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A s o l u t i o n  t o  t h e  p r o b  /em o f  s t r e s s e s  i n  a  p r e s s u r e .  v e s s e l  
w i t h  a n  e l  1 i p s o i d a  I  head h a s  long  b e e n  s o u g h t  by  p r e s s u r e  
ves ,se l  de.s i g n e r s .  To meet t h i s  need t h e  codes d e s c r i b e d  i n  
t h i s  r e p o r t  were  w r i t t e n :  The codes a r e  based on a  f i n i t e -  
d i f f e r e n c e  approx imat ion  t o '  t h e  Love-Meissner  e q u a t i o n s  which 
a r e  the  bas i s  o f .  the  bending theory  o f  t h i n  she1 I s .  - 

"A 

THE SET CODES-IBM 704 CODES FOR THE 
CALCULATION OF THE STRESSES IN A PRESSURE 

VESSEL WITH AN ELLIPSOIDAL HEAD 

G. G. Silodeau, J; B. Callaghan, and H. Kraus 

A means of determining the s t resses  in an ellipsoidal pressure vessel head has long been.. 

sought by pressure vessel designers. In the nuclear power plant industry, for example, the ellip- 

soidal shell appears frequently as  the head of a steam generator o r  as  the bottom of a reactor 

pressure vessel. In such applications there a r e  discontinuity s t resses  set  up because of the differ- 

ence in the expansion experienced by the ellipsoidal shell and the cylindrical shell to which i t ' i s  

attached when the entire assembly is  loaded by internal pressure.  At present there is no method 

available for the determinatipn of these. s t resses ,  and designers have been forced lo make overly 

conservative assumptions to overcome this deficiency. 

The basic differential equations of the problem have been available for many years ,  although 

their complexity has not permitted a convenient analytical solution. It was believed, however, that 

a high-speed electronic computing machine would be ideally suited for the solution of these equations. 

Hence, the 'IBM 704 codes described in this report were written. 

THEORY 

The configuration which will be considered in this discussion consists of an ellipsoid of revolu- 

tion mounted on a long cylinder, as,shown in Fig. 1. '* The method of analysis generally applied to 

this type of shell is referred to as the bending theory of thin shells. A shell is considered thin when 

i ts  diameter is more than ten times i ts  thickness. This assumption allows analytical solutions to 

be found for many shells,  although, for the ellipsoidal shell, analytical solutions have not been found 

in spite of this assumption. An exact theory for treating thick shells i s  not available at the present 

time. 

-- 

* N o t ~  that the middle surfaces of the head and cylinder must coincide. 



F i g .  2 ' A  D i fC=ren t i a l '  Element i n  a  She1 I  o f  
Revo lu t ion  Showing the  Movements and 
rurces Acting ori -11 If,-unr Ref 2 )  

F i g .  I  , E l l i p s o i d a l  S h e l l  Mounted on a  Cy l inder  
Showing Loads a t  Junc t ion  

The bending theory of thin shells i s  very well described by Watts and Burrows (Ref 1) and by 

Timoshenko (Ref 2) . The method presented in this report will draw largely upon the Watts and 

Burrows paper. 

The analysis of any shell  of revolution begins with the consideration of the forces and moments 

acting on a differential element of the shell  as  shown in Fig. 2. A summation of the forces and of 

the moments then yields three equations of equilibrium for a differential element in a shell under 

internal pressure:* . . 

alld 

sin 0 0 - QxRZRl s in 0 = 0 , 
. . 

where 

8 = angle between the axis of revolution and a perpendicular to the middle surface of the 

shell at any point 



R1 = radius at any point of .a middle surface section cut by a plane through the axis of revolution 

R2 = distance measured along a normal to any point on the middle surface, between the middle 

surface and the axis of revolution 

P = internal pressure acting in the shell 

Nx = axial membrane force 

N = circumferential membrane force 
Y 

M = axial bending moment 
X 

M = circumferential bending moment 
Y 

Qx = shear  force acting along a normal to the middle surface. . 

In Eqs (1). (21, and (3) there a r e  five unknown quantities which a r e  Nx, N Mx, My, and Qx. Y' 
The f i rs t  four quantities can be expressed in te rms  of the rotation and the deflection of the 

differential element (Ref 1) a s  follows: 

and 

N = x R1(l ET - p2) [(%+ -) + p (z) (w t u cot 0) 1 , 

where 
. . 

T = thickness of the ellipsoidal shell  

E = YoungT s modulus 

p = Poisson1 s ratio 

m" 12 (1 - p2), 

W = rotation of a tangent to the middle surface, lying in a plane through the axis of 

revolution during deformation of the shell; 

1 W =- (u - dwld0) , 

R1 

u = deformation of any poilit on the middle surface measured along a tangent to the 

undeformed middle surface at the point and lying in a plane through the axis of revolution 

w = deformation of any point on the middle. surface measured along a normal to the undeformed 

middle surface at the point and lying in a plane through the axis of revolution 

When the expressions (4) , (5) ,  (6) , and (7) a r e  substituted into Eqs (1) , (2) ,  and (3) , the 

resulting expressions can be simplified to give the following differential equations (known as the 

T.,nve-Meissner equations) relating the  rntntinn and the shear: 



and 

. . .  . 
In these equations, V = R2Qx, Q (8) i s ' a  function of load and shape, and L [ ] represents  a 

differential operator which is defined .as follows:. 

