

WAPD-TM-174
AEC RESEARCH AND
DEVELOPMENT REPORT

MASTER

THE SET CODES — IBM 704 CODES FOR THE CALCULATION OF THE STRESSES IN A PRESSURE VESSEL WITH AN ELLIPSOIDAL HEAD

JUNE 1959

CONTRACT AT-11-1-GEN-14

BETTIS PLANT—PITTSBURGH, PA. OPERATED FOR THE
U.S. ATOMIC ENERGY COMMISSION BY BETTIS ATOMIC
POWER DIVISION, WESTINGHOUSE ELECTRIC CORPORATION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

**THE SET CODES — IBM 704 CODES FOR
THE CALCULATION OF THE STRESSES IN A
PRESSURE VESSEL WITH AN ELLIPSOIDAL HEAD**

G.G. Bilodeau • J.B. Callaghan • H. Kraus

Contract AT-11-1-GEN-14

June 1959

Price \$1.00

**Available from the Office of Technical Services,
Department of Commerce,
Washington 25, D. C.**

NOTE

This document is an interim memorandum prepared primarily for internal reference and does not represent a final expression of the opinion of Westinghouse. When this memorandum is distributed externally, it is with the express understanding that Westinghouse makes no representation as to completeness, accuracy, or usability of information contained therein.

**BETTIS PLANT • PITTSBURGH, PA.
OPERATED FOR THE U.S. ATOMIC ENERGY COMMISSION BY
BETTIS ATOMIC POWER DIVISION, WESTINGHOUSE ELECTRIC CORPORATION**

STANDARD EXTERNAL DISTRIBUTION

No. Copies

UC-34: Physics and Mathematics, TID-4500, 14th Edition 616

SPECIAL EXTERNAL DISTRIBUTION

Manager, Pittsburgh Naval Reactors Operations Office, AEC	3
Argonne National Laboratory, W. F. Miller	2
Brookhaven National Laboratory, J. Chernick	1
Brookhaven National Laboratory, M. Rose	1
David Taylor Model Basin, H. Polachek	2
Knolls Atomic Power Laboratory, R. Ehrlich	10
Los Alamos Scientific Laboratory, B. Carlson	2
New York University, R. Richtmyer	2
Oak Ridge National Laboratory, A. Householder	2
University of California Radiation Laboratory, Livermore, S. Fernbach	2
Total	643

—LEGAL NOTICE—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

CONTENTS

	Page No.
THEORY	1
SOLUTION OF THE ELLIPSOIDAL SHELL EQUATIONS	5
Boundary Conditions	6
DIFFERENCE EQUATIONS	7
Case I: θ_n an Interior Point	7
Case II: $n = N$	8
GENERAL METHODS OF SOLUTION	9
Method (A): The SET02 Code	10
Method (B): The SET03 Code	11
CALCULATION OF THE STRESSES	14
INPUT PREPARATION	16
OUTPUT DESCRIPTION	17
CONCLUSIONS	17
OPERATING INSTRUCTIONS	18
Code Restrictions	18
Machine Requirements	19
APPENDIX I: SAMPLE PROBLEM	20
ACKNOWLEDGMENT	26
REFERENCES	26

A solution to the problem of stresses in a pressure vessel with an ellipsoidal head has long been sought by pressure vessel designers. To meet this need the codes described in this report were written. The codes are based on a finite-difference approximation to the Love-Meissner equations which are the basis of the bending theory of thin shells.

THE SET CODES-IBM 704 CODES FOR THE CALCULATION OF THE STRESSES IN A PRESSURE VESSEL WITH AN ELLIPSOIDAL HEAD

G. G. Bilodeau, J. B. Callaghan, and H. Kraus

A means of determining the stresses in an ellipsoidal pressure vessel head has long been sought by pressure vessel designers. In the nuclear power plant industry, for example, the ellipsoidal shell appears frequently as the head of a steam generator or as the bottom of a reactor pressure vessel. In such applications there are discontinuity stresses set up because of the difference in the expansion experienced by the ellipsoidal shell and the cylindrical shell to which it is attached when the entire assembly is loaded by internal pressure. At present there is no method available for the determination of these stresses, and designers have been forced to make overly conservative assumptions to overcome this deficiency.

The basic differential equations of the problem have been available for many years, although their complexity has not permitted a convenient analytical solution. It was believed, however, that a high-speed electronic computing machine would be ideally suited for the solution of these equations. Hence, the IBM 704 codes described in this report were written.

THEORY

The configuration which will be considered in this discussion consists of an ellipsoid of revolution mounted on a long cylinder, as shown in Fig. 1.* The method of analysis generally applied to this type of shell is referred to as the bending theory of thin shells. A shell is considered thin when its diameter is more than ten times its thickness. This assumption allows analytical solutions to be found for many shells, although, for the ellipsoidal shell, analytical solutions have not been found in spite of this assumption. An exact theory for treating thick shells is not available at the present time.

* Note that the middle surfaces of the head and cylinder must coincide.

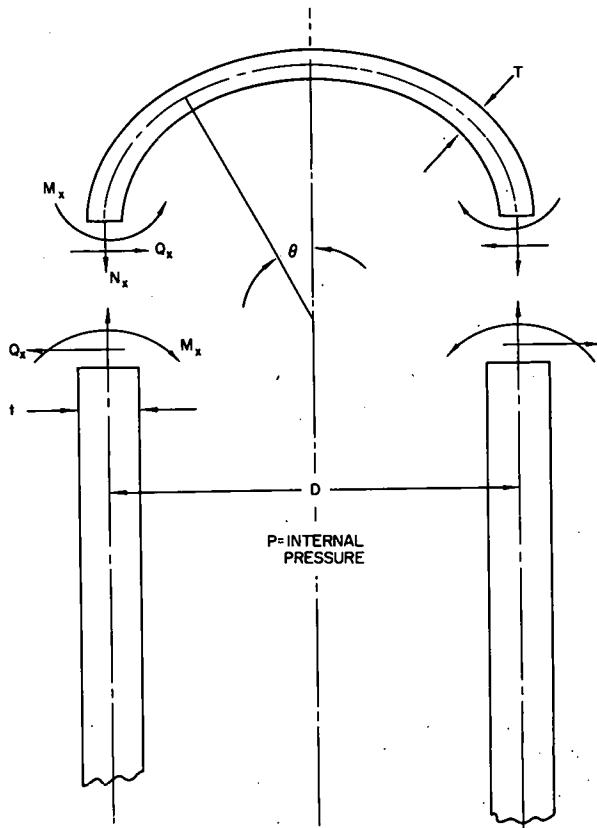


Fig. 1 Ellipsoidal Shell Mounted on a Cylinder
Showing Loads at Junction

The bending theory of thin shells is very well described by Watts and Burrows (Ref 1) and by Timoshenko (Ref 2). The method presented in this report will draw largely upon the Watts and Burrows paper.

The analysis of any shell of revolution begins with the consideration of the forces and moments acting on a differential element of the shell as shown in Fig. 2. A summation of the forces and of the moments then yields three equations of equilibrium for a differential element in a shell under internal pressure:*

$$\frac{d}{d\theta} \left[N_x R_2 \sin \theta \right] - N_y R_1 \cos \theta + Q_x R_2 \sin \theta = 0 , \quad (1)$$

$$\frac{d}{d\theta} \left[Q_x R_2 \sin \theta \right] - N_y R_1 \sin \theta - N_x R_2 \sin \theta = -P R_1 R_2 \sin \theta , \quad (2)$$

and

$$\frac{d}{d\theta} \left[M_x R_2 \sin \theta \right] - M_y R_1 \cos \theta - Q_x R_2 R_1 \sin \theta = 0 , \quad (3)$$

where

θ = angle between the axis of revolution and a perpendicular to the middle surface of the shell at any point

