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A solution to the problem of stresses in a pressure vessel
with an ellipsoidal head has long been sought by pressure
vessel designers. To meet this need the codes described in
this report were written: The codes are based on a finite-
difference approximation to the Love-Weissner equations which
are the basis of the bending theory of thin shells.

THE SET CODES—IBM 704 CODES FOR THE
CALCULATION OF THE STRESSES IN A PRESSURE
VESSEL WITH AN ELLIPSOIDAL HEAD

G. G. Bilodeau, J. B. Callaghan, and H. Kraus

A means of determining the stresses in an ellipsoidal pressure vessel head has long been-
sought by pressure vessel designers. In the nuclear power plant industry, for example, the ellip-
soidal shell appears frequently as the head of a steam generator or as the bottom of a reactor

pressure vessel. In such applications there are discontinuity stresses set up because of the differ-

"ence in the expansion experienced by the ellipsoidal shell and the cylindrical shell to which it is

attached when the entire assembly is loaded by internal pressure. At present there is no method
available for the determination of these. stresses, and designers have been forced {o make overly

conservative assumptions to overcome this deficiency.

The basic differential equations of the problem have been available for many years, although
their complexity has not permitted a convenient analytical solution. It was believed, however, that
a high-speed electronic computing machine would be ideally suited for the solution of these equations.
Hence, the VIBM 704 codes described in this report were written.’

THEORY

The configuration which will be considered in this discussion consists of an ellipsoid of revolu-
tion mounted on a long cylinder, as shown in Fig. 1.* The method of analysis generally applied to ’
this type of shell is referred to as the bending theory of thin shells. A shell is considered thin when
its diameter is more than ten times its thickness. This assumption allows _analytical solutions to
be found for many'shells, although, for the ellipsoidal shell, analytical solutions have not been found
in spite of this assumption. An exact theory for treating thick shells is not available at the present

time.

* Notc that the middle surfaces of the head and cylinder must coincide.
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Fig. | Ellipsoidal Shell Mounted on a Cylmder
Showing Loads at Junction

The bending' theory of thin shells is very well described by Watts and Burrows (Ref 1) and by,
Timoshenko (Ref 2) The method presented in this report will draw largely upon the Watts and

Burrnws Paper.

The analysis of any shell of revolution begins with the consideration of the forces and moments
acting on a differential element of the shell as shown in Fig. 2. A summation of the forces and of
the moments then yields three equations of equilibrium for a differential element in a shell under

internal pressure:*

d [w o .. ' ' o ‘
de |:NXRZ sin 9] - Nle cos 8 + QxRZ sin® =0 , (1)
d . " . - .
EI:QXRZ sin e:l -,Nle sin O - NxRZ sin 6.= 'PRIRZ sin 6 , ‘ (2)
and
dQI:MR sm9:| MRlcose-QRR sin®=0 , : (3)
where

6 = angle between the axis of revolution and a perpendicular to the middle surface of the

shell at any point

*Reference 1

<«



= radius at any point of .a middle surface section cut by a plane through the axis of revolution

R, = distance measured along a normal to any point on.the middle surface, between the middle

surface and the axis of revolution
P = internal pressure acting in the shell
Nx = axial membrane force
Ny = circumferential membrane force
M

= axial bending moment
"M_ = circumferential bending moment

QX = shear force acting along a normal to the middle surface.

In Egs (1), (2), and (3) there are five unknown quantities which are Nx’ N, Mx’ My’ and Q*.
The first four quantities can be expressed in terms of the rotation and the deflection of the

differential element (Ref 1) as follows:

R
Nx=‘Jﬂ;i[K%%+W)+n<§L>m+ucm9q , (4)
R (1 - p2) 2 | '
R
N =_£_Z_ [“_<§—g.+w) +§-1- (w + u cot 9)] ’ (5)
Y R -w%) z *
3 R A
ET” |dW 1
M, = ——— —,+}L(—)Wcot9 , (6)
x m4R1 |:d9 R, }
and
3 R
ET" dw 1 ) : :
M = P_(——)'f-“‘—‘ W cot 6 ’ o (7)
y m4R1 l: de RZ :I ’ . :
where

T = thickness of the ellipsoidal shell

E = Young's modulus
p = Poisson's ratio
*oz0-4h

m
W = rotation of a tangent to the middle surface, lying in a plane through the axis of

revolution during deformation of the shell;

1
W = R, (u - dw/de)

"u = deformation of any point on the middle surface measured along a tangent to the
undeformed middle surface at the point and lying in a plane through the axis of revolution
w = deformation of any point on the middle. surface measured along a normal to the undeformed

middle surface at the point and lying in a plane through the axis of revolution

When the expressions (4), (5), (6), and (7) are substituted into Egs (1), (2), and (3), the
resulting expressions can be simplified to give the following differential equations (known as the

T.ove-Meissner equationg) relating the rotation and the shear:



L[V +RE;'V=-ETW+¢‘(9)4 , ®
1

and

Vm4- : . : :
LW -gEws=+—T . : 9)
1 ET :

In these equations, V = RZQx’ ® (0) is a function of load and shape, and L [ ] represents a
differential operator which is defined as follows:- :

2 R.,\ R 2 ’
L[...] =—% %‘)‘*il‘ a%»(——‘2)-1»—2—c<>te de..)_ ecot® (o)

Up to this point the type of shell has not been specified. From the equations which have been
presented it can be seen that, in order to make them apply to a particular shell, only a substitution
of the appropmate expressmns for the two radii of curvature R and R is needed. .