2 
"2 d 2 ( )  t L I L ( ~ ) + ~ c o t e ] d \ i . )  cot 8 L [  . . . I  =y - 

R1 dB R1 (...) . . ' , ( l o )  
Rl  do2 R2 

Up to this point the type of shel l  has not been specified. From the equations which have been 

presented it  can'be seen that, ,  in order  to  make themapply to  a particular shell, only a substitution 

of the appropriate expressions fo r  the two radi i  of curvat,use R1 and R2 i s  needed. . . . . . . 

Thim, fni- the e l l i p ~ l - ~ i r i n l  ~11r.11, 

R1 = 0.5 DPv 3 .  
(1 1)  

and 

RZ = 0 . 5 D P v  , (12) 

where D = the major axis of the ellipse.and i s  a lso the diameter of the cylinder, 0 = ratio of the 
1 2 major  axis of the ellipse t o  the minor axis  of the ellipse, and (7) =, [ 1 t (p2 - I )  s in  81 . 

v 
F o r  the cylindrical shell ,  

and 

R 2 = 0 . 5 D  . (14) 

. After substitution of Eqs  (1 1 ) and (1 2) into Eqs (4) through (1 01, the fol1owir.g equations (Ref 1 ) 

a r e  obtained for  the ellipsoidal shell: 



and the differential operator for the ellipse appears a s  

2 2 ( (.; . )v4 cot 8 , 

3 
where 6 = pv and 6' = p v  . 

Equations (19) and (20) a r e  the equations which have caused s o  much difficulty for  analysts 

seeking solutions to ellipsoidal shell  problems. These equations must be solved for V and W which 

a r e  used to determine Mx, M Nx, and N The latter quantities a r e  combined-by using the 
Y' Y' 

following relations to obtain the s t resses :  

and 

where ux = axial s t r e s s ,  u = circumferential s t r e s s ,  and the positive sign is used for  s t resses  on 
Y 

the outer surface of the shell  and the negative sign is used for the inner surface. 

A similar procedure is followed for the cylinder to which the ellipsoidal shell i s  attached. 

However, the resulting expressions a r e  far  more simple than those presented previously for the 

ellipsoidal shell, and the basic differential equations can be solved easily. To obtain the' cylin- 

drical shell equations, expressions (13) and (14) a r e  substituted into Eqs (4) through (10). The . . 

equations (Ref 1 )  for the cylinder then appear a s  
.. 

and 3 3 
N = 0 . 5 D %  d q t 0 . 5 ~ ~  , 

Y . m dx 

where t = thickness of the cylinder, and x = axial coordinate of the cylinder. 

Fo r  the cylinder, the Love-Meissner equations reduce to 

The solution of Eq (28) is given a s  

ax W = e-ax (C1 sin ax t C2 cos ax) t e (C3 s in  ax t C4 cos ax) , (29) 

4 2 2  
where CI , C2, C3, C4 a re  a rb i t ra ry  constants, and a4  = m ID t . 

Equations (22) and (23) a r e  utilized to obtain the s t r e s se s  ii~ thecylinder after calculation of the 

moments and membrane forces from Eqs (24) through (27). 

SOLUTION OF' THE ELLIPSOIDAL SHELL EQUATIONS 

Before proceeding to the. solution, it is convenient to change E ~ S  (1 9) and (20) slightly by 

multiplying each equation by -sin 8 / P  and by multiplying Eq (20) by E to give . * 



and 

Me [a] t p(sin 8) S2 t g2(8)(sin 8) l? = 0 , 
where 

d 2 2 
Me [ Z] = - L(sin 8)v-' t (cot 8)(sin 8)v Z , 

2 
G(8) = - 1/8 p:p2 (3v2 t 1) (1 - v ) cos 8 , 

r = r (8) = v ( ~ ) / P  , 

and 
r - 

The self-adjoint form of the operator Me has been used for general thin shells hy ~ o s c h l  (Ref 3). 

F rom Eqs (29), (30), and (31), it is evident that there will be eight arbi t rary constant to be 

determined in the solution of the problem of an elfipsoidal shell  mounted on a long cylinder, since 

the solution of each of the two parts  involves four a rb i t ra ry  constants. Thus, eight boundary 

conditions a r e  needed, which a r e  a s  follows: At the top of the ellipsoidal shell  (at 8 = 0" )  the shear  

and rotation a r e  zero. Furthermore,  the cylinder will be assumed to be semi-infinite in extent. ' 

Inspection of Eq (29) will show that, to insure finite resul ts  a t  the remote end of such a cylinder 
ax (x+-), the t e rms  involving the positive exponential e must be dropped. This is done by setting 

C3 and C4 each equal to zero. The remaining four boundary conditions a r e  obtained from the 

junction between the shell  and the cylinder where continuity of axial moment, axial shear ,  deflec- 

tion, and rotation must be maintained ac ros s  the boundary. 

The boundary conditions can be summarized a s  follows: 

For llie Ellipge 

r (O), SZ (U) = O a t  8 = O 

For  the Cylinder 

All quantities must be finite a s  x+- 

F o r  the Junction 

Esual Radial Mnm ~ n t s :  

Equal Radial l3eformatiori: 

Eaual Axial Shear Forces: 



Eaual Rotations: 

For  the junction equations, rr and y a r e  defined by Eqs (34) and (35) and a r e  considered unknowns 

until their values a r e  determined toward the end of the problem. In Eqs (34) through (37) the left 

side of each equation represents the quantity for the ellipse a t  8 = a/2, and the right side of each 

equation represents the corresponding quantity for the cylinder a t  x = 0. 

As a result of the introduction of the quantities cr and y, the following expressions hold for  the 

arbi t rary constants in the cylinder equations : 
. . 

C3 C4 = ,O by condition (33). 

DIFFERENCE EQUATIONS 
. . 

An approximate solution for the ellipsoidal shell is obtained by using finite difference methods. 

