01752 CLA 1002 SET UP PRINT ORDER FOR PROBLEM PARAMETERS,MESH SPACINGS RE340013
 06666 0 76700 0 00022 ALS 18 RE340014
 06667 0 40000 0 10147 ADD PD1 RE340015
 06670 0 60100 0 06711 STO I0+25 RE340016
 06671 0 50000 0 01752 CLA 1002 SET UP PRINT ORDER FOR POINTS PER REGION RE340017
 06672 0 76700 0 00022 ALS 18 RE340018
 06673 0 40000 0 10150 ADD PD2 RE340019
 06674 0 60100 0 06713 STO I0+27 RE340020
 06675 0 50000 0 01752 CLA 1002 SET UP PRINT ORDER FOR GROUP 1 SOURCES RE340021
 06676 0 40000 0 01755 ADD 1005 RE340022
 06677 0 76700 0 00022 ALS 18 RE340023
 06700 0 40000 0 10151 ADD PD3 RE340024
 06701 0 60100 0 06715 STO I0+29 RE340025
 06702 0 50000 0 01752 CLA 1002 SET UP PRINT ORDER FOR GROUP-REGION PARAMETERS RE340026
 06703 0 76700 0 00002 ALS 2 RE340027
 06704 0 40000 0 01752 ADD 1002 RE340028
 06705 0 76700 0 00022 ALS 18 RE340029
 06706 0 40000 0 10152 ADD PD4 RE340030
 06707 0 60100 0 06755 STO I1+20 RE340031
 06710 0 07400 4 10022 TSX P1,4 PRINT PROBLEM PARAMETERS, MESH SPACINGS RE340032
 06711 0 01755 0 01750 1000,0,1005 RE340033
 06712 0 07400 4 10046 TSX P2,4 PRINT POINTS PER REGION RE340034

06713	0	02121	0	02122	1106,0,1105	RE340035
06714	0	07400	4	10055	TSX P3,4 PRINT GROUP ONE SOURCES	RE340036
06715	0	02265	0	02266	1206,0,1205	RE340037
06716	0	50000	0	04407	CLA 2311 2 GOES TO ALPHA N	RE340038
06717	0	60100	0	17500	STO 8000	RE340039
06720	0	50000	0	04403	CLA 2307	RE340040
06721	0	34000	0	01753	CAS 1003	RE340041
06722	0	02000	0	06731	TRA I1 SLAB	RE340042
06723	0	02000	0	07177	TRA CYL CYLINDER	RE340043
06724	0	40200	0	01753	SUB 1003	RE340044
06725	0	40000	0	04402	ADD 2306	RE340045
06726	-0	10000	0	07233	TNZ I10 N GREATER THAN 3	RE340046
06727	0	50000	0	04567	CLA 2423 SPHFRE	RE340047
06730	0	60100	0	17500	STO 8000	RE340048
06731	0	50000	0	01752	I1 CLA 1002	RE340049
06732	0	76000	0	00006	COM	RE340050
06733	0	40000	0	04402	ADD 2306	RE340051
06734	0	73400	1	00000	PAX 0,1 BAR L GOES TO A REGISTER	RE340052
06735	0	50000	0	01755	CLA 1005	RE340053
06736	0	40000	0	01752	ADD 1002	RE340054
06737	0	76000	0	00006	COM	RE340055
06740	0	40000	0	04402	ADD 2306	RE340056
06741	0	73400	2	00000	PAX 0,2 BAR P+L GOES TO B REGISTER	RE340057
06742	0	50000	0	01752	CLA 1002	RE340058
06743	0	76700	0	00002	ALS 2	RE340059
06744	0	40000	0	01752	ADD 1002	RE340060
06745	0	76000	0	00006	COM	RE340061
06746	0	40000	0	04402	ADD 2306	RE340062
06747	0	73400	4	00000	PAX 0,4 BAR 5L GOES TO C REGISTER	RE340063
06750	-0	63400	4	17520	SXD 8016,4 SAVE C REGISTER	RE340064
06751	0	07400	4	04573	TSX INP1,4 READ IN GROUP-REGION PARAMETERS	RE340065
06752	0	00000	0	05667	2999,0,0	RE340066
06753	0	42000	0	04622	HPR INP1+23	RE340067
06754	0	07400	4	10065	TSX P4,4 PRINT GROUP-REGION PARAMETERS	RE340068
06755	0	05667	0	05667	2999,0,2999	RE340069
06756	0	07400	4	10112	TSX P5,4 PRINT J AND FORMAT	RE340070
06757	0	17527	0	17527	8023,0,8023	RE340071
06760	-0	53400	4	17520	LXD 8016,4 REPLACE C REGISTER	RE340072
06761	0	50000	0	17501	CLA 8001	RE340073
06762	0	60100	0	17520	STO 8016 G1 OF L-1 GOES TO TEMP 1	RE340074