Thus, fnr the flliprnidal shell,

—

R, = 0.5 DBv> (11)
and

R,

Ao.s DBv , (12)

where D = the major axis of the ellipse‘and is also the diameter of the cylinder, B = ratio of the

major axis of the ellipse to the minor axis of the ellipse, and (LZ) =1+ (B'2 -1) sinze]
v
For the cylindrical shell,

j=3]
n
8

(13)
and .
R,=0.5D . ) (14)

After substitution of Eqs (11) and (12) into Eqs (4) through (10), the followmg equations (Ref 1)
are obtained for the ellipsoidal shell: :

5 -
J2ET” [ 1 dW | (15
Mx == > 36 i pWeoto ’ . (15)
m Db |v
2ET? [ aw '
My = L5 [vz AW 4+ W ol e:l , (16)
N, - ool @ + 0,35 PDS S (a7
2 7  ’
.2 4v p |26 -8
Ny = 55 go + 025 PD |:—5—-| , (18)
LLV] +av +o0. 5L W = PDB. (Bv? + 101 - v cot @, (9
‘ 4
L[w] -uw -—2—6”3'V=U » ’ (20)
: E

T
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and the differential operator for the ellipse appears as

2 .
VZL[.--] =4 .'é')+ |:(3 -sz) cot B] d((i—e)—- (._.’.)v4 cotze , (21)
deé . .

where 6§ = Bv and &' = Bv3

Equations (19) and (20) are the equations which have caused so much difficulty for analysts
seeking solutions to ellipsoidal shell problems. These equations must be solved for V and W which
are used to determing Mx’ My’ Nx’ and Ny' The latter qua.ntitiés are combined-by using the
following relations to obtain the stresses:

N, (>Mx
o=/ % (22)
x T TZ
and
N 6M
e a—t, (23)
: T

where o, = axial stress, Gy = circumferential stress, and the positive sign is used for stresses on

the outer surface of the shell and the negative sign is used for the inner surface.

A similar procedure is followed for the cylinder to which the ellipsoidal shell is attached.
However, the resulting expressions are far more simple than those presented previously for the
ellipsoidal shell, and the basic differential equations can be solved easily. To obtain the cylifl-
drical shell equations, expressions (13) and (14) are substituted into Eqs (4) through (10). The
equations (Ref 1) for the cylinder then appear as

3

_Et” aw
My =—3 & . (24)
My =pM_, (25)
Nx = 0,25 PD , : (26)
and 3 .
N 05DE—t4dW+o.5PD, (27)
Y m’ dx3 :
where t = thickness of the cylinder, and x = axial coordinate of the cylinder.
For the cylinder, the Love-Meissner equations reduce to
4
dWisa*w=0 . - (28)
ax - .
The solution of Eq (28) is given as
-ax . ax .
W=e (C1 sin ax + C2 cos ax) + e ~(C3 sin ax + C4 cos ax) , (29)

where C;, C,, C;, C, are arbitrary constants, and at = m4/D2t2 .

Equations (22) and (23) are utilized to obtain the stresses in thecylinder after calculation of the
moments and membrane forces from Eqs (24) through {27).

SOLUTION OF THE ELLIPSOIDAL SHELL EQUATIONS

Before proceeding to the.solution, it is convenient to change Eqs (19) and (20) shghtly by
multiplying each equation by sm 9/P and by rnultlplymg Eq (20) by E to give

w



Mg [T] - p(sin 8) T - g, (8)(sin 6) @ = G(6) ', B (30)

and . »
Mg [2] + p(sin 6) 2 + g,(6)(sin @) T'=0 , (31)
where
M, [2] = 'dle I:(sin o2 %} + (cot®0)(sin 8}V Z R

G(6) = - 1/8 D*B% (3v% + 1) (1 -v%) cos 0 ,
I'=T (8) =V(e)/P ,
Q =Q (6) = EW(8)/P ,
g,(0) = 1/2 DTB v = sl(e)/E ,
and
£5(0) = 1/2 I:m4DB/T3] v = s,(0) B
The self-adjoint form of the operator Me has been used for general thin shel}s by Poschl (Ref 3).

From Egs (29), (30), and (31), it is evident that there will be eight arbitrary constant to be
determined 1n the solution of the problem of an ellipsoidal shell mounted on a long eylinder, since
the solution of each.of the two parts involves four arbitrary constants. Thus, eight boundary
conditions are needed, which are as follows: At the top of the ellipsoidal shell (at 6 = 0°) the shear
and rotation are zero. Furthermore, the cylinder will be assumed to be semi-infinite in extent.
Inspection of Eq (29) will show that, to insure finite results at the remote end of such a cylinder
(x—~), the terms involving the positive exponential e®* must be dropped. This is done by setting
C3 and C4 each equal to zero. The remaining four boundary conditions are obtained from the
junction between the shell and the cylinder where continuity of axial moment, axial shear, deflec-

tion, and rotation must be maintained across the boundary.

Boundary Condilions

The boundary conditions can be summarized as follows:

For ithe Ellipse

T (0),2()=0at8=0 o (32)

For the Cylinder

All quantities must be finite as x—+ (33)

For the Junction

Equal Radial Maments:

3,2 _
2T de _ 3
D 5 _— =a=t a(C1 - C;) (34)
Equal Radial Deformation:
2 2.3 3 2 :
-1|,52 dI' D~ 2 _ . 2.1 |Dt7a D~
T l:z.B 36| . += (@2 -8B -u)i'—v-t. [—_4(C1+Cz)+ 1 (2-p)j| (35)
=n/2 . m
Equal Axial Shear Forces:
Da_ m D%(2 - p)}} . (36)
r = - a+ vt - —g—H
9=1’T/2 21'1'14 { DZaZ [ ’

o
“.



Equal Rotations:.

4 2
_ 1 m D*(2 - ) ] }
Q = - - vt - (37)
o=n/2  2ta { p%a® [ 4

For the junction equations, a and y are defined by Eqs (34) and (35) and are considered unknowns

until their values are determined toward the end of the problem. In Eqs (34) through (37) the left
side of each equation represents the quantity for the ellipse at 6 = w/2, and the right side of each
equation represents the corresponding quantity for the cylinder at x = 0.