The method of finite differences has been used in previous work in shell theory-notably by Au, 

Goodman, and Newmark (Ref 4). However, their work was primarily by hand computation; con- 

sequently, the methods of solution mentioned in this report (as  well a s  the difference equations) a r e  

different. 

Difference equations corresponding to the differential equations of the ellipsoidal shell  [Eqs  

(30)  and (31)] a r e  derived according to a method introduced by Varga (Ref 5). The boundary condi- 

tions [Eq  (32)] a r e  needed for this derivation a s  well a s  two of the s e t  of Eqs (34) through (37). The 
two chosen a r e  Eqs (34) and (35). This introduces two unknowns, rr and y, which will be evaluated 

a t  a later time in the code with the use of the two remaining Eqs (36) and (37). 

The interval 0 5 8 5 a/'2 is divided into N subintervals (not necessarily equal) where 

and 

By way of notation, let 

Case I: 8, an Interior Point 

This situation (en an interior point) occurs when n # N. (There is no equation corresponding 

to n = 0. ) Then, a t  this point, the difference equation corresponding to the f i r s t  differential 

Eq (30) is 

- rn~:,+: an) rnt1 - p (sin en) (hnt1 + hn) rn 



where 
. a(8) = (sin e)v-2 

and 

thus . 

2 
b(9) = (cot 8)(sin 8)v2 ; 

. . 
and 

b(8,) = bn . 
The corresponding equation for (31 ) is 

As a special case of the equations, if n = 1, then the boundary conditions [ Eq (32)] , a s  well a s  

the definition of a(8), lead to 

and a s imilar  expression for  h ( 8 ) , ' r  (8) f r o r n ' ~ ~  (39). 

Cast 11: n = N 

In this case, en = Bpi = n/2, and use is made of Eqs (34) and (35) to obtain 

and 

+ g2(ON) hN r N  = aN ( ~ ~ ~ 5 - l  ~a . 
Thus, the unknowns which occur in these equations a r e  



The difference equations just derived can be written in matrix notation a s  follows: -. + * +. -b 

A r - D 1 I ? - D 2 S 2 = - y P t Q  

where 

A = NxN matrix corresponding to the operator Me occurring in Eqs (30) and (31) 

Dl = NxN diagonal matrix with positive diagonal elements whose nth element (along the 

major diagonal n # N) is  sin en)(hntl t hn). The N~~ element is phN. 

D2 = NxN diagonal matrix with positive diagonal elements whose nth element (along the 

major diagonal n # N) is (sin Bn)gl(en)(hntl t hn). The Nth element i s  gl(BN)hN. 

e = g2(e)/g1(8) is a positive constant. 
* 
Q = Nxl matrix whose nilr component (n # N) i s  Gn(hntl t hn). The N~~ component is 

- 
P = Nxl matrix, a l l  of whose components a r e  zero except the N~~ one. This one is 

-+ 
R = Nxl matrix, a l l  of whose components a r e  zero  except the N~~ bne. This one is 

a, y = previously defined sca la rs  (unknown quantities a t  this point). 
' 

* + 
r,S2 = unknown Nxl vectors whose components a r e ,  respectively, 

N N 

[Ti]  i=l  and (S2i] i= 1 . 
GENERAL METHODS OF SOLUTION 

From the second eq~iation of (43). 

thus, 

1 -  - -1' - 
[ A - D l  t e D 2 ( A + ~ l ) - 1 D 2  I . = y P t n D 2 ( A t D l )  R t Q  , 
L 

which will be written a s  

+ 

2 1  

- 1 -- 
T = [A - u1 t e U2 (A t Dl)- '  D , and S = D2 (A t Dl)  I3 . . (46) . 

The matrix Eq (45) may also be changed inta  another useful form by premultiplying by 

Then, Eq (45). becomes 



where 

and 

- GI = ( A t  D 1D-l Q . 
1 2  

There a re  two distinct SET codes, SET02 and SET03. Up to this point, no distinction has been 

made between these codes. 

The difference in the two occurs in the methods used to solve the system (45) or  (47) and is a , 
resul t  of the nature of the matrices T and TI. 

Method (A): The SET02 Code 

This method is based on Eq (47) with T' a s  defined in Eq (48). Three vectors must be found- 

+ - 
s o  that the system T t  x = k must be solved for ;for three different values o f r .  Following a sug- 

+ - 
gestion of G. Birkhoff, a .direct method is used to solve the system TI x = k for in contrast to an 

iterative method (about which more will be said later).  A direct method seems particularly well 

suited to the matrix TI since "most" of the elements of Tt  a r e  zero. A is tri-diagonal; thus, the 

same is true of (A t D1)Di1 and of A - Dl, so  that the product (A t DI)Dil  (A - Dl) is a matrix 

whose only nonzero elements.at-e on i ts  main diagonal or  on one of its nearest four parallel (to the 

main diagonal) diagonals. The same is consequently true also of 

Thus, TI = (t .  .), with ti . = 0 if j+i-2, i-1, is i t l ,  1 t 2  and i=3, .. . . . N-2. A similar fact holds for 
1 1  J J 

i = l ,  2, N-1, and N. 
a 4 - 

The system T1 x = k is now solved (for x) by a method of,elirnination defined a s  follows: 

1) The matrix T t  is transformed into the matrix U defined by U = (u: .), where 
1s J .  

2) The U is transformed into Ut = (u ) with 
i, j 

I 
U. . = u  for  i=N-1, N 
1, J is j 

1 

for  i 5 N-2 and j = i-1, i ,  i t l .  