*Reference 1

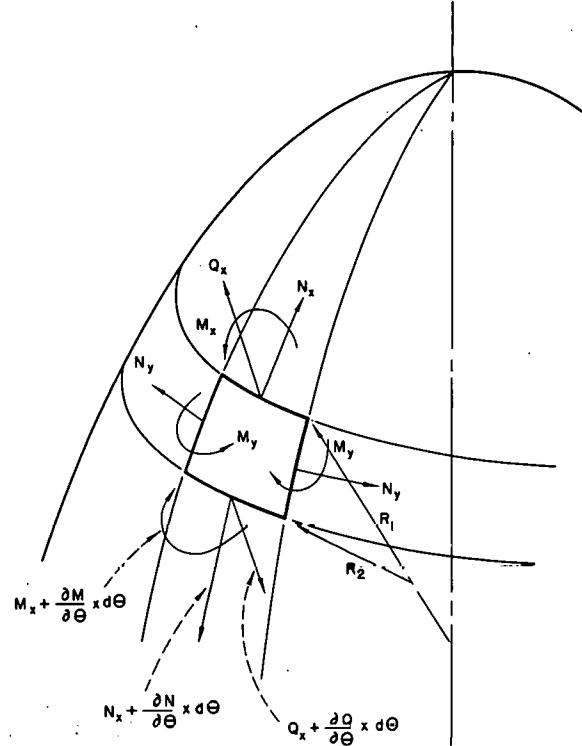


Fig. 2 A Differential Element in a Shell of Revolution Showing the Movements and Forces Acting on It (from Ref 2)

R_1 = radius at any point of a middle surface section cut by a plane through the axis of revolution

R_2 = distance measured along a normal to any point on the middle surface, between the middle surface and the axis of revolution

P = internal pressure acting in the shell

N_x = axial membrane force

N_y = circumferential membrane force

M_x = axial bending moment

M_y = circumferential bending moment

Q_x = shear force acting along a normal to the middle surface.

In Eqs (1), (2), and (3) there are five unknown quantities which are N_x , N_y , M_x , M_y , and Q_x . The first four quantities can be expressed in terms of the rotation and the deflection of the differential element (Ref 1) as follows:

$$N_x = \frac{ET}{R_1(1 - \mu^2)} \left[\left(\frac{du}{d\theta} + w \right) + \mu \left(\frac{R_1}{R_2} \right) (w + u \cot \theta) \right], \quad (4)$$

$$N_y = \frac{ET}{R_1(1 - \mu^2)} \left[\mu \left(\frac{du}{d\theta} + w \right) + \frac{R_1}{R_2} (w + u \cot \theta) \right], \quad (5)$$

$$M_x = \frac{ET^3}{m^4 R_1} \left[\frac{dw}{d\theta} + \mu \left(\frac{R_1}{R_2} \right) w \cot \theta \right], \quad (6)$$

and

$$M_y = \frac{ET^3}{m^4 R_1} \left[\mu \left(\frac{dw}{d\theta} \right) + \frac{R_1}{R_2} w \cot \theta \right], \quad (7)$$

where

T = thickness of the ellipsoidal shell

E = Young's modulus

μ = Poisson's ratio

$m^4 = 12(1 - \mu^2)$

W = rotation of a tangent to the middle surface, lying in a plane through the axis of revolution during deformation of the shell;

$$W = \frac{1}{R_1} (u - dw/d\theta)$$

u = deformation of any point on the middle surface measured along a tangent to the undeformed middle surface at the point and lying in a plane through the axis of revolution

w = deformation of any point on the middle surface measured along a normal to the undeformed middle surface at the point and lying in a plane through the axis of revolution

When the expressions (4), (5), (6), and (7) are substituted into Eqs (1), (2), and (3), the resulting expressions can be simplified to give the following differential equations (known as the Love-Meissner equations) relating the rotation and the shear:

$$L[V] + \frac{\mu}{R_1} V = -ETW + \Phi(\theta) , \quad (8)$$

and

$$L[W] - \frac{\mu}{R_1} W = + \frac{V m^4}{ET^3} . \quad (9)$$

In these equations, $V = R_2 Q_x$, $\Phi(\theta)$ is a function of load and shape, and $L[]$ represents a differential operator which is defined as follows:

$$L[\dots] = \frac{R_2}{R_1^2} \frac{d^2(\dots)}{d\theta^2} + \frac{1}{R_1} \left[\frac{d}{d\theta} \left(\frac{R_2}{R_1} \right) + \frac{R_2}{R_1} \cot \theta \right] \frac{d(\dots)}{d\theta} - \frac{\cot^2 \theta}{R_2} (\dots) . \quad (10)$$

Up to this point the type of shell has not been specified. From the equations which have been presented it can be seen that, in order to make them apply to a particular shell, only a substitution of the appropriate expressions for the two radii of curvature R_1 and R_2 is needed.

Thus, for the ellipsoidal shell,

$$R_1 = 0.5 D \beta v^3 \quad (11)$$

and

$$R_2 = 0.5 D \beta v , \quad (12)$$

where D = the major axis of the ellipse and is also the diameter of the cylinder, β = ratio of the major axis of the ellipse to the minor axis of the ellipse, and $(\frac{1}{2}) = [1 + (\beta^2 - 1) \sin^2 \theta]$.

For the cylindrical shell,

$$R_1 = \infty \quad (13)$$

and

$$R_2 = 0.5 D . \quad (14)$$

After substitution of Eqs (11) and (12) into Eqs (4) through (10), the following equations (Ref 1) are obtained for the ellipsoidal shell:

$$M_x = \frac{2ET^3}{m^4 D \delta} \left[\frac{1}{v^2} \frac{dW}{d\theta} + \mu W \cot \theta \right] , \quad (15)$$

$$M_y = \frac{2ET^3}{m^4 D \delta} \left[\frac{\mu}{v^2} \frac{dW}{d\theta} + W \cot \theta \right] , \quad (16)$$

$$N_x = \frac{2V}{\delta D} \cot \theta + 0.35 PD \delta , \quad (17)$$

$$N_y = \frac{2}{D \delta} \frac{dV}{d\theta} + 0.25 PD \left[\frac{2\delta^2 - \beta^2}{\delta} \right] , \quad (18)$$

$$L[V] + \mu V + 0.5 \frac{DET}{\delta} W = \frac{PD^2 \beta^2}{8} (3v^2 + 1)(1 - v^2) \cot \theta , \quad (19)$$

$$L[W] - \mu W - \frac{D}{2} \frac{\delta m^4}{ET^3} V = 0 , \quad (20)$$

and the differential operator for the ellipse appears as

$$v^2 L[\dots] = \frac{d^2(\dots)}{d\theta^2} + \left[(3 - 2v^2) \cot \theta \right] \frac{d(\dots)}{d\theta} - (\dots)v^4 \cot^2 \theta , \quad (21)$$

where $\delta = \beta v$ and $\delta' = \beta v^3$.

Equations (19) and (20) are the equations which have caused so much difficulty for analysts seeking solutions to ellipsoidal shell problems. These equations must be solved for V and W which are used to determine M_x , M_y , N_x , and N_y . The latter quantities are combined by using the following relations to obtain the stresses:

$$\sigma_x = \frac{N_x}{T} \pm \frac{6M_x}{T^2} \quad (22)$$

and

$$\sigma_y = \frac{N_y}{T} \pm \frac{6M_y}{T^2} , \quad (23)$$

where σ_x = axial stress, σ_y = circumferential stress, and the positive sign is used for stresses on the outer surface of the shell and the negative sign is used for the inner surface.

A similar procedure is followed for the cylinder to which the ellipsoidal shell is attached. However, the resulting expressions are far more simple than those presented previously for the ellipsoidal shell, and the basic differential equations can be solved easily. To obtain the cylindrical shell equations, expressions (13) and (14) are substituted into Eqs (4) through (10). The equations (Ref 1) for the cylinder then appear as

$$M_x = \frac{Et^3}{m^4} \frac{dW}{dx} , \quad (24)$$

$$M_y = \mu M_x , \quad (25)$$

$$N_x = 0.25 PD , \quad (26)$$

and

$$N_y = 0.5 D \frac{Et^3}{m^4} \frac{d^3W}{dx^3} + 0.5 PD , \quad (27)$$

where t = thickness of the cylinder, and x = axial coordinate of the cylinder.

For the cylinder, the Love-Meissner equations reduce to

$$\frac{d^4W}{dx^4} + 4a^4 W = 0 . \quad (28)$$

The solution of Eq (28) is given as

$$W = e^{-ax} (C_1 \sin ax + C_2 \cos ax) + e^{ax} (C_3 \sin ax + C_4 \cos ax) , \quad (29)$$

where C_1 , C_2 , C_3 , C_4 are arbitrary constants, and $a^4 = m^4/D^2t^2$.

Equations (22) and (23) are utilized to obtain the stresses in the cylinder after calculation of the moments and membrane forces from Eqs (24) through (27).

