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ABSTRACT . 
. . 

Th'e f i r s t  pa r t  of t h i s  work describes'  .the r e s u l t s  .of 5.7-Bev 

proton bomba,rdments of the  t a r g e t  elements Be, C, N, 0, . F, N a ,  and A l .  

Production cross sect ions  were obtained fo r  many radioact ive  products 

with ha l f  l i v e s  between .1.2 minutes &d 12 years.  The p,pn cross  

sect ions  f o r  the  takgets  C, N., O,.F, and N a  were found t o  be 29 f 3 mb, , .  . . , . .' 

7.3 f 0.7 mb, 33 f 5 mb, .19 .f 2 mb, and .31 +- 5 mb r ,espectively.  Much 
, ,  ...- 

of  the  var ia t ion  i n  these  values i s  shown to .  be due t o  the  di.fference 
8 . I .  

i n  the  number of neutrons avai lable  f o r  p,pn ,reactibns i n  the  d i f f e r en t  

t a r g e t  nucle i .  The cross sect ions  f o r  o ther  types of react ions  s tudied 

do not change a s  much over the  range of t a r g e t  elements s tudied a s  do 
Y 

t he  p,pn cross sect ions .  Extension ,of the  exc i t a t i on  'functions fo r '  the  .',' 
r eac t i ons . s t ud i ed  up t o . 5 . 7  Bev shows t h a t  the  cross  sect ions  seem t o  

\r be f a i r l y  constant  between .1 t o  3 Bev and 5.7 Bev. 

I n  the  second p a r t  of t h i s  .work ,a . theory i s  .developed t o  de- ' 

sc r ibe  the  observed magnitude and var ia t ion  of the  cross  'sections f o r  

. simple nuclear react ions  as exemplified by the  p,pri react ion.  A t  m u l t i -  

Bev e n e r g i e s , t o  which t h i s  . . t r e a tmen t . i s  r e s t r i c t e d , . t h e  main con t r i -  

bution t o  the  p,pn-reaction c'ross se.ction comes from i n e l a s t i c  co l l i s i ons  

between t he  incident  prptons . and t a r g e t  .neutrons, with a l l  the  p-n co l -  

l i s i o n ;  products escaping without f u r the r  in te rac t ion .  Approximations . 

and assumptions used include ' the impulse approximation, 0' l a b  s c a t t e r -  

ing  angle f o r  the i n e l a s t i c  .p-n . .  co l i i s i o*  . products, c l a s s i c a l  t r a j e c -  

t o r i e s  f o r  the inc'ident and: s ca t t e r&d 'pa r . t i c l e s ,  and a quantum-mechanical 

treatment of the  t a r g e t  nucleons. The multi-Bev n-p cloud-chamber da t a  

was used t o  determine the  average t o t a l  e x i t  cross  sect ion f o r  the  



i n e l a s t i c a l l y  s ca t t e r ed  p a r t i c l e s .  . 'The only neutron s h e l l s  i n  the  targel; 

aucleus contr ibut ing t o  the p,pn reac t ion  a re  thos'e f o r  which the  i n s t a n -  

.taneous knocking out  .,of a neutron c r ea t e s  a product-neutron hole s t a t e  

s t a b l e  t o  pa r t , i c le .  emission.."  he. r&sul tan t  - i n t e g r a l s ,  'eiral,uated 6n the  
. . 

IBM-70i c6iput '&r,  f o r  t h e  ,independent .@tic le  h&rmbnic'-dsc i l l a t o r  ' s h e l l  

mpdel, give ..the. p,pn reac.tioq..;&.o.ss . . s e c t i o n s  as._ a;: f q , y t i a n  of t h e  nuclea? 

dens i ty  d i s t r i b u t i o n  '&d ' the ,numb& . .. ' c ~ f '  ~ v h i 1 6 b ' l ~ .  she l l s .  . ' 

For- 'the low Z. nucle i  where the avai'lable. ' s h e l l s  can be unamb.ig- 
, . 

uoui ly  de t e . d in id ,  the .resiilts a h&f e i i $ r a l ; : d e ~ i , t y r & 4 i . u s  param- 

e t e r ,  r o f ' abdu t  .1.2 fg&is  c0mpare.d t o  .A,p fermis f o r  the  charge half' 
.. o9 . . .  . . 8 : .  

r ad ius  from the  eiectron-,sc&tt&ring'kol 'k ' .  Use of the  'requirement t h a t  

be less.:,kha.k 2 fcrplio, alidwc one t o  'set  ,the minimum n~unhCr ::? shells 
0 

64 ,;65 ,and Cu ava i lab le  . . f i r  some' t a r g e t s  . . "FO?. example, . . the Zn' ,, 9 
. .  . 

63 P,Pn 
cross  sect ions  require  t h a t  the  l f 7 /2  neutrons be avai lable ,  o r ,  equi-  

va len t ly ,  t h a t  a ' l f i / 2  neutrOn hole s t a t e  (across  a major s h e q )  i n  the 
,.. 142 

product nucleus have l e s s  thari 8 ' t o  9-Mev exc i t a t i on  energy. The Ce 

p,pn and p,2p reac, t ion cross  sec t ions  suggest t h a t  ca ,nkis ts  of a 

Ce 14' core with a t  most a small surface,  m d  a d i f fuse  surface  generated 

by the  two 2f7/2 neutrons. The r e s u l t s  a l so  show t h a t  the  energy as- 

socia ted wi th  nuclear rearrangement .to .par t ic le .  s t ab l e  prbduct s t a t e s  

must be l e s s  than 8 t o  9.-Mevd I n  s eve ra l  .c,ases, the  upper l i m i t  can be 

lowered considerably ( t o  1 .5  Mev i d  0 Mev :in the  cases of 016 and B 
14  

. . 

r e spec t i ve ly ) .  ' , ,  
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. . Par t  I 

NUCLEAR REACTIONS OF LOW4 . ELEMl3NTS WITH 5.7 -Bev PROTONS 

I. INTRODUCTION 

The understanding of the  s t ruc ture  of the  atomic nucleus over 

t he  pas t  severa l  years has proved so e lus ive  t h a t  many d i f f e r en t  avenues 

of approach, both t h e o r e t i c a l  and experimental, have been developed. The 

t h e o r e t i c a l  approaches have l ed  t o  the  development of the  s t a t i s t i c a l  

model, the  o p t i c a l  model, and s h e l l  model, the  co l l ec t i ve  model, e t c .  
1 

The experimental approaches have included the  study of the  s ~ a t t e r i n g  of 

and nuclear react ions  i n i t i a t e d  by various p a r t i c l e s  incident  on nucle i .  

Most work on nuclear reac t ions  has been divided i n t o  the  study of e i t h e r  

t he  angular d i s t r i bu t i on  of reac t ion  products, o r  the  t o t a l  production 

c ro s s  sect ion f o r  d i f f e r e n t  types of react ions .  These s tud ies  a re  car-  

r i e d  out with the typesand energies of p a r t i c l e s  avai lable  on the  e x i s t -  

ing  accelera tors .  As soon a s  an acce le ra to r  of higher maximum energy 

o r  d i f f e r en t  p a r t i c l e  type i s  avai lable ,  many of the  experimental s tud ies  

a r e  repeated where f ea s ib l e  t o  see i f  a new type of reac t ion  s e t s  i n ,  o r  

t o  invest igate  the  energy dependence of the  various processes studied.  

This study i s  an example of the  l a t t e r  type of experiment. It 

was decided t o  repeat  various measurements of spa l l a t i on  cross sect ions  

done at lower incident-proton energies (3  Bev and lower) on se lected 

t a r g e t  nucle i  at  the  Bevatron with a proton energy of 5.7 Bev. I n  the  

f i r s t  section,  the  experimental method and r e s u l t s  w i l l  be presented, 

and r e s u l t s  w i l l  be analyzed t o  inves t iga te  the  energy dependence of 

various spa l l a t i on  cross  sect ions .  I n  the  second section,  a t heo re t i c a l  

treatment of c e r t a in  types of "simple" nuclear react ions ,  as  exemplified 



* - 
by the  p,pn reac t ions ,  ' w i l l  be presented. The t a r g e t  nucle i  chosen were 

Be, C, N, 0, F, Na ,  and ~1. '  These'elements were chosen because of the  

r e l a t i v e  s impl ic i ty  of ana lys i s  .of the  bombarded t a r g e t s  (no chemistry 

w a s  necessary).  Also by measuring the  spa l l a t i on  cross  sect ions  f o r  

severa l  neighboring elements, the  dependence of the  various reac t ion  

cross  sect ions  on the  atomic weight of the  t a r g e t  can be invest igated.  



11. EXPERIMENTAL METHOD AND APPARATUS 

The experimental r e s u l t s  a re  obtained from several  bombar'dments 

of f o i l s  .or powders of su i tab le  compounds 'of the  d i f f e r en t  elements. 

Each bombardment cons i s t s  of placing the  appropriate weighed.foi1 o r  

powder of the  e l emen t s to  be s tudied i n  a t a r g e t  holder and then bom- 

barding the  ' t a rge t  i n .  t h e  i n t e r n a l  proton .beam ,of the  Bevatron. After 

bombardment; the  fo i l s .  o r  powder a re  .removed from the  holder-  and placed 

on .cards f o r  counting. ~ a c h  . f o i l  .or powder i s  then .counted severa l  

times i n  a gamma-ray pulse -height . analyzer. The r e su l t i ng '  decay curves 

.of the  . d i f f e r en t  .peaks a re  then resolved and supplementa~y da ta  (counter 

eff ic iency,  f o i l  weight, e t c .  ) are  used t o  determine the  d i f f e r en t  c r o s s  

sect ions .  

A. Target . ~o l ' de r  

A.diagram.of the  . t a rge t  holder i s  given i n  Fig. 1. The f ron t  ,end 

has a channel .cut i n t o  the  luci te  and a threaded hole f o r  help i n  a l ign-  

ing  .and securing the  f o i l s  t o  the. holder .  The'back end of the holder i s  

designed f o r  rapid  attachment t o  and removal from the  pneumatic . t a rge t  

plunger on the  Bevatron. 

A diagram .of the  powder-target holder i s  given i n  Fig; 2. , The 

hole i n  .the 'back i s  used t o  a t t a ch  t h i s '  supplementary holder i n  the chan- 

n e l . o f  t he  t a r g e t  holder i n .F ig .  1.' The powder and monitor f o i l s  a re  

placed i n  the  f ron t  end .of the  powder holder. 

B. Counter 

Most .of the  samples .were gamma counted by a. 1- by"l-1/2-inch N a I  

(TI) c r y s t a l  and .Durnont 6292 phototube used .with .a preamplif ier ,  amplif ier ,  
l 

and 50-channel pulse -height analyzer, Later  t he  50-channel analyzer was 

,replaced by a . f a s t e r  100-channel analyzer with .a .magnetic-core memory. 

The . c ry s t a l  and phototube were mounted on a sample holder with severa l  

shelves so t h a t  the  .sample-to-crystal distance could be va r i ed ,  The .whole 

de tec tor  assembly, was surrounded by two inches of lead.  
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Fig. 1. Bevatron target-holder assembly.. 
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Fig. 2. Powder target holder. 
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C .  Mounting of Target Mater ia l  

For each bombardment the  t a r g e t  f o i l s  and powder were arranged 

i n  order of increasing atomic weight, with the  proton beam enter ing the  

lowest-atomic-weight s ide  of the  f o i l  packet. This was done so t h a t  

contamination from spa l l a t i on  products reco i l ing  out  of the t a r g e t  f o i l  * 'a 

and secondary neutron and proton contributions t o  the  beam could be held 

t o  a minimum. The majori ty of secondary products come out i n  the  forward 

d i rec t ion  and the  amount of secondary neutrons and protons emitted per 

nuclekr reac t ion  increases with i n c r e a ~ i n g  atomic weight of the  t a r g e t  

nucleus.' Guard, . foi ls  were used i n  f ron t  of and behind .each type .of 

experimental f o i l  t o  keep r eco i l i ng  spa l la t ion .produc ts  of one t a rge t  

element from contaminating the  ad j acen t . t a rge t  f o i l .  The guard f o i l s  

a l s o  served t o  p ro tec t  the  L w g e L  hi1 saldwicl~ed i n  bctwccn from product- 

r e c o i l  loss ,  because a s  much product recoi led i n  from the  guard f o i l s  as  

recoi led out  of the  t a r g e t  f o i l .  Secondary neutrons and protons are  not  

stopped i n  t h i s  manner, however. The bes t  way t o  minimize formation of 

spa l l a t i on  products by secondaries i s  t o  keep the  t a r g e t  thickness as  

low a s  possible.  It has been shown t h a t  the  secondary neutron con t r i -  

bution can be kept t o  l e s s  than 10% i f  the  t a r g e t  thickness i s  held  

The maximum t a rge t  thickness used i n  these  ex- below 2 t o  3 gms/cm . 
L 

periments was about 800 mg/cm . This 'ncluded t he  thickness of the  powder . 

a s  wel l  a s  the  holder and o ther  f o i l s .  

The appropriate 112-inch-wide f o i l s  were cu t  from sheet  mate r ia l  

f o r  the  r o i l  holder.  The leading edges of the  f o i l s  were aligned and 

then secured with cellophane tape.  After  mounting the  f o i l s  unto the  

t a r g e t  .holder the  whole assembly was read2 f o r  bombardment. 

It was 'soon found t h a t  the  powder holder made a convenient .device 

f o r  a l igning the  leading edges of the  f o i l  s tack.  Consequently, f o r  

bombardments with o r  without powders, f o i l s  were c u t t o  f i t  the  width of 
* 

t he  compartment i n  the holder but  t o  extend out  beyond the  leading edge. 

After  taping .the. f o i l s  securely i n  .the bottom .of the  chamber (down-beam 
r' 

s ide )  with cellophane tape,  the  leading edges .were trimmed f lush  ,with 

t he  end of the  holder by means of' a razor  blade. 



Whenever posders were .used, as ta rge t  materials they wer'e f i r s t  

dried a t  110'~ and kept i n  a desiccator,  .The holder was. f i l l e d  by tamping 

the powder in to  t h e  space between the f o i l  stack a t  the bot tomof the 

holder and the cover. After .any excess powde> was scraped off  the end was 

sealed with, cellophane %ape' and the whole ass'embly' was ready for  mounting 

D. Length of Bombardment and Sample Preparation 
. 

' The lehgth of .time of bombardment varied greatly because it de- 

pended on the half  l i f e  of the isotope being, studied. FOP short-lived 

isotopes such. as 2- lmin 015 and.10-min Ill3, t h e  bombardment times were 

1 'to 2 min at whatever beam in tens i ty  .was  .available. After bombardment, 

the ta rge t  holder was.removed immediately from the.Bevatron, the f o i l s  

.were separated and mo,mted without weighing, and the in tens i ty  measure- 

ments of the .O:51-Mev annihilation radiat ion were begun med ia t e ly . .  For 
15  determination of the short-lived ac t iv i t i e s ,  1.2-min o ~ ' ~  .and 2.1-min 0 , 

the samples were counted as quickly as  possible a f t e r  the end of bombard- 

ment. The minimum time'delay between the end of bombardment and the 

begining of the f i r s t  count was 5 t o  6 minutes. This time :delay was suf- 

f i c i e n t l y  short, t o  see the 1.2- and 2,l-min a c t i v i t i e s .  The resolution 

of these a c t i v i t i e s  i s  described i n  more d e t a i l  l a t e r .  

For longer-lived a c t i v i t i e s ,  the bombardment times .varied from 2 

min t o . 1  hour. After bombardment, the f o i l s  were separated and weighed, 

and t h e i r  areas were measured. Then they were mounted on aluminum cards 

fo r  count.ing. The powder 'was .weighed and mounted on an aluminum card with 

a s m a l l  depression i n  the middle . to  contain the powder. Cellophane tape 

was placed over the powder.to keep it . in  place. The powder thickness i n  
2 

mg/cm w a s  determined from the dimensions of the t a rge t  holder and the 

powder weight. The samples were then covered with a suf f ic ien t  thickness 

of s t a in l e s s  s t e e l  t o  annihilate the positrons immediately above the 

sample. Both the.  geometry correction fac tors  (due t o  .the point .of or igin 

of the .0.51 Mev.gamma rays i n  the s t e e l  instead of the sample) and los s  

by gamma absorption i n  the s t e e l  were negligible.  



E. Counting 

The i n t ens i t y  of gamma rays within a ce r t a in  energy range was 

then determined f o r  each sample under known geometry condit ions.  This 

was done by ca l i b r a t i ng  the  energy . sca le  . of '  the  pulse-height analyzer wi1;h 
2 2 ..a'. standakd ..tThose'..decay scheme i s  well known, e . g., N a  . For t h i s  work a. 

t he  pa r t i cu l a r  ,,ch@nel' range . . was determined, 'which includedz . a l l  . the  counts 

r e su l t i ng  from photoelect r ic  in te rac t ions  i n  the  c r y s t a l  ,caused by the  

gamma rays r e su l t i ng  from the  N~~~ posi t ron ann ih i la t ion .  The same chan- 

n e l  range. plus a  few adjacent channels on t he  high-enkrgy s ide  ,were used 

t o  measure the 0.51-Mev. a c t i v i t y  l e v e l  of the  samples ;. . The a c t i v i t y  

l e v e l  of t he  adjacent channels above was de temined ' in  order. t o  measure 

contribulluns.  .'lu the  d c t i v i t y  , l cvc l  i n  the  0..51-~eG channel range which 

a r i s e  from other  than. simple photoelectric.  in te rac t ion  'pk'ocesses. These 

contr ibut ions  &ise .  from severa l  o ther  types of , in te rac t ions :  

( a )  Compton . in te rac t ions  i n  .the . c ry s t a l  from gammas emanating 

from the'sample .with g rea te r  than 0.51 Mev energy. 

(b)  , General background. This includes cosmic rad ia t ion ,  s t r a y  

a c t i v i t y ,  and na tu ra l  a c t i v i t y  i n  .Lhe mate r ia l s  around the  

counter, spurious pulses,  e t c .  

( c )  Any. in te rac t ions  of the  type where one of t he  two gammas 

from the  posi t ron ann ih i la t ion  undergoes a Compton i n t e r -  

ac t ion i n  the  c r y s t a l  and the  ':b.aCkscattered , . gamma from 
I 

a Compton i n t e r ac t i on  of the  o ther  gamma i s  captured 

photoe lec t r i cd l ly  i n  the  c ~ y s t a l .  The samele mount and 

the  housing d e  t he  main places where the  backscattered 

.gamma would be produced. 

( a )  Annihilat ion o f  the  posi t ron i n  f l i g h t ;  I n  t h i s  case the 
' energy of t he  gamma would include -with the  rest-mass energy 

one haIf  of the  k i n e t i c  energy of the  posi t ron at t he  time 
\. 

of ann ih i la t ion .  The l o s s  from ' t h i s  source .of ann ih i la t ion  

gammas from the main peak i s  qu i te  small, of the  order .of 
V' 5 . .  . . ,  . . . . . . . . . . .  . . , . .  . . . . . . . .  . . . . .  1 .  . . . . . . . . . . . . .  : .  . . . : . . . . . . . . .  : . . . .  - ,  . . . . . . . . . . . . . . . .  .: ':. .:: . . . .  



The correct ion f o r .  these f , ~ u r  contr ibut ions '  was applied by de te r -  

'mining the  a c t i v i t y  per channel i n  the  channels adjacent t o  the  peak on 

t he  :high-energy s ide  , arid subtract ing . t h i s  a c t i v i t y  leve.1 .from each chan- 

n e l  i n  which the  main .photopeak occurs. The validity. . .pf  such a subtrac- 

t i o n  i s  bBied on' the  a s s ~ p % i o n  t h a t  the  a c t i v i t y  .~leve- l  of the. .channel . . .  

. under the  peak from . . .  the  above contr ibut ion i s  the s A e  as  it i s  i n  the  
I 

channels immediately above the  peak. ~n e?amin9&tion o f ,  the  ~a~~ pulse - 
height spectrum .indicate,s t h a t  t he  above assumption i s  va l id  f o r  the  f i r s t  

contr ibut ibn mentioned. ' H O W G V ~ ~ ,  f o r  the  next th ree  con,tributions the  
. . 

a c t i v i t y  l e v e l  w i l l  vary wi th  the  energy.. ExaminationL.of background 

spec t ra  shows t h a t  the coun t ' r a t e  per.channe1 Tncreases with decreasing 

energy. m e  .act iv%ty , .  . lkve'l as a function of energy coming from the  o t h e r  

two contr ibut ions  i s  undetermined, but  i s  probably not too f a r  from being 

constant .  The contr ibut ion from these.  l a s t  two causes t o  t he  high-energy 

channels adjacent t o  those under the  peak was determined by taking the  

pulse-height spectrum.of a f a i r l y  in tense  souPce.of a pure posi t ron emi t te r  

such as C" and was found t o '  be about 1% f o r  the  worst case (smal les t  

source- to-crysta l  d is tance ), Thus .even i f  the  a c t i v i t y  l e v e l  does vary 

wi th  energy, the  .correct ion w i l l  be some . . f r ac t i on  of l$, which i s  qui te  

small  enough t o  %be neglected. .For f a i r l y  ac t ive  samples i n  which the  back- 

ground was .a small fraction. , .of  the  t o t a l  a c t i v i t y ,  the  correct ion f o r  the  

. va r i a t i on  .of background-count r a t e , w i t h  energy was neglected a s  it was l e s s  
I 

, tharf-.l%.' For samples .with a low count r a t e ,  the  correct ion was included by 

obta ining background spec t r a  and determining. t he  .va r ia t ion  i n  count r a t e  

.per  channel. over t he  .channel' r ange  desired,.  
. . 