N + 
3) The vector if, with components , is f irs t  transformed into the vector 1, with 

N 
components ( P .  } , where 

. L i= 1 

+ 
and then P is transformed into the vector z, with components 

i= 1 

with . 

+ - 
The result of these steps is the reduction of the original system T1 x = k into the system 

+ - 
U 1 x = m  (50) 

where U1 is now a tri-diagonal matrix. Thus, the system can now be solved for? by the method 

which will be mentioned later in connection with the SET03 code. 

Method (B): The SET03 Code 

This method is based on Eq (45). It is clear that the vectors 

4 

must be known to solve for r. After these vectors a r e  obtained, the relation 

+ 
yields each component of l? a s  a simple function of a, and y. Equation (44) can be utilized to 

d 

obtain R. 

The process just described is based on the assumption that the two matrices, AtD1 and T,  

can be inverted. By construction, A is symmetric and positive definite, so  that the addition of a 

diagonal matrix Dl with positive diagonal elements results in a matrix AtD which i s  also positive 
1 

definite. In particular. ( A t ~ ~ 1 - l  exists. Moreover, by construction, A has nonzero elements 

only along its main diagonal and the two diagonals parallel to and nearest the main diagonal. A is 

said to be tri-diagonal. The same is true of (AtD ). Such a matrix leads to a system of equations 
+ - 1 

(AtD1) x = k which can be solved for by a simple recursion relation (see, for example,, Ref 6, 

p 34). Thus, effectively, ( A ~ D ~ ) - '  of Eq (46) can be obtained in a fairly simple way. 

On the other: hand, 'T is symmetric because, with T* a s  the transpose of T ,  

since A, Dl, and D2 a re  symmetric. 



Moreover, . , 

where 

is symmetric and positive definite. Now if K = M + M ' ~ ,  then K is symmetric and positivk definite 

and i ts  eigenvalues a re  of the form A + l - l ,  where 1 is an eigenvalue of M. Thus, since 1 > 0, the 

minimum of x + k-l is 2 and, therefore, a lower bound for the eigenvalues of K is 2. Now, 

where 

Again. . . 
, . . . i .- & - w  . . 

i~ Y, Y) 5 2 ( ~ ,  Y) 
. . 

and 

+ -D 

( D ~ D I ~  7, j.;) 5 5 ( ~ .  Y) . 
-1 / 2 D  D-l . However, e where 5 is the largest eigenvalue of e - l I 2  D D-l  ( a diagonal matrix) has 

. . 
2 D  3 3 '  3 elements 2p/m $)vn fl . The m i n i m  of v is 118 , so that ( a s s e i n g  B 2 1): 

.. . 

5' 
:2pBL 

m2 ($3 
. , 

Thus, 

Now, . . 
. . .  : .. 

, . .. 
and ' . ' 

where q is a lower bound for the eigenvalues of U2. Now U is a diagonal matrix with elements ' 2 

1 3 except for the N~~ element which isrDTB vN hN . Since 

sin el  el  = el  - .go  = hl , 

it can be assumed, in general*, that r )  can be chosen a s  DTB hf . 
*This is not precisely so in al l  cases. We will, however, make this assumption. 

12 



'Thus. 

+ 4 

( T x ,  x)  2 2Bh; [m2$) - 2pB2] (x, x) . 
Clearly then, T i s  positive definite when 

This is not a severe restriction. For  example, f0r .p  = 0.3, this states that 

a n d g i s  usually 1 10. Moreover. If a is the smallest eigenvalue of T, then it can be said that, 

from Eq (51.), 

a .  2 B h f h  . (52) 

It is not clear what happens fo r  values of B other than those satisfying. Eq (51). Although the 
code SET03 is not internally restricted to these values of j3, it will nevertheless be assumed for 

the following theory that /3 doe's satisfy Eq (51 ). 

The method used in SET03 to solve the system ~z=ris  an iterative method in contrast to the 

direct method used in SETO2. The primary advantage of this iterative method is its inherent s ta -  

bility with respect to round-off e r rors .  Its primary disadvantage (a major one) is the time neces- 

s a r y  to complete a problem in contrast to a direct method. This will be discussed in detail later. 

" ,,- 
The method to be used depends strongly on the fact that T is positive definite. Let ! . 

b = largest eigenvalue of T 

and 
a = smallest eigenvalue of T (as  before). 

Then, the new matrix 

b a is formed which now has eigenvalues in the region - 1 < 5 5 2 < 1. With this new a t b  a t b  

matrix, polynomial operators a re  used with Chebyshev'polynomials in the manner introduced by 

Shortley (Ref 7) ,  which leads to the following iterative scheme. Let 
+ + 

. u = x = initial guess, 
0 0 

and 

for  n = 2,3, ... . Now, 

and 



with 

Tn(d) = 2d Tn,, (dl - Tn-,(d) , 

-D 

fo r  n = 2,3! . . . . Let )1;1) =JT- where {xi]  is the s &  of c b ~ ~ o n e n t s  of the vector x. Also 

let 

Then it can be shown that* 

s o  that if  TN(d) 1 50, then; will be . less  than 170 from the answer, provided the initial vector 
+ N. 

u = x; i s  within 5070 of the answer. 
0 

This code makes use of the result of SET02 a s  the initial vectorZo. An estimate of the largest 

eigenvalue of T is  obtained from the recursion relation 

+ * + ' *  

for n = 1, 2, 3, . ;. M. (M is set  a t  50. j The s.ymb.01 (x, y) indicates the inner product of x and y 

and is, defined a s  
+ -  7 
(x, Y)  = )-xiyi ' 

i 
+ * 

where{xi] , [Yi] a r e ,  respectively, the se t s  of components of x and y. The number used for 

b, b l ,  is then set  at (1. 1 ) ~ ~ .  It is important that this number be greater than o r  equal to b. An 

estimate, al , of the number a (smallest eigenvalue of T) is obtained from the Eqs (53) by using the 

matr ix T - blI instead of T. The numbcr obtained at the end of M iterations, call it k h ,  gives 

rise tu  the eslirr~ale 

This value is used unless i t  is smaller  than the estimate of E,q (52). in which case this latter value 

is- used. Unlike the estimate for  the largest  'eigenvalue, which. had to be larger  than the actual 

value, no such restriction exists for the estimate a l .  . 