As a result of the introduction of the quantities @ and v, the following expressions hold for the
arbitrary constants in the cylinder equations:

4 2
¢ 13{‘” 5 '}’t'D'('i-H“)}}
2t7a D"a
4 2
-1 m D7(2 ~ p)
C,= 2-da+—B (yt-

C3 C4 = 0 by condition (33).

DIFFERENCE EQUATIONS

An approximate solution for the ellipsoidal shell is obtained by using finite difference methods.
The method of finite differences has been used in previous work in shell theory—notably by Au,
Goodman, and Newmark (Ref.4). However, their work was primarily by hand computation; con-
sequently, the methods of solution mentioned in this report (as well as the difference equations) are
different.
Difference equations corresponding to the differential equations of the ellipsoidal shell [ Eqs
(30) and (31)] are derived according to a method introduced by Varga (Ref 5). The bou_ndarAy condi-
tions [ Eq (32)] are needed for this derivation as well as two of the set of Eqs (34) through (37). The
two chosen are Eqgs (34) and (35). This introduces two unknowns, @ and vy, which will be evaluated
at a later time in the code with the use of the two remaining Eqs (36) and (37).
The interval 0 < 6 = w/2 is divided into N subintervals (not necessarily equal) where
h, =6, -0,
i 1 i-1
and o
-9 <9 “e..<8_-
0 Go 2 91 . N w/2 .

By way of notation, let
F(e) =T ,«(6)) =2 , etc.

Case I: 8p an Interior Point

This situation (6n an interior point) occurs when n # N, (There is no eqﬁation corresponding

ton =0.) Then, at this point, the difference equation corresponding to the first differential

Eq (30) is
a_ +a a +a a. +a
n n-1 n n-1 n+l " n
- (—_—h ) 1"n._l +.( — + 5 - + (hn+1 + hn) erI"n

n n n+l

an+l M an
T Fop ~w(sin® )b, +h)) T



- g (8 )(sin e ), +h )@ =(h , +h) G . (38)

+1
where
a(e) = (sin 0)v™2
and v
- b(e) = (cotze)(sin e)vz ;
thus -
ate,) =a,
and

b(en) = bn

The corresponding equé.tion for (31) is

a_+a a_+a a +a
n n-1 n n-1 n+l n
-\ + | — +——— + ¢ +h )b | Q
( hn > n-1 hn h11+| n+l n’ “n n
*n+1 * 3y S R
"\ n+1 )nnﬂ *h(sin 8)) 9, + g, (6)sin 6 )b, +h) T, =0 . (39)

As a special case of the equations, if n = 1, then the boundary conditions [ Eq (32)], ‘as well as

the definition of a(0), lead to . .
a, a, + a, ' a, ¥ a ’ '
'-H_l‘+h—2— +(h2 +‘h1)b1 I‘l - —-h—z— I'Z - p (sin 91)(hZ +h1) F]

- gl(Gl)(sin 91)(1’12 +hl) Ql = (hZ +h1) Gl N (40)
and a similar expression for Q(e), T () fr'om‘Eq' (39).

Case II: n= N

In this case, On = BN = v/2, -and use is made of Egs (34) and {35) to obtain

o, bl N ‘ da ".f:a
N N-1 N N=1
‘-<——A Ry ) nya * <_E_ + bNhN> PN - hN I‘N

N
. TaN DZ.aN N >

- g (00 hyg@y = hyGre + 7z TR (2 - 8% - (41)

and - )

Ugg Qg Uie | Ui
N N-1 < N N-1
(——=)a +{ —=—== + by

( n_ > N-1 By NhN> Qg + 1Ry

+gy(8,) by T = ay (8% Da . (42)

Thus, the unknowns which occur in these equations are

N N
1 T Q. , @, and v .
{ 1}i=l ' { 1} .=1



The difference equations just derived can be written in matrix notation as follows:

Ar-Dlr-D2§=7§'+6

AG+DF+eD, Faak
where
A = NxN matrix corresponding to the operator Me occurring in Eqs (30) and (31)
Dl' = NxN diagonal matrix with positive diagonal elements whose nth element (along the
. - . - . th .
major diagonal n # N) is p(sin en)(hnﬂ + hn)' The N7 element is th.
D, = NxN diagonal matrix with positive diagonal elements whose nth element (along the
. . . - th .
major diagonal n # N) is (sin en)gl(en)(hnJrl +h ). The N element is gl(eN)hN'
e = gz(e)/gl(e) is a positive constant.
Q = Nx1 matrix whose n"'h component (n # N) is Gn(hn+1 + hn). The Nth componenf is
D2 an 2
h Gy -—=—(2 -8 -p).
NN 432 .
5 = Nx1 matrix, all of whose components are zero except the Nth one. This one is
T ayn
5
B
- . th - . .
R = Nx1 matrix, all of whose components are zero except the N~ one. This one is
a (1897 D .
a,v = previously defined scalars (unknown quantities at this point).
> > :
I',Q = unknown Nx1 vectors whose components are, respectively,
N N
Pi and 2
i=1 i=1

GENERAL METHODS OF SOLUTION

From the second equation of (43),

'[E: -ofa + D)7 D%F+0(A+n IR
thus, ‘
) _1 — _ — _1—> —

I:A-Dl +eD2 (A+Dl). DZ}I‘-yPHzDZ (A +D1) R+Q ,
which will be written as
. o Tl=yP+aS+Q
with

_ ) - -1 _ P -1
T‘[ATD1+6U2(A+D1)'D_2j|’andS'Dz(A+D1) R .
The matrix Eq (45) may also be changed into another useful form by premultiplying by

P -1 N
(A + Dl)DZ- .
Then, Eq (45) becomes

T'T=yP +ad +Q ',

(43)

(44)

(45)

(46)

(47)



where
T = I:(A + DI)D?:I (A =D +e Dz-:l (48)

and

—»_ -1 =
P! —(A+D1)DZ P

§ =(a+D)D;' 5=R , (49)

—"— _1 —
Q -(A+D1)D,2 Q .