For =ounting shdr t - l ived a c t i v i t i e s ,  , the  samples. obtained from a 

given run were ; s e t  up i n  a r o t a t i n g  . s e r i e s .  -Each sample .was counted fo r  

1 min, the  da t a  were recorded, and . the  .sample w a s  then removed and the  next 

one :was counted f o r  1 min, . e t c  . A s  the  count r a t e  decreased, the  counting 

time was increased, if necessary t o  t o t a l  a minimum of  2000 c o , u t s  per de- 

termination.  I n  t h i s  way a decay curve.was b u i l t  up which .contained a suf-  

f i c i e n t  number of po in t s  t o  determine the  10-min d3 f a i r l y  Gel1 and a l s o  

t he  2.1-min 015, which was seen a s  a t a i l  o n  top of t h e  l o k i n  N~~ + 20-min 

C" decay. 



For the  long-l ived a c t i v i t i e s ,  the  count r a t e s  were qu i te  low - 
from 2 t o  20 counts per minute (cpm). These samples were counted f o r  

long periods of time (about 10 hr) on the  pulse-height analyzer, and then 

a background w a s  run f o r  the  same length  of time. The background-per- 

channel count r a t e  was subtracted from the  sample-per-channel count r a t e ,  

and i f  any ne t  a c t i v i t y  remained i n  the few channels immediately above 

t he  peak, it was  averaged and subtracted from the  peak. An average of 

four points ,  o r  enough t o  give a ne t  count r a t e  with a f a i r l y  small 

s t w d a s d  devia t ion were taken f o r  each sample. 

Before the  ac tua l  decay curves were drawn two more correct ions  

t o  the  d a t a  were made i f  necessary: For some samples with high coynt 

r a t e s  on the 5 0 - c h e n n ~ l  pulse-height analgser ,  a dead time cor rec t ion  

had t o  be applied.  This correcLluu of 7% per 100 c im w a s  added. too the 

observed count ra te .6  I f  C i s  t he  corrected count r a t e '  and B i s  t he  

observed count r a t e  then we have 

I n  a few o ther  cases t he  sample count r a t e  f o r  some isotopes  was 

s u f f i c i e n t l y  low so t h a t  the  durat ion of counting time w a s  an appreci-  

ab le  f r a c t i on  of t he  isotope ha l f  l i f e .  A cor rec t ion  f o r  decay during 

counting was  then applied as follows: 

Let A = count rate aL the time at  which the  count i s  

s t a r t ed ,  

C = t o t a l  number of counts (sample and background) 
' . 

obtained during time t, 

Bg = t o t a l  number of background counts obtained 

during time t from a separate  run, 

and h = decay constant  f o r  the  isotope i n  question.  
I 

Then we have 



After the .corrections were applied t o  the  data, '  the  decay curve 

f o r .  the  gamma-ray peak i n  question was plot ted;  and the  components of 

d i f fe ren t  hal f  l i v e s  were resolved.. 

F. ~ e s o l u t i o n  of Product Act ivi t ies .  

1. Aluminum. 

The t a r g e t  element with the  most products, which was bombarded 

i n  t h i s  work, was aluminum. .The decay curve of the  0.51-Mev peak con- 

t a ined  contr ibut ions  from ~ a ~ ~ ,  Eie7, Na24 (pair production by the , high- 
. , 

energy gammas ex te rna l  t o  the  c r y s t a l  and capt,we of  one of the  annihi-  

l a t i o n  gammas i n  the  c r y s t a l )  F ~ ~ ,  c") ' N ~ ~ )  and ( i f  t h e  sample was 

24 Samples which counted soon enough, . a f t e r  bombardment ) 015 and Ne . - - 
were bombarded fo r  only a few minutes i n  order t o  see the  oL' d id  not 

have detectable  amounts of ~a~~ o r  ~e~ so t h a t  the  on ly  "long-lived" 
2 4 component was N a  . The 0.51-Mev decay cur+e was resolved by f i r s t  

sub t rac t ing  out  the  Na24 contr ibut ion.  The next component which could 

he e a s i i v  s~ lh t r ac t ed  out  was the  118-min F18 as the  r e su l t an t  t a i l  " 

18 contains F only (usua l ly  severa l  hundred cpm) . Because t he .  C 
11 

13 equals 20.4 min) and N (tllB equals 10iO min) have such s imi la r  hal f  

l i v e s  they cannot be resolved by the  'usual  method. .For the  separa t ion .  

o f . t h e s e  two isotopes,  the  portion' of the decay curve l e f t  a f t e r  the  

~a~~ and F'18 sub t r ac t i onand  more than 30 ;in a f t e r  t he  end of bombard- 

ment was chosen. This curve was analyzed by a method developed by 
8 W . F . B i l l e r .  This method depends on the  f a c t  t h a t  at  any time t 

a f t e r  the  end of bombardment, the  t o t a l  a c t i v i t y  C i s  given by 

r h l t  Multiplying through by ( e  ) (hl > h2) gives 

(hl - h 2 ) t  
Ce = A. + Boe (3)  

hit 
For each point ,  C and t a re  known, so t h a t  a p l o t  of Ce vs - 

(h,--h2)t 
e.  gives a s t r a i g h t  l i n e  with a slop& B 'and in te rcep t  A . Decay 

0 0 
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cwves  -A 'e and B~~ ' w e  then constructed.  I f  these two curves 
0 

a r e  added together and the total..sul?trac,l;ed . . from the  . . . .  portion of the 
. . .  

curve talred l e s s  than 30 i i n  a f t e r  bombardment, a s h o r t  h a l f - l i f e  com- 

ponent is found ' o f .  2 t o  3 min. It i s  . as,sumed t h a t  t h i s  component rep- 
. . 

re 'sents a;+ bf 2. l m i n  o15 A d :  min. NeB4, h d  . . . .  &nsequent,iy the method 
. . .  

described . . . . . .  abqve .. i s  . used. .- t o  . . . . . . .  separate , . . . .  t h e  t w o  . . ,  isotopes.  : . . , . . .  The values ob- 

t a inbd  f 0 r . 0 ' ~ '   and'^;^^ are  nbt '  v e r y  acc i ra t s ,  b e ~ k i s e  of a l l  t h e  previ-  

ous subtract ions  . . .  t h a t  have . been . m$dC. 'klso,  t h e &  i so topes  hgve decayed 

cor l s idere ly  before the .  &uritings arq: .be i~ i?; . .  . . , ~ o f i s e ' ~ u e n t l ~ ,  the  c,ount 
. . 

r a t e s  obtained have a lakger  error . ) .  . as.soc.5,ated . , . .. . with . . .. them ' than  do the  
, . . . 

. . . . .  value6 f o r  the  :,other. is,c&opes .. ' ,  . . . . . . .  
. . . .  . I 

The Na24 i o m t  r a t e ;  i s  $(te&i-ned by meis i r ing the, decay of the  
, : 2 2 

~ , . j 8 - ~ e v  photopeak iud r i b t r a c k l . ~ ~  m y  1;'28,-~ev l~ontkibut;i n n  from Na 

decay .' This . . .  i s  dete'rmiied by ,measuring: $h& ac t i v i t y '  &. the  correspond- 
. . 

ing  energy range a f t e r  the N a Z 4  has decayed: '' 

The ~a~~ count r a t e  i s  found by .meaS&ing t ee  a c t i v i t y  l e v e l  i n  

t h e  1 .28-~ev  bhotopeak. . The. a c t i v i t y  l e v e l  of . the 0 . 5 i - ~ e v  peak i s  taken 

a t  the  same time a s  t h a t  of the  1.28-Mev peak. The spectrum of a pure 

~ a "  standard i s  then determined, and the  r a t i o  of t he  in tegra ted  

a c t i v i t y  l e v e l  i n  the  0.51-Mev peak ' t o  t h a t  i n  the  1,. 28-Mev peak i s  

determined f o r  the  standard. This r a t f o  i n  the  .sample i s  usual ly  about 

twice  t h a t  of the  standard, and the  excess i s  ascribed t o  ~e~ a c t i v i t y .  

A few decay points  taken ind ica te  t h a t  t h i s  exceEE does decay wi,lJi the  
7 r e q u i s i t e  ha l f  l i f e  f o r  Be . 

Magnesium-27 (tlIa = 9.6 min) was looked f o r  i n  a couple of runs 

by taking decay points  of the  a c t i v i t y  Level i n  a few channels centered 

about 0.85 Mev. The decay curve had a small component of approximately 

t he  r i g h t  ha i f  l i f e .  Because of the  low count r a t e  a t  t h i s  energy range, 

t he  values obtained f o r  M~~~ a re  uncertain a h d  hava a l a rge r  e r r o r  as  - 
I 

socia ted with them than do the other  i sotopes .  

A couple of t a r g e t s  which,underwent long bombardments were sen t  
2 t o  L. Currie who kindly analyzed them f o r  tritium., . . These numbers a re  

a l s o  included. 



, . 
2. Sodium ' . .  

The next-highest-atomic-weight t a r g e t  studied was sodium. This 

was bombarded a s  anhydrous N a  CO ' in  the  powder holder.  h he correc- 
.2 . . 3  

t i ons  f o r  the contributions t o  the  product a c t i v i t i e s  from the  carbon 

and oxygen a re  discussed l a t e r . )  , A f t e r  bombardment, the  powd~r was 

weighed and t rans fe r red  t o  a lumink  cards f o r  counting. ~ i r r i h ~  t h i s  

time, the  powder was covered with cellophane tape so t h a t  the :  water pick- 

up would be small f o r  the  length of time the  sample was cuunted. The 

decay curve was analyzed i n  exact ly  the  same way as was the  c k v e  f o r  

aluminum except t h a t  ~ a ' ~  and  hIge7 were absent.  

3. Fluorine 

A 30-mil ~ e f l o n  f o i l  w a s  used as  .a  f luor ine  t a rge t .  The Teflon 

was analyzed spectrographically and found t o  contain l e s s  thar! 1 PPn 

of Na, Mg, A l ,  S i ,  P, Ca ,  Fe,,.and. Cu. .It was assumed tha t .  these  elements 

would be the  major contaminations. The decay curve was analyzed i n  t he  

same way a s  t h a t  f o r  aluminum except t h a t  M ~ ~ ~ ;  waa4, IVeZ4, add ~a~~ were 

not present .  

4. Oxygen 

Anhydrous oxa l ic  acid  was used a s  an .oxygen t a r g e t .  A spectro- 

graphic analysis  f o r  t he  same elements a s  those looked f o r  i n ' , ~ e f l o n -  

yielded the  same r e s u l t s ,  each element not detectable  o r  present a t  l e s s  

than 1 ppn. For those runs i n  which the  cross-sections f o r  shor t - l ived 

a c t i v i t i e s  were de s i r ed , . t he  .powder was .placed on an aluminum'card, 

covered with cellophane tape t o  prevent water pickup,and immediately 

counted. The weighing of the  powder was deferred u n t i l  all the  decay 

points  needed were taken. The anhydrous ac td  was s tored i n  a .des%ccator 

and removed only f o r  packing i n t o  the  holder.  The decay da t a  were r e so l -  

ved by the  same methods a s  were used f o r  f luor ine  t a r g e t s .  

5. Nitrogen 

For" a nitrogen target , .  the  compound, 5 amino t e t r azo l e  ( c i ty  
. . 

Chemical Corp.) was used. A s p e c t r ~ g r a p h i . ~  analysis  f o r  t he  same elements 



as  were determined f o r  f luor ine  yielded the  same limits of detect ion 

r,esglt~s. . The compound . . was obtatned. . . .  as  the  . . .  monohydrate . . . .  I a nd  was dr ied 

i n  6 oven -at 110~~ A d  then kep t  , i n  + a desiccator .  The, compound ap- 

. peared t o ,  b s e  i t s  water. of hydrogen q u i t e  e a s i l y , '  because . . t h e  c ry s t a l s  

quickly bh&ied , ' to  powder a s  .:. heat': . . w a s  " applied :! This c'ompound h a s  one i: 

. . 
9 

pos s . i b l e l  hazard, - - . some o f  .t,he . , , .  te~azole . .d ,er . iva. t i~yes . . .  . . . . ,_.  ,me.. e x ~ l o s i v e s  . 
. . . : .  . . 

1t  melts w i t h  de&mpqsiki'on . . . .  . it ~ o ~ ~ c .  . ' ~ f t i i -  b~inbardment i r i  t h e  Bevatron 
. . I .  . 

it seemed , to. . beh9ve2 , . veperfe.c:tiy and. did not . . . d i sco lo r .  . .. . ' The compound has a 
. _  

high rat id' b f  ni t roeen.  t d  C.qbon &d  . .  . hydrog&fi . . .: :1 ts : fo&&a' is  . .  , ,  CH' H 
, . 5 3 

Bombadment of t h i s  comp.oqd even f o r  more 'than 1 hr produced 

no v i s i b l e  change. The decay-:curve . resolut f  on :was. done ' i n .  t he  same 

manner a s  f o r  oxa l ic  acid  t a rge t s .  . . 

6. Carbon 

Carbon was bombarded as f o i l s  .of polyethylene. Thick f o i l s  (50 
2 rng/cm ) were used f o r  ~e~ cross-section determinations and t h i n  f o i l s  

2 (6 mglcm ) were used f o r  cl1 cross-section determinations. Again a 

spectrographic ana lys i s  of both f o i l s  f o r  the elements N a ,  Mg, A l ,  S i ,  

P, Ca, Fe , and Cu, gave l e s s  than 1 ppn f o r  any one of them ( i . e . , they 

were not detected)..  The decay curves were analyzed a l so  i n  the  same 

manner a s  those fo r  f luor ine .  One th ick  -t;wget w i th . t he  aluminum 

monitor was sen t  . ,. t o  .. L. C u r i e 4  who kindly  analyzed the  'samp16 f o r  

tritium. , 

7. Beryllium 

One bombardment of a th ick  beryll ium dil w a i  done. Be ' and cLL 
were the  only two isotopes  found. The f o i l  w a s  not analyzed fo r  tritium. 

Analysis of the  decay curves was qu i te  simple .because .only two couiponents 

were pre,sent . 



G. Cross -Section Ratio Determination 

After  the  .counts per min.ute of a l l . t h e  isotopes produced i n  the  

d i f fe ren% t a r g e t  f o i l s  i n  a .given run were obtained, the r a t i o  of each 

cross  s e c t i o n . t o  t h a t  of a se lected monitor reaction.was calcula ted.  

1 , T h i ~  w a s  done by f i r s t  determining the  d i s in tegra t ions  per  minute ( d m )  

' f o r  each. isotgpe by. d ividing the  counts per minute by the  counting e f -  

' f i c i e n ~ ~  f o r . t h e  rad ia t ion  i n  question. These e f f i c i enc i e s  and Counter 
..A 0 

geometry a6 a function of ~ a n f i l e - t o ~ ~ s t h  d i s ~ a n r e ' / k ~  already deteimined. 

The geometry w a s  redetermined by D . ,  Barr of t h i s  laboratory. l l  He c a l i -  

bra ted a ~a~~ sowce  b y l b e t a - g m a  coincidence counting and used it t o  

determine the  geometry of each shelf  i n  the,sample holder.  H i s  r e s u l t s  

agreed t o  within 2% of the  values i n  the  previous 'work. 

The number of atoms per  cmZ of t a r g e t  mate r ia l  w a s  determined 

. '  -from the.dimensions of the  f o i l  o r  i n  .the case of powders, of the  space 

i n  the  powder holder, and the .weight  of the  mate r ia l .  For the powders 

which would absorb .water such a s  N a  CO (anhydrous), the weighing was . 
2 3 

done a s  quickly a s  possible t o  avoid uptake of water. During the weigh- 

ing  no v i s i b l e  change i n  t h e  weight due t o  water uptake. was obse+ved. 

The correct ion fo r  decay during bombardment was o f ten  complicated 
' 

by the  f a c t  t h a t  during a l l  bu t  the  sho r t e s t  runs the  beam would go off 

severa l  times during a run. These in te r rup t ions  were always temporary 
2 2 

and were corrected i n  a few minute's. F o r  long-lived a c t i v i t i e s  ( ~ a  , , 
8e7) grid sometimes N a Z 4 ) ,  the  decay during these  in te r rup t ions  w a s  neg- 

' 

l i g i b l e  and w a s  neglected. For the  shor t - l ived a c t i v i t i e s ,  t h i s  decay 

w a s  not  neg l ig ib le .  Consequently, a long bombardment w i t h  in te r rup t ions  

was t r e a t e d  a s  a s e r i e s  of shor t  bombardments with appropriate decay 

f a c t o r s ,  applied t o  cor rec t  each member of t he  s e r i e s  . to  t he  end of the  

. run. Th i s  f ac to r  was equal  t o  



where n = number of in te r rup t ions  

A = decay constant  of the  isotop@ i n  question 

( t z i - l  ) = durat ion.  of the  i t h  shor t  bombardment 

' ,~n+l  
= durat ion of the  l a s t  shor t  bombardment 

' t 2 i  
= time elapsed from the .  end of the  it11 short boi~ibardnient 

t o  the end of the. lasJi shor t  bombardment. 

I n  order t o  be exact ,  a  f a c t o r  should be included i n  the,  .above sum t o  

account f o r  the  change i n  beam i n t e n s i t y  from one t o  another of the shor t  

bombardments comprising a run. However, a check by use of a . p u l s e  'inte- 

g ra to r  which gave the  numbex' of protons i n  each pnlse showed t h a t  wi thin  ' 

2 min of sl .mning t,i,me, t h e  va r ia t ion  from gulse t~ pulse averaged i t s e l f  

ou t .  ' 

The equation for  ca lcu la t ion  of the  product ion.cross  sect ion,  

a ,  of A d i s i n t eg ra t i ons  per minute of an a c t i v i t y  with decay constant, 

A,  and l e n g t h  of bombardment t, frdm a t a r g e t  with N atoms/cm2 with 

. a beam i n t e n s i t y  of cp part icles/min i s  

' For in te r rup ted  bcnbardments, the f a c to r  T given by Eq. ( 4 )  i s  subs t i -  

.-k!JCed;'. f o r  the exponential  term, g iving 

This equation may be rearranged t o  give 

where cp and a' a r e  the  unknowns i n  t h i s  equation.  I n  each bombardment 
the  a c t i v i t i e s  i n  the  monitor f o i l  were determined i n  the  same way as  

a r e  the a c t i v i t i e s  i n  the o ther  f o i l s  and powder. The above equation 
i s  of exact ly  the  same foqn f o r  the  monitor react ion:  A, N,  and T 

L' 

a r e  d i f f e r en t ;  cp i s  the  same. Ins tead of determining from the  

monitor cross  sect ion,  cp was removed by dividing the  expression f o r  

'cpa f o r  the  unknown a c t i v i t y  by 90 f o r  the  monitor r e s u l t i n g  i n . t h e  
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cancel la t ion of cp. The r e s u l t  w a s  expressed a s  a r a t i o  of the  .production 

cross  sect ion o f .  the  par t i cu las  a c t i v i t y  t o  t h a t  of the monitor. The 

reason f o r  using t h i s  method r a the r  than ca1culat ing.a  d i r e c t l y  fo r  each :.c:. 

run was t h a t  the monitor cross sect ion .was not known u n t i l  the  work was 

we l l  along. . I t .was  decided t o  keep the  da ta  i n  t h i s  form f o r  a l l  the  

bombardments .and a c t i v i t i e s  and convert t o  cross sect ions  only a t  . the end 

of the  work. 

For many of the  a c t i v i t i e s  i n  the  powder t a rge t s  and Teflon, t he  .: : : 

r a t i o  determined i n  the  above manner f o r  the production cross  section. was 

a.weighted average of the  contr ibut ions  from each element present.  Thus 

i n  N a  C O  f o r  instance,  C!ll i s  from the  carbon and oxyg& as  
2 3' 

we l l  a s  the  sodium and the  production-cross-section r a t i o  found was a 

weighted average .of the  three  individual  r a t i o s .  The correct ion f o r  the  

contr ibut ions  df the  other  .elements occurring was made a s  follows: The: 

N appearing i n  Eq. (6 )  represented the  t o t a l  number of a l l  atbms/cm 
2 

contr ibut ing t o  the  pa r t i cu l a r  cross  sect ion.  (For N a 2  CO N repre-  ' '  . 
. . 3 

sented t h e  number of Na+C+O atoms per &I' i n  the  t a r g e t :  ) The r e s u l t a n t  

averaged production-cross-section r a t i o ,  U/aF18, i s  given by 
A 1  

For N a 2  CO we f i nd  NNa = 113, 
3 ' 

The r a t i o  a /a 18 f o r  the  product ' in question was determined from bom- 
F ~ l  polyethylene, i d  o d u  18 was determined from bombard- bardments of 

ments of oxa l ic  acid  powder. The r a t i o  F ~ l  u /u  was used t o  

cor rec t  f o r  the  carbon content of oxal ic  acid .  F ~ l  



I n  the  manner, described. i n  the  previous paragraphs, a whole 

s e r i e s  of r a t i o s  of production cross. sect ions  t o  the  monitor cross 

sec t ion  were obtained -fox each bom'bezdment. ' Alrnvst a l l  of the  r a t i o s  

were determined more than once, and a few were deteruiined many times. 