06763	0	50000	1	02121	CLA 1105,1	RE340075
06764	0	60100	0	17505	STO 8005 H SUB L GOES TO H	RE340076
06765	0	56000	1	01755	LDQ 1005,1 COMPUTE G2	RE340077
06766	0	26000	1	01755	FMP 1005,1 DELTA SQUARFD	RE340078
06767	0	24000	4	05664	FDH 2996,4 DIVIDED BY D	RE340079
06770	-0	60000	0	17501	STQ 8001	RE340080
06771	0	26000	0	04405	FMP 2309 TIMES 1/2	RE340081
06772	0	60100	0	17502	STO 8002	RE340082
06773	0	56000	0	17501	LDQ 8001 COMPUTE G1	RE340083
06774	0	26000	4	05665	FMP 2997,4	RE340084
06775	0	60100	0	17501	STO 8001	RE340085
06776	0	50000	4	05663	CLA 2995,4 COMPUTE G4	RE340086
06777	0	24000	1	01755	FDH 1005,1	RE340087
07000	-0	60000	0	17504	STQ 8004	RE340088
07001	0	50000	0	04406	CLA 2310 1 GOFS TO QL,0	RE340089
07002	0	60100	0	17511	STO 8009	RE340090
07003	-0	63400	4	17521	SXD 8017,4	RE340091
07004	0	50000	0	01753	CLA 1003 CALCULATION OF QL,0	RE340092
07005	0	40000	0	04402	SUB 2306	RE340093
07006	0	73400	4	00000	PAX 0,4 N-1 GOES TO C REG	RE340094
07007	0	10000	0	07023	TZE I3	RE340095
07010	0	50000	1	01755	CLS 1005,1 -DELTA	RE340096
07011	0	24000	0	01754	FDH 1004 DIVIDED BY R	RE340097
07012	0	26000	0	04405	FMP 2309 TIMES 1/2	RE340098
07013	0	30000	0	04406	FAD 2310 PLUS 1	RE340099
07014	0	60100	0	17511	STO 8009	RE340100
07015	0	60100	0	17522	STO 8018	RE340101
07016	-2	00001	4	07023	TXN I3,4,1	RE340102
07017	0	56000	0	17511	LDQ 8009	RE340103
07020	0	26000	0	17522	FMP 8018	RE340104
07021	0	60100	0	17511	STO 8009	RE340105
07022	0	02000	0	07016	TRA I2+29	RE340106
07023	0	56000	0	17501	I3 LDQ 8001 CALCULATION OF F1	RE340107
07024	0	26000	0	04405	FMP 2309	RE340108
07025	0	30000	0	17511	FAD 8009	RE340109
07026	0	60100	0	17513	STO 8011	RE340110
07027	-0	53400	4	17521	LXD 8017,4	RE340111
07030	-0	75400	1	00000	PXD 0,1	RE340112
07031	0	77100	0	00022	ARS 18	RE340113
07032	0	40000	0	01752	ADD 1002	RE340114

07033	0	76700	0	00030	ALS 24	RE340115
07034	0	10000	0	07211	TZE I4 GO TO I4 IF REGION 1	RE340116
07035	0	50000	1	01755	CLA 1005,1 COMPUTE G3	RE340117
07036	0	24000	1	01756	FDH 1006,1	RE340118
07037	0	26000	4	05671	FMP 3001,4	RE340119
07040	0	24000	4	05664	FDH 2996,4	RE340120
07041	-0	60000	0	17503	STQ 8003	RE340121
07042	0	50000	4	05674	CLA 3004,4	RE340122
07043	0	12000	0	07216	TPL I6 GO TO I6 IF DI, L-1 ZERO OR POSITIVE	RE340123
07044	0	56000	0	17520	15 LDQ 8016 COMPUTE U L,1	RE340124
07045	0	26000	0	04405	FMP 2309	RE340125
07046	0	30000	0	17514	FAD 8012	RE340126
07047	0	76500	0	00043	LRS 35	RE340127
07050	0	26000	0	17503	FMP 8003	RE340128
07051	0	30000	0	17513	FAD 8011	RE340129
07052	0	60100	0	17521	STO 8017	RE340130
07053	0	50000	0	17511	CLA 8009	RE340131
07054	0	24000	0	17521	FDH 8017	RE340132
07055	-0	60000	2	13556	STQ 5998,2	RE340133
07056	0	50000	1	01756	CLA 1006,1 COMPUTE V L,1	RE340134
07057	0	24000	1	01755	FDH 1005,1	RE340135
07060	0	26000	2	02266	FMP 1206,2	RE340136
07061	0	30000	2	02265	FAD 1205,2	RE340137
07062	0	76500	0	00043	LRS 35	RE340138
07063	0	26000	0	17502	FMP 8002	RE340139
07064	0	60100	0	17521	STO 8017	RE340140
07065	0	56000	0	17515	LDQ 8013	RE340141
07066	0	26000	0	17503	FMP 8003	RE340142
07067	0	30000	0	17521	FAD 8017	RE340143
07070	0	76500	0	00043	LRS 35	RE340144
07071	0	26000	2	13556	STQ 5998,2	RE340145
07072	0	24000	0	17511	FDH 8009	RE340146
07073	-0	60000	2	15526	STQ 6998,2	RE340147
07074	1	00001	2	07075	I8+1,2,1 B REGISTER PLUS 1 GOES TO B REGISTER	RE340148
07075	0	50000	1	01755	CLA 1005,1	RE340149
07076	0	24000	0	04407	FDH 2311	RE340150
07077	0	50000	0	01754	CLA 1004 R-DELTA R GOES TO R	RE340151
07100	0	30200	1	01755	FSB 1005,1	RE340152
07101	0	60100	0	01754	STO 1004	RE340153
07102	0	04000	0	07104	TLO I8+8	RE340154