CALCULATION OF THE STRESSES 

From Eqs (15) through (18), the equations for the resultant s t resses  and s t r e s s  couples for  the 

ellipsoidal shell  can be found in t e rms  of r(B) and S2(B) in the following equations. It should be 

mentioned that only normalized resultant s t resses  and s t r e s s  couples a r e  obtained, namely NxlP, 

N / P,  M / P, and M /P .  This will lead to the normalized s t resses  ux/ P and u /P.  
Y X Y Y 

2 1 
(+)n =q (cot en) r t Dbn 

* See, for example, a s imilar  analysis b y  D. Young in Ref 8. 



where the subscript n indicates, a s  before,, the evaluation of the function a t  9 = en. 

The functions (s)~ and (s) a r e  evaluated from the following formulas: 
n 

Fo r  n #. N , 

( )  = 2 hn 
hn+l ' hn hn t l  

'ntl + hntl hn 'n - h: + 

hn+l thnhn+l n n t l  

For  n '= N, 

(:r) Similar expressions a r e  used for - 
n 

The s t resses  a r e  now obtained by using the formulas of Eqs (22) and (23); 

. . 
For  the cylinder, the following relations hold: 

3 --- Mx - a t4  e-ax [cl (cos ax - sin ax) - c2 (cos ax t sin ax) , 
m I 

N 3 3 
2; *. [Cl (cos ax t sin ax) t C2 (cos ax - s in  ax) +T . 

m I D  
and 

where 

and 

The s t resses  in the cylinder can then be obtained .from the formulas of Eqs (22) and (23), with 

T now replaced by t. 

The cylinder has been assumed infinitely long in the previous equations. Since the discqntin- 

uity s t resses  caused by the juncture reach steady values in one period of the trigonometric functions 

shown previously, the s t resses  will only. be calculated for a distance from the juncture corresponding 

to onc pcriod. This distance is calculated from aL = 27r. Since a has been shown to depend on the 



dimensions and material  of the cylinder, the length L is different for each problem, L will be 

determined for  each problem, and the axial and radial s t r e s se s  on the inner and outer surfaces of 

the cylinder will be calculated for any specified number of points, not necessarily equally spaced 

along i t s  length. 

INPUT PREPARATION 

The input for the two codes is the same except for the code designation. A sample input i s  

shown in the Appendix. The input is a s  follows: 

TITLE Card: Columns 1-67 a r e  available for problem identification. Columns 68-72 must 

contain either SET02 o r  SET03, where the next to  last character is a zero. 

Card 1001: This card  contains Poissons' ratio. 

Card 2001: This card is used to specify the following: 

1) The number of intervals,  an integer, into which the ellipse i s  divided by the 

mesh: 5 5 n 5 500. 

2) 0, the rat io of the major diameter to the minor diameter for the ellipse. 

3) D, the cylinder diameter. 

4) T ,  the ellipse thickness. 

Card 3001 : .This card is used to define the mesh in the ellipse by pairs of numbers. The 

f i r s t  number of each pair,  an integer, indicates the number of intervals in a 

given region. The second number of each pair indicates the angle, in degrees, 

at which the region terminates. Each region is assumed to s ta r t  a t  the angle 

where the last region terminated; the f i rs t  region is assumed to s ta r t  a t  zero. 

The angle used for  input is  that formed by the major axis of the ellipse and a 

line through the center of the ellipse intersecting the shell. Thus, this angle is 

not the angle (3 used in the difference equations. In fact, if qis the angle used in 

the input, then qand 8 a r e  connected by the relation 

~ p =  a r c  tan [#cot 8 ] . 
Thus, for example,. q=  0 and tl = ? / Z  a re  corresponding angles. 'l'here can be a 

maximum of ten regions in the ellipse, and'the last one must terminate with an 

angle of 90 degrees. The sum of the intervals on this ,card must equal the number 

of intervals specified on card 200 1. 

Card 4001 : This card contains two quantities: the number of intervals (an integer) to be used 

in the cylinder in the f i r s t  period of behavior, and the cyLinder thickness. 

Card 5001: This card is used to define the mesh in the cylinder by pairs of numbers in a 

manner s imilar  to  that used in the ellipse. The f i rs t  number of each pair, an 

integer, gives the number of intervals in a region. The second number of each 

pair indicates the fraction of the f i r s t  period of behavior to which the region 

extends. As in the ellipse, each region is assumed to s ta r t  where the previous 

region terminated, the f i r s t  region starting at zero. There can be a maximum of 

ten regions, the last of.which must have a termination fraction of 1. 0. The sum 

of the intervals must equal the number of intervals specified on card '4001. 

All of the'card numbers, a s  well a s  those quantities designated a s  integers, must not contain 

a decimal point. 'All other input quantities must have a decimal point somewhere in the number. 

Fo r  example, ' the value . 001 25 'can be written a s  .00125, . 125E-2, or  1. 253-3. 