A .  Data Rejection 

On examining t he  r e s u l t s  it was found t h a t ,  i n  some cases, the  

group of determinations of a given cross-section would have a reasonable 

spread except f o r  one datum which was qui te  d i f f e r en t .  I f  t h i s  pa r t i c -  

u la r  determination could not be re je r ted  because of some known experi-  

mental e r r o r ,  a s t a t i s t i c a l  r e j ec t i on  crl.Lerla was alsplicd t o  the grol.lp 

t o  see i f  the  out lying datum could be re jec ted .  This t e s t  was applied 

by d iv i s ion  of t he  di f ference between the  out lying datum and the 

determination c lo se s t  t o  it i n  magnitude by the  range of the  da t a  s e t  

( l a r g e s t  minus smallest  datum). This number i s  compared t o  another 

number, Q, whose magnitude depends on thc  number of determ.i.nations i n  

t h e  s e t  and the  confidence l e v e l  of re ject ion.12 I f  the  former number 

i s  l a rge r  than the  l a t t e r ,  the out lying observation. i s  re jec ted .  Other- 

wise it i s  re ta ined.  The confidence l e v e l  .of the  r e  jecticjn i s  90%. Out 

of  a l l  the  cross-section r a t i o s  determined, only f i v e  had an out lying 

datum t h a t  could be re jec ted  by the  above . t e s t .  

B e  Standard Deviation 

For each product from each t a r g e t  element, the  r e s u l t s  a f t e r  

applying the  above r e j e c t i o n  tes t ' .  were averaged, and the  standard .devi- 

a t i o n  computed. .For ' those  few products wi'th more than t e n  determinations, .. 

t h e  standard deviation,  S, was computed i n  the  usual  way, i . e . ,  1 3  

where x i s  the  average of the  .individual r a t i o s ,  x and n i s  the  
i ' 

number of determinations o r  a given r a t i o .  For the  bulk of the  products, 



ten  o r  l e s s  determinations were'made, so another method,'more accurate 
14 

than the  above formula,  was used t o  determine S,  This method consists 

of f i n d i n g  the range of determinations i n  each da ta  s e t  and multiplying 

i t  by. a number t o  ge t  the  standard deviation.  The value of K 

depends on  the  number of samples i n  a s e t ;  Table I contains the. l i t e r -  , . 

a ture  values of Q and K f o r  .d i f fe ren t  s e t  s i z e s .  
12,14 , . 

' Table I 

Values, of the  r e  j e c t i on -c r i t e r i a  ,factor. . . and 

s~ l ;~ ld~d-de~vv i+ i ; -Lo~~  f etc Lor f u r  dif resent sample s i ze s  
- -  - -  . . 

Rejec t ion .  Standard- 
f a c t o r  .dev ia t ion  

Sample 8 . 9 0  f ac to r  
K . ,.:s,ize 

' 2 - 0.89 

3 '  0 ? 9 4  0 59 

C .    on it or Reaction.Cross *sect ion 

For most spa l l a t i on  work the  cross  sec t ion  f o r  the  reac t ion  
27 2 4 

A1 ( p , g p n ) ~ a  has been used as a standard, and i t s  exc i t a t i on  func t ion  

i s  ,well known. 'This reac t ion  i s  chosen .because of t he  convenient ha l f -  

l i f e  (15-hr) and beta-decay cha rac t e r i s t i c s .  However, f o r  t h i s  work 

many of t he  ikrl idiat ions were too shor t  t o  use ~a~~ and a l so  it was 

desi red t o  use a source of ann ih i la t ion  rad ia t ion  f o r  d i r e c t  comparison 

wi th  the  many posi t ron emi t te r s  of i n t e r e s t  t o  t h i s  study. For these 
27. reasdns, F18 formed i n  the  reac t ion  Al (p,X)F18 was Chosen a s  a monitor. 

Use of t h i s  reac t ion  a s  a .monitor removes ,the counting-efficiency 



correct ion f o r  many'determinations, because F~~ i s  a positron emi t te r  
18 (97% of the  F decays w e  by posi t ron and 3% by e lec t ron  captwe)'. 7 

The counting-efficiency correction,  however, must be made t o  determine 
18 

the  F / ~ a ~ ~  production-cross -section  ratio^, because the  energy of the  
18 

N a a 4  gamma counted, 138 Mev, i s  higher than the  F positron-annihilat ion 

gamma energy, 0.51Mev. The inclus ion of t h i s  correct ion gave a value 
18 

f o r  the F /Na24  production-cross-section t a t i o  of. 0.732 k 0.063 (standard 
27 der iva t ion) .  The p r ~ d u c t i o n  cross  sect ion f o r  the  reac t ion  A 1  ( p , 2 p n ) ~ a  

24 

f o r  5.7-Bev protons was taken t o  be 10.5 mi l l iba rns  (mb) .I1 Recent accu- 

r a t e  work gives the  cross  sect ions  f o r  the  above. react ions  a s  10.4 k 0.6 ,. 

. mb at E = 2.0 Bev &id 10.0 1 0 . 6  mb at  E = 3..0 Bev. l5 lnese  r e s u l t s  
P P 

combirikd wiLh lower-energy work arc a ta ted  t o  be consi'stcnt, w j t h  FL constant 

c ross  sec t ion  of l O . 7 : k  0.6 mb f o r  a proton .energy range of- 0.. j t o  3 Bev. 
A preliminary absolute value f o r  the  cross sect ion fo r  the  reac t ion  

c ~ ~ ( ~ , ~ ~ ) c ~ ~  at 4.1 Bev has been determined t o  be 30.5 k 4.1 mb. l6 1n 
12 

t h i s  work the  r a t i o  of t he  cross sect ions  f o r  the  react ions ,  C ( P , P ~ ) c  
11 

and ~ 1 ~ ~ ( ~ ~  )F18, o ll/o 18 was found t o  be 3.83. (see  Table I1 below). 
C F 

Combining t h i s  with the  d 18/~ 24 r a t i o  given ttbuve and the  10.5 mb . 
F N a  

production cross  sect ion f o r  N a Z 4  from aluminum gives 1 2  11 
c ( P ; P ~ ) c  

equal  to- 29,4 + 3.3 mb. This value i s  i n  qu i te  s a t i s f ac to ry  agreement 

wi th  the value of 30.5 k 4 . . l  mb. The e r r o r  l i m i t  on . the value of 10.5 mb 

w i l l  be taken t o  be 0 ,6  mb i n  agreement with the  r e s u l t s  at  ' lower energies.  

The standard devia t ion taken here t o  .be one half  the  e r r o r  l i m i t ,  i s  then 

112 (0.6 mb) = 0 .3  mb.13 

D. Fina l  Resu l t s ,  

Table I1 conta ins . the  . r e s u l t s  of the  5.7-Bev proton bombardments. 

The two tritium determinations were done by L. Currie and one of the  N a  
2 2 

determinations from the  aluminum t a r g e t  was done my M. Kalkstein.  The 

f i r s t  .column . l i s t s  t he  t a r g e t  elements studied.  The reac t ion  type f o r  

each product i s  given i n  column ,2. The "x" appearing i n  some en t r i e s ,  
. . 

r e f e r s  t o  any group of emitted p a r t i c l e s  which conserves charge and 

nucleon number. Cross sect ions  were determined f o r  a l l  the  radioact ive  



Table I1 

Summary of experimental r e su l t s  

Nwnber of Cross- Standard Cross Standard Error 
Reaction detewina- section deviation, section, . error,  l imi t ,  

Target type Product t ions ,  n 6 
'mb 

- 
An outlying datum hes been re jected from t h i s  s e t .  

'This '1s .the number o roduct e ms produced per number of t a rge t  atoms per square centimeter 
divided by uo *or Mqp,3pn)Ns 'p  



I 

. . 
. .  . 

products'. given i n  column' 3.. The four th  col- . , &ves . .  the.number of bom- 

, bardments made t o ,  determine; the  . c ros s - s e . c . t i o~ , r a t i o  . , f o r .  the.  l i s t e d  
. , 

product. ,  . The . ., s d a t i s t i c d  r e ' j e c t i i n  . . .  . ,  c?i ter$a  , . 'described:. . .  previously was 
. . . . :  . . . . < '  

applied t o  e a c h s e t ,  . . and.. @ny outlying,  datum $hi.ch.~.cou~d be' r e jec ted  was 

not  included. . . The :asterisk$ de;nbte s e t s  from %hi&,  &: outlyingVdatum .-. . . 

w a s r e  jected. , .  In  t h e s e  .cases :. n . ~ x , c l u d e ~ ' : t h ~ _  re jec ted  . . , .  . .  datum. , The 

ari.khmetic' 'average of the n determinations of', \t,he'.'cros,s -section . ra t io ;  
. , .  . . . . .  . 

, . designated ('A .) i s  given i n  column 5. z .,., T h e  va lues  marked with the  
,,: ,;"O .. .A' s u p e ~ s c ~ i p t  , . , arc t h e '  r ~ ~ ~ b e k ' b f  < ' ~ m s  b r 6 d ~ c e d  p e r  number of 

. t a rge t ;  atoms. per square centimeter . . ,  . divided,by: . .  t h e  s e e ,  quantity,, %, fo r  
27 24 the  A 1  , ( p ,3n , )~a  , . : react ion:  Thgse '&&ple; . . we& At count&:d u n t i l .  a l l  

18 '. 
..: 

the  F . a c t i v i t y  i a c  gone. ~ 1 . i  the dt.h&r' va711.k~ m e  based on the  , F 
18 

. . . . . . 
. .  , . . .  . 

. product.ion' cross  section.  .from duminiun. The I f  f th . .  c,ol.+ru~ 11s Ls t l l t  . .  ' .  . .  : .  , 

s t a n d a r d d e ~ i a t i o n  o f  an individual  dete'minatiol? associated with the  
. . 

average. . For. most:' of the  r a t i o s ,  t h i s  number, was d i r e c t l y  determined 

e i t h e r  by use of Table I o r  by the  usual  equation. For those r a t i o s  

f o r  which a correct ion due t o  contr ibut ions  t o  the  a c t i v i t y  from 

o ther  atoms i n  the  molecule had t o  be made, the  'standard deviation was 

obtained by t he  usual  r u l e s  f o r  combining standard deviations,  i .e. ,  13  

. The standard devia t ion of the  cross-sect ion r a t i o  f o r  the  contr ibut ion 
. . 

-to be removed was obtained from...the appropr ia te  en t ry  i n  column 5.and 

divided by t o  obta in  the  standard e r r b r  of the  mean.13 This number 

w a s  used a s  the. standard deviation of .the cross-sect ion r a t i o  of the  

contr ibut ing a c t i v i t y .  For example, t o  , f i n d  the, Cil c r o s s  section ' r a t i o  

from f luor ine  i n  Teflon ( C  F ~ ) ~ ,  the  contributiQn from the, carbon must 

be accounted. f o r .  It' . X i s  t h e  contr ibut ion,  t o  -Chr cross-section 
. . . , r a t i o  from f luor ine ,  then we have. , 

1 x 0 X =' [$ y - , (8). 



where y ,f a , i s  the .observed cross-s6etion . r a t i o  with , i t s  standard 
Y , . 

deviation fo r  cl1 produced i n  Teflon and ' 3.83 k 0.44, i s  the cross- 
11 

I 

sect ion r a t i o  and standard dehiation fo r  C produced in 'polyethylene.  

The seventh column l i s t s  the production .cross sect ions  for. the  

given .reactions.  The Cross :sect ions  are  obtained from the r a t i o s  given 
.27 27 18 

i n  column 5 and 1 0 . 5  mb for, A 1  (p,3pn)Na24_.or, 7 ..68,mb fo r  A 1  (P,X)F 

whichever? i s  appropriate. ~ h k  standard e r ro r s  of the mean c ross  s e c t i o n s  

a re  given i n  cglumn 8 .  This number, Si, g i v e s  the co 'n t r ibu t ionof  Q1 
18 

the ..random e r ro r s  i n .  t h i s ,  wbrk. For t h e  resul ts , ;based . . on .F. as  a 

monitor we . have 

13 2 4 . and f o r  the . few r e s u l t s  ,. based on .Na 

The individual standard deviation, S, i s  given in'column 3. 

Column 9 gives the e r r o r ' l i m i t ,  Ea, asspcfakedwith the given 

cross sect ion.  Besides the random er rors ,  S L , , t h i s  includes the e r ro r  

i n  the monitor-reaction cross,. s ec t ionand  an estimate 

. of systematic e r ro r s  due t o .  the .possible experimental b ias .  This l a t t e r  

category includes such items as  the small amount of water pickup i n  

powder samples during weighing, the s l i g h t  geometry e f f e c t  of positron 

annihi la t ion i n  the s t e e l  disks  on top of the  smp\le, systematic e r ro r s  

i n  the  method used t o  obtain the integrated count r a t e  under a gamma 

peak on the pulse-height analyzer, e t c .  Individual ly  each of these 

e r ro r s  i s  . . less than .l$ and they mtiy work' i n  .opposite direct ions .  some - 
what a r b i t r a r i l y  a f r ac t iona l  e r r o r  iimit of 6% has been taken t o  r ep -  

resen t  the  contribution .of these sources. Sin'ce the standard deviation 
13. i s  taken as  .one half  the e r r o r  l i m i t  we g e t .  , 

a s  the  error. . l i m i t  t o  b& associated with the given. cross section.  For . 

those 'cases which exclude an out lying datum Ea has the g%,confidence 
l i m i t ,  associated with .irt. 



. I V .  DISCUSSION . 
. . 

Among the  many d i f f e r e n t  methods t h a t  can be used t o  iy.stemati- 

c a l l y  evaluate t he  experimental spa l l a t i on  data ,  . th ree  appear t o  be the  . . .  

most widely used. The f i r s t  cons i s t s  of studying the  dependence of the  

c ro s s  sec t ion  f o r  a pa r t i cu l a r  type of reaction'  (e .g .  the  p,pn reac t ion)  

on various parameters . o f , t h e  t a r g e t  and product muclei; The.second 

,method cons i s t s  of a study of the  energy dependence of t he  cross  sec t ion  

f o r  a pa r t i cu l a r  reac t ion  and tar ,get  element. The t h i r d  i s  a study of 

t h e  dependence of the  'cross sect ion in nuclear -reaction .and product 

parameters f o r  a given t a r g e t  element. The f i r s t  two methods w i l l  be 

used here, as they appear t o  be mos't su i t ed  f o r  low Z t a r g e t  elements. 

The t h i r d  3,s ~ i l s i ~ e l l  y i ~ s e d  f a r  higher Z t a r g e t s .  F i r s t ,  cross  sec t ions  

f o r  pa r t i cu l a r  types of reac t ions  f o r  d i f f e r e n t  t a r g e t  and product 

nucle i  w i l l  be discussed (secondary, reackions a r e  included).  The ex- 

c i t a t i o n  funct ions  w i l l  be given fo r  most of the  cross  sect ions  de t e r -  

mined i n  t h i s  work. 

A .  ' Secondary Reactions 
11 ,The c ro s s  s ec t i on '  f o r  the  production of C . from ~e~ contains 

9 contr ibut ions  from the  secondary reac t ion  Be (C%,2h)c1l and the  primary 
16 12 r e a c t i o n s ,  O ( ~ , x ) c ~ ~  and C ( p , p n ) ~ l l .  L i t e r a tu r e  values fo r  t h e  

oxygen and carbon content  i n  beryllium metal  (ho t  press ing from 

bcrylliuni powder ) a r e  0.6.5$ and 0.06% respec t ive ly .  l7 Applying these  
\ 

values.  . . . to t he  ber>llium . t a r g e t  used i n  t h i s  work and using t he  ap- 

p ropr ia te  e n t r i e s  i n  Table I* allows one Co es t imate  a Cil production 

c ross  sec t ion  of' 0.093 mb from carbon and oxygen. This i s  more than 

t h e  observed c ross  s ec t i on  of 0.044 mb, so  one may conclude t h a t  t he  

. observed' cross  sect.ion probably cons i s t s  mainly of contr ibutfons  f~-orn 
. . impur i t i es .  

- 
18 . . 

The c ross  sec t ions  f o r  F production from 5.7-Bev proton bom- 

bardment of .polyethylene and 5 amino t e t r a z o l e ,  10 f 3 pb and 4 f 1 .4 ,pb  ' 
b 

respec t ive ly ,  cannot be explained a s  being due t o  impur i t i es .  I f  one 

assumes a  10-mb c ross  sec t ion  f o r  F18 production from the  impur i t i es ,  



500 ppm t o t a l  impmi t ies  would be requ.ired, which i s  much more than w a s  
18 

found. Crude est imates of F produ.ction by the  most 1,ikely secondary 
1.8 

react ions  give cross  s ec t i ons . fo r  F production from carbon and nitrogen 

a s  0,04 pb and .0 .1  pb respect ively .  These numbers a re  a l so  much too 
. . 

small t o  account f o r  the  observed cross  sect ions .  

Tbe f o i l  s tacks,  from which these  cross  sect ions  were determined 

a f t e r  bombardment, contained th ick  Teflon f o i l s  which were separated from 

the  polyethylene by a 5 mg/cmL polyethylene gugrd f o i l  and from the  5 
.2 amino t e t r azo l e  by a 5 mg/cm (CH ) guard f o i l  an.d one layer  of c e l l o -  

2 n 
yhane tape.  It i s  possible t h a t  some of the  l?18 r e c o i l e ~ o r  migrated 

' in to  t he ' c a rbon .o r  nitrogen t a rge t .  The lower c ro s s ' s ec t i on  f o r  the  

nitrogen t a rge t ,  which had th icker  guard f o i l s ,  supports t h i s  p o ~ s i b i l i t ~ y .  

Consequently, the  experimental cross  sect ions  should be taken .as upper 

l i m i t s .  
1 Q 

The oxygen t a r g e t  shows the  g i r s t  r e a l  evidence of FLU production 

, by nuclear react ions ,  because the  contr ibut ions  f o r  F18 r e c o i l s  and migra- 

t i o n  shbuld be t he  same as f o r  the  c u b o n  and ni t rogen t a r g e t s  whereas t,he 

observed cross  sec t ion  i s  60 1 30 pb, The princip81 reac t ions  leading t o  
16 3 

F18 production from oxygen t a r g e t s  wou1.d be 016(,;d)~18; 0 (H ,n)F'18; 
16 18 18 

0 ( H & ~ , ~ ) F ~ ~  and the  primary reac t ion  0 (p,n)F The contr ibut ion 
18 from the  0 (p,.n)F18 reac t ion  can be shown t o  be small.  A t  400 Mev, 

11 the  cross  sec t ion  fo r  the  react ion B ( p , n ) ~ l l  i s  1 .5  mb,18 and a t  a 
18 

proton bombarding energy of 420 Mev, F -produ.ct,ion cross  sec t ion  .from 

oxygen. t a r g e t s  i s  0.083 mb. l9 If t he  r e a c t l o n  018(p,n)F18 i s  taken t o  

be the  main source of F18> then the  observed c r o s s  sect ion,  corrected 

f o r  t he  abundance of 018 i n  oxygen,'l becomes 40 ~ b .  The dif ference 
18 

between the  B " ( ~ , ~ ) C ~ ~  m d  0 (p,n)~18 reac t ion  cross  sec t ion  i s  too 

g r ea t  t o  be ascr ibed t o  di f ferences  i n  the  t a r g e t  element: Consequently, 

t he  b U  of the  4 0  mb must come from secondary react ions  on 016 and, a s  
18 a first  guess, t he  0 (p,n)~18-rea.ction cross  sec t ion  w i l l  be taken t o  

be 1 .5  mb a t  420 .Mev. This cross sec t ion  w i l l  be taken t o  .be th.e same 

a t  5.7-Bev bombarding energy. The v a l u e  of 1.5 rn-b gives a contr ibut ion 
18 

of 3 pb from the  0 (p,n)$8 reac t ion  i n  na tu r a l  oxygen. 