07103	0	02000	0	07305	TRA 016 R EQUAL ZERO	RE340155
07104	0	50000	0	04406	CLA 2310 COMPUTE P L,H AND Q L,H	RE340156
07105	0	60100	0	17511	STO 8009	RE340157
07106	0	60100	0	17512	STO 8010	RE340158
07107	-0	63400	4	17521	SXD 8017,4	RE340159
07110	0	50000	0	01753	CLA 1003	RE340160
07111	0	40200	0	04402	SUB 2306	RE340161
07112	0	73400	4	00000	PAX 0,4	RE340162
07113	0	10000	0	07137	TZE I8+35	RE340163
07114	0	50200	1	01755	CLS 1005,1	RE340164
07115	0	24000	0	01754	FDH 1004	RE340165
07116	0	26000	0	04405	FMP 2309	RE340166
07117	0	60100	0	17520	STO 8016	RE340167
07120	0	30000	0	04406	FAD 2310	RE340168
07121	0	60100	0	17511	STO 8009	RE340169
07122	0	60100	0	17522	STO 8018	RE340170
07123	0	50000	0	04406	CLA 2310	RE340171
07124	0	30200	0	17520	FSB 8016	RE340172
07125	0	60100	0	17512	STO 8010	RE340173
07126	0	60100	0	17520	STO 8016	RE340174
07127	-2	00001	4	07137	TNX I8+35,4,1	RE340175
07130	0	56000	0	17511	LDQ 8009	RE340176
07131	0	26000	0	17522	FMP 8018	RE340177
07132	0	60100	0	17511	STO 8009	RE340178
07133	0	56000	0	17512	LDQ 8010	RE340179
07134	0	26000	0	17520	FMP 8016	RE340180
07135	0	60100	0	17512	STO 8010	RE340181
07136	0	02000	0	07127	TRA I8+27	RE340182
07137	-0	53400	4	17521	LXD 8017,4	RE340183
07140	0	50000	0	04406	CLA 2310 COMPUTE F2	RE340184
07141	0	30200	2	13557	FSB 5999,2	RE340185
07142	0	76500	0	00043	LRS 35	RE340186
07143	0	26000	0	17512	FMP 8010	RE340187
07144	0	60100	0	17514	STO 8012	RE340188
07145	0	56000	2	15527	LDQ 6999,2	RE340189
07146	0	26000	0	17512	FMP 8010	RE340190
07147	0	60100	0	17515	STO 8013	RE340191
07150	0	50000	0	17505	CLA 8005 H-1 GOES TO H	RE340192
07151	0	40200	0	04402	SUB 2306	RE340193
07152	0	60100	0	17505	STO 8005	RE340194

COMPUTE F3

07153	0	10000	0	07201	TZE 19	RE340195
07154	0	50000	0	17511	CLA 8009 COMPUTE U L, H+1	RE340196
07155	0	30000	0	17501	FAD 8001	RE340197
07156	0	30000	0	17514	FAD 8012	RE340198
07157	0	60100	0	17520	STO 8016	RE340199
07160	0	50000	0	17511	CLA 8009	RE340200
07161	0	24000	0	17520	FDH 8016	RE340201
07162	-0	60000	2	13556	STQ 5998,2	RE340202
07163	0	50000	2	13556	CLA 5998,2 COMPUTE V L,H+1	RE340203
07164	0	24000	0	17511	FDH 8009	RE340204
07165	-0	60000	0	17520	STQ 8016	RE340205
07166	0	50000	0	17502	CLA 8002	RE340206
07167	0	30000	0	17502	FAD 8002	RE340207
07170	0	76500	0	00043	LRS 35	RE340208
07171	0	26000	2	02265	FMP 1205,2	RE340209
07172	0	30000	0	17515	FAD 8013	RE340210
07173	0	76500	0	00043	LRS 35	RE340211
07174	0	26000	0	17520	FMP 8016	RE340212
07175	0	60100	2	15526	STO 6998,2	RE340213
07176	0	02000	0	07074	TRA I8	RE340214
07177	0	50000	0	04566	CYL CLA 2422	RE340215
07200	0	02000	0	06730	TRA I1-1	RE340216
07201	-0	75400	1	00000	I9 PXD 0,1 TEST FOR LAST REGION	RE340217
07202	0	77100	0	00022	ARS 18	RE340218
07203	0	40000	0	04402	ADD 2306	RE340219
07204	0	76700	0	00030	ALS 24	RE340220
07205	0	10000	0	07305	TZE 016	RE340221
07206	1	00005	4	07207	TXI I9+6,4,5 C REG PLUS 5 GOES TO C REG	RE340222
07207	1	00001	2	07210	TXI I9+7,2,1 B REG PLUS 1 GOES TO B REG	RE340223
07210	1	00001	1	06761	TXI I2,1,1 A REG PLUS 1 GOES TO A REG	RE340224
07211	0	50000	4	05663	I4 CLA 2995,4 IS D O OF REGION 1 POSITIVE	RE340225
07212	0	12000	0	07216	TPL I6	RE340226
07213	0	50000	0	17511	CLA 8009	RE340227
07214	0	24000	0	17513	FDH 8011	RE340228
07215	0	02000	0	07225	TRA I7-1	RE340229
07216	0	56000	0	17504	I6 LDQ 8004 COMPUTE U L,1	RE340230
07217	0	26000	0	17513	FMP 8011	RE340231
07220	0	30000	0	04406	FAD 2310	RE340232
07221	0	60100	0	17520	STO 8016	RE340233
07222	0	56000	0	17511	LDQ 8009	RE340234

07223	0	26000	0	17504	FMP	8004	RE340235	
07224	0	24000	0	17520	FDH	8016	RE340236	
07225	-0	60000	2	13556	STQ	5998,2	RE340237	
07226	0	26000	0	17502	I7	FMP	8002	RE340238
07227	0	24000	0	17511	FDH	8009	RE340239	
07230	0	26000	2	02265	FMP	1205,2	RE340240	
07231	0	60100	2	15526	STO	6998,2	RE340241	
07232	0	02000	0	07074	TRA	18	RE340242	
07233	0	50000	0	04404	I10	CLA	2308 3 GOES TO TEMP 1	RE340243
07234	0	60100	0	17520	STO	8016	ALPHA N CALCULATION	
07235	0	53400	4	04404	LXA	2308,4	3 GOES TO C REGISTER	
07236	0	56000	0	04566	LDQ	2422 2 PI GOES TO M0	RE340245	
07237	0	26000	4	04571	FMP	2425,4 TIMES ALPHA N~2	RE340246	
07240	0	24000	4	04412	FDH	2314,4 DIVIDED BY N~2	RE340247	
07241	-0	60000	4	04573	STQ	2427,4 GOES TO ALPHA N	RE340248	
07242	-0	60000	0	17500	STO	8000	RE340249	
07243	0	50000	0	17520	CLA	8016	RE340250	
07244	0	40000	0	04402	ADD	2306	RE340251	
07245	0	60100	0	17520	STO	8016	RE340252	
07246	0	40200	0	01753	SUB	1003 IS THIS N OF PROBLEM	RE340253	
07247	0	10000	0	06731	TZE	I1 YES	RE340254	
07250	2	00001	4	07236	TIX	I10+3,4,1 NO	RE340255	
07251	0	00000	0	07251	HTR	I10+14 N GREATER THAN 6	RE340256	
07252	0	50000	0	04406	I0	CLA	2310 COMPUTE P L,H	RE340257
07253	0	60100	0	17512	STO	8010	RE340258	
07254	-0	63400	4	17521	SXD	8017,4	RE340259	
07255	0	50000	0	01753	CLA	1003	RE340260	
07256	0	40200	0	04402	SUB	2306	RE340261	
07257	0	73400	4	00000	PAX	0,4	RE340262	
07260	0	10000	0	07274	TZE	00+18	RE340263	
07261	0	50000	1	01755	CLA	1005,1	RE340264	
07262	0	24000	0	01754	FDH	1004	RE340265	
07263	0	26000	0	04405	FMP	2309	RE340266	
07264	0	30000	0	04406	FAD	2310	RE340267	
07265	0	60100	0	17512	STO	8010	RE340268	
07266	0	60100	0	17522	STO	8018	RE340269	
07267	-2	00001	4	07274	TNX	00+18,4,1	RE340270	
07270	0	56000	0	17512	LDQ	8010	RE340271	
07271	0	26000	0	17522	FMP	8018	RE340272	
07272	0	60100	0	17512	STO	8010	RE340273	
							RE340274	