-

There are two distinct SET codes, SET02 and SET03. Up to this point, no distinction has been
made between these codes. '

The difference in th¢ two occurs in the methods used to solve the system (45) or (47) and is a
result of the nature of the matrices T and T'.

Method {A): The SETO02 Code

This method is based on Eq (47) with T' as defined in Eq (48), Three vectors must be found—

TE L, (m!'S, and (T @

(T")
so that the system T' X = K must be solved for x for three different values of k. Following a sug-
gestion of G. Birkhoff, a direct method is used to solve the system T' X = K for ;c’, in contrast to an
iterative methdd (about which more will be said later). A direct method seems particularly well
suited to the matrix T' since "'most" of the elements of T' are zero. A is tri-diagonal; thus, the
same is true of (A + Dl)DEl and of A - D, so that the product (A + Dl)D;l (A - D,) is a matrix
whose only nonzero elements are on its main diagonal or on one of its nearest four parallel (to the

main diagonal) diagohals. The same is consequently true also of

- -1
T' = [‘A+DI)DZ (A-Dl)+eDZ:’
Thus, T' = (ti J.), with ti j = 0 if j#i-2, i-1, i, i+1, 142 and i=3, ..., N-2. A similar fact holds for
i=1, 2, N-1, and N, ‘
The system T'X = K is now solved {for x) by a method of elimination defined as follows:

1) The matrix T'is transformed into the matrix U defined by U = (ui- J.), where
3 1 , j

ui.j=ti,j i=1,2

. u, Lt
w . =t, . - _icl.gi.i-2
Bl bl Yi-1,i-2

for i 3and j=i-1; 1, 141, 1+2.

'
2) The U is transformed into U' = (ui J.) with

'
u, .= u, . for i=N-1, N
i, ] i, : !

1
N Lo T e 5.

. 1
bl Yitl,i+2

for i £ N-2 and j = i-1, i, i+l.

10



-

. N . —_
3) The vector _k’, with components {ki} , is first transformed into the vector £, with
i=1

N
components { li} , where

i=1
k. i=1,2
1
1. = .
1 t, . S
‘ ki-u_l'lizi_l,iz3,
i-1,1i-2 '
- ‘ - N
and then /£ is transformed into the vector m, with components m; ,
i=1
with
A i=N-1,N
m, = u, .
ol - Eyl'ﬁ-z— m, ,isN-2 .
i+l, i+2

The result of these steps is the reduction of the original system T' X =k into the system

-

U'x=m » ‘ (50)
where U' is now a tri-diagonal matrix. Thus, the system can now be solved for X by the method

which will be mentioned later in connection with the SETO03 code..

Method (B): The SETO03 Code

This method is based on Eq (45). It is clear that the vectors

-1 >

1B S , and 'I‘-1 6

T "p, T

—
must be known to solve for I'. After these vectors are obtained, the relation

RS B 1 -1
=T "P)+a(T S +(T Q)

—
yields each component of I" as a simple function of @, and y. Equation (44) can be utilized to
—
obtain Q.

The process just described is based on the assumption that the two matrices, A+D and T,
can be inverted. .By constructlon, Ais symmetrlc and pos1t1ve definite, so that the add1t10n of a

diagonal matrix D1 with positive d1agona1 elements results in a matrix A+D which is also positive

definite. In particular, (A+D )" ! exists. Moreover, by construction, A has nonzero elements
only along its main diagonal and the two diagonals parallel to and nearest the main diagonal. A is
said to be tri-diagonal. The same is true of (A+D ). Such a matrix leads té a system of equations
(A+D ) ¥ =k which can be solved for X by a 51mp1e recursion relation (see, for example, Ref 6,

p 34). Thus, effectlvely, (A+D )" of Eq (46) can be obtained in a fairly simple way.

On the other hand, T is symmetric because, with T* as the transpose of T,
‘ -1 * ' -1
* = -D : = - =
T [A' | *e DA + D)) Dz] A-D +eDy(A+D)) D, =T

since A, Dl’ and D2 are symmetric.

11



Moreover,

- -1 .

T-A+D1+eDZ(A+Dl) DZ ZD1 ‘ ‘ o
=e1/21:);‘12 [e-IIZDEIIZ (A +D, )D-I/Z 2 p / (A + D, )1 1/7_ <Ze-1/zD1D21]D;/z
RYCIRYE -1 -1/2 -1] 1/2
=e D, [M+M - 2e DIDZ.DZ:,

where ’ k

-1/2.

M=e / (A+D)D 1/2 - .

is symmetric and positive definite. Now if K=M + M'l, then K is symmetric and positive definite
and its eigenvalues are of the form ) + )\"l , Where )\ is an eigenvalue -of M. Thus, since \ >0, the

.

minimum of \ + )\'1 is 2 and, therefore, a lower bound for the eigenvalues of K is 2. Now,

(T% B =el/? {(K?. 3 - 2072w 03T ?)} :
where
y DI/Z-’ .
Alga_.'ll'.n, ‘
(K y, N Z(y. B2
and
RRLETt N e A T A

-1/2

where ¢ is the largest eigenvalue of e D, Dz'l. However, e I2 Dngl ( a diagonal matrix) has

elements Zp/mz (l,g-)vg B. The minium of \_/3 ié 1/83, so that (assuming B2 1):

(’l\
Thus,
2 -
(T Dzl [z- ‘*;"D] .
m (T)‘
Now,
1/2 _ m?
N TZ .
and -

e y) (D ?,- ¥)z & X

where n is a lower bound for the elgenvalues ot D2 Now DZ is a diagonal matrix with elements )

i

—Z-(Sin en) DTR vn (h 4 - by

except for the Nth

element ‘which 1sl—DTB v Since

N N
Slnel-"—‘61=9l -<60=h1 »

it can be assumed, in general*, that n can be chosen as DTS h% . i

*This is not precisely so in all cases. We will, however, make this assumption.