SOLUTION OF THE ELLIPSOIDAL SHELL EQUATIONS

Before proceeding to the solution, it is convenient to change Eqs (19) and (20) slightly by multiplying each equation by $-\sin \theta/P$ and by multiplying Eq (20) by E to give

$$M_\theta [\Gamma] - \mu(\sin \theta) \Gamma - g_1(\theta)(\sin \theta) \Omega = G(\theta) , \quad (30)$$

and

$$M_\theta [\Omega] + \mu(\sin \theta) \Omega + g_2(\theta)(\sin \theta) \Gamma = 0 , \quad (31)$$

where

$$M_\theta [Z] = - \frac{d}{d\theta} \left[(\sin \theta) v^{-2} \frac{dZ}{d\theta} \right] + (\cot^2 \theta)(\sin \theta) v^2 Z ,$$

$$G(\theta) = - 1/8 D^2 \beta^2 (3v^2 + 1)(1 - v^2) \cos \theta ,$$

$$\Gamma = \Gamma(\theta) = V(\theta)/P ,$$

$$\Omega = \Omega(\theta) = EW(\theta)/P ,$$

$$g_1(\theta) = 1/2 DT\beta v^3 = s_1(\theta)/E ,$$

and

$$g_2(\theta) = 1/2 \left[m^4 D\beta / T^3 \right] v^3 = s_2(\theta) E .$$

The self-adjoint form of the operator M_θ has been used for general thin shells by Pöschl (Ref 3).

From Eqs (29), (30), and (31), it is evident that there will be eight arbitrary constant to be determined in the solution of the problem of an ellipsoidal shell mounted on a long cylinder, since the solution of each of the two parts involves four arbitrary constants. Thus, eight boundary conditions are needed, which are as follows: At the top of the ellipsoidal shell (at $\theta = 0^\circ$) the shear and rotation are zero. Furthermore, the cylinder will be assumed to be semi-infinite in extent. Inspection of Eq (29) will show that, to insure finite results at the remote end of such a cylinder ($x \rightarrow \infty$), the terms involving the positive exponential e^{ax} must be dropped. This is done by setting C_3 and C_4 each equal to zero. The remaining four boundary conditions are obtained from the junction between the shell and the cylinder where continuity of axial moment, axial shear, deflection, and rotation must be maintained across the boundary.

Boundary Conditions

The boundary conditions can be summarized as follows:

For the Ellipse

$$\Gamma(\theta), \Omega(\theta) = 0 \text{ at } \theta = 0 \quad (32)$$

For the Cylinder

$$\text{All quantities must be finite as } x \rightarrow \infty \quad (33)$$

For the Junction

Equal Radial Moments:

$$\frac{2T^3 \beta^2}{D} \frac{d\Omega}{d\theta} \Big|_{\theta=\pi/2} = \alpha = t^3 a (C_1 - C_2) \quad (34)$$

Equal Radial Deformation:

$$T^{-1} \left[2\beta^2 \frac{d\Gamma}{d\theta} \Big|_{\theta=\pi/2} + \frac{D^2}{4} (2 - \beta^2 - \mu) \right] = \gamma = t^{-1} \left[\frac{D^2 t^3 a^3}{m^4} (C_1 + C_2) + \frac{D^2}{4} (2 - \mu) \right] \quad (35)$$

Equal Axial Shear Forces:

$$\Gamma \Big|_{\theta=\pi/2} = - \frac{Da}{2m^4} \left\{ \alpha + \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2 (2 - \mu)}{4} \right] \right\} \quad (36)$$

Equal Rotations:

$$\Omega \Big|_{\theta=\pi/2} = -\frac{1}{2t^3 a} \left\{ \alpha - \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2(2-\mu)}{4} \right] \right\} \quad (37)$$

For the junction equations, α and γ are defined by Eqs (34) and (35) and are considered unknowns until their values are determined toward the end of the problem. In Eqs (34) through (37) the left side of each equation represents the quantity for the ellipse at $\theta = \pi/2$, and the right side of each equation represents the corresponding quantity for the cylinder at $x = 0$.

As a result of the introduction of the quantities α and γ , the following expressions hold for the arbitrary constants in the cylinder equations:

$$C_1 = \frac{1}{2t^3 a} \left\{ \alpha + \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2(2-\mu)}{4} \right] \right\}$$

$$C_2 = \frac{-1}{2t^3 a} \left\{ \alpha + \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2(2-\mu)}{4} \right] \right\}$$

$$C_3 C_4 = 0 \text{ by condition (33).}$$

DIFFERENCE EQUATIONS

An approximate solution for the ellipsoidal shell is obtained by using finite difference methods. The method of finite differences has been used in previous work in shell theory—notably by Au, Goodman, and Newmark (Ref. 4). However, their work was primarily by hand computation; consequently, the methods of solution mentioned in this report (as well as the difference equations) are different.

Difference equations corresponding to the differential equations of the ellipsoidal shell [Eqs (30) and (31)] are derived according to a method introduced by Varga (Ref 5). The boundary conditions [Eq (32)] are needed for this derivation as well as two of the set of Eqs (34) through (37). The two chosen are Eqs (34) and (35). This introduces two unknowns, α and γ , which will be evaluated at a later time in the code with the use of the two remaining Eqs (36) and (37).

The interval $0 \leq \theta \leq \pi/2$ is divided into N subintervals (not necessarily equal) where

$$h_i = \theta_i - \theta_{i-1}$$

and

$$0 = \theta_0 < \theta_1 < \dots < \theta_N = \pi/2$$

By way of notation, let

$$\Gamma(\theta_n) = \Gamma_n, \Omega(\theta_n) = \Omega_n, \text{ etc.}$$

Case I: θ_n an Interior Point

This situation (θ_n an interior point) occurs when $n \neq N$. (There is no equation corresponding to $n = 0$.) Then, at this point, the difference equation corresponding to the first differential Eq (30) is

$$- \left(\frac{a_n + a_{n-1}}{h_n} \right) \Gamma_{n-1} + \left[\frac{a_n + a_{n-1}}{h_n} + \frac{a_{n+1} + a_n}{h_{n+1}} + (h_{n+1} + h_n) b_n \right] \Gamma_n$$

$$- \left(\frac{a_{n+1} + a_n}{h_{n+1}} \right) \Gamma_{n+1} - \mu (\sin \theta_n) (h_{n+1} + h_n) \Gamma_n$$

$$-g_1(\theta_n)(\sin \theta_n)(h_{n+1} + h_n) \Omega_n = (h_{n+1} + h_n) G_n , \quad (38)$$

where

$$a(\theta) = (\sin \theta) v^{-2}$$

and

$$b(\theta) = (\cot^2 \theta)(\sin \theta) v^2 ;$$

thus

$$a(\theta_n) = a_n ,$$

and

$$b(\theta_n) = b_n .$$

The corresponding equation for (31) is

$$\begin{aligned} & -\left(\frac{a_n + a_{n-1}}{h_n}\right) \Omega_{n-1} + \left[\frac{a_n + a_{n-1}}{h_n} + \frac{a_{n+1} + a_n}{h_{n+1}} + (h_{n+1} + h_n) b_n\right] \Omega_n \\ & - \left(\frac{a_{n+1} + a_n}{h_{n+1}}\right) \Omega_{n+1} + \mu (\sin \theta_n) \Omega_n + g_2(\theta_n)(\sin \theta_n)(h_{n+1} + h_n) \Gamma_n = 0 . \end{aligned} \quad (39)$$

As a special case of the equations, if $n = 1$, then the boundary conditions [Eq (32)], as well as the definition of $a(\theta)$, lead to

$$\begin{aligned} & \left[\frac{a_1}{h_1} + \frac{a_2 + a_1}{h_2} + (h_2 + h_1) b_1\right] \Gamma_1 - \left(\frac{a_2 + a_1}{h_2}\right) \Gamma_2 - \mu (\sin \theta_1)(h_2 + h_1) \Gamma_1 \\ & - g_1(\theta_1)(\sin \theta_1)(h_2 + h_1) \Omega_1 = (h_2 + h_1) G_1 , \end{aligned} \quad (40)$$

and a similar expression for $\Omega(\theta)$, $\Gamma(\theta)$ from Eq (39).