07273	0	02000	0	07267	TRA 00+13	RE340275
07274	-0	53400	4	17521	LXD 8017,4 COMPUTE F2	RE340276
07275	0	50000	0	04406	CLA 2310	RE340277
07276	0	30200	2	13557	FSB 5999,2	RE340278
07277	0	76500	0	00043	LRS 35	RE340279
07300	0	26000	0	17512	FMP 8010	RE340280
07301	0	60100	0	17514	STO 8012	RE340281
07302	0	56000	0	17512	LDQ 8010 COMPUTE F3	RE340282
07303	0	26000	2	15527	FMP 6999,2	RE340283
07304	0	60100	0	17515	STO 8013	RE340284
07305	-0	75400	0	00000T	016 PXD 0,0 ZERO TO INTEGRALS	RE340285
07306	0	60100	0	17506	STO 8006	RE340286
07307	0	60100	0	17525	STO 8021	RE340287
07310	0	50000	1	02121	CLA 1105,1 H L GOES TO H	RE340288
07311	0	60100	0	17505	STO 8005	RE340289
07312	0	56000	1	01755	LDQ 1005,1 COMPUTE G2	RE340290
07313	0	26000	1	01755	FMP 1005,1	RE340291
07314	0	24000	4	05664	FDH 2996,4	RE340292
07315	0	26000	0	04405	FMP 2309	RE340293
07316	0	60100	0	17502	STO 8002	RE340294
07317	0	76500	0	00043	LRS 35 COMPUTE G1/2	RE340295
07320	0	26000	4	05665	FMP 2997,4	RE340296
07321	0	60100	0	17501	STO 8001	RE340297
07322	-3	77776	1	07741	TXL 03,1,32766 IS THIS INNERMOST REGION	RE340298
07323	0	50000	4	05667	01 CLA 2999,4 YES, IS DI EQUAL ZERO	RE340299
07324	-0	10000	0	07723	TNZ 02	RE340300
07325	0	50000	0	05667	CLA 2999 K GOES TO FLUX L,H	RE340301
07326	0	60100	0	17507	STO 8007	RE340302
07327	0	50000	0	17507	06 CLA 8007 COMPUTE F4, F5	RE340303
07330	0	60100	0	17517	STO 8015	RE340304
07331	0	50000	2	02265	CLA 1205,2	RE340305
07332	0	60100	0	17516	STO 8014	RE340306
07333	-0	63400	4	17521	SXD 8017,4 SAVE C INDEX	RE340307
07334	0	50000	0	01753	CLA 1003	RE340308
07335	0	40200	0	04402	SUB 2306	RE340309
07336	0	73400	4	00000	PAX 0,4	RE340310
07337	0	10000	0	07347	TZE 06+16	RE340311
07340	0	56000	0	01754	LDQ 1004	RE340312
07341	0	26000	0	17517	FMP 8015	RE340313
07342	0	60100	0	17517	STO 8015	RE340314

07343	0	56000	0	01754	LDQ 1004	RE340315
07344	0	26000	0	17516	FMP 8014	RE340316
07345	0	60100	0	17516	STO 8014	RE340317
07346	2	00001	4	07340	TIX 06+9,4,1	RE340318
07347	-0	53400	4	17521	LXD 8017,4	RE340319
07350	0	50000	0	01754	CLA 1004	RE340320
07351	0	30200	1	01755	FSB 1005,1	RE340321
07352	0	60100	0	17522	STO 8018	RE340322
07353	0	76100	0	00000	NOP	RE340323
07354	0	76100	0	00000	NOP	RE340324
07355	0	50000	0	17505	CLA 8005 ACCUMULATE INTEGRALS	RE340325
07356	0	10000	0	07361	TZE 06+26 IS THIS INNER EDGE OF REGION	RE340326
07357	0	40200	1	02121	SUB 1105,1	RE340327
07360	-0	10000	0	07367	TNZ 06+32 IS THIS OUTER EDGE OF REGION	RE340328
07361	0	56000	0	17517	LDQ 8015	RE340329
07362	0	26000	0	04405	FMP 2309	RE340330
07363	0	60100	0	17517	STO 8015	RE340331
07364	0	56000	0	17516	LDQ 8014	RE340332
07365	0	26000	0	04405	FMP 2309	RE340333
07366	0	60100	0	17516	STO 8014	RE340334
07367	0	50000	0	17517	CLA 8015	RE340335
07370	0	30000	0	17506	FAD 8006	RE340336
07371	0	60100	0	17506	STO 8006	RE340337
07372	0	50000	0	17516	CLA 8014	RE340338
07373	0	30000	0	17525	FAD 8021	RE340339
07374	0	60100	0	17525	STO 8021	RE340340
07375	0	50000	0	17505	CLA 8005	RE340341
07376	0	40200	1	02121	SUB 1105,1	RE340342
07377	0	40000	0	04402	ADD 2306	RE340343
07400	-0	10000	0	07435	TNZ 07+1	RE340344
07401	-3	77776	1	07667	TXL 012,1,32766	RE340345
07402	0	50000	0	01753	CLA 1003	RE340346
07403	0	40200	0	04402	SUB 2306	RE340347
07404	0	10000	0	07667	TZE 012	RE340348
07405	0	50000	1	01755	CLA 1005,1	RE340349
07406	0	24000	0	04407	FDH 2311	RE340350
07407	0	50000	0	17522	CLA 8018	RE340351
07410	0	04000	0	07667	TLQ 012	RE340352
07411	0	50000	0	17510	CLA 8008 FOR R OF 0, COMPUTE EI FOR INNERMOST REGION	RE340353
07412	0	30200	0	17507	FSB 8007	RE340354