The cross sect ion f o r  the three  secondary react ions  i s  given by 

a = al a2 R 

where a i s  the  production cross  sect ion f o r  the  secondary bombarding 
1 

p a r t i c l e s ,  a  i s  an average secondary-reaction cross sect ion,  and R i s  2 
. an average r k g e  over which the  secondaries are  e f f ec t i ve  i n  producirlg 

. . 
t he  product. The t r i t ium-,  He3-, : and alpha-pioduction cross  sect ions  

w i l l  be taken a s  30 mb,' 50 mb, and 400 mb20 respect ively  (assuming 
3. 3 4 t h e  B , .  He :He r a t i o  fo r  oxygen i s  ,between t h a t  f o r  beryllium and 

alumihum and not too d i f f e r en t  at 5.7 ~ e v  frdm i t s  va lue  at  335 ~ e v ' )  . 
16 18 . 16 18 

The Q values ' f o r  the  three  react ions  0 ( t  , n ) ~  , 0 ( H ~ , ~ ) F  , and 
18 .16 

0 (a,d o r  p n ) ~  a re  1.7 Mev, 2.0 Mev, and -1'6.3 ~ e v ,  respec t ive ly .  
2 1 

3 Consequently, t h e  ~ n t l r e  range of the  H and He3 ions contr ibutes  t o  

production of F ~ ~ ,  but  f o r  alphas only t h a t  pa r t  of the  range i n  which 

t h e  alpha energy i s  g rea te r  than 16.3 Mev contributes,  t o  the  react ion.  
3 The values of 7 Mev f o r  H and 28 Mev f o r  He! a s  rough average i n i t i a l  - 

2 e n e r g i e ~ ~ ' ~ ~  y ie ld  ranges i n  air of 40 mg/cm2 and 100 mg/cm respec- . . 

t i v e l y . 2 2  The conversion of these  f igures  i n t o  atoms of oxal ic-acid  

oxygen .per square centimeter in '  the  t a rge t  and the  use of 100 mb f o r  

t he  ( t , n )  and ( ~ e ~ , ~ )  reac t ion  cross sec t ions23  ( t he  ~e~ reac t ion  cross 

sect ion i s  taken equal t o  t h a t  f o r  H3 r eac t ion)  gives, from the  pre- 

ceding equation, contr ibut ions  of 4 pb fo r  the  reac t ion  O16(t,n)F 
18 

16 and 7 pb fo r  the  0 (He3,p)F18 reac t ion .  From a energy 

spectrum of alphas produced from l i g h t  nucle i  i n  f i lm by 1-Bev protons, 

it i s  found t h a t  about 10% of the  alphas produced have energies above 

16 ~ e v . ' ~  Taking the  whole.'l0% a s  produced a t  24 Mev, the  range i n  air 

'5 and a necesspry t o  slow a 2 4 - ~ e v  alpha t o  16 Mev a s  30 mg/cm , 
guess of 100 mb f o r  t he  reac t ion  cross  sect ion gives a contr ibut ion of 

18 3 pb f o r  the  reac t ion  O16(cr,d)F' Because the  oxa l ic  acid  was bom- 

barded under the  same'conditions with respect  t o  guard f o i l s  and posi -  

taon i n  the  f o f l  s t ack  a s  t he  5 '&in0 t e t r azo l e ,  the  h&imum F18 con t r i -  

bution from possible  r e c o i l  h d  migration w i l l  be taken a s  5 pb. The 

addi t ion of ,all these  contr ibut ions ,  which a re  though* t o  be .upper 

l im i t s ,  gives a t o t a l  est imate of 22 pb. It i s  d i f f i c u l t  t o  say whether 

t h i s  i s  s i gn i f i c an t l y  lower than 60 f 30 pb. More work would be neces- 

sa ry  t o  decide' t h i s  question.. 



B. p,pn Reaction 

The most noticeable feature  of the p,pn-reaction cross sections 

i s  t h e i r  large var ia t ion f o r  the d i f fe ren t  t a rge t  elements. Bombard- 

ments by Burcham, Symonds, Waxren, and Young ; with  980-Mev protons a l so  

show the same var ia t ion.  26 I n  t h i s  980-Mev work it i s  suggested t h a t  

the  var ia t ion  may be correla ted with the l eve l  s t ruc ture  of the product 

nuclide and t h a t  the deposition energy i n  the product nuclide must be 

l e s s  than the exci ta t ion energy of the f i r s t  par t ic le-emit t ing l e v e l .  

The s e e  f luctuat ion ,of the (p,pn) cross section fo r  d i f f e r en t  t a rge t  

~ 1 e m e n t . n  is show by recent work with 0;3 t o  3 Bev protons. 27 This 

work a l so  suggests a correla t ion of the p,pn cross sect ion with the 

separation energies of the most loosely bound p a r t i c l e s  i n  the products 

and with nuclear s h e l l  s t ruc ture .  These general ideas continue t o  be 

borne out by the da ta  i n  Table 11. I n  a l a t e r  section,  a t heo re t i ca l  

approach t o  the p,pn and other types of "simple" reactions through the 

use of a combination of the s h e l l  and op t i ca l  models w i l l  be developed. I 

Here a fur ther  correla t ion can be developed by using the ideas already I 

I 
brought fo~..l;h. The separation energy of . the least-bound p a r t i c l e  i n  

the product can be used t o  determine which of the uppermost neutron 

she l l s  i n  the nucleus contribute to-  the p,pn react ion.  Only those she l l s  

would be allowed t h a t  l e f t  the res idua l  nucleus with i n su f f i c i en t  energy 

to . emi t  another nucleon. Consequently, it might be expected tha t ,  f o r  

a g'iven energy and .over a r e s t r i c t e d  atomic-weight .range of t a rge ts ,  the 

t o t a l  p,pn cross .section divided by the number of '"available'" nucleons, 

where known, might be constantmZ8 For some of these l i g h t  elements the 

. exc i ta t ion  energy of nucleon holes i n  the "buried" she l l s  c q  ,be .deter- 

m i r l e d  f a i r l y  kambiguously from da ta  i n  the l i t e r a t u r e .  

A ca re fu l  energy ana lys i s .o f  p,Zp react ions  on several  low-Z 

elements with ,185-Mev protons has demons'trated the s ca t t e r ing  of protons 

from protons i n  the buried shel ls .29 For the lp3/2 ' l s l / 2  s h e l l  

spacing was shown t o  be 16 Mev. This i s  more than the binding energy , 

(7.5 Mev) of an alpha p a r t i c l e  i n  c". Consequently, the l s l / 2  

nucleons are  unavailable, and only the four lp3/2 neutrons are  ava i i -  

able  f o r  the p,pn reaction.  The case of d4 i s  mmbiguc~us hecsuse " 



only the  ground s t a t e  of N13  i s  bound: 21 a l l  t h e o t h e r  l eve l s  have 

much . l a rger  ' p a r t i c l e  -emission. widths than ,ga*a-emission widths. This 

means t h a t  only the  l p l / 2  neutron..of N14'c:an contribute.. For N 1 5  the  

ls1/2 q d  lp3/2 .proton-hole s t a t e s  a r k  more. than . l 5  .Mev and 6 , ~ e v  above 

t he  grqAd s t a t e .  Since NX5 and 015  a re  ;mirror nuc le i  and the  Coulomb 

energies  a re  small, these  exc i t a t i on  energies should,be s imilar  , t o  those 

f o r  the  corresponding neutron-hole s t a t e s  i n  0 l5  * This means t h a t  in 

0 l6  the  l s l / 2  neutrons a r e  unavailable bu t  the  lp3/2 (and l p l / 2 )  neutrons 

a r e  avai lable  because the  015 prol;on b i i d ing  energy i s  7.3 Mev. TtIe 

a v a i l a b i l i t y  of the  lp3/2 l e v e l  i s  supported by other  s t ud i e s  of t he  0 15  

l e v e l  s t r uc tu r e .  30 

Determinations of the  avai lable  neutron l eve l s  i n  I?l9 from the  

exc i ted  s t a t e  configurations of F18 and the  binding energy of the  l e a s t -  

bound p a r t i c l e  (4.41 Mev f o r  an alpha and 5.61 Mev f o r  ? proton)Z1 i s  
18 

not  as easy as i n  the  previous cases because l e s s  i s  known about F - 
l e v e l  s t r uc tu r e ,  However, i so top ic  spin,  p w i t y ,  and spin  requirements 

can be used (neglecting co l l ec t i ve  e f f e c t s )  t o  help decide i f  the  

known exc i ted  s t a t e s  can be "buried-shell" hole s t a t e s .  For example, 
18 

t h e  parent  l p l / 2  neutron hole F s t a t e s  of the  ground s t a t e  of F 19 

can have values of the  i so top ic  spin, T, equal  t o  1 o r  0, negative 

p a r i t y  and values of the  spin,  I, equal  t o  1 o r  0 ,  The probabi l i ty  

of producing any one of these  s t a t e8 .w i th  ' spec i f i c  values-of  T and 

I i s  given by t h e  appropriate f r a c t i o n a l  percentage coef f ic ien t s .  A l l  

t h e  exci ted s t a t e s  below and including the 5.60-Mev s t a t e  have 

T = 0 except two, which have T = 1. However, these-two, at  1,08-and 

3 *07 Mev have pos i t ive  / pa r i t y .  219 31 Neither the  i so top ic  spin  no$ the  

p a r i t y  of t he  adjacent 5.67-Mev l e v e l  a r e  known. I f  the  isotopic-spin  
. . 4 se l ec t i on  r u l e s  hold, it probably has T = 0 as it i s  formed by He bom- 

l4 21 The higher l e v e l s  a r e  known t o  be p a r t i c l e  emit- bardrnent of N 
18 ting.21 The above da t a  on t he  F exci ted s t a t e s  ind ica te  t h a t  a l l  the  

parent  l p l / 2  neutron-hole F~~ s t a t e s  with T = 1 are  par t i c le -emi t t ing  

s t a t e s  as  a l l  the  pa r t i c l e - s t ab l e  F18 s t a t e s  wi th  T = 1 have pos i t ive  
- 

pa r i t y .  This means t h a t  the  lp1/2 neutrons a re  unavailable whenever a 



18 
T = 1 F pwen t  s t a t e  i s  produced. It i s  not possible t o  decide at  

\ 

present from the  F~~ l e v e l  scheme whether t h e p a r e n t  s t a t e s  with T = 0 

a re  p a r t i c l e  emit t ing o r  not. Consequently the  two lP1/2 neutrons i n  

t'19 appear t o  be a t  l e a s t  p a r t i a l l y  dava i l ab+e  and may be completely 
. . 

unavailable.  I n  order t o  .have a number. t o  work .with, it ' . w i l l  be assumed 

here t h a t  lp1/2 neutrbhs are c,ornpletely unaveilable. The lp3/2 and 

1s1/2 neutrons should a l so  be unavailable, .because a s  lp3/2 and 1s1/2 

hole s t a t e s  w u l d  have even higher exc i t a t i on  energies than the  lp1/2 

hole s t a t e .  

Much l e s s  i s  known about ~ 6 2 ~  leve l s .  A l l  t he  exci ted s t a t e s  

below 3.'5 Mev should have .T = 0 .by the  i so top ic  spLn se lec t ion  . ru les  
2 4 because they a re  d i r e c t l y  populated b y  the  Mg (d,a)NaZ2 reac t ion .  3 2 

No s t a t e s  have yet  been, .found between 3.5 and '7.5 Mev ( the  proton bind- 

i n g  energy i n  ~a~~ i s  6 .74  Mev.. The spin,  pa r i ty ,  and emission width 

of the  7.5-Mev s t a t e  w e  not given. I n . t h e  absence of f u r the r  in for -  

. mation it w i l l  be assumed here t h&t  t he  lp1/2 n.eutrons a re  unavailable.  

The discussion i n  the: previous paragraphs has shown t h a t .  t he  

number of ava i lab le  neutrons f o r  p,pn reac t ions  can be taken a s  four 

l p3 /2  n e u t r o n s  f o r  carbon, one l p l / 2  neutron f o r  nitrogen,  four lp3/2 

and two lp i / 2  neutrons f o r ,  oxygen, two ld5/2 neutrons f o r  pig, and fou r  
23 ld5/2 neutrons f o r  Na . Tab$e I11 has been prepared using these . numbers ' 

of avai lable 'neutrons .  Columns 1 and .2 1 i s t . t h e  t a r g e t  e l ~ q e n t  and the  

product nuclide.  The ' t h i rd  and four th  columns l i s t  t he  p,pm react ion 

c ross  sect ion . i n  mi l l iba rns  and the  number of ava i lab le  neu$rons. The 

t e n t a t i v e  nature of the  values given f o r  t he  number of avaiTab8e neutrons 

f o r  F19 and sodium i s  indicated by  t h e  parentheses. The f i f t h  column 

gives . the  p,pn reac t ion  cross  sec t ion  per, ava i lab le  neutrqq a It i s  
, in  

immediately seen t h a t  a i s  much more corktant  than i s  o . ind5cating 
i 

t h a t  the re  i s  indeed some co r r e l a t i on  between the  nu,mber ~f avai lable  

neu.trbns and a The. va r i a t i on  outside of the  e r r o r  l b i t s  rqpaining 
P , P ~ '  

, indicates  t ha t ,  a s  would be expected, a .  va r i e s  with the  atomic weight of 
1 

- t h e  taxget  and with t he  i she l l  quantum numbers of the  ava i lab le  neutrons. 



Table I11 
. . .  

p,pn cross  sect ions  per avai lable  neutron f o r  low-Z elements 

p,pn cross  
sec t ion  per 

Available avai lable  . . 
Target Product P,Pn (mb) neutrons neutron a 

i 

c cll 29 + 3 4 7.2 " .8 

N l J13  7.3 2 .7 , 1 7.3 * .7 

o 015 33 + 5 6 5.5 + .8 

A very p laus ib le  mechanism f o r  the  p,pn react ions  which accounts . 

fo r  the lack of var ia i ion  i n  a i s  t h a t  the  incident  proton co l l i de s  with 
i 

one of t he  availabie.r ieutrons i n  the  nucleus., and the  proton, neutron, 

and any mesons produced leave without f u r the r  Interak'Llon i n  the  nucleus. 

This would mean t h a t  t he  t o t a l ,  p,pn cross  sec t ion  would be approximately 

equal  t o  some constant  times the  number of ava i lab le  neutrons, which i s  

jus t  what i s  observed. One would .expect contr ibut ions  t o  the  cross  

sec t ion  t o  be small from proton-neutron co l l i s i ons  in.which the  proton 

( o r  neutron) i s  l e f t  i n  the  nucleus with enough en.ergy t o  exc i t e  the  

nucleus t o  a proton- ( o r  neutron-) emit t ing s t a t e .  This i s  due t o  the  

small  p robab i l i ty  of such nucleon-nucleon co l l i s i ons  leaving one p a r t i c l e  

behind with a k i n e t i c  energy such t h a t  the  nucleus w i l l  emit 'one -but not  

two p a r t i c l e s .  More w i l l  be s a id  about these  considerations i n  -the 

second sect ion.  

C; p,pZn Reactions 

Cross sec t ions  fo r  only two examples of t h i s  type of react ion 'were  
9 16 

., 

determined. For the  reac t ions  Be (p ,p2n )~e7  and 0 .  (p,p2n)014 the  cross 

sec t ions  a re  1 5  mb and I1 k 3 mb, respective, ly.  This type of reac t ion  .is 

not'  so easy t o  i n t e r p r e t  a s  the  p,pn reac t ion ,  a s  .one would expect '~;wo 
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main contr ibut ing mechanisms. One of these  would cons i s t '  of the  incident  

knocking out  a neutron from a "buried she l l " ,  which leaves the  

r e s idua l  nucleus i n  a su f f i c i en t l y  exci ted  s t a t e  t o  em'it another neutron 

( t h e  1 s  'shell i n  c12 i s  a possible example). The ,other mechanism con- 
. . 

sis ts  of a proton knocking out  a neutron ava i lab le  f o r  the  p,pn reac t ion  

and then .one of the  co l l i s i on  products .knocking out  another neutron from 

a s h e l l ,  which leaves the . res idual  nucleus wi th '  i n su f f i c i en t  energy t o  

emit another p a r t i c l e .  I t . i s  d i f f i c u l t  t o  est imate the  r e l a t i v e  con t r i -  

butioql~of these  mechanisms t o  the  observed cross  .sections.  

D .  p,2p2n Reactions 

Two examples of t h i s  react ion 'were  included, namely, the  cross  
16 

sec t ions  f o r  the react ions  N14(p,,2p2n)C11 a r id0  .(p,2p2n)~13 equal  t o  

13  * 4 mb and 6 * 2 mb, respect ively .  The contr ibut ing mechanisms f o r  

t h i s  reaction'  a r e  numerous. Besides one, two, o r ' t h r e e  successive co l -  

l i s i o n s  followed by emission of two, one, o r  no p a r t i c l e s ,  respect ively ,  

from the  exc i t ed  nuclear s t a t e ,  deuterons .can be emitted.  The i n i t i a l  

c o l l i s i o n  can ,be e i t h e r  wLth a neutron o r  a .proton, e t c .  .It appears 

from the  above two cross  sect ions  t h a t  the  f a c t  t h a t  N 1 3  has only one 

bound s t a t e ,  whereas has several ,  i s  influencing t h e  cross  sec t ion .  

This can be seen from a general  study of the  da t a  i n  Table 11, i . e . ,  

from any given t a r g e t  element the  N 1 3  -produe t i o n  cross  sect ions  a re  
15 always l e s s  than those f o r  c ~ '  o r  0 . 

E. p , p n a \ ~ e a c t i o n s  

Cross sec t ions  f o r  four examples of  t h i s . t y p e  of react ion.were  
27 22 18 . . determined. For the reac t ions  A 1  (p.,pnar)~a , ~ a ~ ~ ( ~ , p n a r ) F  , . 

16 " 11 . .  
0 ($,pna)cl1, and C ( p j p m ) ~ e 7  cross  sec t ions  of 17 f 3 mb, 10 f 1 mb, 

I - 12 f. 3 mb, and 11 .+ 1.. 5' hb, respectively.,  were found. Con t rqy  t o  t he  

I p,pn reac t ions ,  these  values a r e  a l l  f a i r l y  uniform. There does not  

appear t o  be any co r r e l a t i on  .,wl:th.:.:. the  number of  bound l eve l s  i n  the  
7 prgd&ts,  i .e . , Be has two, . c~~ has seven o r  e i gh t ,  F'18 h a s  t en  o r  

21~31)32 i i i i s i o n  of the  t o t a l  eleven, and  ti^^ has more than eleven.  
/ 

. . 
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cross  sect ions  by the same number of avai lable  neutrons a s  was taken 

,for the, p ,pi  r e ac t i ons  gives c r o s s  sect ion Contributions per available 

neutron of 2 .1  5 0.3, 2;5 k 0.3, 2 ~ 0 . k  0'.5,, and a.8 k 0 . 4  mb/neutrOn~ 

f o r  aluminum, sodium, oxygen, and carbon target 's,  respect ively .  There 

a r e  probably e i g h t  neutrons avai lable  f o r  ~1~~ because the  ld5/2 

neutron.  s h e l l  i s  closed. 33 1i i s  seen t h a t  t h e s e  values &re almost 

constant within the  e r ror .  l i m i t s ,  The f a c t  .of: the,  const+ncy of these 

numbers i s  of doubtful  use, however,'because there  a re  even more 

mechanisms leading t o  the f i n a l  product than i n  the  previous case. The 
1 

wri t ing jof  t h i s  reac t ion  as a p,pm reac t ion  i s  not meant t o  imply t h a t  

- a f t e r  a proton-neutron c o l l i s i o n  an alpha p a r t i c l e  i s  emitted fo r  a l l  

t he  react ions  leading t o  the  p ,pm product. The alpha may be emitted 

as s ingle  nucleons by knock-on co l l i s i ons  o r  deexci ta t ion,  o r  deuterons, 

t r i t o n s ,  o r  ~e~ may be emitted. Because of t he  l a rge  a lpha-par t ic le  

binding energy, it i s  possible t h a t  t he  proton-neutron co l l i s i on  f o l -  

lowed by exc i t a t i on  by the  c o l l i s i o n  'products of an alpha-emitting 
. . 

m6ce o$ ' the nucleus wi th  o r  without any fu r the r  n.ucl6on-nucleon co l -  
, .. 

. l i s i o n s  i s  a l i k e l y  mechanism. ( 

There a r e  severa l  o ther  types .o f  reac t ions  each represented i n  

.Table I1 by one o r  two examples. Again t h e  large '  number of pathways 

from t a r g e t  t o  product as wel l  as the  imai l  number of  examples f o r  each 

reac t ion  type precludes any d e f i n i t e  conclusion about t he  l ikel ihood of 

t h e  poss ible  mechanisms. 

This work.extends .the cross-section measurements f o r  spa l l a t i on .  

reac t ions  onlow-Z t a r g e t  elements up t o  a proton k i n e t i c  energy of 

5.7 Bev. It is,  consequently,.worthwhile t o  extend the  .exci ta t ion 

.functions t o  5.7 Bev and look f o r  any i n t e r e s t i n g  energy-dependent 

e f f e c t s  .on t h e  cross  ' sect ions .  

Figures 3 t o  10 inclus ive ,  give the  energy dependence of the  

cross  sec t ion  f o r  t he  various reac t ions  s tudied i n  t h i s  work and i n -  

clude . l i t e r a t u r e  .data.   he exc i t a t i on  funct ions  . a r e  p lo t t ed  f o r  a 



proton.energy grea te r  than 100 t o  300 Mev. Each .point has an e r r o r  

l i m i t  associated with .it .which was taken from the  l i t e r a t u r e .  For the  

points  which.were obtained from the l i t e r a t u r e  a s  r a t i o s  of product- 

to-monitor cross sect ions  and comblned with newer monitor cross sect ions ,  

the  e r ro r  l i m i t s  do not include the    relative^^ small)  e r r o r  on the  

monitor cross  sect ion.  The points  without,'any e r r o r  l i m i t  given are  

e i t h e r  the  r e s u l t  of only one bombardment ( fo r  t h i s  work) o r  had no 

e r r o r  l i m i t  given i n  the  l i t e ra$ure .  The smooth,curve drawn through 

each s e t  of points  i s  only mearit t o  serve a s  a ,rough guide., and i n  .a 

few cascs, e . g . ,  ~ c ~ ( ~ , ~ 2 r ~ ) ~ r ~  has hardly any meaning. For react ions  

w*itten a s  t a r g e t  ( p , ~ ) ,  prod<ct X r e f e r s  t o  any combination o f  nucleons 

and fragments emitted that .conserves  charge and nucleon.number. 

1. Beryllium. F'igure 3 gives the  exc i t a t i on  function f o r  t he  
9 reac t ion  Be ( p , p 2 n ) ~ e ~  from the  l i t e r a t u r e  da t a  and t h i s  work,. 19,34 

Except f o r  t he  Bev point  from t h i s  work,. the  c ross . sec t ion  ,appears t o  

be .decreasing strongly with increasing energy. More work i s  de f in i t e ly  

needed t o  see i f ' t h e  minimum around 3 t o  400 .Mev i s  r e a l .  