Case II: $n = N$

In this case, $\theta_N = \theta_{N-1} = \pi/2$, and use is made of Eqs (34) and (35) to obtain

$$\begin{aligned} & -\left(\frac{a_N + a_{N-1}}{h_N}\right) \Gamma_{N-1} + \left(\frac{a_N + a_{N-1}}{h_N} + b_N h_N\right) \Gamma_N - \mu h_N \Gamma_N \\ & - g_1(\theta_N) h_N \Omega_N = h_N G_N + \frac{T a_N}{\beta^2} \gamma - \frac{D^2 a_N}{4\beta^2} (2 - \beta^2 - \mu) \end{aligned} \quad (41)$$

and

$$\begin{aligned} & -\left(\frac{a_N + a_{N-1}}{h_N}\right) \Omega_{N-1} + \left(\frac{a_N + a_{N-1}}{h_N} + b_N h_N\right) \Omega_N + \mu h_N \Omega_N \\ & + g_2(\theta_N) h_N \Gamma_N = a_N (T^2 \beta^2)^{-1} D \alpha . \end{aligned} \quad (42)$$

Thus, the unknowns which occur in these equations are

$$\left\{ \Gamma_i \right\}_{i=1}^N , \quad \left\{ \Omega_i \right\}_{i=1}^N , \quad \alpha , \text{ and } \gamma .$$

The difference equations just derived can be written in matrix notation as follows:

$$\left. \begin{aligned} A \vec{\Gamma} - D_1 \vec{\Gamma} - D_2 \vec{\Omega} &= \gamma \vec{P} + \vec{Q} \\ A \vec{\Omega} + D_1 \vec{\Omega} + e D_2 \vec{\Gamma} &= \alpha \vec{R} \end{aligned} \right\} \quad (43)$$

where

A = NxN matrix corresponding to the operator M_θ occurring in Eqs (30) and (31)

D_1 = NxN diagonal matrix with positive diagonal elements whose n^{th} element (along the major diagonal $n \neq N$) is $\mu(\sin \theta_n)(h_{n+1} + h_n)$. The N^{th} element is μh_N .

D_2 = NxN diagonal matrix with positive diagonal elements whose n^{th} element (along the major diagonal $n \neq N$) is $(\sin \theta_n)g_1(\theta_n)(h_{n+1} + h_n)$. The N^{th} element is $g_1(\theta_N)h_N$.

e = $g_2(\theta)/g_1(\theta)$ is a positive constant.

\vec{Q} = Nx1 matrix whose n^{th} component ($n \neq N$) is $G_n(h_{n+1} + h_n)$. The N^{th} component is

$$h_N G_N - \frac{D^2 a_N}{4\beta^2} (2 - \beta^2 - \mu).$$

\vec{P} = Nx1 matrix, all of whose components are zero except the N^{th} one. This one is

$$\frac{T a_N}{\beta^2}.$$

\vec{R} = Nx1 matrix, all of whose components are zero except the N^{th} one. This one is

$$a_N (T^3 \beta^2)^{-1} D.$$

α, γ = previously defined scalars (unknown quantities at this point).

$\vec{\Gamma}, \vec{\Omega}$ = unknown Nx1 vectors whose components are, respectively,

$$\left\{ \Gamma_i \right\}_{i=1}^N \quad \text{and} \quad \left\{ \Omega_i \right\}_{i=1}^N.$$

GENERAL METHODS OF SOLUTION

From the second equation of (43),

$$\left[\vec{\Omega} = -\alpha (A + D_1)^{-1} D_2 \right] \vec{\Gamma} + \alpha (A + D_1)^{-1} \vec{R}; \quad (44)$$

thus,

$$\left[A - D_1 + e D_2 (A + D_1)^{-1} D_2 \right] \vec{\Gamma} = \gamma \vec{P} + \alpha D_2 (A + D_1)^{-1} \vec{R} + \vec{Q},$$

which will be written as

$$T \vec{\Gamma} = \gamma \vec{P} + \alpha \vec{S} + \vec{Q} \quad (45)$$

with

$$T = \left[A - D_1 + e D_2 (A + D_1)^{-1} D_2 \right], \quad \text{and} \quad \vec{S} = D_2 (A + D_1)^{-1} \vec{R}. \quad (46)$$

The matrix Eq (45) may also be changed into another useful form by premultiplying by $(A + D_1)^{-1} D_2^{-1}$.

Then, Eq (45) becomes

$$T' \vec{\Gamma} = \gamma \vec{P}' + \alpha \vec{S}' + \vec{Q}', \quad (47)$$

where

$$T' = \left[(A + D_1)D_2^{-1} (A - D_1) + e D_2 \right] \quad (48)$$

and

$$\left. \begin{aligned} \vec{P}' &= (A + D_1)D_2^{-1} \vec{P} \\ \vec{S}' &= (A + D_1)D_2^{-1} \vec{S} = \vec{R} \\ \vec{Q}' &= (A + D_1)D_2^{-1} \vec{Q} \end{aligned} \right\} \quad (49)$$

There are two distinct SET codes, SET02 and SET03. Up to this point, no distinction has been made between these codes.

The difference in the two occurs in the methods used to solve the system (45) or (47) and is a result of the nature of the matrices T and T' .

Method (A): The SET02 Code

This method is based on Eq (47) with T' as defined in Eq (48). Three vectors must be found—

$$(T')^{-1} \vec{P}', (T')^{-1} \vec{S}', \text{ and } (T')^{-1} \vec{Q}'$$

so that the system $T' \vec{x} = \vec{k}$ must be solved for \vec{x} for three different values of \vec{k} . Following a suggestion of G. Birkhoff, a direct method is used to solve the system $T' \vec{x} = \vec{k}$ for \vec{x} , in contrast to an iterative method (about which more will be said later). A direct method seems particularly well suited to the matrix T' since "most" of the elements of T' are zero. A is tri-diagonal; thus, the same is true of $(A + D_1)D_2^{-1}$ and of $A - D_1$, so that the product $(A + D_1)D_2^{-1} (A - D_1)$ is a matrix whose only nonzero elements are on its main diagonal or on one of its nearest four parallel (to the main diagonal) diagonals. The same is consequently true also of

$$T' = \left[(A + D_1)D_2^{-1} (A - D_1) + e D_2 \right].$$

Thus, $T' = (t_{i,j})$, with $t_{i,j} = 0$ if $j \neq i-2, i-1, i, i+1, i+2$ and $i = 3, \dots, N-2$. A similar fact holds for $i = 1, 2, N-1$, and N .

The system $T' \vec{x} = \vec{k}$ is now solved (for \vec{x}) by a method of elimination defined as follows:

- 1) The matrix T' is transformed into the matrix U defined by $U = (u_{i,j})$, where

$$u_{i,j} = t_{i,j} \quad i = 1, 2$$

$$u_{i,j} = t_{i,j} - \frac{u_{i-1,j} t_{i,i-2}}{u_{i-1,i-2}}$$

for $i \geq 3$ and $j = i-1, i, i+1, i+2$.

- 2) The U is transformed into $U' = (u'_{i,j})$ with

$$u'_{i,j} = u_{i,j} \quad \text{for } i = N-1, N$$

$$u'_{i,j} = u_{i,j} - \frac{u_{i+1,j} u_{i,i+2}}{u_{i+1,i+2}}$$

for $i \leq N-2$ and $j = i-1, i, i+1$.

3) The vector \vec{k} , with components $\{k_i\}_{i=1}^N$, is first transformed into the vector \vec{l} , with components $\{l_i\}_{i=1}^N$, where

$$l_i = \begin{cases} k_i & i = 1, 2 \\ k_i - \frac{t_{i-1, i-2}}{u_{i-1, i-2}} l_{i-1} & i \geq 3 \end{cases}$$

and then \vec{l} is transformed into the vector \vec{m} , with components $\{m_i\}_{i=1}^N$, with

$$m_i = \begin{cases} l_i & i = N-1, N \\ l_i - \frac{u_{i-1, i+2}}{u_{i+1, i+2}} m_{i+1} & i \leq N-2 \end{cases}$$

The result of these steps is the reduction of the original system $T' \vec{x} = \vec{k}$ into the system

$$U' \vec{x} = \vec{m} \quad (50)$$

where U' is now a tri-diagonal matrix. Thus, the system can now be solved for \vec{x} by the method which will be mentioned later in connection with the SET03 code.