07413	0	24000	0	04407	FDH 2311	RE340355	
07414	0	26000	0	17500	FMP 8000	RE340356	
07415	0	76500	0	00043	LRS 35	RE340357	
07416	0	26000	4	05664	FMP 2996,4	RE340358	
07417	0	60100	0	17523	STO 8019	RE340359	
07420	0	50000	1	01755	CLA 1005,1	RE340360	
07421	0	24000	0	04407	FDH 2311	RE340361	
07422	-0	60000	0	17520	STQ 8016	RE340362	
07423	-0	63400	4	17521	SXD 8017,4	RE340363	
07424	0	50000	0	01753	CLA 1003	RE340364	
07425	0	40200	0	04403	SUB 2307	RE340365	
07426	0	73400	4	00000	PAX 0,4	RE340366	
07427	0	10000	0	07434	TZE 07	RE340367	
07430	0	56000	0	17523	LDQ 8019 DELTA/2 TIMES E0	RE340368	
07431	0	26000	0	17520	FMP 8016	RE340369	
07432	0	60100	0	17523	STO 8019	RE340370	
07433	2	00001	4	07426	TIX 06+63,4,1	RE340371	
07434	-0	53400	4	17521	LXD 8017,4	RE340372	
07435	0	50000	2	02265	CLA 1205,2 S L,H GOES TO S+	RE340373	
07436	0	60100	0	04415	STO 2317	RE340374	
07437	0	56000	0	17507	LDQ 8007 COMPUTE POINT SOURCE FOR NEXT GROUP	RE340375	
07440	0	26000	4	05665	FMP 2997,4	RE340376	
07441	0	76500	0	00043	LRS 35	RE340377	
07442	0	26000	4	05666	FMP 2998,4	RE340378	
07443	0	60100	2	02265	STO 1205,2	RE340379	
07444	0	50000	0	17505	CLA 8005 IS H ZERO	RE340380	
07445	0	10000	0	07473	TZE 08	RE340381	
07446	0	40200	0	04402	SUB 2306 H-1 GOES TO H	RE340382	
07447	0	60100	0	17505	STO 8005	RE340383	
07450	1	77777	2	07451	TXI 09,2,32767	B REG-1 GOES TO B REG	RE340384
07451	-0	63400	4	17520	SXD 8016,4	RE340385	
07452	0	50000	0	01754	CLA 1004	RE340386	
07453	0	60100	0	17521	STO 8017	RE340387	
07454	0	50000	0	17507	CLA 8007	RE340388	
07455	0	60100	0	17522	STO 8018	RE340389	
07456	0	07400	4	10137	TSX P6,4 PRINT R, FLUX	RE340390	
07457	0	17522	0	17521	8017,0,8018	RE340391	
07460	-0	53400	4	17520	LXD 8016,4	RE340392	
07461	0	50000	0	17507	CLA 8007 FLUX GOES TO FLUX +	RE340393	
07462	0	60100	0	17510	STO 8008	RE340394	

07463	0	50000	0	01754	CLA 1004 R PLUS DELTA R GOES TO R	RE340395
07464	0	30000	1	01755	FAD 1005,1	RE340396
07465	0	60100	0	01754	STO 1004	RE340397
07466	0	56000	0	17510	LDQ 8008	RE340398
07467	0	26000	2	13556	FMP 5998,2 COMPUTE FLUX	RE340399
07470	0	30000	2	15526	FAD 6998,2	RE340400
07471	0	60100	0	17507	STO 8007	RE340401
07472	0	02000	0	07327	TRA 06	RE340402
07473	0	50000	0	17523	08 CLA 8019 EO GOES TO EI	RE340403
07474	0	60100	0	17524	STO 8020	RE340404
07475	0	50000	0	04406	CLA 2310 COMPUTE Q L,0	RE340405
07476	0	60100	0	17511	STO 8009	RE340406
07477	-0	63400	4	17521	SXD 8017,4	RE340407
07500	0	50000	0	01753	CLA 1003	RE340408
07501	0	40200	0	04402	SUB 2306	RE340409
07502	0	73400	4	00000	PAX 0,4	RE340410
07503	0	10000	0	07516	TZE 08+19	RE340411
07504	0	50200	1	01755	CLS 1005,1	RE340412
07505	0	24000	0	01754	FDH 1004	RE340413
07506	0	26000	0	04405	FMP 2309	RE340414
07507	0	30000	0	04406	FAD 2310	RE340415
07510	0	60100	0	17511	STO 8009	RE340416
07511	0	60100	0	17522	STO 8018	RE340417
07512	-2	00001	4	07517	TNX 08+20,4,1	RE340418
07513	0	56000	0	17511	LDQ 8009	RE340419
07514	0	26000	0	17522	FMP 8018	RE340420
07515	0	60100	0	17511	STO 8009	RE340421
07516	0	02000	0	07512	TRA 08+15	RE340422
07517	-0	53400	4	17521	LXD 8017,4	RE340423
07520	0	56000	0	04415	LDQ 2317 COMPUTE EO	RE340424
07521	0	26000	0	17502	FMP 8002	RE340425
07522	0	60100	0	17522	STO 8018	RE340426
07523	0	50000	0	17511	CLA 8009	RE340427
07524	0	30000	0	17501	FAD 8001	RE340428
07525	0	76500	0	00043	LRS 35	RE340429
07526	0	26000	0	17507	FMP 8007	RE340430
07527	0	60100	0	17521	STO 8017	RE340431
07530	0	56000	0	17511	LDQ 8009	RE340432
07531	0	26000	0	17510	FMP 8008	RE340433
07532	0	30200	0	17521	FSB 8017	RE340434