12  11 
2. Carbon. The exc i ta t ion  functions f o r .  t he  react ions  C (~ ,pn )  c 

and c12 @,pnCX)~e7 obtained from the  l i t e r a t u r e  da t a  15,16,,19,26,35-41 a n d  
12 

t h i s  work a r e  given i n  Fig,. 4. A s  can be seen t h e  C ( p , p A ) ~ ~ ~  react ion 

has been f a i r l y  extensively s tudied.  The exc i t a t i on  function f o r  t h i s  

reac t ion  appears t o  go thr0ugh.a s l i g h t  minimum i n  the  .l t o  2-Bev energy 
12 7 

range. The C. (p,pna)Be.. exc i ta t ion  function . i s  remarkably f l a t  over a 

wide energy range. 

3. Nitrogen. Figure 5 gives the  l i t e r a t u r e  da t a  26,27 and t he  

r e s u l t s  of t h i s  work f o r  spa l lb t ion  reac t ions  on nitrogen.  The e x i s t -  

ence of a minimum i n  the  N14(p,pn)N13 exc i t a t i on  function i s  not de f i -  

ni.te necause of t he  e r r o r  limits i n  the  da t a  points .  .More work i s  

necessary t o  c l ea r  up t h i s  .point.   he :exci.tation function f o r  t he  .re-  

ac t ion  . N ~ ~ ( ~ , X ) C ~ ~  appears : t o  decrease i n  a uniform manner with i n -  

creas ing energy. 
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9 Fig. 3. Be ( p , p 2 n ) ~ e 7  e x c i t a t i o n  funct ion .  0 and A a r e  t h e  
po in t s  from references  34 and 19, r e s p e c t i v e 1 y ; V i s  
from this  work. 
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12  
Fig. 4. ~ ~ ~ ( p , p n ) C ~ ~  end C ( p , p n a ) ~ e 7  e x c i t a t i o n  funct ions .  

C 3  = reference  1 5  9 = reference  35 = reference  39 
I1 11 36 V =  Q = 16 a =  11 40 
I t  . I1 37 o= I a  = 19 a = 

11 41 
It 26 Q =  @ = 

11 38 Q = t h i s  work 
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k.: .Oxygen. The spa l l a t i on  da ta  fo r  oxygen from t h i s  work a re  

combined with the  l i t e r a t u r e  data " ~ ~ 6  t o  give i n  Fig. 6 the  e x c i t i t i o n  
. ' 16 

function f o r  the react ions  0 (p,pn)015 and 016(p,X)N13. The p,pn ex- 

c i t a t i o n  function does not appeak t c )  show the  same minimum as  .:do the 

nitrogen and carbon points . '  However, there  i s  nd da t a  i n  the  1 t o  5-Bev 

region where the  minimum wouldexist , ,  if present.  The general  slope of 

both exc i ta t ion  .fuhctions i n  Fig. 6 seems t o  be l e s s  thdr i ' that  of the 
12 

da t a  f o r  nitrogen and the  C ( p , p n ) ~ l l  react ion.  The pa in t s  f o r  the  

reac t ion  016(p,X)C11 which a re  not  shown revea l  almost the  same magni- 
13 13 ,26 ,  

tude and energy .dependence as  do those fo r  N .. 

5. Fluorine. The most noticeable fea ture  of the  f luor ine  da t a  

i n  Fig.  7 i s  the  s c a t t e r  of the  points ,  e spec ia l ly  f o r  the  'p,pn ::re,-.::.. :.!. 

action.19,26'27 The points  f o r  the  p,pn react ion appear  t o  go through 

a minimum a t  1 Bev and a maximum a t  3 Bev., There a re  no known .reasons 

why the  r e s u l t  from t h i s  work should be lower fo r  the  p , p n  reac t ion  than 
,7 

the  o ther  work; The Teflon f o i l  used i n  t h i s ,  w6rk was'. th icker  (165 .mg/cmL) 
2 ' 26 

than the  f o i l  used by ~ a r k o w i t z  e t  a1. 27 (2  -7 mg/cm ) or  Symonds e t  al.. 
2 

(51.5 mg/cm ) . Also a s  mentioned before, the  aluminum xti6nitor f o i l s  were 

placed .on the  ,down-beam side:of the  f o i l  s tack r a the r  t ~ l h i  the  up-beam 

s ide  as was done by ~ a r k i w i t z  e t  ~ e c o n d a r y  reac t ions  by slow ' ' 

nucleons i n  the  monitor f o i l  can not be the  reason, because - the cross  
18 27 sec t ion  f o r  the  monitor reac t ion  A 1  ( p  ,.x)F . was detjermined under the  

same condit ions.  I f  the  monitor reac t ion  c ro s s ' s ec t i on  were a f fec ted  
27 by secondaries inf luencing the  A 1  (p, 3pn )~a24  cross  se,ction, the  F 

18 
. . 

monitor cross  sect ion would be J-0w.i This does not seem t o  be the  case 

(see  F i g .  8) . Also the  A127(p,X)~18 monitor ' react ion Lhould be r e l a -  

t i v e l y  f r e e  from secondary. inf luence.  

No points  @re given f o r  N~~ production from F19 because work 

done at a protoi energy of 426 t o  980 Mev gives only an upper 1 i m i . t  of 
. 

0.4 t o  0.6 mb.Z6 Nitrogen-13 a c t i v i t y  was d e f i n i t e l y  resolved from the  

decay curves fo r  f luor ine  t a r g e t s  bombarde'd by 5.7 Bev protons t o  g5ve 

a .production ,cross  sect ion of 1 .5  5 0.5 mb.  a able 11). I n  .view of t he  



16 
Fig. 6. 0 (p,pn)015 and 0 ~ ~ ( p , Z p 2 n ) I ? ~  e x c i t a t i o n  funct ions .  

V = reference  19,QA) = reference  26,A ;D = t h i s  work 
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Fig. 7. F19(p,pn)$8 and $9(p ,~ )~11  e x c i t a t i o n  func t ions .  

V = reference  19, n,0= reference  26, @ = reference  27, 

,,,D = t h i s  work. 
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independence o r  s l i g h t  decrease of the  exc i t a t i on  functions with in -  

creasing energy f o r  most of the  react ions  studied,  it i s  d i f f i c u l t  t o  

explain t h i s  apposite trend of the N 1 3  data .  

, 6. Sodium. No curves are  given for'sodium, because there  

appears t o  be no cross-section da t a  a t  high'energ$es i n  the  l i t e r a t w e .  

7. Aluminum. O f  the  ,low-Z elements s tudied i n  t h i s  work, 

aluminum ' i s  the  most extensively studied.  Figure 8 gives; t he  cross-  
1,'j.919,36940.,42 

sect ion .data f o r  the  orten-used monitor reac t ion  . 

.27 22 19'43 The exc i ta -  ~ i ~ ~ ( ~ ~  3pn)Na24 a n d  the  reac t ion  A 1  ( p , p m ) ~ a  , ., 
t i o n  func t ioh ;  f o r  Na24'production i s  a c o q b i n a t i ~ n  of  the graphs given 

by cumping e t  . , a ~ ~ ~  and Hicks e t  a1. 42 ' and the' 10 ;5 -mb p o i n t  a t  5 . 7 . h ~ .  

This curve w a 8  then used t o  convert i n t o  absolute cross sqctions the  

1 i t e r a t u r e  values of r a t i o s  of various reac t ion  .crosS . 'sections t o  t he  

monitor cross  sec t ion  fo r  NaZ4 production from aluminum. 40',43 The da t a  

of ~ rokoshk in  and Tiapkin f o r  ~a~~ production, g iven  a s  r a t i o s  of t he  
\ 40 

cross  sect ion a t  a given proton .energy t o  . ~ t h a t . a t  660 Mev, was .convenl- 

t e d  by means of the  above curve, and the  r e s u l t i n g  cross-section points  

were added. Rat ios  were a l so  given f o r  ~a~~ production. Theyvere  not  

included, because the  N a Z 2  e x c i t a t i o n  function i n  F ig .  8 i s  n o t  r e -  

l i a b l e  enough t o  use t o  convert these  r a t i o s .  i n t o  cross  sect ions .  

Inspection of Fig. 8 shows t h a t  the  exc i t a t i on  function fo r  

~a~~ production i s  f la t  above 0.5 Bev within  t he  e r r o r  l imits , ,  whereas - 

t he  N g Z 2  da t a  show a decrease i n  value w i t h  increas ing energy. The 
27 curious minimum i n  the  A 1  (p,3pn)Na24 exc i t a t i on  curve may be an ex- 

pression of a possible increase i n  the  cro.ss . . sec t ion  due t o  the  onset  of 

meson p r o d u c t i ~ n ~ ~ ~  although the  work of Prokoshkin and Tiapkin does 

not show such a minimum. 40 

Figure 9 shows the  exc i t a t i on  f u n ~ t i o n 2 ~ ' ~ ' ~ ~ ~ f o r  t he  react ion 
27 A ~ ~ ~ ( ~ , X ) F ~ ~  and A 1  ( p , ~ ) ~ 1 3 .  No points  a r e  given f o r  d5, because 

at the  time t h a t  t he  work i n  the  l i t e r a t u r e  was done, the  existence of 

3.4-min NeZ4 was not known.7 The points  f o r  F18 production taken from 

the  works of Friedlander e t  a l .  43 and ~ a r ~ u e z ' ~  were increased by 3% 
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t o  account f o r  the  396 electron-captl:lre decay branch7 i n  F18* The F 18 

poin t s  above . 1 Bev show l i t t l e  var ia t ion  with energy, with the  "usual" 

increase with decreasing energy below 1 Bev. Contrary t o  most of the  

data ,  the  N~~ points ind ica te  an increase i n  cross sect ion wi th  increas-. 

ing  proton energy. N~~ may be a s u f f i c i e n t  number of !ass un i t s  away 

from the  t a r g e t  atomic mass that:.high-energy ... incident  p a r t i c l e s  would 

be needed t o  cause the  emission of the  r equ i s i t e  numbef of nucleons, 

e i t h e r  s ingly  o r  i n  ch+s. 

The. points f o r  and ~ e ~ '  from aluminum i n  F ig .  '10 
19 39 43 

shuw eve11 s4;ronger i n c ~ e a s e  'with increas ing protpn energy. ' ' -' ' 
Again, a s  has been suggested, the  incident  energy necessary t o  cause the  . 

required mass change may be high.43 Because t h e  r i s e  i n  cross  sect ion 

continues i n t o  the  Bev region,. it seems qui te  poss ible  t h a t  the  increase 

i n  average number of mesons produced per nucleon-nucleon.collision i n  

the  nucleus i s  important. 
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v. SUMMARY 

I n  general  the  spa l l a t i on  cross sect ions  f o r  5.7-Bev protons 

incident  on low-Z elements .show no s t r i .k ing di f ference from those ob- 

tained,  on .the same elements at  500 Mevrand up. Some .of the  react ions ,  

i n  .pa r t i cu la r  those which', lead t o  products .l atomic mass u n i t  ( m u )  

away from' the  tapget ,  y ie ld  cross  sect ions  .which vary qu i te  a b i t  from 

element t o  element. Other reac t ions  y ie ld  cross sect ions  t h a t  a r e  qu i te  

independent of the  t a r g e t  atomic number. The exc i t a t i on  functions,  when 

extended up t o  5.7 Bev, exh ib i t  no d i scon t inu i t i es  o r  strong energy 

dependence. Most.of them are  . e i t he r  independenrt of 'or decrease somewhat 

.with . increasing b o m b ~ d i n g  energy i n  the  Bev energy range. A couple .of 

p,pn exc i ta t ion '  functions seem t o  have a s l i g h t  minimum i n  .the .1 t o  2-  

Bev energy region, bu t  the  minimum i s  within t h e  e r r o r  1 i m i . t ~ .  There 

a r e  a l so  a few exc i t a t i on  func t i ons . t ha t  increase with increas ing energy 

i n  the  Bev region.  These a r e  a l l  fob products whose mass i s  at l e a s t  

14 amu l e s s  .than t h a t  of the  t a r g e t .  It appears (see   a able 111) t h a t  :. 

the re  i~ a ctrong cor re la t ion  between ,the magnitude .of the  p,pn crooo . . . ...- .:... .:....' 

sec t ion  and the  n q b e r  of ava i lab le  nucleons i n  .the t a r g e t  nucleus.. 

I n  the  .next sec t ion  an .attempt w i l l  be made t o  develop a theory t o  .ex- 

p l a in  .the ..magni.tude and ves ia t ion  of the  p,pn and , r e l a t e d  cross  .sections.  



NUCLEAR' REACTI.ONS ', OF LOW -Z EWNENTS WITH 5.7 -Bev PROTONS: 
. . 

NUCLEAR STRUCTURE 'AND SIMPLIE: NUCLEAR. REACTIONS . , 

. . 
I n  recent yea,& a la rge  number .of '  cross .sectior?s for v a r i ~ u s  types 

.. 11,.26,44-50. - .. . '  
of spa l la t ion  react ions  has a,ccumulated., . . . . The' Monte Carlo 

517 52 coupled with : a  ~ e h i  gas incid&l of the  nucleus  has been used -to ;ne thod 

i n t e rp re t  the ..experirneritai r & u l t s  .' A t  'medium and .hi'gh' bombarding energies 

(hundreds .of Mev and .up> and f o r  whose mass i s  more than a .very 
. . 

Pew atomic mass u n i t s  l e s s  than . . t h a t  of thk t a r g e t ,  the  ex i s t i ng  calcula-  

t i o n s  are  i n  f a i r  agreement with t he  gxperiinental r e s u l t s .  3  How- 

ever,  f o r  (p,pn) 'and (p,2p) ' r eab t ion  products whose mass i s  .one u n i t  l e s s  

than t h a t  of t he  t a rge t ,  the  calcula ted cross  . . sect ions ,  when compared t o  
. . 

experimental val.ues, a re  low by a fac tor  of two t o  three .  11,52954 A l s o  

t he  ca lcu la t ions  p red ic t  a  smooth dependence 'of the  .cross sec t ion  .with .the 

atomic mass of the t a rge t ,  whereas the  experimental p,pn h d  p,2p cross 

sect ions  show qui te  an e r r a t i c  var ia t ion .  It has been suggested t h a t  add- 

ing  a d i f fuse  nuclear boundary t o  t he  ex i s t i ng  Monte-C&lo ca lcu la t ions  - 

would cor rec t  t h i s  discrepancy.52 Possible she l l - s t ruc ture  e f f e c t s  have 

been advmced. a s  an explanation fo r  t he  'apparent i r r e g u l a r i t y  i n  t h e  ex- 
26,27 perimental values.  

Because of the  ex i s t i ng  discrepancy, it was thought worthwhile t o  

t r y  a method of ca lcu la t ing  p,pn c r o s s  se.c.tions based on . the o p t i c a l  and 

s h e l l  models wi th  a d i f fuse  nuclear surface .  Recent work has shown t h a t  

such an approach i s  p rof i t ab le ,  and pro ton . , sca t te r ing  by protons i n  buried 

s h e l l s  has been descr'bed. Throughbut the  r e s t '  of t h i s  work the  d i n -  

cussion i s  r e s t r i c t e d  mainly t o  p,pn cross  sect ions  because of t he  pre- 

ponderance of p,pn over p,2p cross:-section d a t a i n  the  l i t e r a t u r e .  How-. 

ever,  with minor changes, the  t h e o r e t i c a l  r e s u l t s  apply j u s t  as wel l  t o  - 
+ '  

p,2p, ~ , ~ n -  ( including ~ , n ) ,  p,pn , and possib* p,pg reac t ion  cross-  

sect ion da ta .  I n  or<er t a  3ic;plify certaj .n s spec t s  of ~ a l ~ ~ d & t i o n ,  

t h e  theory i s  developed t o  be v a l i d . i n  t he  multi-Bev region of bombarding 
energies .  



11. p,pn REACTION PATHS 

A consideration of p,pn react ions  ' indicates;  t h a t  there  a r e  severnl  

;?ossible paths by which .an isotope containing one neutron . l ess  than .the 

t a rge t  nucle i  can be  produced. , 1f the  protqn-neutron c o l l i s i o n  i s  i n -  
. . 

e l a s t i c ,  the  p,pn product can be,formed as  follows: 

(a) A l l  t he  colli 'sioni can escape without f u r the r  i n t e r -  
. . .  . . . . . . .  . : :act ion .in the  nucleus'.. The n e u t ~ d n  must have been .knocked 

out o f a  she l l ,  which leaves the  nucleus . in . -an exci ted "hole" 

s t a t e  s tab le  t o  p a r t i c l e  emission.. 
I . . 

( b )  A neutron can be l e f t .  behind . with . an. energy,  increase (about 

8 t o  16 ~ e v ) .  such t h a t  the  primary c o l l i s i o n  i s  .followed by 

nuclear emission of only one neutron. ,me  Coulomb b a r r i e r  

suppresses proton emission f o r  a l l  but  the  low-Z elements. 

A proton-proton i n e l a s t i c  c o l l i s i o n  can a l so  form the  .p,pn product by: 

( c )  . Leaving a proton behind with an ehergy increase ( a l s o  about 

8 t o  16 ~ e v ) )  such t h a t  the  primary c o l l i s i o n  i s  followed. by 

nuclear.emi.aaJ.on of a neutron. . 

E l a s t i c  p-n 'and p-p co l l i s i ons  form the  p,pn .product by the  same pathways 

a s  for  the  . i ne l a s t i c  p-n co l l i s i ons ,  Similar  pathways a l so  hold f o r  t he  

.p,2p reac t ion  cross  sect ion.  
' ( ' , 

- .  
An est imate ' o f  the  . r e l a t i v e  contr ibut ion df processes (a) and ( b )  . 

can be made by reference t o  the  experimental cloud-ch8mb.e.r da t a  on p-n and 

prp co l l i s i ons .  .Out of 134 i n e l a s t i c  events caused by 1.,72eBev neutrons on 

hydrogen gas, 56 86 events produced neutrons' by t he  reac t iok  (np , ' npn+ E - )  . 
The re.st  of the  events consisted of t he  reac t ions  (np, pp~r-) .  and (np, 

no). Only two out  of the  86 events,  which are the  only ones t h a t  can 

contr ibute  t o  t he  p,pn cross  sect ion by pro6esil, ( b )  produced protons with , 

en energy a s  low a s  40 Mev. The lowest-energy . . neutron had, a k i n e t i c  energy 

as low a s  74 Mev. A study o f  201 i n e l a s t i c  events caused Sjy 3.8 -+ 2 .4 -~ev  
+ - neutrons on protons57 showed t h a t  the re  were 35 PPn- events,  97 pnn n 

' + - 0  events,  .34 pnn n n . events ( t he  dots. r e f e r  t o  o ther  possible neu t r a l  

pions),  and 35 events of various types t h a t  produce between two and f i v e  

pions. The 131 pnrr+n- and pnrr+a-no. . events provided only une proton with 

a k i n e t i c  energy l e s s  than .20 Mev. 



These r e s u l t s  can be used i n  the  following manner: For 1.72-Bev 

neutrons on hydrogen-,. no protons 'from. 86. events were found with k ine t i c  

e,nergies i n  the  8 t o  16:-M,ev range. For th6 3 ..8-3ev ?edtrons on .hydrogen, 

one proton from 1 3 1  events ,had a kineti-c energy .w.ithin the  8- 'to 16-Mev 

range. The'se numbe.rs. are fo,r high-qnergy neu%rons' on protons. For high- 
' ,  . , 

energy. .protons . i nc iden t ,  on neutrons, . these -same . , r ,e i i i t s  :.should hold i f  
+ - . +  - 0 :neutrons a r e  exchanged f o r  protons i n  the. :pl<.n n .and prin f l  n: events .only. 

These numbers give a re la t . ive  contribution .from process (b)  which i s  < 2$ - 
of process ( a ) .  

The r e l a t i v e  contr ibut ion of. pro,ce,sk ,(.c)., i s  more d i f f i c u l t  t o  

est imate,  a s  %here .are i.lo laboratory-syst&& s c a t t e r -  diagrams fo r  i n e l a s t i c  

s a p  co l l i s i ons  i n  the  literature. Howcver, one can u ~ e  the  n-p s c a t t e r -  

diagram da t a  by assuming t h a t  the  energy and angular d i s t r i bu t i ons  Yor 

t h e  sca t te red  p a r t i c l e s  i n  the  ppn- and ppn-n:O react ions  from n-p c o l l i -  
+ + 0 s ions  can be used f o r  the  pnn and pnn n reac t ions  from p-p co l l i s i ons  

respect ively .  An analysis  of 2.75-Bev p-p events58 shows t h a t  slow protons 
+ + 0 a r e  produced i n  pnx and pnrc sr events ( t he  neutrons have high momentum). 