Method (B): The SET03 Code

This method is based on Eq (45). It is clear that the vectors

$$T^{-1} \vec{P}, T^{-1} \vec{S}, \text{ and } T^{-1} \vec{Q}$$

must be known to solve for $\vec{\Gamma}$. After these vectors are obtained, the relation

$$\vec{\Gamma} = \gamma(T^{-1} \vec{P}) + \alpha(T^{-1} \vec{S}) + (T^{-1} \vec{Q})$$

yields each component of $\vec{\Gamma}$ as a simple function of α , and γ . Equation (44) can be utilized to obtain $\vec{\Omega}$.

The process just described is based on the assumption that the two matrices, $A+D_1$ and T , can be inverted. By construction, A is symmetric and positive definite, so that the addition of a diagonal matrix D_1 with positive diagonal elements results in a matrix $A+D_1$ which is also positive definite. In particular, $(A+D_1)^{-1}$ exists. Moreover, by construction, A has nonzero elements only along its main diagonal and the two diagonals parallel to and nearest the main diagonal. A is said to be tri-diagonal. The same is true of $(A+D_1)$. Such a matrix leads to a system of equations $(A+D_1) \vec{x} = \vec{k}$ which can be solved for \vec{x} by a simple recursion relation (see, for example, Ref 6, p 34). Thus, effectively, $(A+D_1)^{-1}$ of Eq (46) can be obtained in a fairly simple way.

On the other hand, T is symmetric because, with T^* as the transpose of T ,

$$T^* = \left[A - D_1 + \epsilon D_2 (A + D_1)^{-1} D_2 \right]^* = A - D_1 + \epsilon D_2 (A + D_1)^{-1} D_2 = T$$

since A , D_1 , and D_2 are symmetric.

Moreover,

$$\begin{aligned}
 T &= A + D_1 + e D_2 (A + D_1)^{-1} D_2 - 2D_1 \\
 &= e^{1/2} D_2^{1/2} \left[e^{-1/2} D_2^{-1/2} (A + D_1) D_2^{-1/2} + e^{1/2} D_2^{1/2} (A + D_1)^{-1} D_2^{1/2} - 2e^{-1/2} D_1 D_2^{-1} \right] D_2^{1/2} \\
 &= e^{1/2} D_2^{1/2} \left[M + M^{-1} - 2e^{-1/2} D_1 D_2^{-1} \right] D_2^{1/2} ,
 \end{aligned}$$

where

$$M = e^{-1/2} D_2^{-1/2} (A + D_1) D_2^{-1/2}$$

is symmetric and positive definite. Now if $K = M + M^{-1}$, then K is symmetric and positive definite and its eigenvalues are of the form $\lambda + \lambda^{-1}$, where λ is an eigenvalue of M . Thus, since $\lambda > 0$, the minimum of $\lambda + \lambda^{-1}$ is 2 and, therefore, a lower bound for the eigenvalues of K is 2. Now,

$$(T \vec{x}, \vec{x}) = e^{1/2} \left\{ (K \vec{y}, \vec{y}) - 2e^{-1/2} (D_1 D_2^{-1} \vec{y}, \vec{y}) \right\} ,$$

where

$$\vec{y} = D_2^{1/2} \vec{x} .$$

Again,

$$(K \vec{y}, \vec{y}) \geq 2(\vec{y}, \vec{y})$$

and

$$e^{-1/2} (D_1 D_2^{-1} \vec{y}, \vec{y}) \leq \zeta (\vec{y}, \vec{y}) ,$$

where ζ is the largest eigenvalue of $e^{-1/2} D_1 D_2^{-1}$. However, $e^{-1/2} D_1 D_2^{-1}$ (a diagonal matrix) has elements $2\mu/m^2 (\frac{D}{T}) v_n^3 \beta$. The minimum of v^3 is $1/\beta^3$, so that (assuming $\beta \geq 1$):

$$\zeta \leq \frac{2\mu\beta^2}{m^2 (\frac{D}{T})} .$$

Thus,

$$(T \vec{x}, \vec{x}) \geq e^{1/2} \left[2 - \frac{4\mu\beta^2}{m^2 (\frac{D}{T})} \right] (\vec{y}, \vec{y}) .$$

Now,

$$e^{1/2} = \frac{m^2}{T^2}$$

and

$$(\vec{y}, \vec{y}) = (D_2 \vec{x}, \vec{x}) \geq \eta (\vec{x}, \vec{x}) ,$$

where η is a lower bound for the eigenvalues of D_2 . Now D_2 is a diagonal matrix with elements

$$\frac{1}{2} (\sin \theta_n) DT\beta v_n^3 (h_{n+1} - h_n)$$

except for the N^{th} element which is $\frac{1}{2} DT\beta v_N^3 h_N$. Since

$$\sin \theta_1 \approx \theta_1 = \theta_1 - \theta_0 = h_1 ,$$

it can be assumed, in general*, that η can be chosen as $DT\beta h_1^2$.

*This is not precisely so in all cases. We will, however, make this assumption.

Thus,

$$(T \vec{x}, \vec{x}) \geq 2\beta h_1^2 \left[m^2 \left(\frac{D}{T} \right) - 2\mu\beta^2 \right] (x, x) .$$

Clearly then, T is positive definite when

$$\Lambda = m^2 \left(\frac{D}{T} \right) - 2\mu\beta^2 > 0 \quad (51)$$

or

$$1 \leq \beta^2 < \sqrt{3} \left(\frac{1 - \mu^2}{\mu^2} \right)^{1/2} \left(\frac{D}{T} \right) .$$

This is not a severe restriction. For example, for $\mu = 0.3$, this states that

$$1 \leq \beta^2 < \sqrt{30} \left(\frac{D}{T} \right) ,$$

and $\frac{D}{T}$ is usually ≥ 10 . Moreover, if a is the smallest eigenvalue of T , then it can be said that, from Eq (51),

$$a \geq 2\beta h_1^2 \Lambda . \quad (52)$$

It is not clear what happens for values of β other than those satisfying Eq (51). Although the code SET03 is not internally restricted to these values of β , it will nevertheless be assumed for the following theory that β does satisfy Eq (51).

The method used in SET03 to solve the system $T \vec{x} = \vec{k}$ is an iterative method in contrast to the direct method used in SET02. The primary advantage of this iterative method is its inherent stability with respect to round-off errors. Its primary disadvantage (a major one) is the time necessary to complete a problem in contrast to a direct method. This will be discussed in detail later.

The method to be used depends strongly on the fact that T is positive definite. Let

$$b = \text{largest eigenvalue of } T$$

and

$$a = \text{smallest eigenvalue of } T \text{ (as before).}$$

Then, the new matrix

$$\left[I - \frac{2}{a+b} T \right]$$

is formed which now has eigenvalues in the region $-1 < \frac{a-b}{a+b} \leq \lambda \leq \frac{b-a}{a+b} < 1$. With this new matrix, polynomial operators are used with Chebyshev polynomials in the manner introduced by Shortley (Ref 7), which leads to the following iterative scheme. Let

$$\vec{u}_0 = \vec{x}_0 = \text{initial guess,}$$

$$\vec{u}_1 = \left[I - \frac{2}{a+b} T \right] \vec{u}_0 + \frac{2}{a+b} \vec{k} ,$$

and

$$T_n(d) \vec{u}_n = 2d T_{n-1}(d) \left[I - \frac{2}{a+b} T \right] \vec{u}_{n-1} - T_{n-2}(d) \vec{u}_{n-2} + \frac{4d T_{n-1}(d)}{a+b} \vec{k}$$

for $n = 2, 3, \dots$. Now,

$$d = \frac{a+b}{b-a} > 1$$

and

$$T_0(d) = 1, \quad T_1(d) = d$$

with

$$T_n(d) = 2d T_{n-1}(d) - T_{n-2}(d)$$

for $n = 2, 3, \dots$. Let $\|\vec{x}\| = \sqrt{\sum_i x_i^2}$ where $\{x_i\}$ is the set of components of the vector \vec{x} . Also let

$$\vec{\epsilon}_n = \vec{x} - \vec{u}_n$$

Then it can be shown that*

$$\|\vec{\epsilon}_n\| \leq [T_n(d)]^{-1} \|\vec{\epsilon}_0\|$$

so that if $T_N(d) \geq 50$, then \vec{u}_N will be less than 1% from the answer, provided the initial vector $\vec{u}_0 = \vec{x}_0$ is within 50% of the answer.