12



‘Thus,

(T, %) 2 2Bn} [mz(% - zpsz] (x, X) .
Clearly then, T is positive definite when

A = mz(% -2ut >0 (51)
or

2\1/2
1< g2 <\/3—<———Al — > 0 -
v

This is not a severe restriction. For example, for.p = 0.3, this states that

1= 8% < V30 (%)

and%is usually 2 10, Moreover, if a is the smallest eigenvalue of T, then it can be said that,

from Eq (51},
az2pn’ N . . (52)

It is not clear what happens for values of f other than those satisfying Eq (51). Although‘the
code SETO3 is not internally restricted to these values of B, it will nevertheless be assumed for
the following theory that B8 does satisfy Eq (51).

The method used in SETO03 to solve the system TX =K is an iterative method in contrast to the
direot method used in SET02. The primary advantage of this iterative method is its inherent sta-
bility with respect to round-off errors. Its primary disadvantage {(a major one) is the time neces-

sary to complete a problem in contrast to a direct method. This will be discussed in detail later.

The method to be used depends strongly on the fact that T is positive definite. Let

b = largest eigenvalue of T

and .
a = smallest eigenvalue of T (as before).

2
I:I'a+b T:l(

is formed which now has eigenvalues in the region - 1 < : T E =\ = Zﬁ < 1. With this new

matrix, polynomial operators are used with Chebyshev polynomials in the manner introduced by

Then, the new matrix

Shortley (Ref 7), which leads to the following iterative scheme. Let

Sy = x0 = initial guess,

- . 2 - 2 -
ul_[l'a+bT] Utz xb Ko

and

. 4d T (d)

—_ _ 2 — - R n-1 —

Tn(d) nn =2d Tn-l(d) .[I “a+b le u.n-l - T.n-z(d) u.n—Z + a+hb k
forn=2,3, ... . Now,
_a+thb
d= b -a >1

and



with
T (d)=2d T__,(d) - T __,(d) .

> 2 ) it af s -
forn=2,3, ... . Let|x]| = /in where {xi} is the 'sét of components of the vector x. Also
i
let '

- -
X =-1u .

—-
€ =
n n .

Then it can be shown that*

- T -1 A |
I50= [m@] IS D ~

so that if T (d) 50, then—u>N will be less than 1% from the answer, provided the initial vector
3)0 =Xy is w1thm 50% of the answer. _ £

This code makes use of the result of SET02 as the initial vector—u)o. An estimate of the largest

eigenvalue of T is obtained from the recursion relation

—
Tx =S
nl n )
)\n = (S ’ l)/(x -1’ xn_ o (53)
4% —_ ’ - »
xn_ n )‘n

forn=1,2,3,.,. M. (M is setat 50.) The symbol (x, y} indicates the inner product of x and y

and is defined as
S 7
T

where{x. » {y; are, respectively,. the sets of components of X and _y> The number used for

i i .
b, bl’ is then set at (1° l)xM. It is important that this number be greater than or equal to b. An
estimate, a, of the number a (sr.nalle.st eigenvalue of 'T) is obtained from the Eqs (53) by using the
matrix T - bII instead of T. The number obtained at the end of M iterations, call it )‘i\/I’ gives

rise to the estimate

w1
a = thy -
This value is used unless it is smaller than the estimate of Eq (52), in which case this latter value
is-used. Unlike the estimate for the largest eigenvalue, which had to be larger than the actual
value, no such restriction exists for the estimate ag.
CALCULATION OF TIIE STRESSES

From Egs (15) through (18), the equatidns, for the resultant stresses and stress couples for the
ellipsoidal shell can be found in terms of I'(6) and 2(0) in the following equations. It should be
mentioned that only normalized resultant stresses and stress couples are obtained, namely Nx/ P, L

Ny/ P, Mx/P' and My/P. This will lead to the normalized stresses o-x/P and cy/P.

N
(%)n ua (cot 6 ) T +}; Ds_ (54)
2 2
N 26% - B
2 dr’ 1 n
<—1¥> Do ( )n I (55)

* See, for example, a similar analysis by D. Young in Ref 8.
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M : 3T
(= —2T (L [(d2) 4 (ot ) (56)
P 4 2\ de n’ 'n
n m D§ Vo ./n .

M 3T
<_1_,L> - 2T _»*_,__<;_‘g) +a_ (cot o) | (57)
n’ m D6_rl Vo /n ’ ’ .

where the subscript n indicates, as before, the evaluation of the functionat 6 = 6 .

The functions (dﬂ ) and <£> are evaluated from the following formulas:
n n

. deé a6
Forn# N,
\ :
\ -
o ae | _ by hh "By han :
4 )n W2 +nn ml TR Tt aen
n+l nn+l ’ n n n+l
Forn=N,
(dﬂ) =.2hN+hN-1 o _hN+hN-IQ . hy o
de 2 N h.;h N-1 2 N-2 .
N hN +hNhN-l ) N'N-1 hN-l +hN N-1
o . dr
Similar expressions are used for a0 .
n
THe stresses are now obtained by using the formulas of Eqs (22) and (23):
For the cylinder, the following relations hold: .
My at® ax '
Px ==z e [Cl (cos ax - sin ax) - C, (cos ax + sin a.x)] ,
M M
oAkl
N Dt3a3 -ax | D
—-PL=—Te [Cl (cos ax + sin ax) + C, (cos ax - sin ax)] +5
m
and
X . D
P T4
where
- : . ' : 4 - 2 -
C = e+ z[‘Yt'D(i-M
- 2tTa D a J
\b\ and
4 2T
-1 m ‘D7(2 - p)
€273 ""zz[”t‘ —3 .