+ Since the majori ty of two-prong i n e l a s t i c  events ' are prln arid gln+no types, 

t he  f r ac t i on  of the  i n e l a s t i c  events from 6.2-Bev p-p col l is ions59 which 
+ a r e  two-pronged, 0.32, was assumed t o  apply t o  pnn: and pnn+no events 

only.  Out of 35 ppn- events from 3.8 + 2 . 4 - ~ e v  neutrons on hydrogen, 

1,hree produced protons with k ine t i c  energies between 8 and 16 Mev. The 

above assumptions and the  assumption t h a t  a prp c o l l i s i o n  i n  a nucleus i s  

equal ly  probable t o  a p-n c o l l i s i o n  gives the  value of the  relaLlve cont la i -  

bution of process ( c ) .  This i s  < - 0.32 x 3/35 = 3% of process (1). Conse- 

quently, t h e  r e l a t i v e  contr ibut ion of processes ( b )  and ( c )  i s  < - 5% of 

process (a) and can be neglected. 
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111. APPROXIMATIONS 

A .  Impulse Approximation 
: 

A t  high incident  energies the  impu,&se approximation should be 

valid: 60 i . e . ,  the  ,wavelength of the  incidknt proton i s . s u f f i c i e n t l y  

shor t  t h a t  .the proton .may .be considered t o  i n t e r ac t  with .only 'one nucleon 

at  a time i n  the  .nucleus. .The e f f e c t  of the  r e s t  .bf the  .nucleons i s  the  

provis ion.of  a po ten t ia l .we l1  and r e su l t an t  momentum d i s t r i bu t i on  fo r  the  

paxt icular  t a r g e t  nucleon .considered. Also . the  .time it takes the  incident  

nucleon t o  .cross  .the nucleus . i s  ,so .short t h a t '  t he  .nucleus .would not have 

time t o  rearrange . i t s e l f . o r  a f f e c t  .the course of the  .elementary co l l i s i on .  

The exclusion .principle .has a negligible e f f e c t  on the  .elementary nucleon- 

nucleon . co l l i s ion ,  a s  the  amount of momentyn .space . . forbidden i s  negl igible  

.compared t o  the  volume avai lable .  The . incident proton .can .then .be con- 

s idered t o  have ;"'snatched1' a nucleon from the  nucleus .so . f a s t  . that  the  

only e f f e c t  i s  t o  leave the  t a r g e t  nucleus . in  an exci ted nucleon-hole 

s t a t e O 6 l  If the  products of the elementary co l l i s i on  get  ou t  o f  the  

.nucleus without fu r ther  in teract ion,  and ,the r e s u l t a t  .excited state of 

the  nucleus i s  .not a .part icle-emitt ing , s t a t e ,  the  product nucleus .contr i -  

butes . to ,the p,pn o r  p,2p cross section.  

B . Zero -Degree Scattering-Apgle Approximation 

. Another approximation.which grea t ly  simplifies.the.calculations i s  

that,  f o r  i n e l a s t i c  n-p and p-p co l l i s ions ,  t h e  p a r t i c l e s  are \scat tered at  

zero degrees . i n  . the . laboratory system, The v a l i d i t y  of th i . s  approximation 

.can be .seen from an examination of . the  . . f r e e  n-p and p-p co l l i s i on  data.  
56 Cloud-chamber da t a  taken .for 1 -72-Bev-average -energy neutrons .on hydrogen : 

show t h a t  twee- four ths  of the  doubly produced mesons have a median lab- 

ora tory s ca t t e r i ng  a n h e  .of 36 degrees. The nucleons associated with these  

mesons have a median,.laboratory s ca t t e r i ng  angle of 17 degrees. Singly 

produced mesons and t he  .associated nucleons have .median laboratory sca t -  

t e r i n g  &gles .o f  34 degrees.and 20,degrees respec.tively. I n e l a s t i c  events 

produced by 3. 8-Bev-average -energy neutrons on  show t h a t  .one 
. . 

ha l f  the  p a r t i c l e s  ,are  emitted w i t h i n  20 degrees laboratory of the  primary 



beam, and two. th i rds  within 30 degrees .of the  primary bean. Roughly one- 

hal f  of the i n e l a s t i c  events emit a l l  par t i .c les  wi.thin .35 degrees of the 

forward d i rec t ion ,  and there  are  only a few events which emit two o r  more 

p a r t i c l e s  a t  an angle g rea te r  than 35 degrees. Three-fourths of the  

charged p a r t i c l e s  produced by 5.3-Bev p-p co l l i s i ons  emerge wiLhin 20 
6 2 

degrees o f t h e  incidentbeam,  O the rwork ind i ca t e s  amed ian l abo ra to ry  

s ca t t e r i ng  angle of 32 degrees f o r  neu t ra l  pions produced by 6 . 2 - ~ e v  

proton-nucleon co l l i s i ons .  63 Cosmic -ray work ind ica tes  t h a t  f o r  higher 

incident  energies,  t he  medlarl laborttlury sca1l;tring m g l c  i n  aG cmall as, 

o r  smaller than, the  values given above. 3/54 

Contrary tu t he  case f o r  i n e l a s t i c  co l l i s ions ,  the  approximation 

of a zeru-degree scattering angle fo r  the prnducts i s  de f in i t e ly  inva l id  
n f o r  n-p and p-p e l a s t i c  col l i sons .  Yhe cos @ anlgulttr depeadencc talcen t o  

be the  same i n  the  forward c.m. hemisphere f o r  p-n as f o r  p-p co l l i s ions ,  

( ~ ~ ~ e n d i x  I )  ensures t h a t  a t  high energies (n>>l) 65966 e i t h e r  one o r  the  

o ther  of the  nucleons has a very high probabi l i ty  of being sca t te red  at  

l a rge  angles (c lose  t o  90 degrees) and having a low energy i n  t h e  lab-  

ora tory system. A t  5.7 :Bev, the energy and scat , tering angle of the  
< 

t a r g e t  p a r t i c l e  i n  the  laboratory system corresponding t o  the  angle i n  
n 

the  c.m. system at which most nucleons are  emitted ( the  maxirn~uri of cos Q 

s i n  Q were n = 36) 65966 i s  39 Mev and 80 degrees ( ~ ~ p e n d i x  I ) .  The same 

cosine dependence of the  s ca t t e r i ng  angle ensures t h a t  the  other  nucleon 

i s  sca t te red  at  almost zero degrees i n  the  laboratory sysLeril. 

The i nva l i d i t y  of the zero-degree laboratory scattering-angle 

approximation f o r  e l a s t i c  p-n and p-p co l l i s i ons  i s  one of the  reasons 

t he  ensuing treatment i s  r e s t r i c t e d  t o  muldi-Bev bombarding energies where 

the  e l a s t i c  f r ac t i on  of the  t o t a l  c o l l i s i o n  cross  sect ion i s  low, Since 

the  contribution t o  the  p,pn cross sect ion from e l a s t i c  p-n co l l i s i ons  can 

be only crudely estimated, r e s t r i c t i o n  of the bombarding energy t o  the 

multi-Bev region minimizes the e r r o r  i n  t h i s  est imation.  

C. Use of Class ica l  Trajector ies  

Another he lpfu l  approximation depends on . the  - f ac t ' . t ha t  a t  'Bev 

energies the  .wavelength of the  incident nucleon . i s  small compared t o  



nuclear dimensions (X i s .  0.03 fermis f o r  a 6-Bev nucleon). Consequently, 

the  incident  nucleon may be considered t o  have a , c l a s s i ca l ' t r a j ec to ry  i n  

the  nucleus. The p a r t i c l e s  scattere.d i n  the  . inela;st ic p.-n o r ' p -p  col-  

l i s i o n  i n  the  nucieus w i l l  a l so  be assumed to. have c l & s s i c a l  t r a j e c t o r i e s  
. 

(% i s  1.1: and 0 .4  ' fermis f o r  100-Mev -p$ons . . kd, i iucleons  respec t ive ly) .  5 1 

On,-the.0the.r hand .  a l 1 , t h e  &&get nucleons have . insuf f ic ien t  momentum, 

e s p e c i a l ~ y  i n  the  : sur:face region'y- to . 'be: ' t rea ted c l a s s i ca l l y  and w i l l  be 
, 

. , 
t r e a t ed  quantum mechanically. 

. . 
D .  Other ~pprox lmat ions  . '  . . ,  . 

The use i n  t h i s  'work of ,the' high.-energy c,loud-chamber s c a t t e r  - 
diagram da t a  depends on the  assumption t h a t . t h e  .energy and angular d i s t r i -  

butions.  of the  sca t te red  p a r t i c l e s  f o r  f r ee  n-p co l l i s i ons  cari be !"in- 

verted" t o  describk p-n . .coll isions and then.  l i ' f t ed  i n t o  the  nucleus with 

only small r e su l t an t  changes. The . inversion c& be accomplished by ex- 

changing the  forward c .m . hemisphere f o r ,  the  backward 'c im. hemisphere. 

The angular and energy d i s i r i bu t i ons  .of the  sca t te red  p a r t i c l e s  i n  the  

.nucleus w i l l  be a f fec ted  by a number of f a c t o r s  such a s  t h e  ~ a u l i  ex- 

clusion p r inc ip l e ,  motion of the  t a r g e t  nucleon, e t c .  It h i l l  be shown 

l a t e r  t h a t  rndst of the  contr ibut ions  t o  the  p,pn . react ion :come :from the  

nuclear surface .where the  e f f e c t  of these f ac to r s  i s  ' s m a l l .  



A. Development 

By the  use of the  previously discussed apiroximations, the con t r i -  

b a t i ~ n  t o  the p,pn cross  sect ion from i n e l a s t i c  p ~ n  co l l i s i ons  [process 

(b)]  can be found. Consider a cy l i nd r i ca l  coordinate system wl~bse o r ig in  

coincides with the  center  of a nucleus and i r l  which a proton i s  coying i n  

p a r a l l e l  t o  the  z  ax i s .  Then, f o r  a given p-n i n e l a s t i c  in te rac t ion  which 

produces 2  nucleons arid t -2  mesons, the  probabi l i ty  per mil-, path length,  

P , t h q t  the  incident  proton ge t s  t o  a point  r ,z ,q  without in te rac t ing ,  
t Yk 

co l l i de s  ,with the  k th  - nucleon, and"al1 the  c o l l i s i o n  products escape with- 

ou t  fu r ther  in te rac t ion  i s  
03 t z  

The f i r s t *  exponenti'al. f a c to r  gives the  probabi l i ty  t h a t  the  proton ge t s  

t o  r,z,cp without co l l id ing  with any nucleons, and the  second exponential- 

g ives  t h e  probabi l i ty  t h a t  a l l  the  co l l i s i on  products escape (with 0' 

s ca t t e r i ng  angle) without f u r the r  in te rac t ion .  The increment of path 

length,  dy, i s  along t he  path  of the  incident  and emergent p a r t i c l e s .  

Here a  P (r  z  @ f s  the  p robabi l i ty  per  un i t  path  length  t h a t  the  i n c i -  2 k  
dent proton co l l ides  i n e l a s t i c a l l y  with the  k th  - nucleon at  r z  cp. The 

i n e l a s t i c  p-nucleon i n t e r ac t i on  cross sect ion i s  rr2, and Fk (r  z  cp) i s  

t h e  normalized probabi l i ty  per u n i t  volume of f inding the  k th  - n11.cleon 

at  r, z, 9. m e  t e A  p ( ~ )  (R' = r + y  , where y  i s  equivalent  t o  z )  

gives the  t o t a l  nuclear densi ty  d i s t r i bu t i on  i n  the  t a r g e t  nucleus and 

pB (h )  i s  the  same as p ( ~ )  except t h a t  the  - k th  nucleon has been removed 

from the  t o t a l  .nucleon densi ty  d i s t r i bu t i on ,  because a f t e r  the  col l i . s ion 

it i s  .one of the  . co l l i s ion  products. The t o t a l  i n t e r ac t i on  cross sect ion 

f o r  the incident  proton .wi:Lh a . : target  nucl.eon i s  o  ' The oi a re  the  
1 ' 

f r e e  nucleon-nucleon and pion-nucleon t o t a l  .col l i s ion cross sect ions ,  arld 

t he  sum 'f s  over a l l  t he  t .par t i c les  .produced i n  the  pa r t i cu l a r  type of 

p-nucleon i n t e r ac t i on  under consideration. The i n t eg ra l s  i n  the  exponents 



give the  t o t a l  number of nucleons per un i t  arqa along the  path lengths 

of the  incident  and emergent p a r t i c l e s .  The two exponential terms a re  

t he  equivalent  of factors,  used i n  .the o p t i c a l  model t o . g ive  the  damping 
67 of the  . incident .and .emergent, pa r t i b l e  waves.. . 

. . 

If the  t a r g e t  nucleus i s  i n  .a  ' ~ & ~ $ f d w .  be- of bombarding protons, 

the  cross -section koi-tribution- . a tk '  t o  s ing le  ,col l i s ion . . ,processes from 
. .. .. . 

t he  k thnuc leon  - i s  obtained by in tegra t ing  P -&long the  length and 
t k  . . . .  

then weighting the  r e s u l t  by rd rdq  a n d  in tegra t ing  . I .  over . ' a l l  r and 9. 
. . This gives . . 

The constant o2 can bemoved outs ide  t he  i n t e g r a l s :  . . I f  :one s e t s  a , t k  

equal to u2 Mtk, then u2 csn  . be . l g n o r e d a t  t h i p  otage'. An aveyagc of 

Eq. , (11) over the  i n e l a s t i c  c o l l i s i ~ n  t y p e s  ( d i f f e r e n t  vs lues  qf. t,) ' . . 

and energy spectrum o f  the  s ~ k t t i r e d  par6i&les (dif fekent  value's of 
. . each .ai) gives the  r e s u l t  , , . :' . .  . . . 

Z 

exp - p ' ( ~ )  dy) pk (1 z cp) dz ., , ' (12) 
-co ' t  : .  

where o i s  an appropriate average of Ei, ,&d .Iv& may be regarded a s  

the  f r a c t i o n a l  a ~ a i 1 a b i l i . t ~  of t h e .  i=l kt'h - nucleon, i n  t he  .nucleus 
. .  , 

f o r  s ing le -co l l i s ion  processes. 

The f ac to r  Pk i s  given .by 
. . 



where Y i s  t he  antisymmetric nuclear wave function. Because the  i n t eg rmd  
A 

i n  Eq. (12)  depends oniy on the  space coordinates of the  k th  - nucleon, the  

in tegra t ion  i n  Eq. (13) i s  over the  spdn coordinates of a l l  the  nucleons 

and the space coordinates of a l l  nucleons except those of the  k th .  I f  the  - 
nucleus i s  regarded a s  an assembly of independent p a r t i c l e s  , YA i s  equal 

t o  the  normalized S l a t e r  determinant. Substf tu t lon of t h i s  determinant 

i n t o  Eq. (13) and performance of the  in tegra t ions  over the  coordinates of 

a l l  nucleons (k th  - excluded) gives 

The 7 ( /  (T ) represents  the  s ing le -par t i c le  wave functions of the  k th  nucleon, 
9 k - 

~ m d  q stands f o r  a s e t  of quantum numbers needed t o  specify a nucleon com- 

p l e t e ly .  The sum i s  ,over a l l  A ,  s e t s  of q, where A i s  the number of nucleons 

i n  the  nucleus. -The experimental evidence i n d i c a t e s . t h a t  nucleons i n  the  
i - 

68 
nucleus  show s t rong sp in-orb i t  coupling.  . Consequently, i f  the  116 (rk) 

represent  ind iv idua l -par t i c le  wave functions t h a t  a re  spin-orbit-coupled, 

they mist  be transformed so t h a t  t he  space apd spin  coordinates appear. 

e x p l i c i t l y .  . h i s  i s  .done .by use of the  Clebsch-~ordan ' .coeff ic ients  t o  
' 69 .give 

where T ( x ~ )  i s  the  r a d i a l  p a r t  of the  wave function,  n2 j  Yh i s  a 

normalized spher ica l  harmonic, and ' , s , m  
.-m,, , i s  the  s p i n  function.  FO> a 

given m the  sum over m.. i~ res t r i c t ed  
j ' b y  the requirement t h a t  m a 

equal  m + m where m i s  e i t h e r  + 112 o r  - 112. 
2. s '  S 

A given term i n  the  q sum i n  Eq.  (14) r e f e r s  t o  a spec i f i c  s ingle-  

nucleon s t a t e  wi th  quantum numbers n,L, j , m j  . There are  (n+p) ' terms i n  
nhT j 



. . 
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. . 

. . 

the  q sum which d i f f e r  only by. m where cn+p)naj. i s  the  nurmber of nucleons 
j' , 

. . 

i n  t h e $ & j  s h e l l  ( t he  . subscr ipt .  . n i s  the  p r inc ipa l  quwtum:n&nber> Because 

each nucleon ' i n  .a  given . s h e l l  may as'sume any, one of .  . the, m values, an av- 
- j 

.erag& over the m values must bk taken. . The ..tai.get nucleus i s  bombarded i n  
j . . . . 

an e s s e n t i a l l y  . f i e ld - f r ee  , region as far as  it& al ignment  i s  concerned,  so 
I .  . <  

t h a t  each one ' o f  the  m s t a t e s  i.p .equal ly  probable. s u b s t i t u t i o n  o f  Eq. . .  .:. , 
j . . . .  . 

, . 
(15) i n t o  Eq. ( i 4 ) ,  breaking up the  . . sum i n t o *  d&'r i 2 . j   hell^, and 

aheragin& over ' the m values ,using t h e  operator . , , . ' . .  . 
, J , .. . . . . . . . . .  . . .  

. . .  

. . . . . . .  . . . 
. . . . m . ='-. j . . 

J .  . .. . . .  
. . . . gives the ,  r e s u l t  . .  . . . 

. . 

The equal p robab i l i ty  t h a t  rn assume a n y  value between -j and j allows 
j 

m.: t o  assume all of i t s  values between -3, a+~d &. The k ' s& can be done .a 3 .  . 

by use Of s t&dard procedures6g f o r  manipul&F,ing; ~iebsih-Gordan coef f i -  
. . . .  . 

c i en t s  t o  give . :  . . 

70 Use of  the  spherical-harmonic addi t ion theorem,, 

gives 



Subs t i tu t ing  Eq. (17) - i n t o  Eq. (12 j and summing over all nucleons gives 

f o r  the f r a c t i o n a l  a v a i l a b i l i t y ,  M, of a l l  the  nucleons i n  the  nucleus 
2 

f o r  s ing le  c o l l i s i o n s  (% 
= rk 

2 

- 

e ~ p  ( - z  J p '  ( R )  ~ Y I  T 2 T n x ~  ( rk  4. Zk 2i'J dz. 

I n  Appendix I1 it i s  shown t h a t  Eqs. (17) and (18) hold a l s o  f o r  . .  , 

j-j-coupled shell-model wave funct ions .  The k sum may be done i m -  

mediately, as each term 5s lden t lca l ,  which removes the  1 / ~ .  Lilrcwise 

t he  cp i n t eg r a t i on  may be done, a s  t he  integrand i s  azimuthally s y m e t r i c  . 
The p a r t  of M which con t r ibu tes  t o  the' p,pn r e a c t i o n  by processes 

of type ( a )  i s  obtained by l im i t i ng  (n+P)nBj t o  neutrons only. and l i m i t -  

i ng  the s e t s  n?$j t o  those f o r  which t he  sudden removal of a neutron with 

quantum numbers ri$j leaves  the  nucleus i n  an exc i ted  s t a t e  s t ab l e  . t o  

p a r t i c l e  emission.   his gives, f o r  M . . - p:,pn ' 
n M .. n.Bj n.$j ' 

allowed ' . 

n;'aj values 

The f r a c t i o n a l  avai1abi l i t .y  per neutron i n  the  n$j s h e l l  f o r  s ingle-col-  

h is ion processes, i s  given by . 
'n~. j 

The a v a i l a b i l i t y ,  Mn:gj, f o r  t a r g e t  protons i s  a l s o  given by Eq. (20) if 
2 2 t he  cor rec t  value of B and form of T : ( r  +z ) a r e  inserked.  

n h  



Equation (20 )  ho lds  f o r  . , a v b i e t y  of potent ia l -wel l  shapes, such 

a s  the  square, harmonic-oscillator, .exponentJal wells,, , e t c  . . I n  t h i s  
. .  . 

,work .the harmoriic - 6 sc i l l a t o r  .well  w i l l  be'.bsed .for two reasons .'I F i r s t ,  

it gives a f i n i t e  gradient  . to  the. nuclear, 'surface, ,  somethhg which has 

been postulated t o  explain .the d i f f e r ence  between the  cklcdlkted and 

observed p,pn cross  sect iqns  ,27*52s54 . . , @&ond,, . . , . so lu t ions  t o  the  ' 

Schrsdinger equation , '  cap be obtained i n  an . aqa ly t ic  . . . 
f o e . '  This simpli-  

f i e 6  t h e  numerical evaluation o f  Eq. (20) .  ' ~ n  add i t iona l  s imp l i f i c a t i on  

i s  introduced b y  the  f a c t  t h a t .  . . f o r  the' harm6h'ic . .  , -o sc i l l a t o r  . well ,  inc lus  - 
ion  of a spin-orbi t  coupling term i n  t h e  'wave . ,  .e&ation,.ch&ges . . .  ' . . . . only the  

eigenvalces; ' and not the  .wave functions.  For thi.6- reason,' the  j sub- 

s c r i p t  w i l l  be dropped from . . M . . 'and T i n  'Eq .  (20) from now pn. 