07533	0	30000	0	17522	FAD 8018	RE340435	
07534	0	24000	1	01755	FDH 1005,1	RE340436	
07535	0	26000	4	05664	FMP 2996,4	RE340437	
07536	0	76500	0	00043	LRS 35	RE340438	
07537	0	26000	0	17500	FMP 8000	RE340439	
07540	0	60100	0	17523	STO 8019	RE340440	
07541	-0	63400	4	17521	SXD 8017,4	RE340441	
07542	0	50000	0	01753	CLA 1003	RE340442	
07543	0	40200	0	04402	SUB 2306	RE340443	
07544	0	73400	4	00000	PAX 0,4	RE340444	
07545	0	10000	0	07552	TZE 08+47	RE340445	
07546	0	56000	0	17523	LDQ 8019	RE340446	
07547	0	26000	0	01754	FMP 1004	RE340447	
07550	0	60100	0	17523	STO 8019	RE340448	
07551	2	00001	4	07546	TIX 08+43,4,1	RE340449	
07552	-0	53400	4	17521	LXD 8017,4	RE340450	
07553	0	56000	0	17525	LDQ 8021 ALPHA N TIMES THE SOURCE INTEGRAL	RE340451	
07554	0	26000	0	17500	FMP 8000	RE340452	
07555	0	76500	0	00043	LRS 35	RE340453	
07556	0	26000	1	01755	FMP 1005,1 TIMES DELTA R	RE340454	
07557	0	60100	0	17525	STO 8021	RE340455	
07560	0	56000	0	17506	LDQ 8006 ALPHA N TIMES THE FLUX INTEGRAL	RE340456	
07561	0	26000	0	17500	FMP 8000	RE340457	
07562	0	76500	0	00043	LRS 35	RE340458	
07563	0	26000	1	01755	FMP 1005,1 TIMES DELTA R	RE340459	
07564	0	60100	0	17506	STO 8006	RE340460	
07565	0	76500	0	00043	LRS 35 COMPUTE BALANCE CHECK	RE340461	
07566	0	26000	4	05665	FMP 2997,4	RE340462	
07567	0	76000	0	00002	CHS	RE340463	
07570	0	30000	0	17524	FAD 8020	RE340464	
07571	0	30200	0	17523	FSR 8019	RE340465	
07572	0	30000	0	17525	FAD 8021	RE340466	
07573	0	60100	0	17526	STO 8022	RE340467	
07574	-0	75400	1	00000	PXD 0,1	IS_L EQUAL TO 1	RE340468
07575	0	77100	0	00022	ARS 18	RE340469	
07576	0	40000	0	01752	ADD 1002	RE340470	
07577	0	76700	0	00030	ALS 24	RE340471	
07600	0	10000	0	07603	TZE 010	RE340472	
07601	0	50000	4	05663	CLA 2995,4 IS DO POSITIVE	RE340473	
07602	-0	12000	0	07664	TMI 015	RE340474	

07603	0	56000	0	17502	010	LDQ 8002 COMPUTE CURRENT	RE340475
07604	0	26000	0	04415		FMP 2317	RE340476
07605	0	60100	0	17520		STO 8016	RE340477
07606	0	56000	0	17511		LDQ 8009	RE340478
07607	0	26000	0	17511		FMP 8008	RE340479
07610	0	60100	0	17521		STO 8017	RE340480
07611	0	50200	0	17511		CLS 8009	RE340481
07612	0	30200	0	17501		FSB 8001	RE340482
07613	0	76500	0	00043		LRS 35	RE340483
07614	0	26000	0	17507		FMP 8007	RE340484
07615	0	30000	0	17520		FAD 8016	RE340485
07616	0	30000	0	17521		FAD 8017	RE340486
07617	0	24000	1	01755		FDH 1005,1	RE340487
07620	0	26000	4	05664		FMP 2996,4	RE340488
07621	0	60100	0	17530		STO 8024	RE340489
07622	-0	63400	4	17521	011	SXD 8017,4 PRINT R, FLUX, INTEGRAL FLUX, LEAKAGE, CURRENT, B.C.	RE340490
07623	0	50000	0	01754		CLA 1004	RE340491
07624	0	60100	0	17531		STO 8025	RE340492
07625	0	50000	0	17507		CLA 8007	RE340493
07626	0	60100	0	17532		STO 8026	RE340494
07627	0	50000	0	17506		CLA 8006	RE340495
07630	0	60100	0	17533		STO 8027	RE340496
07631	0	50000	0	17523		CLA 8019	RE340497
07632	0	60100	0	17534		STO 8028	RE340498
07633	0	50000	0	17530		CLA 8024	RE340499
07634	0	60100	0	17535		STO 8029	RE340500
07635	0	50000	0	17526		CLA 8022	RE340501
07636	0	60100	0	17536		STO 8030	RE340502
07637	0	07400	4	10143		TSX P7,4	RE340503
07640	0	17536	0	17531		8025,0,8030	RE340504
07641	-0	53400	4	17521		LXD 8017,4	RE340505
07642	-0	75400	1	00000	013	PXD 0,1 IS L EQUAL 1	RE340506
07643	0	77100	0	00022		ARS 18	RE340507
07644	0	40000	0	01752		ADD 1002	RE340508
07645	0	76700	0	00030		ALS 24	RE340509
07646	0	10000	0	07654		TZF 014	RE340510
07647	0	50000	0	17507		CLA 8007 FLUX GOES TO FLUX +	RE340511
07650	0	60100	0	17510		STO 8008	RE340512
07651	1	77777	1	07652		TXI 013+8,1,32767	RE340513
07652	1	77777	2	07653		TXI 013+9,2,32767	RE340514
						A REG-1 GOES TO A REG	
						B REG-1 GOES TO B REG	