2t7a D a J

The stresses in the cylinder can then be obtained from the formulas of Egs (22) and (23), with
T now replaced by t. ' 4

The cylinder has been assumed inﬁnitely.long in the previous equations. Since the discontin-
uity stresses caused by the juncture reach steady values in one period of the trigonometric functions
shown previously, the stresses will only be calculated for a distance from the juncture corresponding

to one period. This distance is calculated from aL = 2w. Since a has been shown to depend on the

15



dimensions and material of the cylinder, the length L is different for each problem, L will be
determined for each problem, and the axial and radial stresses on the inner and outer surfaces of
the cylinder will be calculated for any specified number of points, not necessarily equally spaced

along its length.
INPUT PREPARATION

The input for the two codes is the same except for the code designation. A sample input is
shown in the Appendix. The input is as follows: '

TITLE Card: Columns 1-67 are available for problem identification. Columns 68-72 must
contain either SET02 or SET03, where the next to last character is a zero.

Card 1001: This card contains Poissons' ratio.

Card 2001: This card is used to specify the following: ;
1) The number of intervals, an integer, into which the ellipse is divided by the
mesh: 5=<n =< 500.

2) B, the ratio of the major diameter to the minor diameter for the ellipse.
3) D, the cylinder diameter.
" 4) T, the ellipse thickness,

Card 3001: -‘This cafd is used to define the mesh in the ellipse by pairs of numbers. The
first number of each pair, an integer, indicates the number of intervals ina
given region. The second number of each pair indicates the angle, in degrees.
at which the region terminates. Each region is assumed to start at the angle
where the last region terminated; thé first region is assumed to start at zero.
The angle used for input is that formed by the major axis of the ellipse and a
line through the center of the ellipse intersecting the shell. Thus, this angle is
not the angle 6 used in the difference equations. Infact, if @is the angle used in
the input, then @and 6 are connected by the relation

(= arc tan [LZ cot 0 | .
B

Thus, for example,. @=0and 8 = n/2 are corresponding angles. ‘'l'here can be a
maximum of ten regions in the ellipse, and the last one must terminate with an
angle of 90 degrees. The sum of the intervals on this card must equal the number

of intervals specified on card 2001.

Card 4001: This card contains two quantities: the number"' of intervals (an integer) to be used

in the cylinder in the first period of behavior, and the cylinder thickness.

Card 5001: This card is used to define the mesh in the cylinder by pairs of numbers ina
manner similar to that used in the ellipse. The first number of each pair, an
integer, gives the number of intervals in a region. The second number of each s
pair indicat'es the fraction of the first period of behavior to which the region
extends. As in the ellipse, each region is assumed to start where the previous
region terminated, the first fegion starting at zero. There can be a maximum of
" ten regions, the last of ‘which must have a termination fraction of 1. 0. - The sum

of the intervals must equal the number of intervals specified on card 4001,

All of the card numbers, ‘as well as those quantities designated as integers, must not contain
a decimal point. "All other input quantities must have'a decimal point somewhere in the number.

For example, the value .00125 can be written as . 00125, .125E-2, or 1.25E-3.
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Values oh each card, other than the title card, must start in column.]l and must be separated
by .commas. The last number .on a card must not be followed by a comma. The first blank column
on any card other than the title card indicates the end of data on that card.

OUTPUT DESCRIPTION

A sample output is shown in Appendix I. The output tape must be printed on the 717 tape-to-
printer under program control. Each page of output contains the problem identification, the code

designation, and the page number.

On page one, all of the input data except mesh description is printed along with @ and y. Page
one will also contain the estimate for the upper bound of the eigenvalues and the number of terms

of the recursion formula needed for éonvergence for each of the three vectors.

On page two, the normalized stress values for the ellipse begin.. The axial and circumferential
components on the outer and inner surfaces are tabulated as functions of angle, as specified by the

input, from the top of the ellipse down to the juncture.

The dyiinder stresses are tabulated in much the same manner except that they are a function of

distance from the juncture rather than angle.
CONCLUSIONS

The two codes have certain characteristics which are very useful in obtaining results which
can be regarded as reasonably accurate. In the first place, a typical problem is run on the SETO02
code much faster than on the SET03 code. On the other hand, the SET02 code is subject to round-
off errors when the mesh is' sufficiently refined, while the method used in the SETO03 code is inher-
ently ''stable' in the sense that an error introduced at the mth step will decrease to zero as the
number of iterations is increased. This fact is particularly useful when a mesh is being determined
for a certain probiem or a class of problems to be run on SET02, On the one hand, the fn‘eéh should
be fine enough to insure a reasonable approximation to the solution of the differential equation; on
the other hand, it should not introduce so many points that round-off will play a significant role in
the results.

Care should be exercised in choosing a mesh because of the transformation of the independent
variable in the code—namely, the change from ¢ to 6. If h; is the mesh in the angle gand hi is the
mesh in the angle 6, then,

h! B =h,
t 1+(B4-1)sin2<p i
where
Pi=P =i,
with

' ’ . : _ e _ 1 )
0, -8, 1=h; » 9,y -9;=h; , and g, = arc tanl:B—Zcot 91} .

Thus, at the top, ¢ = 90° and 0 = 0° so that
1
. h, =2 — h!
: > h!,
1 B 1
and at the juncture, 8 = 90° and ¢ = 0° ,
~ 2 [] N
hi - B hi ’

all of which means that the mesh the code is using may be very much finer or coarser than the user

might have intended. It has been the experience of the authors that the mesh in the neighborhood of
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the juncture should be finer than that at the top of the ellipsoid. The two codes have also been used
to check each other's results for giveh problems. This was necessary inasmuch as analytic results
were not available for any but hemispherical heads. Hemispherical 'he'ads correspond to 8 = 1, and
some results for this type of shell are available from Watts and Lang (Ref 9). To illustrate th¢ type
of accuracy obtainable in the code SETO02, and also to check the code itself, some problems from
Ref 9 were run, and the comparison is presented in Table I. ' ' -

The mesh used consists of 54 points distributed as follows (measured in the angle ¢):

1/2 degree intervals to 10 degrees
1 degree intervals to 16 degrees
2 degree intervals to 24 degrees
4 degree intervals to 72 degr.'ees
2 degree intervals to 84 degrees
1 degree intervals to 90 degrees

The stresses given are for both the hemisphere and the cylinder at the juncture (¢ = Q°) and are
normalized, as is done by Watts and Lang, by dividing through by D/2t. By way of notation, a sub-

script o or i is used in the stresses to indicate the outside or the inside surfaces, respectively.