The normalized r a d i a i  harmonic-oscilltitor wave .functions fo r  
7 i . . the  f i r s t  th ree  r a d i a l  . she l l s  a re  

where c and B w e  a numerical bol?stant and' simple polynominal, respec - 
n 

t i ve ly ,  both depending on n .  Equation ( 2 1 )  i s  normalized t o  give 2 upon 
. . 

in tegra t ion  over the  r a n d z  . . coordinat&si Th i s ) , i s  necessary t o  remove 
. . 

the  f ac to r  of 112 brought i n  . from . tKe removal o f .  the  spher ica l  harmonics. 
I 

This f ac to r  o,f 2 .appears because ,of the. .change from 'spherical  coordinates 

used i n  the  addi t ion.  theorein t o  cyl indr ie t i l  coordinates used i n  Eqs. (20) 

and ( 2 ~ ) .  The . va l i d i t y  of t h i s  .argument c i n  b,e shown by,rem,oving the  

exponential  f a c to r s  from, Eq. (20) )  subs t i t u t i ng  Eq. (21) i n t o  Eq. (20) )  

and in tegra t ing  over the  r and z coord ina tes  . !  t o  get. wity. 
. 2  2 'I'he densi ty  term p ( r , + y  ) i s .  obtained . ,;. from Eq. , ( 2 1 ) b y  .pu t t ing  

where n and p . are  the  neutron- and proton-shel l  occupation numbers 
nE n& 

f o r  the  t a r g e t  nucleus. For a given n and 3, n .+p  i s  the  number of 
nX n . 

nucleons i n  the  two s h e l l s  obtained by s e t t i n g  j = a. '+ 112 and j = a.:-l/2. 

The 114s comes from the  normalization requirement t h a t  we have 



J 
a l l  space 

2  2  
where A i s  the  number of nucleons i n  the  taxget  nucleus, and p (r  +y ) i s  

' 

obtained from Eq. (22) by subtract ing one from t h a t  value of n  n i  . whose 

subscr ipts  a r e  the  same a s  those on M . nk' 
Equation (22) was used f o r  the  nuclear-density d i s t r i bu t i on  ra ther  

than the  simpler -1 

P (R)  = .P 

obtained fop most t a r g e t  nuc le i  from the  e lec t ron-sca t te r ing  r e s u l t s  7 2  

f o r  two rcasonc. One i s  t h a t  a  s ing le  model i s  used by which the  comple:: 

dependence of Eqs .  (20), (21),  and (22) on B can be removed, and the  other  

is  t h a t  the re  i s  only one adgusltlble pumle t e r  p r a thc r  than three -= 6, 

c, and a. This a l s o  ensures a consis tent  nucleus whose t o t a l  densi ty  

d i s t r i bu t i on  i s  b u i l t  up out  of the  d i s t r i bu t i ons  of the  individual  

~ luc leons  . 
The subs t i tu t ions  u = pr ,  v  = Bv, w = By, simplify the  complex B 

dependence remarkably. Making these  subs t i tu t ions  and pu t t ing  Eqs . (22) 

and (21) i n t o  Eq. (20) gives \ 

2 2 2  2  and p' (U +W ) bears the  previously mentioned r e l a t i onsh ip  t o  p ( u  +w ). 

The following t ab l e  gives the  values of 8,' and c f o r  the  d i f f e r e n t  values 



- .  . . 
The double f a c t o r i a l  stands f o r , t h e  product . . of  a l l  t h e o d d  in tegers  < - W+c. 

For ease i n  i n t e rp re t i ng  the  results, the  harmonic-oscil lator 

spr ing constant .p i n  the  .exponents of Eq. (23):.can .be -wri t ten  .as 
. . 

. . where i s  given :by 

it was necessary f o r  the  .SimpsonPs-rule 'program t o  div.ide .the range of 

and r i s  the  ha l f  cen t ra l -dens i ty . rad ius  constant .  Equations (25) and 
0 

(26) a r e  derived i n  Appendix 111. As i s  'discussed t he r e , . ' . ~~ . . . : ( 26 )  ..is . . :.. 

.on13 .approximately c.or=e:ct :and. gives -values.. of r, which: ,ee. .  i n  je'rror;: by..:. 
> I" 0 

19., 142 .. . f.rom .+,.3qd :for:..F . : ,  to'.'.-.'.* ' fo r  .Oe. : .. when ..compared . to ,values  o f  r obtained , . . ' .  Lr 0 

i n  an exact  manner. 

B, I n t e g r a l  Evaluation . . 

Equation (23) 'can not'  be ' in tegra ted  '&aly t ica l ly ,  so . it ..,was i n t e  - 
grated using Simpson's Gule by mean; of the  ; I I B M - ~ O ~  e l ec t ron i c  computer. 

The i n t e r v a l  s i z e  f o r  Simpsons s , r u l e  and t h e '  upper.  l i m i t s  o f ,  in tegra t ion  

were chosen such  t h a t  the accuracy . . of M i l  "s l e s s  th,an o r  equal  t o  1%. 

The accuracy and program t e s t i n g  &re he1ped.considerably. by not ing t h a t  
. . 

if both w in tegra t ions  a r e  removed, we ob ta in  , M  = 1. ' Also . t he  u and 
n$ ' 

2' 2 2 ' 2  w in tegra t idns  of p ( u  +w ) + dl (u +u ) w i t h  . the  l i m i t s , ,  v ,  on t h e  w 

in tegra t ion  replaced by i n f i n i t y  and al l '  the  mul t ip l i ca t ive  cpnstamts 
. . 

replaced by 2/$ gives M . = 2A-1.: ' ~ 6 i n g  both t he se  checks, it was found 
II . n i  

t h a t  replacing the  upper u .  l i m i t  by b and the.  o ther  i n f i n i t e  l i m i t s  
238 

by (b2-u2), where b ranged from 4 f o r  c12 t d  5 f o r  U , gave r e s u l t s  

f o r  the  .checks 'accurate t o  about 1/2%, I n  order , to obta in  t h i s  accuracy, 



t h e  .u in tegra t ion  .into .32 . i n t e rva l s .  Because t he  checks, each of which 

consisted of two integrat ions  ,. gave :results accvate" ' to  l/2%, it was f e l t  

. that adding a t h i r d  in tegra t ion  would give r e su l t s '  acc~urate t o  1%. The 

time it took the  machine t o  compute' a s ingle  value of M . ranged from 8 niin 
n a. 

f o r  c~~ t o 4 0  mi; f o r  u ~ ~ ~ ,  w i t h  most o f  the medium-weight nuclides r e -  

quir ing 30 min per  case. The computer was a l so  programmed Lo p r i n t  out  the 

values of the  integrand of the  u,v in tegra t ion  given i n  Eq. (23) and the  

values of u and v, This was done t o  f i nd  out by means of contour plots 

what pa r t  of the  nucleus fontribulad u ~ u s  L Lo Mn4; 

, . 

( Input Parwe. ters  

Foi- 'my givcn computation there  are .t.he three  input parameters, 

n b, and g. The value of a was taken t o  be 30 ' u i ~  .66 This i s  s l i g h t l y  
1 1 

lower than the  preliminary experimental value of 32 f 3 mb of the  t o t a l  

n-p co l l i s i on  cros's sect ion f o r  neutrons of 4 . 5 - ~ e v  average energy. 7 3 

This d i f ference w i l l  be corrected f o r  l a t e r .  
- 

The average t o t a l  e x i t  cross  sect ion,  a, w a s  determined by f i r s t  

f inding the  d i s t r i bu t i on  of the  values of 2 a. from the  experimental 
i=l 1 

Laboratory s c a t t e r  diagrams of the  high-energy n-p i n e l a s t i c  co l l i s i ons  

i n  the  following manner: The analysis  of i n e l a s t i c  events caused by 

3.8 * 2 .4-~ev  neutrons on protons57 shows t h a t  83% of  t h e  events cons i s t  
' +  - + - 0  of the  reac t ions  pn ppsr- (I%), pn -t pnn sr (48%), and pn -t grin n n 

(17%). The r e s t  of the  .events .('17$) consi'st of small mounts  :of scvcra l  

types of two-, t b e e - ,  and four-meson producing events.  Because there  

Elre so many d i f f e r e n t  types of these  events, the 17% w i l l  be neglected 

and the  i n e l a s t i c  even ts .wi l1  be assumed t o  cons i s t  only of the  th ree  main 

types of events given .above (with t h e i r  percentage occurrence increased by 

100/83). The analysis  f u r the r  shows t h a t  i n  the  .c..m. system the  i n t ens i t y  

d i s t r i b u t i o n  of the  emi-tted protons from the  ,ppn- reac t ion  .fs strongly 

peaked forward and backward, m d  thal; .of the  pions .is .peaked forward. .The 

neutron 'and negative-pion i n t e n s i t y  i s  peaked forward f o r  the  pnn+n- r e -  

action,  while the  i n t ens i t y  f o r  the  protons and pos i t ive  pions i s  peaked 
+ - 0  i n  the  backward d i rec t ion .  For the  pnfi II n reactions, the  proton d i s t r i -  

bution ' i s  peaked i n  the  forward d i rec t ion ,  and the  pion d i s t r i bu t i ons  are  



i sot ropic .  The momentum . d i s t ~ i b u t i b n  i n  the '  laboratory system for  each 

of the  various p a r t i c l e s  emitted f o r e a c h  type o f  . i ne l a s t i c  event57 was 
. . . . . . 

divided i n t o  several  sect ions ,  and. the  numbel and midpoint k ine t i c  energy 

of the  p a r t i c l e s  i n  each sect ion was tabulated.  Fmm the published pion- 

nucleon and , .  nucleon-nuclesn e i c i t a t i i n  f u n ~ i t i o r i i , , ~ ~ ~ ~ ~ ~ ~ ~  . .. a. c r o s s  sect ion,  ' 

Ui, w a s  associated with the- midpoint energy for the  g iven type  . . o f  p a r t i c l e  

through n j r l e a r  matter  t h a t  i s  Assumed , .  , t o  b e  half neutrons and 

ha l f  protons. By.  the  use of the  f a c t  t h a t  forward and backward 'c . m e  d i s  - 
t r i bu t i ons  correspond. t o  high ind ~ d w  k i n e t i c  -energy laboratory '  d i s t r i  -' 

. . .  

but ions ,  "events", were reconstructed.,  . F& the  p,:pn-, . . react ion,  . . a pro ton  

and n- out  of the  highest  energy ra ige  M r e  combined with d proton i n  the  
. . 

lowest energy range, t h e ,  . . three  values .. . . of ui,:,were found, and the  three  
. . 

p a r t i c l e s  were removed from the  d i s t r i bu t i on .  :' . .  !This . process was repeated 

u n t i l  all the  p a r t i c l e s  were used up. Similar ly  f d r  the  pnn+*- events, 

a neutron and n- each ,:from t h e i r  respecti+& highest -kinet ic  -energy sect ion 
. . 

were combined with a proton and' x- each from t h e i r  respect ive  lowest - 
kinetic-ene.rgy sect ion,  and .the four. values o f .  u . i were foimd, e t c .  Sca t t e r  

+ . -  0 
diagrams were not av&lab ' l e fo r  the  neutrons . .  and . ddlsfi?om .th,e pnn n n 

react ion.  Somewhat a r b i t r a r i l y  the  n* "s and no a s were considered t o  have 

t he  same forward peaking i n  the  cam;, .system, ,and . the  . x- d i s t r i bu t i on  was 

taken t o  be peaked i n  the, backw~i:?d;s, C . m i  d i rec t ion .  '   hen a proton atid . 
+ '  n aqd k0 from t h e i r  respect ive  highest  -kiieetic -energy s ec t i ons  were 

combined with a .n- and neutron . in .theiP respecQve lowest-kinetic-energy 

sect ions ,  and the  f i v e  values of 0.. were found,, e t c .  . :  
1 

The d i s t r i b u t i o n  of v a l u e s  , . of ui is  n o t  a f fec ted  by the  previously 

discussed "ihkersion" of the  nrp s ca t t e r i ng  da t a  . t o  ; . ,&wL. p-n 'da ta .  The 

correcti'on on a due. t o  the  exclusion pr inc ip le  dan"be roughly est imated i , . . . .  . . 
by f inding .what the  maximum nucleon k i n e t i c  energy, : T*; i s  a t  the  point  

,Rm = (u2+v2 )1/2/f3 f o r  which M''$ i s  .a  maximd,, &d . :by . assuming, f o r  the  

purposes of correct ion,  . t ha t  the .  nucleus ' i s  a degenerate Fermi gas. Use 

of the  k ine t i c  ener& .and p a r t i c l e  .type &ssociat'ed,,with. each cross sect ion,  - - 

a ,  and Tm i n  t h e  published equationi75'76977 ' gives the  cross-section 

- 

reduction f ac to r .  T may be determined from m 



The f i r s t  two terms on .the' hight-hand s ide  78~79 give the  k ine t i c  energy . - 

of .  the le.ast-bound she l l .  '(with quantum numbers 11 and a), r e l a t i v e  t o  the  ' , 

lowest point  i n  the  well ,  and the l a s t  term. gives. the  decrease i r i  wel l  

depth r e l a t i v e  t o  the  lowest point .  The nucleon mass i s  m ,  and h equals 

25.99 Use of ~ ~ s . ! ( 2 5 )  and (26) and of Rm f o r  X gives T as a PlulcLio~l m 
of g.  Values of R were chosen from contom p lo t s  of M f o r  three  m nX! 
cases,  the  i d  s h e l l  of $'19, the i f  s h e l l  of C U ~ ~ ,  and the l h  s h e l l  of 

t - 
ce14'. From the  obtained disLributiun of thc  al (and Z 0.) n w a s  esti- 

i=l 1 
mated t o  be 180 mb without including the  exclusion-principle e f f e c t  o r  

meson absorption.  Tab l e  l v g i v e s  values of Tm a s  a funct ion of g fo r  

t he  three  s h e l l s  mentioned. 

Table I V  

I d  s h e l l  of F~~ i f  s h r l l o f  ~u~~ l h   hell of Ce 
142 

The value of T was taken t o  .be 12 Mev. W i t h 1  .l;llis value, the  a .  wcre now 
m 1 

corrected and, f o r  ai associated wish mesons, the  meson-absorption cross  

sect ion was included. The ai values were then combined according t o  the  

"event reconstruction" mentioned t o  give a d i s t r i bu t i on  of values of 
t + - + - 0  Z ai where t = 3, 4, and 5 f o r  the  ~ ~ n - ,  pnn n , and pnn a n react ions ,  
i=l  
respec t ive ly .  

This d i s t r i bu t i on  of Z oi must s t i l l  be weighted by the  value of 

Mna 
associated with each ,Z a This was done by computing values of Mga 

\ i' . 
f o r  the three  s h e l l s  given i n  ,Table I V  f o r  values of 2 ranging from 90 mb 

t o  400 mb. P lo t s  of Mne agains t  b were made and used t o  weight the  L a i ,  

d i s t r i bu t i on .  This gave a f i n a l  averaged value of o equal t o  168 mb, a 



value which was found t o  b,e.: .qkte insens i t ive  t o  changes i n  g  and t o  

be the  same f o r  each of t he  three  s h e l l s  f o r  Ghich.; was .derived. This 

value was s u f f i c i e n t l y  c lose  t o  the  180 mb previously chosen so t h a t  
- , . 

a = 180 mb was a l s o  used f o r  a l l  the  subsequent IBM-701 ca lcu la t ions .  

It t&ned out  t h a t  cor rec t ing  f o r  t h i s  difference i n  (I i s  very easy,. and 

such a correct ion w i l l  be included when t he ' c a l cu l a t ed  M n.i? values and 

the  experimental ppn cross  sect ions  a r e  combined. 



V RESULTS . . 

I .  
. . 

Table V gives a possible choice of neutron- and proton-shell  

occupation numbers,, fin, and yn,, f o r  the  t a r g e t  elements fo r  which va1ut:s 

of Mile weye ca lcu la ted .  Except f o r  thoge ,of  uranium, the numbers were 

t aken  from Reference 33; . The . .  b238 occupa t ik -  numbers were obtained from 
. . QA ' 

UU 
a Nilssbn .diagram. f o r  a deformed nucleus.  he] Id:  and 2s obcupation 

numbers f o r  F19 (and possibly N a Z 3 )  a r e  open t o  question as  one work 

places dl three  e x t r a  F~~ il~.~.,:,le&s- i n  the  2s. s h e l l .  81 And another - - worli 

keeps the  occupat ion riumbers given i n  Table V but  shows t h a t  F'19 may be 
82 . . 

deformed.. Using these  numbers, values of M f o r  several  s h e l l s  f o r  
nJ 

severa l  values of g fo r  d i f f e r en t  isotopes were determined and contour 

p l o t s  u~-tii i i ied: fo r  same caoco . For a few she l l s ,  va1-i~es of yl, fo r  d i f  - 
- 

f e r en t  values o'f 5 with . g constant were obtained. 

A .  Contour P lo t s  

Figures 11 through13 a r e  contour: p lo t s  f o r  three  cases --  the  

F19 i d  s h e l l ,  t he  Cu65 i f  s h e l l ,  &d the  Ce14' 2f s h e l l  of the  integrand 
. . 

of Eq, (23) ,  i . e . ,  of 

f o r  various values 0 f . r  = u/@ and z = VIP.. The contour 'lines connect 

.points r , z  which give values of Q,, from Eq. (28) .  The dashed c i r c l e  
2 2 

i s  the locus of points  f o r  which t he  t o t a l  nuclear densi ty  p ( u  +v ) 

from Eq. (24) (obtained by use of the  same value .of g as  was used t o  



Table V 

Occupation numbers for neutron and proton shells 
Shell 

Isotopes 1s lp Id 2s if. 2p If3 2d Ih 3s 2f 3p li 2g lj 3d 



r ( f e r m i s )  
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M U -  17815 

Fig. 1 .  - Contour p lo t  of t he  i d  s h e l l  of &', o l  = 30 mb, 
o = 180 mb, g = 0.50. The broken l i n e  c i r c l e  gives the  
half  -central-density radius .  
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65 I .  12.  - C o n t o u r p l o t  of the I f  shell of C u  u l  = 30 mb, 
a = 180 mb, g = 0.50. 
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Fig. 13. Contour plot of the 2f shell of Ce ol = 30 mb, 

a = 180 mb, g = 1.00. 
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obtafn the  contour l i n e s )  i s  one half  i t s  value a t  the  center of the  

nucleus. The three  -dimensional "picture " i s  obtained by ro t a t i ng  the 

c.ontour maps about, the  z ax i s .  

It i s  immediately apparent from Figs.  11 t o  13  t h a t  the  main 

contribution t o  Mne comes from regions .of the  nucleus .outside of the  

half  -density c i r c l e .  In  f a c t  f o r  the- 2f Ce s h e l l  the  main con t r i -  

bution i s  qu i te  f a r . o u t  from the.ha1.f-density c i r c l e .  Because the  p,pn 

reac t ion  i s  l imi ted t o  the  topmost few she l l s ,  these contour p lo t s  

c l ea r ly  indicate  t h a t  the .p,pn react ion i s  a surface react ion.  This i s  

why the  e r ro r s  introduced by " l i f t i n g "  the  f r e e  n-p s ca t t e r i ng  da t a  in to  

the  nucleus a r e  small. The contours ind ica te  shapes ranging from two 

rounded peaks r i s i n g  somewhat above a high pass f o r  the  .F14 i d .  s h e l l  t o .  

two high i so la ted  p&aks separated by a deep gorge f o r  the  Ce142 2f s h e l l .  

. . 
The secondary peak i n  Fig. 13  f o r  the  C&142 if s h e l l  i s  not q i s i b l e ,  as  

. .. it i s  too far ins ide  the  nucleus and i s  suppressed by the  .exponent i n t e -  

g r a l s  i n  Eq. ( 2 8 ) .  The contours a l so  show t h a t  most of the  'contribution 

t o  Mne comes from the  downbem s ide  of t he  nucleus. This asymmetric 

dl.strii.butlon about the z = 0 plane comes from the. f a c t  t h a t  ' i s  much 

bigger ' than a the  d i s t r i bu t i on  becomes symmetric about the  z = 0 plane 1; 
a s  a approaches a 

1 ' 

B. Mne Resul ts  

19 Figures 14 and 15 a re  p l o t s  of gMne f o r  d i f f e r e n t  s h e l l s  of F , 
142 and Ce a s  a function o f  g, the  spr ing  constant  parameter. The 

curves indicate  t h a t  'the following r e l a t i o n  holds approximately: 

gM,Q = constant .  

This equation tu rns  .out t o  be very usefu l  f o r  in te rpo la t ion  of values of 

Mna 
fo r  o ther  t a r g e t  elements t o  other  values of g than the  ones fo r  

which Mne was calcula ted.  I f  desired,  .Figs. 1 4  and 15 can be used t o  

cor rec t  values of gMne f o r  t he  s l i g h t  g dependence. They show a l so  

t h a t  the  values of Mne f o r  the  outermost' s h e l l s  a r e  l e s s a f f e c t e d  by 

changes i n  g than .are the  .inner s h e l l s .  



Pig. 14. erhl as a funct ion of g, the nuclear  densl ty  d i s t r i -  
but ion parameter, f o r  fl9 and C U ~ ~ .  0 refers t o  ~~9 
shells and @ t o  cu65 shells ol = 30 mb,' I 180 mb. 



Fig. 15. gMnl ae a f u n c t i o n  of g f o r  Ce142 s h e l l s .  

a =: 30 mb, 3 = 180 mb. 
1 



Figure 16 shows the  dependence of M f o r  the  F~~ i d  she l l ,  the 
nL' 

Cu65 i f  she l l ,  and the  Ce142 lh s h e l l  on o. It can be seen t h a t  the  

dependence of M on u i s  not as  strong a s  . t h a t  .on g. The dependence - .n k? 
on .a can be .weli re-presented by 

(z) 142 MnQ = constant .  

For these three  s h e l l s  a s  wel l  a s  a few others ,  M was determined f o r  
n k? 

a = 50 mb. The r e s u l t s  show that, s imilar ly ,  we have 
I- 

( q ) l / Z .  M~~ = constant .  