07653	1	77773	4	07252	TXT 00,4,32763	C REC-5 GOES TO C REC	RE340515
07654	0	50000	0	17527	014 CLA 8023 IS THIS LAST GROUP		RE340516
07655	0	40200	0	01751	SUB 1001		RE340517
07656	0	10000	0	07663	TZE OMEGA		RE340518
07657	0	50000	0	17527	CLA 8023		RE340519
07660	0	40000	0	04402	ADD 2306		RE340520
07661	0	60100	0	17527	STO 8023		RE340521
07662	0	02000	0	06731	TRA 11		RE340522
07663	0	02000	0	06654	OMEGA TRA 10-4		RE340523
07664	-0	75400	0	00000T	015 PXD 0,0		RE340524
07665	0	60100	0	17530	STO 8024		RE340525
07666	0	02000	0	07622	TRA 011		RE340526
07667	0	56000	0	04415	012 LDQ 2317 R NOT 0, COMPUTE EI FOR INNERMOST REGION		RE340527
07670	0	26000	0	17502	FMP 8002		RE340528
07671	0	60100	0	17520	STO 8016		RE340529
07672	0	56000	0	17507	LDQ 8007		RE340530
07673	0	26000	0	17512	FMP 8010		RE340531
07674	0	60100	0	17521	STO 8017		RE340532
07675	0	50000	0	17512	CLA 8010		RE340533
07676	0	30000	0	17501	FAD 8001		RE340534
07677	0	76500	0	00043	LRS 35		RE340535
07700	0	26000	0	17510	FMP 8008		RE340536
07701	0	30200	0	17520	FSB 8016		RE340537
07702	0	30200	0	17521	FSB 8017		RE340538
07703	0	24000	1	01755	FDH 1005,1		RE340539
07704	0	26000	4	05664	FMP 2996,4		RE340540
07705	0	76500	0	00043	LRS 35		RE340541
07706	0	26000	0	17500	FMP 8000		RE340542
07707	0	60100	0	17523	STO 8019		RE340543
07710	-0	63400	4	17521	SXD 8017,4		RE340544
07711	0	50000	0	01753	CLA 1003		RE340545
07712	0	40200	0	04402	SUB 2306		RE340546
07713	0	73400	4	00000	PAX 0,4		RE340547
07714	0	10000	0	07721	TZE 012+26		RE340548
07715	0	56000	0	17523	LDQ 8019		RE340549
07716	0	26000	0	01754	FMP 1004		RE340550
07717	0	60100	0	17523	STO 8019		RE340551
07720	2	00001	4	07715	TIX 012+22,4,1		RE340552
07721	-0	53400	4	17521	LXD 8017,4		RE340553
07722	0	02000	0	07434	TRA 07		RE340554

07723	0	12000	0	07765	02	TPL CHECK	RE340556
07724	0	50000	1	01755		CLA 1005,1 IS R EQUAL ZERO	RE340556
07725	0	24000	0	04407		FDH 2311	RE340557
07726	0	50000	0	01754		CLA 1004	RE340558
07727	0	04000	0	07731		TLQ 02+6	RE340559
07730	0	02000	0	07775		TRA 05	RE340560
07731	0	50000	0	17514		CLA 8012 COMPUTE FLUX AT INNER EDGE	RE340561
07732	0	30000	0	17501		FAD 8001	RE340562
07733	0	60100	0	17520		STO 8016	RE340563
07734	0	56000	0	17502		LDQ 8002	RE340564
07735	0	26000	2	02265		FMP 1205,2	RE340565
07736	0	30000	0	17515		FAD 8013	RE340566
07737	0	24000	0	17520		FDH 8016	RE340567
07740	0	02000	0	07326		TRA 06-1	RE340568
07741	0	50000	4	05656	03	CLA 2990,4	RE340569
07742	0	12000	0	07746		TPL 04	RE340570
07743	0	50000	0	17510		CLA 8008 FLUX AT ZERO, L+1 GOES TO FLUX AT H+1	RE340571
07744	0	60100	0	17507		STO 8007 CONTINUITY CONDITION FLUX AT INTERFACE	RE340572
07745	0	02000	0	07327		TRA 06	RE340573
07746	0	50000	4	05667	04	CLA 2999,4	RE340574
07747	0	10000	0	07772		TZE CHECK+5	RE340575
07750	0	50000	1	01755		CLA 1005,1 BLACK BOUNDARY CONDITION	RE340576
07751	0	24000	4	05667		FDH 2999,4 FLUX AT INTERFACE	RE340577
07752	-0	60000	0	17520		STQ 8016	RE340578
07753	0	50000	0	17520		CLA 8016	RE340579
07754	0	30000	0	17501		FAD 8001	RE340580
07755	0	30000	0	17514		FAD 8012	RE340581
07756	0	60100	0	17520		STO 8016	RE340582
07757	0	56000	0	17502		LDQ 8002	RE340583
07760	0	26000	2	02265		FMP 1205,2	RE340584
07761	0	30000	0	17515		FAD 8013	RE340585
07762	0	24000	0	17520		FDH 8016	RE340586
07763	-0	60000	0	17507		STQ 8007	RE340587
07764	0	02000	0	07327		TRA 06	RE340588
07765	0	50000	1	01755		CHECK CLA 1005,1 IS R EQUAL ZERO	RE340589
07766	0	24000	0	04407		FDH 2311	RE340590
07767	0	50000	0	01754		CLA 1004	RE340591
07770	0	04000	0	07746		TLQ 04	RE340592
07771	0	00000	0	07771		HTR CHECK+4	RE340593
07772	-0	75400	0	00000T		PXD 0,0	RE340594