Values on each card, other than the title card, must s ta r t  in column 1 and must be separated 

by commas. The last number on a card must not be followed by a comma. The f i rs t  blank column 

on any card other than the title card indicates the end of data on that card. 

OUTPUT DESCRIPTION 

A sample output is shown in Appendix I. The output tape must be printed on the 7 17 tape -to- 

printer under program control. Each page of output contains the problem identification, the code 

designation, and the page number. 

On page one, a l l  of the input data except mesh description is printed along with cr and y. Page 

one will a lso contain the estimate for the upper bound of the eigenvaluds and the number of t e rms  

of the recursion formula needed for convergence for  each of the three vectors. 

On page two, the normalized s t r e s s  values for the ellipse begin. The axial and circumferential 

components on the outer and inner surfaces a r e  tabulated a s  functions of angle, a s  specified by the 

input, from the top of the ellipse down to the juncture. 

The cylinder s t resses  a r e  tabulated in much the &me manner except that they a r e  a function of 

distance from the juncture rather than angle. 

CONCLUSIONS 

The two codes have certain characteristics which a r e  very useful in obtaining resul ts  which 

can be regarded a s  reasonably accurate. In the f i rs t  place, a typical problem is run on the SET02 

code much faster  than on the SET03 code. On the other hand, the SET02 code is subject to round- 

off e r r o r s  when the mesh is sufficiently refined, while the method used in the SET03 code i s  inher- 

ently "stable" in the sense that an e r r o r  introduced at the mth s tep  will decrease to zero a s  the 

number of iterations is increased. This fact is particularly useful when a mesh is being determined 

for a certain problem or a class of problems to be run on SETO2. On the one hand, the mesh should 

be fine enough to insure a reasonable approximation to the solution of the differential equation; on 

the other hand, it should not introduce s o  many points that round-off will play a significant role in 

the results. 

Care should be exercised in choosing a mesh because of the transformation of the independent 

variable in the code -namely, the change from cp to 9. If hf is the mesh in the angle cpand hi is the 

mesh in the angle 9, then, 

where 

with 

Bi - 9i-1 = hi , cpi-l - cpi = hf . and cp. = a r c  tan 
1 

Tl~us ,  a t  the top, cp = 90" and 0 = 0" s o  that 

and at the juncture, 9 = 90" and cp = 0". , 

al l  of which means that the mesh the code i s  using may be very  much finer o r  coarser  than the user  

might have intended. It has been the experience of the authors that the.mesh in.the neighborhood of 



the juncture should be finer than that at the top of the ellipsoid. The two codes have also been used 
to check each other 's  resul ts  for given problems. This was necessary inasmuch a s  analytic results 

were not available for  any but hemispherical heads. Hemispherical heads correspond to f i  = 1, and 

some resu l t s  for this type of shell  a r e  ayailable from Watts and Lang (Ref 9). To illustrate the type 

of accuracy obtainable in the code SETO2, and also to check the code itself, some problems from 

Ref 9 were run, and the comparison is presented in Table I. 

The mesh used consists of 54 points distributed a s  follows (measured in the angle q) :  

112 degree intervals to  10 degrees 

1 degree intervals to 16 degrees 

2 degree intervals to 24 degrees . . 
4 degree intervals to 72 degrees 

2 degree intervals to  84 degrees 

1 degree intervals to 90 degrees 

The s t r e s s e s  given a r e  for  both the hemisphere and the cylinder a t  the juncture (q = 0") and a r e  
normalized, a s  is done by Watts and Lang, by dividing through by l3/2t. Ry way of notation, a sub- 

scr ipt  o o r  i is used in the s t r e s se s  to indicate the outside o r  the inside surfaces, respectively. 

TABLE I - COMPARISON OF PROBLEM RESULTS 

SET02 Results Hemisphere Watts and Lanp 
2tcrxi 2tu 2tu 2tuxo 90 . y i  2.tuxo 2tuxi 2tu .2tu . 

Y O  
D T t DP DP DP DP DP . DP . U P  - - -  ---- . - - - -  

Cylinder 

32 . 8  1.0 .5331 .4669 .8152 .7954 . 5318 .4682 .8159 .7968 

16 .8' 1.0 . 5334 ,4666 .I3150 .7950 .5369 ,4631 ,8133 ,7911 

20 1.0 1.0 ,6007 ' ,4993 ,7196 ,7192 .SO53 .4347 .7479 .7447 

16 1.6 1.0 ,5010 i 6 9 6 0  ,5024 . ,000 . J 1 2 1  .6t(7Y .5807 .by34 

OPERATING. INSTRUCTIONS 

Either program may be operated f rom cards,  a program tape, o r  a service tape. 

1) Ready program in one of the given forms. 

2) Ready a tape on logical 5 for output. 

3) Ready a l l  problems in reader  (a blank card must follow each problem). 

4) All sense switches on console must be up. 

5)  Pres s  CLEAR On the console and load the program. 

There is only one stop in the code at 110 octal; the on-line comment will instruct the operator. 

The output tape which must be printed on program control is not rewound nor is an end-of -file 

written on it at  any time by the program. 

Code Restrictions 

1) Number of intervals in ellipse: 5 5 n 5 500 

2 )  Number of regions in ellipse 5 10 . . 

3) Number of regions in cylinder 5 10 



Machine Requirements 

Core  Size 

Tapes  

Drums 

Punch 

On-Line P r i n t e r  

Off -Line P r i n t e r  

32768 words 

2 

none 

none 

with SHARE 2 o r  GL OUT2 Board 

Yes 





SAMPLE PROBLEH SET02 PAGE 2 

* * * * * * * * * , * * * , * * * * * * * C * * * * * * s * ~ * * * * * * * * * * * * * * * * ~ * * * *  
. . 