TABLE I - COMPARISON OF PROBLEM RESULTS

Hemisphere Watts and Lang - SET02 Results
2to 2to_ . 2to 2to_ . 2to 2to .. 2to 2to_ .
o ) : X0 xi yo L yi X0 Xi yo i
D T t DP DP DP DP __DP . DP - DP 5%
32 .8 1.0 ' . 6767 .5733 . 8583 . 8273 . 6737 . 5763 .8585 ..8293
16" .8 1.0 .6772° .5728 . 8582 . 8268 . 6822 . 5678 . 8569 . 8226
- 20 1.0 1.0 . 5007 . 4993 . 7496 . 7492 . . 5048 . 4952 . 7477 . 7449
16 1.6 1.0 - ..2359 . 3891 . 5619 . 6079 . 2388 . 3862 . 5587 . 6029
Cylinder
32 .8 1.0 . 5331 . 4669 .8152 . 7954 . 5318 . 4682 . 8159 . 7968
16 .8 1.0 . 5334 . 4666 . 8150 . 7950 . 5369 . 4631 .8133 + 7911
20 1.0 1.0 . 5007 ,4993 + 74196 s 7402 . 5053 . 4947 . 7479 L T447
16 1.6 1.0 » 3010 6960 . 5824 VIV Il . bBTY . 5807 . 6934

OPERATING- - INSTRUCTIONS
Either program may be operated from cards, a program tape, or a service tape.

1) Ready program in one of the given forms.

2) Ready a tape on logical 5 for output.

3) Ready all problems in reader (a blank card must follow each problem).
4) All sense switchés on console must be up.

5) Press CLEAR on the ¢onsole and load the program.

There is only one stop in the code at 110 octal; the on-line comment will instruct the operator.
The output tape which must be printed on program control is not rewound nor is an end-of -file
written on it at any time by the program.

Code Restrictions

1) Number of intervals in ellipse: 5 < n < 500
2) Number of regions in ellipse < 10 '

3) Number of regions in cylinder < 10

18
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Machine Requirements

Core Size

Tapes

Drums

Punch

On-Line Printer
Off-Line Printer

32768 words

2

none

none

with SHARE 2 or GL OUT2 Board
yes
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SAMPLE PROBLE SET02 PAS
INPUT PAAMETERS ' '

POISSONS RATIO (MU} = +3609€000

INTERYALS IN ELLIPSE = 20 -
BETA . = 240000C000

HEAD ~“HICKNESS z 1406097000

POINTS IN CYLINDER = 20

CYLINDER DIAMETER = 170.0009C000

CYLINBER THICKNESS = 2.0003C000

ALPHA = 54,7682747 osevsese GAMMA =-309.553£988

I XIANIJdV

NHTIOYHd ATdNVS
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SAMPLE PROBLEM

SETO02

LR SR IR DR SR SR B T L L N S L A N . R R B N R R B K AR R R N N B R N 3

*

*

*O0% ¥ R X R OX X XX R N OF O ¥ O X F X O 3 H# ¥ 3 % X OF K ¥ ¥ ¥ OE OF B X K F OB ¥ K X K XX H#

-AXTAL

ELLIPSE

DIMENSIOMNLESS STRESS TO PRESSURE RATIO

OUTER SURFACE

INNER SURFACE

5441114159
54407258322
£3,8827205
5345512009

530528688
5243551993
5144050722
5040963483
4841519513
4447357025
3744458199
1949464619

845491543
-02789533
02176754
2249243615
2945588732
3740210795
4545236349

5445388622

4548949080
4548572040
4546597476
4542859087
4446960726
47348182740

4245434599

4047320704

38430088647
3546063566
3446252193
4241763496
4946124153
5541763484
5243725376
2840881922
2142105889
1345011656
447432911

-445388911

#*

&

#

*

*

ANGLE
IN DEGREES

8740000
8440000
7742000
7043000
6342000
5642000
4940000
4240000
3540000
2340000
2140000
1440000
1140000
840000
5,0000
240000
145000
140000
45000

#0000

#*

e

rs

*

#*

CIRCUMFERENTIAL

OUTER SURFACE
5440864067
5309709287
5243903599
5243325019
5016935630
4843020258
4448753471
3949307411
3206745563
2106529596

447261970
~1848460364

-2843077750

-3217950678

~2746660759
2947108350
-545297040
2140515098

346217575

843941602

INNER SURFACE
4548694296
4507547526
4541757050
4441055303
4244346385
3009747610
3644183884
3142731352
2247858272
1249732883
~144969602

~15.3895397

~1745239973

-1640252845

-1049610527
—744557920
~745064747
-747722428
~844423032

~243291816

*

*

fi*l"*********#I{f#5****%**#***K—ﬁ*****.‘}*%%*#*l{-*****#*
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SAMPLE PROBLE" SET02 PASE .3

E IR B BE NN CHE R BN IR LR 2 N R NE R IR N N R B B R N R - R R R R B N S AR N I N BN JNE BRI

CYLINDER .
* DIMENSTONLESS STRESS TO PRESSURE RATIO *

L IR R B JEE S BE B BE BN K FE. B K B NS B S I N R I N R R R R R N RN R I I IR TR R B N )