This code makes use of the result of SET02 as the initial vector \vec{u}_0 . An estimate of the largest eigenvalue of T is obtained from the recursion relation

$$\left. \begin{aligned} T \vec{x}_{n-1} &= \vec{s}_n \\ \lambda_n &= (\vec{s}_n, \vec{x}_{n-1}) / (\vec{x}_{n-1}, \vec{x}_{n-1}) \\ \vec{x}_n &= \vec{s}_n / \lambda_n \end{aligned} \right\} \quad (53)$$

for $n = 1, 2, 3, \dots, M$. (M is set at 50.) The symbol (\vec{x}, \vec{y}) indicates the inner product of \vec{x} and \vec{y} and is defined as

$$(\vec{x}, \vec{y}) = \sum_i x_i y_i$$

where $\{x_i\}$, $\{y_i\}$ are, respectively, the sets of components of \vec{x} and \vec{y} . The number used for b , b_1 , is then set at $(1.1)\lambda_M$. It is important that this number be greater than or equal to b . An estimate, a_1 , of the number a (smallest eigenvalue of T) is obtained from the Eqs (53) by using the matrix $T - b_1 I$ instead of T . The number obtained at the end of M iterations, call it λ_M' , gives rise to the estimate

$$a_1 = \lambda_M' + b_1$$

This value is used unless it is smaller than the estimate of Eq (52), in which case this latter value is used. Unlike the estimate for the largest eigenvalue, which had to be larger than the actual value, no such restriction exists for the estimate a_1 .

CALCULATION OF THE STRESSES

From Eqs (15) through (18), the equations for the resultant stresses and stress couples for the ellipsoidal shell can be found in terms of $\Gamma(\theta)$ and $\Omega(\theta)$ in the following equations. It should be mentioned that only normalized resultant stresses and stress couples are obtained, namely N_x/P , N_y/P , M_x/P , and M_y/P . This will lead to the normalized stresses σ_x/P and σ_y/P .

$$\left(\frac{N_x}{P} \right)_n = \frac{2}{D\delta_n} (\cot \theta_n) \Gamma_n + \frac{1}{4} D\delta_n \quad (54)$$

$$\left(\frac{N_y}{P} \right)_n = \frac{2}{D\delta_n} \left(\frac{d\Gamma}{d\theta} \right)_n + \frac{1}{4} D \left[\frac{2\delta_n^2 - \beta^2}{\delta_n} \right] \quad (55)$$

* See, for example, a similar analysis by D. Young in Ref 8.

$$\left(\frac{M_x}{P}\right)_n = \frac{2T^3}{m^4 D \delta_n} \left[\frac{1}{v_n^2} \left(\frac{d\Omega}{d\theta}\right)_n + \mu (\cot \theta_n) \Omega_n \right] \quad (56)$$

$$\left(\frac{M_y}{P}\right)_n = \frac{2T^3}{m^4 D \delta_n} \left[\frac{\mu}{v_n^2} \left(\frac{d\Gamma}{d\theta}\right)_n + \Omega_n (\cot \theta_n) \right] \quad (57)$$

where the subscript n indicates, as before, the evaluation of the function at $\theta = \theta_n$.

The functions $\left(\frac{d\Omega}{d\theta}\right)_n$ and $\left(\frac{d\Gamma}{d\theta}\right)_n$ are evaluated from the following formulas:

For $n \neq N$,

$$\left(\frac{d\Omega}{d\theta}\right)_n = \frac{h_n}{h_{n+1}^2 + h_n h_{n+1}} \Omega_{n+1} + \frac{h_{n+1} - h_n}{h_{n+1} h_n} \Omega_n - \frac{h_{n+1}}{h_n^2 + h_n h_{n+1}} \Omega_{n-1} .$$

For $n = N$,

$$\left(\frac{d\Omega}{d\theta}\right)_N = \frac{2h_N + h_{N-1}}{h_N^2 + h_N h_{N-1}} \Omega_N - \frac{h_N + h_{N-1}}{h_N h_{N-1}} \Omega_{N-1} + \frac{h_N}{h_{N-1}^2 + h_N h_{N-1}} \Omega_{N-2} .$$

Similar expressions are used for $\left(\frac{d\Gamma}{d\theta}\right)_n$.

The stresses are now obtained by using the formulas of Eqs (22) and (23):

For the cylinder, the following relations hold:

$$\frac{M_x}{P} = \frac{at^3}{m^4} e^{-ax} \left[C_1 (\cos ax - \sin ax) - C_2 (\cos ax + \sin ax) \right] ,$$

$$\frac{M_y}{P} = \mu \frac{M_x}{P} ,$$

$$\frac{N_y}{P} = \frac{Dt^3 a^3}{m^4} e^{-ax} \left[C_1 (\cos ax + \sin ax) + C_2 (\cos ax - \sin ax) \right] + \frac{D}{2} ,$$

and

$$\frac{N_x}{P} = \frac{D}{4} .$$

where

$$C_1 = \frac{1}{2t^3 a} \left\{ \alpha + \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2(2 - \mu)}{4} \right] \right\}$$

and

$$C_2 = \frac{1}{2t^3 a} \left\{ \alpha - \frac{m^4}{D^2 a^2} \left[\gamma t - \frac{D^2(2 - \mu)}{4} \right] \right\} .$$

The stresses in the cylinder can then be obtained from the formulas of Eqs (22) and (23), with T now replaced by t .

The cylinder has been assumed infinitely long in the previous equations. Since the discontinuity stresses caused by the juncture reach steady values in one period of the trigonometric functions shown previously, the stresses will only be calculated for a distance from the juncture corresponding to one period. This distance is calculated from $aL = 2\pi$. Since a has been shown to depend on the

dimensions and material of the cylinder, the length L is different for each problem. L will be determined for each problem, and the axial and radial stresses on the inner and outer surfaces of the cylinder will be calculated for any specified number of points, not necessarily equally spaced along its length.

INPUT PREPARATION

The input for the two codes is the same except for the code designation. A sample input is shown in the Appendix. The input is as follows:

TITLE Card: Columns 1-67 are available for problem identification. Columns 68-72 must contain either SET02 or SET03, where the next to last character is a zero.

Card 1001: This card contains Poissons' ratio.

Card 2001: This card is used to specify the following:

- 1) The number of intervals, an integer, into which the ellipse is divided by the mesh: $5 \leq n \leq 500$.
- 2) β , the ratio of the major diameter to the minor diameter for the ellipse.
- 3) D, the cylinder diameter.
- 4) T, the ellipse thickness.

Card 3001: This card is used to define the mesh in the ellipse by pairs of numbers. The first number of each pair, an integer, indicates the number of intervals in a given region. The second number of each pair indicates the angle, in degrees, at which the region terminates. Each region is assumed to start at the angle where the last region terminated; the first region is assumed to start at zero. The angle used for input is that formed by the major axis of the ellipse and a line through the center of the ellipse intersecting the shell. Thus, this angle is not the angle θ used in the difference equations. In fact, if φ is the angle used in the input, then φ and θ are connected by the relation

$$\varphi = \text{arc tan} \left[\frac{1}{\beta^2} \cot \theta \right].$$

Thus, for example, $\varphi = 0$ and $\theta = \pi/2$ are corresponding angles. There can be a maximum of ten regions in the ellipse, and the last one must terminate with an angle of 90 degrees. The sum of the intervals on this card must equal the number of intervals specified on card 2001.

Card 4001: This card contains two quantities: the number of intervals (an integer) to be used in the cylinder in the first period of behavior, and the cylinder thickness.

Card 5001: This card is used to define the mesh in the cylinder by pairs of numbers in a manner similar to that used in the ellipse. The first number of each pair, an integer, gives the number of intervals in a region. The second number of each pair indicates the fraction of the first period of behavior to which the region extends. As in the ellipse, each region is assumed to start where the previous region terminated, the first region starting at zero. There can be a maximum of ten regions, the last of which must have a termination fraction of 1.0. The sum of the intervals must equal the number of intervals specified on card 4001.

All of the card numbers, as well as those quantities designated as integers, must not contain a decimal point. All other input quantities must have a decimal point somewhere in the number. For example, the value .00125 can be written as .00125, .125E-2, or 1.25E-3.

Values on each card, other than the title card, must start in column 1 and must be separated by commas. The last number on a card must not be followed by a comma. The first blank column on any card other than the title card indicates the end of data on that card.

OUTPUT DESCRIPTION

A sample output is shown in Appendix I. The output tape must be printed on the 717 tape-to-printer under program control. Each page of output contains the problem identification, the code designation, and the page number.

On page one, all of the input data except mesh description is printed along with α and γ . Page one will also contain the estimate for the upper bound of the eigenvalues and the number of terms of the recursion formula needed for convergence for each of the three vectors.