ELL I PSE 
i f  OIMENSIO>ILESS.STRESS TO PRESStIRF: PATIO x 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- A X  I AL Q 4! C1RCU:tFERENT I AL * ............................. 

Q *. * 
ANGLE 

OUTER SURFACE INNER SURFACE * I N  DEGREES OUTER SURFACE INNER SUZFACE * ---------- ------------ ---------- ------------- ------------- 

54.1114159 45.8949080 * 87.0000 * 5410064067 45.8694296 * 
5 4 0 0 7 2 9 3 2 2  4508572040 * t!4e'3000 * 53.9709287 45.7547526 * 

* 53.8827205 45.6597476 * 770.3000 * 5?*3!03599 45.1757050 * 
* 53.5512009 45r2R59087 * 70.3000 * 52.3325019 44.1055303 * 

53.0528688 44.6960726 * 6313000 * . 5006935630 42.4346385 

52.3551993 4?.8182740 * 56.3030 * 48.3020258 39a9747410 Q 

51.4050722 4?.543459? * 49.0000 * 44.8753471 36,4183884 * 
* 5000963483 4C.7320704.. , * 4 2 0 0 0 0 0  * 3 9 ~ ? ? ? 7 4 1 1  31.2731352 * 

48,1519513 3R.3008847 35.00CO * 32.6745561 2 3 0 7 8 5 8 2 7 2  * 
44.7357025 35.6063566 Q 23e000'3 * 2 1  e65275.96 12a9732993 * 
37,4458199 . 34.6252193 * 21.0000 * 4 * 7 ? 6 1 9 7 0  -164969602 Q 

19'09464619 42,1763496 14.0000 * -18oe460364 - 1 5 ~ 3 8 9 5 3 9 7  * 
c 8 0 5 4 9 1 5 4 3  49.6124153 @ 11e0000 * -2803077750 -17r5239973 * 
* - 0  2789533 55.1763484 * 9.0000 " -3207950678 . -16b0352845 * 
* ,2174754 52.3725376 * 5.0009 * -27*666075? -1C.9610527 * 
* 22.9243615 23.088192? * 2.0000 * -9e7109350 -7.4557620 * 

29.5588732 , 21.2105R89 - 1e5000 * -5.5297040 -7.5044747 ' * 
37.0210795 13.5011656 * 110000 * -1.0615090 -7.7722423 * . 

45.5236349 0.7432611 a5000 * 3.6217575 -904493032 * 
54.5388622 -4,5388911 ' Q .OOOO * 8.3941602 -?.3291816 * 

* + + C ' + * * C * + I * * + D I * + * ~ + * I ) * ( ~ C ~ * C * ~ ~ * * * * * * ~ . X * C * * U * % * * * * * * *  

" .  



SAMPLE PRORLE!4 SET02 PAGE . 3  

. * * * * * ~ * * * * Q * * * * + * * * * * * * * ~ * * * * * * * * * * * * * * f f ~ I ~ ~ ! ~ * * * * * * * *  

CYLINDER 
DIHENSIOVLE.SS STRESS TO PRE.S5L9fiE RATIO 0 

* * * * * ~ + * * * ~ * * * * * C * I * * * C X * * C ~ ~ * * * * i ) * ~ * f f I ~ 4 4 * ~ ~ * ~ f f * * ~ ~  

9X I A L  I( CIRCUVFE?EEN-IAL i( --------------------------- .............................. 
0. * * .  

DISTANCE FROM 
OUTE? SURFACE INNEE SURFACE * JUNCTIOrI * OUTER SURFACE :NNER SURFACE * ----------- - - - - - - - - - ------------ ------------- 

* U * * 
2003231147 4,0753852 * .0000 * -2r0925989 -6.6064677 * 

* 29,7537673 -4.7537673 * 2.4441 * .  1 0 ~ 7 2 3 5 6 9 5  *3713092 

32.3572954 -7.4572954 *. 4eR881 * 1 9 r 6 1 9 2 1 0 7  7.64417337 * .  
* 31.3221460 -6.0221460 * 7.3322 * 2 5 # 1 4 0 7 2 5 6  14.0274382 * 
* 27e585987.1 -215853871 * 9.7762 * 2 8 r 0 5 6 0 9 3 7  1 9 * 0 1 4 5 0 1 8  * 

23.5771397 1.622.?602 * 12.2207 * 29r  1946704 22a5980268 * 
* 19e3421996 5.15733003 * 14;664? * 29e 1730105 24.7727509 ' * 
* 16eZ907372 Do2092629 * 1711084 * 28.5721545 25.9977126 * 

. . * 14.5441810 10045333193 1 9 r 5 5 2 4  * 27a7339719 26.5073633 * 
S 1 3 ~ 1 5 0 9 4 1 8  11.34.30582 * 21.9965 * 26.a924990 26.5619240 * 
* 1 2 ~ 1 7 4 8 8 2 8  1?.52511iT 24.4405 * 2 6 r 1 7 0 7 5 2 5  26.3658323 * 
* 1 1 ~ P 5 4 3 9 1 9  13.i4ioOR1 * 26.8846 * i 5 e 5 1 6 9 2 9 5  26.0642943 * 
* l l e j 3 7 5 6 7 2  1?.?62+322 I( 29e7796 * 25.2325150 25.7497774 4 

' l l . , j 9 9 5 8 8 1  I ? o ? D O i l l 7  * 3167727 * 24.9939146 25.4741615 * 
1 1 ~ i 4 8 0 7 9 3  13e15192@7 * 34.2167 * i4 .8675001 ?5.2586524 * 