» AXTAL * * CIRCUMFERENTTAL #
* #* #* #*
DISTANCE FROM :
*  OUTER SURFACE INNER SURFACE  # JUNCTIOH #  OUTER SURFACE NNER SURFACE  #
* - - w . T 7= T *
* 2043231147 449753852 # +0000 M 240925989 —546064677 *
» 2947537673 ~447537673 - 244641 x. 1047235655 43713062 »
* 3243572954 ~744572954 » 448881 # 1946192107  74544R337 .
» 3143221460 ~640221460 * 703322 # 2541407256 1440274382 #
» 2745859871 ~245853871 * 947762 # 29405560937 " 1940145018 #
* 2345777397 144222602 " 1242203 “ 2941846704 2245280268 #
* 1943421996 541573003 # 1646643 # 2941730705 2647727509 © *
* 1607907372 942092628 “ 1741084 # 2845721545 2509977126 .
% 1443461810 1044553199 » 1905524 # 2747238719 2645072632 #
» 1323509418 1142499582 - 2149955 » 2648924390 2645619240 “
" 1251748828 125251172 » 2404405 M 2641707525 2643658323 *
" 11, 7543919 1343456081 * 2648846 # 7545169295 2640642943 »
o 1113375672 13.2624322 * 2943286 # 2542325130 25076499774 “
» 1113995883 1242004117 # 3147727 w 2449939146 2506741616 »
" 1153480793 131510207 * 3442167 # 26448675001 2542586524 .
* 122212917 1245737053 » 3645608 * 2448191638 2541063585 “
[ 12412827183 1243172817 * 3941048 # 2448194599 . 2540093186 M
" 1247145832 1242854163 . 4145489 * 2045456342 2449568841 "
1241116648 1245883382 u 4349970 * 2448818598 " 2649348607 #
. 1244761928 . 1243238072 ® 4604270 * 2440182191 2409325032 *
. 1245140501 1244857463 * 4848810 * 2649494076  24.9409775, %
'*‘***’““*5*“*4.‘5**'1’*-"""1’5***?"**1“(‘"*%‘***%‘***’3"‘:("}‘.’:"****‘:"*

END OF FPROBLEM




INPUT PARAMETERS

POISSONS RATIO (MU) = « 30000000
INTERVALS IN ELLIPSE = 20

BETA = 2.00000000
HEAD THICKNESS = 1,00000009
POINTS IN CYLINDER = 20

CYLINDER DIAMETER = 10000050000
CYLINDER THICKNISS = 2,00000000

ESTIMATE FOR LARGEST EIGENVALUE = 46347543869 °

FORMULA "ESTIMATE FOR SMALLEST EISENVALUE
ITERATION FORMULA ESTIMATE FOR SMALLEST FIGENVALUE
FIRST OF 3 VECTORS COMPUTEDe N = 30
SECOND OF 3 VECTORS COMPUTZID.
LAST OF 3 VECTORS COMPUTEDs

ALPHA = 5340912409 seseee GAMMA =2-784499362%5

SAMPLE PRORLZM ' SETO3

2253570

248457146

PAGE

1
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SEMPLE PROBLEM

SETO3

X E R A E BB RRF R R REREEREE R REE N EEEE R E R RN EREREEREREREREE

*

*

ELLIPSE

DIMENSTONLESS STRESS TO PRESSURE RATIO

*

l’."l"{"l!'*’*’"ﬁ{"l’l*{l*’lii*{i!‘**G@Q*'ﬂ”ll*

AXTAL

OUTER SURFACE

56.2201042
541811323
5$3.9910164
$3.6591511
53.1605737
52.4622550
$1.5119863
50,2062837
48,2642779
44 ,8599262
37.59C3972
20,0728560
8.6059723
~.3715615
-41345637
22.2283425
28.9922207
36.2067304
4446523800

53,56153455

INNSR SURFACE

45,7857595
45,768137¢
45,550%834
45,1775112
44.5887:891
43,710%91¢
42,63680EE
40,624~145
38,190(25¢
35,484642C
34,462769C
42,04577€8
49,565™212
55,255%611
52,7107262
28, 77T%66C
21.,9613428
16.312299¢

5.612(718

~34615%732€

*

*

*

*

ANGLE
IN DEGREES

8740000
84,0000
7740000
70,0000
6340000
5640000
49,0000
4240000
35,0000
2840000
21,0000
14,0000
11.0000
8.0000
5,0000
240000
145000
1.0000
+5000
40000

*

*

*

CIRCUMFERENTIAL

'OUTER SURFACE

INNER SURFACE

5441951127
5440795808
5344988065
5244406872
50.8014379
4844096127
4449828472
40,0477800
32.7862466
2147644043
448307996
~18,8026834
~28,3310194
-3249003062
~2748466271
-9.8747373
-5.6597528%
-141678276
345490099

843948201

45,7602572
45,6456285
4540668159
4349970331
4243267837
1948678570
3643128738
3141693649
23,6833189
12.8877215
-1.5191917

~15.5521468

~17.6981592
~1641763732

-10.9829072
~7.2179494
-7.1918335
-743961839
-8,0015255

-Be7744111

*

*

*

#*

*OE B F OE B F R R F R DR REFRREE S D E R R R RS R R R X RT R E R SRR RR N R RR

PAGE
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LR R S B B R B R R R R B R S R R N TR RN RN S R S R Y

*

*

CYLINDER

SAMPLE

PROBLEM

DIMENSTONLESS STRESS TO PRESSURE RATIO

‘**l**#llﬁ‘l’ﬁ*&ﬂ»*#**#%*é&%Q%'&{'#*%Yv*é#i’r**!}*

AXTAL

CUTER SURFACE

1947927527
294914567
3242157612
3048265195
2744430573
2344835310
1947875657
1647650931
1445377001
1340556185
1201348377

117657274

1146480048

1147080420
1143542558
1240253627
71241850792
1243156912
1244119449
1204759908

1245136200

INNER SURFACE
542072473
~444914567
-7.2157612
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