On page two, the normalized stress values for the ellipse begin. The axial and circumferential components on the outer and inner surfaces are tabulated as functions of angle, as specified by the input, from the top of the ellipse down to the juncture.

The cylinder stresses are tabulated in much the same manner except that they are a function of distance from the juncture rather than angle.

CONCLUSIONS

The two codes have certain characteristics which are very useful in obtaining results which can be regarded as reasonably accurate. In the first place, a typical problem is run on the SET02 code much faster than on the SET03 code. On the other hand, the SET02 code is subject to round-off errors when the mesh is sufficiently refined, while the method used in the SET03 code is inherently "stable" in the sense that an error introduced at the m^{th} step will decrease to zero as the number of iterations is increased. This fact is particularly useful when a mesh is being determined for a certain problem or a class of problems to be run on SET02. On the one hand, the mesh should be fine enough to insure a reasonable approximation to the solution of the differential equation; on the other hand, it should not introduce so many points that round-off will play a significant role in the results.

Care should be exercised in choosing a mesh because of the transformation of the independent variable in the code—namely, the change from φ to θ . If h'_i is the mesh in the angle φ and h_i is the mesh in the angle θ , then,

$$h'_i \left[\frac{\beta^2}{1 + (\beta^4 - 1) \sin^2 \varphi} \right] = h_i ,$$

where

$$\varphi_i \leq \varphi \leq \varphi_{i-1}$$

with

$$\theta_i - \theta_{i-1} = h_i , \varphi_{i-1} - \varphi_i = h'_i , \text{ and } \varphi_i = \arctan \left[\frac{1}{\beta^2} \cot \theta_i \right] .$$

Thus, at the top, $\varphi = 90^\circ$ and $\theta = 0^\circ$ so that

$$h_i \simeq \frac{1}{\beta^2} h'_i ,$$

and at the juncture, $\theta = 90^\circ$ and $\varphi = 0^\circ$,

$$h_i \simeq \beta^2 h'_i ,$$

all of which means that the mesh the code is using may be very much finer or coarser than the user might have intended. It has been the experience of the authors that the mesh in the neighborhood of

the juncture should be finer than that at the top of the ellipsoid. The two codes have also been used to check each other's results for given problems. This was necessary inasmuch as analytic results were not available for any but hemispherical heads. Hemispherical heads correspond to $\beta = 1$, and some results for this type of shell are available from Watts and Lang (Ref 9). To illustrate the type of accuracy obtainable in the code SET02, and also to check the code itself, some problems from Ref 9 were run, and the comparison is presented in Table I.

The mesh used consists of 54 points distributed as follows (measured in the angle φ):

- 1/2 degree intervals to 10 degrees
- 1 degree intervals to 16 degrees
- 2 degree intervals to 24 degrees
- 4 degree intervals to 72 degrees
- 2 degree intervals to 84 degrees
- 1 degree intervals to 90 degrees

The stresses given are for both the hemisphere and the cylinder at the juncture ($\varphi = 0^\circ$) and are normalized, as is done by Watts and Lang, by dividing through by $D/2t$. By way of notation, a subscript o or i is used in the stresses to indicate the outside or the inside surfaces, respectively.

TABLE I - COMPARISON OF PROBLEM RESULTS

Hemisphere			Watts and Lang				SET02 Results			
D	T	t	$2t\sigma_{xo}$ DP	$2t\sigma_{xi}$ DP	$2t\sigma_{yo}$ DP	$2t\sigma_{yi}$ DP	$2t\sigma_{xo}$ DP	$2t\sigma_{xi}$ DP	$2t\sigma_{yo}$ DP	$2t\sigma_{yi}$ DP
32	.8	1.0	.6767	.5733	.8583	.8273	.6737	.5763	.8585	.8293
16	.8	1.0	.6772	.5728	.8582	.8268	.6822	.5678	.8569	.8226
20	1.0	1.0	.5007	.4993	.7496	.7492	.5048	.4952	.7477	.7449
16	1.6	1.0	.2359	.3891	.5619	.6079	.2388	.3862	.5587	.6029
Cylinder										
32	.8	1.0	.5331	.4669	.8152	.7954	.5318	.4682	.8159	.7968
16	.8	1.0	.5334	.4666	.8150	.7950	.5369	.4631	.8133	.7911
20	1.0	1.0	.5007	.4993	.7496	.7492	.5053	.4947	.7479	.7447
16	1.6	1.0	.3010	.6960	.5824	.7000	.3121	.6879	.5807	.6934

OPERATING INSTRUCTIONS

Either program may be operated from cards, a program tape, or a service tape.

- 1) Ready program in one of the given forms.
- 2) Ready a tape on logical 5 for output.
- 3) Ready all problems in reader (a blank card must follow each problem).
- 4) All sense switches on console must be up.
- 5) Press CLEAR on the console and load the program.

There is only one stop in the code at 110 octal; the on-line comment will instruct the operator.

The output tape which must be printed on program control is not rewound nor is an end-of-file written on it at any time by the program.

Code Restrictions

- 1) Number of intervals in ellipse: $5 \leq n \leq 500$
- 2) Number of regions in ellipse ≤ 10
- 3) Number of regions in cylinder ≤ 10

Machine Requirements

Core Size	32768 words
Tapes	2
Drums	none
Punch	none
On-Line Printer	with SHARE 2 or GL OUT2 Board
Off-Line Printer	yes

SAMPLE PROBLEM

SET02 PAGE 1

INPUT PARAMETERS

POISONS RATIO (MU)	=	.30000000
INTERVALS IN ELLIPSE	=	20
BETA	=	2.00000000
HEAD THICKNESS	=	1.00000000
POINTS IN CYLINDER	=	20
CYLINDER DIAMETER	=	1.00000000
CYLINDER THICKNESS	=	2.00000000

ALPHA = 54.7682767 ***** GAMMA = -309.553988

SAMPLE PROBLEM

SET02 PAGE 2

ELLIPSE

DIMENSIONLESS STRESS TO PRESSURE RATIO

AXIAL

CIRCUMFERENTIAL

OUTER SURFACE	INNER SURFACE	ANGLE IN DEGREES	OUTER SURFACE	INNER SURFACE
54.1114159	45.8949080	87.0000	54.0864067	45.8694296
54.0725322	45.8572040	84.0000	53.9709287	45.7547526
53.8827205	45.6597476	77.0000	53.3903599	45.1757050
53.5512009	45.2859087	70.0000	52.3325019	44.1055303
53.0528688	44.6960726	63.0000	50.6935630	42.4346385
52.3551993	43.8182740	56.0000	48.3020258	39.9747410
51.4050722	42.5434599	49.0000	44.8753471	36.4183884
50.0963483	40.7320704	42.0000	39.9397411	31.2731352
48.1519513	38.3008847	35.0000	32.6745563	23.7858272
44.7357025	35.6063566	28.0000	21.6529596	12.9932983
37.4458199	34.6252193	21.0000	4.7261970	-1.4969602
19.9464619	42.1763496	14.0000	-18.8460364	-15.3895397
8.5491543	49.6124163	11.0000	-28.3077750	-17.5239973
-0.2789533	55.1768484	8.0000	-32.7950678	-16.0352845
0.2174754	52.3725376	5.0000	-27.6660759	-10.9610527
22.9243615	28.0881922	2.0000	-9.7108350	-7.4557920
29.5588732	21.2105889	1.5000	-5.5297040	-7.5044747
37.0210795	13.5011666	1.0000	-1.0615098	-7.7722428
45.5236349	4.7432911	0.5000	3.6217575	-8.4423032
54.5388622	-4.5388911	0.0000	8.3941602	-9.3291816