07773	0	60100	0	17507	STO 8007	RE340595
07774	0	02000	0	07327	TRA 06	RE340596
07775	-0	63400	4	17521	05 SXD 8017,4 COMPUTE FLUX AT R EQUAL ZERO	RE340597
07776	0	50000	0	01753	CLA 1003 FOR DERIVATIVE OF FLUX EQUAL ZERO	RE340598
07777	0	76000	0	00006	COM BOUNDARY CONDITION	RE340599
10000	0	40000	0	04402	ADD 2306	RE340600
10001	0	73400	4	00000	PAX 0,4	RE340601
10002	0	50000	0	04406	CLA 2310	RE340602
10003	0	30200	2	13557	FSB 5999,2	RE340603
10004	0	76500	0	00043	LRS 35	RE340604
10005	0	26000	4	04405	FMP 2309,4	RE340605
10006	0	30000	0	17501	FAD 8001	RE340606
10007	0	60100	0	17520	STO 8016	RE340607
10010	0	56000	2	15527	LDQ 6999,2	RE340608
10011	0	26000	4	04405	FMP 2309,4	RE340609
10012	0	60100	0	17522	STO 8018	RE340610
10013	0	56000	2	02265	LDQ 1205,2	RE340611
10014	0	26000	0	17502	FMP 8002	RE340612
10015	0	30000	0	17522	FAD 8018	RE340613
10016	0	24000	0	17520	FDH 8016	RE340614
10017	-0	60000	0	17507	STQ 8007	RE340615
10020	-0	53400	4	17521	LXD 8017,4	RE340616
10021	0	02000	0	07327	TRA 06	RE340617
10022	0	02000	0	00613	TRA OUT1	RE340618
10023	0107	0513325			BCD 17HR.E. 34 PROBL FM F8.5//6H J= 13,6H L= 13,6H N= 11,6	RE340619
10024	33600	3046060				
10025	47514	6224325				
10026	4460	26103305				
10027	61610	630606060				
10030	60411	3603103				
10031	7306	3060606060				
10032	4313	60310373				
10033	06306	0606045				
10034	1360	31017306				
10035	30606	0605113			BCD 9H R= F9.3,6H P= 14//13HMESH SPACING/(10F12.6)	RE340620
10036	60261	11330373				
10037	06306	0606047				
10040	1360	31046161				
10041	0103	30442562				
10042	30606	0624721				

10043	233145276174						
10044	010026010233						
10045	063460606060						
10046	0 02000 0 00613	P2	TRA OUT1	BCD 6//19HPOINTS PEP REGION/(10I12)		RE340621	
10047	616101113047					RE340622	
10050	463145636260						
10051	604725516060						
10052	512527314645						
10053	617401003101						
10054	023460606060						
10055	0 02000 0 00613	P3	TRA OUT1	BCD 7//19HPOINT-WISE SOURCES/(1P10E12.4)		RE340623	
10056	616101113047					RE340624	
10057	463145634066						
10060	316225606062						
10061	466451232562						
10062	617401470100						
10063	250102330434						
10064	606060606060						
10065	0 02000 0 00613	P4	TRA OUT1	BCD //24HGROUP-REGION PARAMETERS/4H K= 1P12.4/58H	D OUT	RE340625	
10066	616102043027					RE340626	
10067	514664474051						
10070	252721464560						
10071	604721512144						
10072	256325516261						
10073	043060421360						
10074	014725010233						
10075	046105103060						
10076	606060602460						
10077	436463606060						
10100	602421262633	BCD	DIFF. COEF.	SIGMA	TRANSFER	D IN /(1P5E12.4)	RE340627
10101	602346252633						
10102	606060623127						
10103	442140606060						
10104	606063512145						
10105	622625516060						
10106	606040602460						
10107	314540617401						
10110	470525010233						
10111	043460606060						
10112	0 02000 0 00613	P5	TRA OUT1				RE340628

10113	616101001030	BCD	//108H	RADIUS	FLUX	FLUX INTEGRAL	LEAKAGE	CURRRE340629
10114	606051212431							
10115	646260606060							
10116	606060264364							
10117	676060606026							
10120	436467603145							
10121	632527512143							
10122	606043252142							
10123	212725606060							
10124	606023645151							
10125	254563606060	BCD	ENT	BAL CK				J= I3/ RE340630
10126	602221436060							
10127	234260606060							
10130	606060606060							
10131	606060606060							
10132	606060606060							
10133	606060606060							
10134	606060606060							
10135	606060411360							
10136	310361606060							
10137	0 02000 0 00613	P6	TRA OUT1					RE340631
10140	260100330373	BCD	3F10.3,1PE12.4					RE340632
10141	014725010233							
10142	046060606060							
10143	0 02000 0 00613	P7	TRA OUT1					RE340633
10144	260100330373	BCD	3F10.3,1P5E12.4					RE340634
10145	014705250102							
10146	330460606060							
10147	0 01755 0 01750	PD1	1000,0,1005					RE340635
10150	0 02121 0 02122	PD2	1106,0,1105					RE340636
10151	0 02265 0 02266	PD3	1206,0,1205					RE340637
10152	0 05667 0 05667	PD4	2999,0,2999					RE340638
10153	0 77000 0 00202	TAPE	WEF 2 WRITE END OF FILE TAPE 2					RE340639
10154	0 02000 0 06660		TRA IO					RE340640
04402	+000000000001	2306	DEC 1,2,3,5,1.0,2.0,3.0,4.0,5.0,6.0,7.0					RE340641
04403	+000000000002							
04404	+000000000003							
04405	+200400000000							
04406	+201400000000							
04407	+202400000000							

04410 +202600000000
04411 +203400000000
04412 +203500000000
04413 +203600000000
04414 +203700000000
04565 +202400000000
04566 +203622077324
04567 +204622077324

2421 DEC 2006.2831853,12.5663706

RE340642

06660

END IO

RE340643