. * 12 13212917 1?.37870E3 * 36.560E 24.8191638 25.1063886 * 
12.!827183 1?.3171817 * 39.1043 !* ~ 4 . 8 1 9 4 ~ 3 9  . 2 5 r 0 0 9 3 1 9 6  * 
12r ' !145832 12,5851163 * 41,5489 * 24.9456542 24.9563841 * 

* 1 2 n r 1 1 6 6 4 8  1.?.588335? * 43.9970 24a991?5?R 24.9348607 * 
1 2 0 4 7 6 1 9 2 8  1 ~ . 5 7 3 4 0 7 ?  * 46.4370 * 2 4 0 ~ 1 9 2 1 9 1  24.9325032 * 
12.:i140501 12. 5R51453 * 450R910 + 24.949nq76 24.9409775 . * 

~ * ~ * * * * * * * + * * ~ d ~ ~ + b * . * * + ~ * * * + : . ~ ( t ~ * ~ n l i l i + ' ~ i i a ; t r a r - * x w + . : ~ ~  

END OF P70RLEM 

- 



SAMPLE PRORLZM SET03 PAGE 1 

INPUT PARAMETERS 
POISSONS RATIO I M U I  = .30000n03 
INTERVALS I N  ELLIPSE = 20  
BETA = 2 ~ 0 0 0 0 0 0 0 0  
HEAD THICKNESS = 1.000~00?'l 

POINTS IN C Y L I N ~ E R  = 2 0  
CYLINDER DIAMETER = 1 ~ n . o n o 3 o o n o  
CYLINDER THICKNESS = 2.00060003 

ESTIMATE FOR LARGEST EIGENV4LUE = 463.7543869 

FORMULA'ESTIMATE FOR SMALLCST EIGENVALUE = .?253570 ' 

ITERATION FORVULA ESTI:'ATE FOR 3l.qALLEST FIGE:IVALUE = 2.8457146 

FIRST OF 3 VECTORS CO!?PCTC3. N = 30  

SECOND OF 3 VECTORS CO:4PCTSD. 

LAST OF 3 VECTORS COuPUTED. 

ALPHA = 53.0912409 ...... GAIINA =-784.99362C.j 



SIMPLE PROBLEM SET03 PAGE 2 

f f f f f f f f f f f f f f * f f i f * f + ~ f f f * * * ~ * * * * * * * * * * * * + * * f f * f f *  

ELL 1 PSE 
OIMEFSIOMLESS STSESS TO PRESSVRE RtTIO 

f u * f * f f f f f f f f * * f * f f f f * . f f f f f * f f * * * * * * * * * * * ~ * * * * * * f *  

f AXIPL f ClRCUMFERENlIAL . f ------------------------ -------------------ma----- 

f f f * 
ANGLE 

OUTER SWFPCE INNER Sl'SFbCE IN DEGREES 1OUTER SURFACE INNER SURFACE f ------ -- -------- ------- -------- 

* 54.22'31042 45.785'595 87.0000 54.1951127 45..1602572 . 

f 54.1811323 4 5 . 7 ~ 8 3 7 5  ,* 84.0000 * 54.0795800 45.6456295 4 

53.9910164 45.550934 77.0000 53.4988065 45.3668159 

• 53.6591511 45.177ElIZ 70.0000 52.4406872 43.9970331 * 
• 53.1603737 44.5881891 * 63.0000 * 50.8014379 42.3267837 * 

52.4622550 43.7102591(3 56.0000 48.4096127 39.8678570 + 

• 51.5119863 42.436QEE * 49.0000 * 44.9828472 36.3128738 * 
• 50.2042837 40.624'145 * 42.0000 * 40,0477800 31.2693649 * 
f 48.2642779 38.1001~25e * 35.5000 32.7842464 23.6833189 .* 
• 44.8599262 35.48464c'C 28.0000 * 21.7644043 12.8877215 * '  
• 37.59C3372 34.482-69C 21.0300 . * 4.0307996 -1+4171917 * 

20.0728560 42.065;7€8 14.0000 + -18.8026934 -15.55?1469 

. f 8.6050723 49.565?+2? * 11.0000 , * -28.3310194 -17.6991532 * 
f -. 3715415 55.2553511 * 8.0000 * -32.90030h2 -16e1763732 * 

- a  1345537 52.710269 * 5.0000 * .-27.8446211 -10..9823072 * 

+ 22.2283425 28.777566C * 2.0000 * -9.8747373 -7.2179494 * 
f 28.9332207 21.96154ie 1.5000 * -5.6597529 -7.1919335 * 
f 36.2567304 14.3'325991: 1.0000 4 -1.1678276 -7.7961839 

• 44.6533904 5.612C718 .SO00 * 3.5490099 -8.0015255 * 
• 53.5153455 -3.615Z.736 * e0090 * 8.3048201 -8.77441 11 * 
f i f F + f * f * + f + * * f f ~ * * * * t I * + * * * * * * Q o * O * f t * * * * ~ Q * * * * * * *  



SAMPLE PROaLEM SET03  PAGE 3 

* * Q Q * Q Q Q * Q * Q * Q + * * * Q * * * * . * . ' i * * t * * * . + . ~ * * ( i E * * * * ~ Q * * * * Q * Q  

CYLINDER 
DIMENSIONLESS STRESS TO PRESSIJ?E RATIO 

OUTER SURFACE ------------- INNER SURFACE 
.----- -------- 

OISThNCE FROu 
JUNCTION 

CIRCU'IFERCNT I A L  

O'JTER SURFACE INNER SURFACE ------------- ------------- 

I END OF PRDRLEP I 
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