* * * * *

SAMPLE PROBLEM

SET02 PAGE .3

CYLINDER

DIMENSIONLESS STRESS TO PRESSURE RATIO

2

CIRCUMFERENTIAL

*	OUTER SURFACE	INNER SURFACE	*	DISTANCE FROM JUNCTION	*	OUTER SURFACE	INNER SURFACE	*
*	20.0231147	4.9753853	*	0.0000	*	-2.0925989	-6.6064677	*
*	29.7537673	-4.7537673	*	2.4441	*	10.7235695	3713092	*
*	32.4572954	-7.4572954	*	4.8881	*	19.6192107	7.6448337	*
*	31.0221460	-6.0221460	*	7.3322	*	25.1407256	14.0274382	*
*	27.5859871	-2.5859871	*	9.7762	*	28.0560937	19.0145018	*
*	23.5777397	1.4222602	*	12.2203	*	29.1846704	22.5380268	*
*	19.3421996	5.1573003	*	14.6643	*	29.1730705	24.7727509	*
*	16.7907372	8.2092628	*	17.1084	*	28.5721545	25.9977126	*
*	14.5441810	10.4553193	*	19.5524	*	27.7338719	26.5073633	*
*	13.0509418	11.2490582	*	21.9955	*	26.8924890	26.5619240	*
*	12.1748828	12.5251172	*	24.4405	*	26.1707525	26.3658328	*
*	11.8543919	13.2456081	*	26.8846	*	25.5169295	26.0642943	*
*	11.5375672	13.3624323	*	29.3286	*	25.2325130	25.7499774	*
*	11.5995883	13.2004117	*	31.7727	*	24.9939146	25.4741616	*
*	11.3480793	13.1519207	*	34.2167	*	24.8675001	25.2586524	*
*	12.0212917	12.5787083	*	36.6608	*	24.8191638	25.1063886	*
*	12.4827183	12.3172817	*	39.1043	*	24.8194499	25.0093186	*
*	12.43145832	12.5854163	*	41.5489	*	24.8456342	24.9568841	*
*	12.41116648	12.5883352	*	43.9920	*	24.8818598	24.9348607	*
*	12.4761928	12.5238072	*	46.4370	*	24.9182191	24.9325032	*
*	12.5140501	12.4852453	*	48.8810	*	24.9494076	24.9409776	*

END OF PROBLEM

SAMPLE PROBLEM

SET03 PAGE 1

INPUT PARAMETERS

POISONS RATIO (MU) = .30000000
INTERVALS IN ELLIPSE = 20
BETA = 2.00000000
HEAD THICKNESS = 1.00000000
POINTS IN CYLINDER = 20
CYLINDER DIAMETER = 100.00000000
CYLINDER THICKNESS = 2.00000000

ESTIMATE FOR LARGEST EIGENVALUE = 463.7543869

FORMULA ESTIMATE FOR SMALLEST EIGENVALUE = .2253570

ITERATION FORMULA ESTIMATE FOR SMALLEST EIGENVALUE = 2.8457146

FIRST OF 3 VECTORS COMPUTED. N = 30

SECOND OF 3 VECTORS COMPUTED.

LAST OF 3 VECTORS COMPUTED.

ALPHA = 53.0912409 GAMMA = -784.9936295

SAMPLE PROBLEM

SET03 PAGE 2

**ELLIPSE
DIMENSIONLESS STRESS TO PRESSURE RATIO**

AXIAL			CIRCUMFERENTIAL		
OUTER SURFACE	INNER SURFACE	ANGLE IN DEGREES	OUTER SURFACE	INNER SURFACE	
54.2201042	45.7857595	87.0000	54.1951127	45.7602572	
54.1811323	45.748375	84.0000	54.0795808	45.6456285	
53.9910164	45.5509834	77.0000	53.4988065	45.0668159	
53.6591511	45.1775112	70.0000	52.4406872	43.9970331	
53.1603737	44.5881891	63.0000	50.8014379	42.3267837	
52.4622550	43.7109914	56.0000	48.4096127	39.8678570	
51.5119863	42.4366088	49.0000	44.9828472	36.3128738	
50.2042837	40.6247145	42.0000	40.0477800	31.1693649	
48.2642779	38.1906258	35.0000	32.7842464	23.6833189	
44.8599262	35.4846442	28.0000	21.7644043	12.8877215	
37.5903072	34.4827690	21.0000	4.8307996	-1.6191917	
20.0728560	42.0457768	14.0000	-18.8026834	-15.5531468	
8.6059723	49.5459423	11.0000	-28.3310194	-17.6981502	
-3715415	55.2555611	8.0000	-32.9003062	-16.1763732	
-1345537	52.7107263	5.0000	-27.8446231	-10.9829072	
22.2283425	28.7779660	2.0000	-9.8747373	-7.2179494	
28.9032207	21.9613428	1.5000	-5.6597528	-7.1919335	
36.2067304	14.3125991	1.0000	-1.1678276	-7.3961839	
44.6533804	5.6120718	.5000	3.5490099	-8.0015255	
53.6153455	-3.6155736	.0000	8.3948201	-8.7744111	

SAMPLE PROBLEM

SET03 PAGE 3

* * * * * CYLINDER
* * * * * DIMENSIONLESS STRESS TO PRESSURE RATIO * * * * *

AXIAL			CIRCUMFERENTIAL		
OUTER SURFACE	INNER SURFACE	DISTANCE FROM JUNCTION	OUTER SURFACE	INNER SURFACE	
19.7927527	5.2072473	* 0000	-1.9121090	-6.2877606	*
29.4914567	-4.4914567	* 2.4441	10.7896245	5947506	*
32.2157612	-7.2157612	* 4.8831	19.6146927	7.7852361	*
30.8265195	-5.8265195	* 7.3322	25.0992086	14.1032974	*
27.4430573	-2.4430574	* 9.7762	28.0108244	19.0449903	*
23.4835310	1.5164689	* 12.2203	29.1300333	22.5399148	*
19.7875657	5.2124342	* 14.6643	29.1316481	24.7591090	*
16.7650931	8.2349069	* 17.1084	28.5368080	25.9777522	*
14.5377001	10.4622999	* 19.5524	27.7095304	26.4869103	*
13.0556185	11.9443815	* 21.9965	26.8775277	26.5441570	*
12.1348377	12.8151623	* 24.4405	26.1629629	26.3520603	*
11.7657274	13.2342726	* 26.8646	25.6140754	26.0546385	*
11.6480048	13.3519952	* 29.3286	25.2327132	25.7439103	*
11.7080420	13.2919580	* 31.7727	24.9957080	25.4798834	*
11.8542558	13.1457442	* 34.2167	24.8698885	25.2573349	*
12.0253627	12.9746373	* 36.6608	24.8215251	25.1063070	*
12.1850792	12.8149208	* 39.1048	24.8214560	25.0104084	*
12.3156912	12.6843088	* 41.5459	24.8471515	24.9577467	*
12.4119449	12.5580551	* 42.9929	24.8829117	24.9357448	*
12.4759908	12.5240092	* 46.4370	24.9188657	24.9332709	*
12.5136200	12.4853800	* 48.8810	24.9497445	24.9415729	*

END OF PROBLEM

ACKNOWLEDGMENT

The authors are indebted to Mr. W. R. Burrows of the Standard Oil Company of Indiana and to Dr. G. D. Galletly of the Shell Development Company for their help during the course of this work.

REFERENCES

1. G. W. Watts and W. R. Burrows, "The Basic Elastic Theory of Vessel Heads under Internal Pressure," *J. Appl. Mechanics*, Vol 16 (1949), pp 55-73.
2. S. Timoshenko, Theory of Plates and Shells, (New York: McGraw Hill Book Co. Inc., 1940).
3. T. Pöschl, Berechnung von Behältern, (Berlin: Springer Verlag, 2nd ed., 1926).
4. T. Au, E. E. Goodman, and N. M. Newmark, "A Numerical Procedure for the Analysis of Pressure Vessel Heads," *Technical Report, Dept. of Civil Eng., Univ. of Illinois, Urbana Illinois*, (Feb. 15, 1951).
5. R. S. Varga, "Numerical Solution of the Two-Group Diffusion Equation in x-y Geometry," *IRE Trans. on Nuclear Sci.*, Vol NS-4 No. 2, (Dec. 1957).
6. D. W. Peaceman and H. H. Rachford, Jr., "The Numerical Solution of Parabolic and Elliptic Differential Equations," *J. Soc. Ind. Appl. Math.*, Vol 3 (1955), pp 28-41.
7. G. Shortley, "Use of Tschebyscheff Polynomial Operators in the Numerical Solution of Boundary-Value Problems," *J. of Appl. Physics*, Vol 24 (1953), pp 392-396.
8. D. Young, "On Richardson's Method for Solving Linear Systems with Positive Definite Matrices," *J. of Math. and Phys.*, Vol 32 (1953), pp 243-255.
9. G. W. Watts and H. A. Lang, "The Stresses in a Pressure Vessel with a Hemispherical Head," *Trans. ASME*, Vol 75 (1953), pp 83-89.