It would b~ ~xpert,ed,  from an exmina t ion  of Eqs . (23)  and (26) t h a t  the  

g dependence would be gretlLer L l i u  t he  a o r  (I dcpcndence because g 1 i - 
occurs as a f ac to r  of both exponent in tegra l s ,  whereas crl and a each 

occur as  a f ac to r  of only one .of the i n t eg ra l s .  Also the  poin.ts of 

maximum contribution t o  M obtained from the  contour p lo t s  a re  points  n k? 
at which the  two exponent in tegra l s ,  each with t h e i r  associated fac tors ,  

would appear t o  be s imilar  i n  value. Figure 16 contains the  curves which 

were used t o  obta in  the  f i n a l  average value of a as  was discussed previ-  

ously.  

Figures 17 and 18 show the  dependence of MnL on the  atomi '~ weight 
I 

A, of the t a r g e t  nucleus f o r  two values of g, 0.50 and 1.00. The'se 

curves may be used f o r  in te rpo la t ing  Lo target  isotopes other  than those 

f o r  wh1ch.M values .were computed. The di f ference between the  values 
nk? 

of MnQ due t o  d i f f e r en t  neutron and proton occupation n q b e r s  .for isobaric 

t a r g e t  elements f o r  any given s h e l l  would be-expected t o  be small. This 
x 4 2 .  . 

was shown by computing values of .% f o r  ~ i , ~ ~  h d  N d  . .:. (q:=:j0.  mb ,. . 
- g:.. 65' . 4 = 1,80..mb, g .= 1 , . 00 ) .  The vrilue ~ - f M ~ ~ , . f o t . : ~ a  ..:(two less , : : l f5 /2  neutrons 

. .. . 
and t w o  more: 2p::.3/.2 protons than CuG5) ?as found t o  be l e s s  than Mlf f o r  

65 Cu by 0.376, and Mlh f o r  (no 2f 712 neutrons and t w o  Zd 512 protons) 

w a s  higher than Mlh f o r  c~~~~ by 1.2%. The e f f e c t  of changing the config- 

ura t ion of t he  top  three  nucleons of F~~ from (6d5/2)' ;c.2s1/2)1 t o  
3 '(,2s1/2) was found by computing M fo r  both forms. The value of M 

2 I. 2s 2s 
f o r  the  :(-1d5/2) ; ( 2 s l / 2 )  configuration was lower than t h a t  f o r  : ( . 2 ~ 1 / 2 ) ~  , 
by 1.4% (bl = 30 mb, 2 = 180 mb, g = 0.50).  
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Fig. 16. Mnl a s  a function of 5 t h e  average t o t a l  e x i t  cross  section . 

0 r e f e r s  t o  the  i d  she l l ,  ol = 30 mb, g .= 0.80, , 

r e f e r s  t o  t h e  C ~ ~ ~ 3 . f  she l l ,  o, = 30 mb, g = 0.50,' 
I 

r e f e r s  t o  t he  ~e~~~ l h  she l i ,  ol = 30 mb, g = 1.00. 



Fig. 17. The dependence of EB1 on A, the target atomic weight, 
for different shells; ol = 30 mb, 3' = 180 mb, and g n 0.50. 



. . . . Target a t o m ~ c  weight. A 
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Fig. 18. The dependence of on A f o r  d i f f e r e n t  shells; 
a, = 30 mb, 2 = 180 mb, and g = 1.00. 



The s h e l l  s t ruc ture  i n  Figs.  17 and 18 i s  qui te  evident i n  t h a t  

f o r  a given A there  appears t o  be a close cor re la t ion  between the  values 

of  Mne and the  t o t a l  energy of the  n , l  s h e l l  i n  the  po t en t i a l  well .  The 

cor re la t ion  i s  due t o  the f a c t  t h a t  f o r  a po t en t i a l  wel l  with sloping 

s ides ,  the  mean square radius of  a s h e l l  i s  l a rge r  the  higher the  s h e l l  

i s  i n  the  po t en t i a l  well .  Here MnQ would be expected t o  be l a rge r  f o r  

bigger values of the  mean square radius ,  because the  exponent i n t eg ra l s  

i n  Eq. (23) a r e  smaller. I n  Figs .  17 and 18 the  curves of MnL as  a 

function of' a t a r g e t  a'eomic wefg I l L  were 11ul txttilded beyond tho point  

at which t he  s h e l l s  a r e  so far: down i n  t he  wel l  t h a t  t h e i r  a v a i l b b l l i t y  

t o  the  p,pn cross  sect ions  i s  highly improbable. 'Ilhis i s  the  reason 

why a l l  t hc  .curveo appear t o  have a c~.~t.off  at, the  low Mill end, 

C.  .E las t i c  p,pn Col l is ion Contribution . - 
Figures 13 t o  18 coupled with Eqs. (19) and (2ga) 9 ( 2 % ) )  and 

(29c) allow one t o  determine the  contr ibut ion of the  e l a s t i c  p-n co l -  

l i s i o n s  t o  the  p,pn react ion cross sec t ion  by process (a) .  As mentioned 

before, the  contributions .of processes (b )  and ( c )  r e l a t i v e  t o  ( a )  are  

l e s s  than ' 5% and w i l l  be consequent1.y neglected. The evaluation ,o f  the  

contr ibut ion t o  the  p,pn react ion cross  sect ion from e l a s t i c  p-n col-  

l i s i o n s  i s  more d i f f i c u l t  than f o r  i n e l a s t i c . c o l l i s i o n s .  This i s  .due 

t o  the  i n v a l i d i t y  of the zero degree scattering-angle approximation 

used t o  derive Eq. (23) ,  As .has been previously shown,. a much b e t t e r  

assumption f o r  the  e l a s t i c  co l l t s i ons  i s  t o  take the s ca t t e r i ng  angle t o  

be 90' laboratory.  To evaluate an expression l i k e  t h a t  of Eq. (23) which 

would hive a double i n t e g r a l  i n  - the  exponent and a moye . complex integrand 
...' , 

Gould be prohilYitiv&ly long i n  terms o f  machine time. ' t he  e f f e c t  o f  

t h e  Pau l i  exclusion pr inc ip le  would have t o  be inc ludedsspec i f ica l ly  i n  
I 

.Eq. (22') be.cause the  . t a rge t  neutrdn has a high ,probabi l i ty  of being 

sca t te red  with r e l a t i v e i y  low energy. [Fur  5.7-Bev .protons on f r e e  

neutrons one-half t he  e l a s t i c a l l y  sca t te red  neutrons-have .k ine t ic  energies 
. . 

of 60 Mev o r  l e s s .  See AppeGix I, Eq, (A&) 1 ., Consequently, t h e  follow- , 
ing  approximate method w i l l  be used. 



The p,pn cross section,  a i s  equal  t o  [see Eq. (19) ]  
P P ~  ' 

a p p ~  = :l (MFe " b e l .  + N n ~  'el) "ne , 
allowed 
.shel ls  

. where - the  second term on . the  . l e f t  gives the  .contribution from the  p a r t  

of  the  p-n c o l l i s i o n  which i s  e l a s t i c . ,  A f ac to r  Nne s imi la r  t o  M f o r  
n 4 

e l a s t i c  p-n co l l i s i ons  can. be approximated by 

where.F i s  independent of the  s h e l l  quantum numbers and t a r g e t  atomic 

weight. The term M t n e  i s  given by E q .  (23) with ..o s e t  equal t o  dl and 
! 

accounts f o r  the  .entrance, e l a s t i c  co l l i s i on ,  and e x i t  .OF the  inbident 

proton .which .suffers  negl igible  energy l o s s  and rngular deviation.  .The' 

f a c to r  F i s  the  amount by which M f n e  should be reduced t o  account fo r  

.the .escape of the  s t ruck neutron. Use 'of Eq. (29b) gives the  r e s u l t  

I t  can be seen from Fig.  16 t h a t  f o r  ' z  - ,180 @ and .al - 30 mb t h i s  

equation i s  cor rec t  t o  within 10% when summation .over the.al lowed s h e l l s  

i n  .Eq. (30) i s  allowed f o r .  Combining the  above . th ree  equations;:$d 

using a t o t  - - 'inel, + '61 gives 

$ 

' - 1/2 . : 

: a  = a 
PPn t o t  .5 nna Mn.t 

allowed 
s h e l l s  

where f i s  the  f r ac t i on  o f . t h e  t o t a l  p,n cross  se2tion.which i s  e l a s t i c .  

The f ac to r  F can be estimated by dividing the  spedtrum of the  

energy gain o f ' t h e  s t ruck neutron i n t o  t h r e e . p a r t s .  I f ,  the  s t ruck 

nu~leon~gainsle~s.thm8.Mev,.itcannotes~ape.from'th~nucleu~, 1 '  so 1 
t h a t  c o l l i s i o n  .does not  contr ibute  t o  the  p,pn .reaction.  I f  the . . s t ruck 

, . 
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nucleon gains between 8 and 18 Mev, t h e . c o l l i s i o n  w i l l  always contribute 

t o  the  p,pn reac t ion  because i f  it does not i scaps ,  the r e su l t an t  exci ted 

n u c l e ~ s  w i l l  us.&&i> evaporate o n l y  one neutron. ~ i n a l ~ y , '  i f  the  t a r g e t  
. . 

nucleon gains 18,Mev o r  more it must escape. This d ivis ion i n to  three  

p a r t s  with boundaries of 8 and 18 MeV I s  not meant t o  be accurate. It 

does, however, allow F t o  be e a s i l y  estimated. 

The f r ac t i on  of e l a s t i c  5.7-Bev p-n co l l i s i ons  t h a t  gives the  

s t ruck neutron a gain of - > 18 Mev ( s imi la r  t o  process (a)  fo r  i n e l a s t i c  

p-n c o l l i s i o n s )  i s  calculaLed l i u u  Bq. (A&)  ( n  - 36) 6 5 ~ 6 6  tan he 0.79. 

For t h i s  f r ac t i on  M f n e  w i l l  be assumed t o  be reduced by roughly one ha1.f. 

This i s  a r r lved  at .by assuming t h a t ,  s i m ; ' . l a r  t o  the  i n e l a s t i c  co l l i s i ons ,  

mosl uf the  contr ibut ion t o  M cnmes from co l l i s i ons  i n  the  nuclear- 
n & 

surface region. For an e l a s t i c  surface cu l l i s i on ,  the   truck nl.arlenn 

has roughly a p robabi l i ty  of one ha l f  t o  be going away from .or towards a 

l o t  of nuclear mat ter .  If it i s  mo<tng towards most of the  nucleus it 

w i l l  probably i n t e r a c t ,  because compound nucleus formation i s  l i k e l y  f o r  

nucleons with k ine t i c  energies of < - 50 Mev incident  on nuc le i .  83 1 f  it 

i s  moving away from most of the  nucleus, it  i s  l i k e l y  t o  escape without 

in te rac t ion .  Various other  e f f e c t s  such a s  the  exclusion pr inc ip le ,  

r e f l e c t i on  at the  nuclear surface, production of the  > - 18-Mev energy- 

gain neutron fu r the r  ins ide  the  nucleus, e tc . ,  a re  ignored f o r  t h i s  
. , 

rough determination, .Consequently, the  contr ibut ion t o  F from t h i s  

p a r t  of the  e l a s t i c  p-n co l l i s i ons  i s  1{2(0679) ='.Q.4. 

E l a s t i c  5.7-Bev p-n co l l i s i ons  t h a t  give the  s t ruck neutron 

between 8 and 18 Mev ( a  process s imi la r  t o  process (b )  have a probabi l i ty  

of  occurrence of 0 , l  [Eq. ( ~ 4 ) ~  Appendix I], Since a l l  of these  c o l l l -  

s ions  contr ibute  t o  the  p,pn case, a s  f a r  a s  the  s t ruck  neutron i s  con- 

cerned, the  contr ibut ion t o  F i s  0.1. There i s  a smaller contr ibut ion 

from a process s imilar  t o  process ( c )  f o r  t h e  i n e l a s t i c  p-p case .where 

a p-p c o l l i s i o n  occurs leaving a proton with a k ine t i c  energy gain 

.between 8 and 18 Mev. This contr ibut ion w i l l  be neglected, a s  . the  0.1 

given above which a l so  holds fo r  p-p co l l i s i ons  must be mul t ip l ied by 

f ac to r s  t h a t  take account of the. f a c t  t h a t  the sl-ow- proton must not 



leave and the ,p -p  co l l i s i ons  with low nuclear exc i ta t ion  r e su l t i ng  a re  

l e s s  l i k e l y  than are p-n co l l i s i ons  f o r  a l l  but  the .  low Z elements. 

Consequently, F i s  s e t  equal t o  the sum of the  f i r s t  two contributions,  

which i s  0.5. 

D p,pn Reaction Cross-Section 'Equations 

The f r ac t i on  o f  5 . 7 - ~ e v  p-n co l l i s i ons  t h a t  &e e l a s t i c  i s  not 

known, So.. f w i l l  be taken from the  6 . 2 - ~ e v  p-p s ca t t e r i ng  d a t a  a s  

equal  t o  0.24 f 0.06 .65 As w a s  mentioned b e f e e ,  Mne was calcula ted 

from Eq. (23) with a value of the  t o t a l  p-n . co l l i s i on  .cross .section,  

a1 = a t o t J  
equal  t o  30 mb. The value o f  Mne can be . eas i ly  corrected 

f o r  the  change i n  al t o  32 f 3 mb f o r  4 * 1;5-Bev neutrons on hydrogen. 
73 

Use of qq. ( 2 9 ~ )  gives the  r e s u l t  ; 

fo r ( a l  = 32 mb) fo r (u l  = 30 mb) 

The previously mentioned correct ion stemming from the  . f a c t  . t h a t  : should 

be 168 mb ins tead of 180 mb can nowbe included by use of Eq. (29b). 

The values of Mn,obtained from Figs.  17 and 18, when mul t ip l ied by 

(30/32)1/2 ( 1 ~ / ' 1 6 8 ) ~ / ~ ,  can consequently be used i n  Eq. (32) .  Sub- 

s t i t u ~ o n  of the  values given above f o r  f and F (: = 168 mb and .a; 

= 32 mb)' gives the  resu1.t 

o. = (33 * 3) :l nnl Mne mb 
,PPn 

allowed 
s h e l l s  

Use of o ther  6 . 2 - ~ e v  p-p s ca t t e r i ng  data to .  determine .f gives the  same 

numerical constant  i n  Eq.  (33) .59 Even though F Ls determined qu i te  

roughly i.t can be seen from Eq. (32) t h a t  e r ro r s  i n  F w e  scaled,  down 
. . 

roughly by t h e f a c t o r  I. If F i s  changed t o l / k ,  o r  314, the  numerical 

constant  i n  .Eq. (33) changes t o  .29 mb and 38 mb respect ively . '  

- .For 3-Bev data,  . the numerical constant i n  .Eq. (33) can .a lso  be 
, C - 

determined from Eq. (32) and experimental data .  A determination of a 



from the 1.72-Bev neutron-hydrogen col l is ion work56 i n  the same manner 

as  .for the .3 .8-~ev neutron .data including ' the exclusi.on .principle . f ~ r  

T = .12 Mev gives .a = 160 mb::;. , The values of .a w i l l  be taken .to be 
' ' 

.m 1 
.36 -5 3 mb. This value i s  .a l inea r  interpolation between .the 1 .4  Bev 74 

. . 

and 4 ~ e v ~ ' '  n-p cross sections .for a bombarding energy of 3 Bev, The 

fract ion,  f ,  of a which i s  e l a s t i c  i s  taken from the 2,75-Bev p-p 
1 

col l i s ion  data  t o  be 0.37 5 0.04.58 As before, .F i s  approximately 

0.5. Substituting these values in to  Eq. (32) ,and correcting .by the 

previously discussed methods fo r  Llle rat L tha% MnQ ic ~ e l e u l ~ t e i l  fnr 
- 
.a  = 180 mb and a = .30 mb gives'. fo r  3-Bev. protons Trlcident on .nuclei 

1 

- . E. Energy Independence of a i n  t$e Bev 'Region ppn 

Equations (33) and (34) .show tha t  the theory developed here 

Sat isf  iets the requirement . t ha t  the p ,pn cross sec t ions  be independent 

.of the bombarding energy( i n  the Bev .region. ..The decrease ,w%th in-  

creasing energy shown i n  these equations. i s  l e s s  than ,105 q d  is  .within 

the .experimental .error l imi ts  on the experimental p,pn .cross .secti'ons. 

. A t  f i r s t  s ight  %t seems su rp r i s ing  tha t  .the cross .sections do not de- 

crease .with increasing ,energy, :because .the meson m ~ l t i p l i c ~ t y ,  which 

.affects  2, i s  dependent on the bombarding energy. However, t h i s  de- 

pendence i s  not strong, as  can be seen from the mean meson mul t ip l ic i t -  

i e s  of 1.8 and 2.2 fo r  neutrons of 1.7-Bev and 4-Bev average energy, 

respectively. 56957 The e f fec t  of the ex t ra  0.4 meson at 4 Bev i s  

fur ther  reduced by the f a c t  tha t ,  as has been discussed, a l l  the G Ui 

ternis, which make up 6 are weighted by Mnr This weighting tends t o  

suppress reactions with high meson mul t ip l ic i ty  whose abundance i s  quite 
y. 

sensi t ive t o  the bombarding energy. 

The p,pn cross section i s  also.dependent on a 1 as can be seen * 

from Eqs . (Zgc) and (32). The square-root dependence and' the r e l a t ive  



constancy of a i n  the  Bev region ( a  equals 42.4 mb' and 32 mb fo r  1.4 
1 1 

Bev and 4 Bev n-p react ions  respectively73974) help  t o  give the  inde- 

pendence of a from the bombarding energy. 
PPn 

.F.  Inherent Uncertainties.Due t o  Nuclear Model.Chosen 

Before . the t heo re t i c a l  r e s u l t s  a re  compared with experimental 

da t a  it i s  worthwhile t o  s t r e s s  the  f a c t  t h a t  the  nuclear model used i n  

the  foregoing calcula t ions  does not  represent r e a l  nucle i .  One f a u l t  of 

the  model used i n  . the calcula t ions  . i s  t h a t  the  harmonic -o sc i l l a t o r  wel l  . . ,:; I?:.. . 

was used ins tead of the  more r e a l i s t i c  inverse exgonential well .  It i s  

d i f f i c u l t  t o  est imate how much the  values of MnQ would be changed if the  

inverse exponential wel l  were used. Both the  densi ty-dis t r ibut ion terms 

and the  r a d i a l  wave functions i n  Eq. (21) e t  seq. would be affected.  

Furthermore, the  degeneracy i n  the  two values of MnQ f o r  d i f f e r en t  j 

b u t  same n.4 values .wculd be removed, 
I 

Another f a u l t  i s  t h a t  some e f f e c t s  of nuclebn-nucleon intepb 

act ions ,  e  .go,  j-j coupling, have been neglected. Even though Eqs. (17) 
. and (18) hold f o r  j-j coupling, the  r a d i a l  wave functions-and the  densi ty  

terms would be a l t e r ed  i n  a complex manner. This .would induce fu r ther  

changes i n  Mne0 I n  addi t ion t o  t h i s  e f f ec t ,  Eqs. (19)) (30))  and (32 t o  
, 

34&) would have t o  be a l t e r ed  under any nucleon-nucleon coupling scheme, 

This change a r i s e s  because the  sudden removal of a nucleon from a s h e l l  
I 

. w i l l  leave the.product nucleus i n  any one of severa l  possible parent 

s t a t e s ,  Any,one of these parent . s t a tes ,  when coupled t o  the  n.4j nucleon, 

gives the  ground s t a t e  of the  t a r g e t  nucleus. S i n c  some of these -parent  

s t a t e s  may be unstable t o  p a r t i c l e  emission, a f ac to r  < - 1 should be i n -  

eluded ins ide  the  n.4j s m . o f  Eq. (19) and the  sum should be extended over 

a l l  nQj  s h e l l s  of the  nucleus. .This f ac to r  i s  t he  sum of t he  squares qf 
t h e  appropriate fractional-parentage . coef f ic ien t s  of a l l  the  parent  s t a t e s  

. s table  t o  p a r t i c l e  emission. This f ac to r  tends t o  &ity o r  zero a s  the  

nucleon-nucleon . in teract ion becomes weaker and, i n  the  l i m i t  of the  

independent-particle model, becomes equal t o  e i t h e r  0 o r  1, giving Eq. (191, 
e t  seq. .For ,closed-shell  t a r g e t  nucle i ,  Eqs. ( l g ) ,  (30))  and (32 t o  34) 
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a re  va l id  a s  they are ,  because there  . i s  only one possible parent s t a t e  

even with nucleon-nucleon coupling. 'd 

The d i f f i c u l t i e s  mentioned above which a re  caused by di f ferences  

between r e a l  nucle i  and the  model chosen here add an element of uncer- 

t a i n t y  t o  any comparison of theory with experiment, I n  s p i t e  of t h i s ,  

we s h a l l  proceed t o  see what can be learned from a simple independent- 

p a r t i c l e  model while keeping the  above discussion i n  mind. 



K C  USE OF EXPERIMF,NTAL .DATA. WITH TKEORY 

Two .variables q e  now l e f t  i n  .Eqs . (33) apd .(34) -- which she l l s  

are  available a ~ d  the value .of g (or r 'by,Eq. ( 2 6 ) )  .the nuclear- 
0 1 .  

dens i ty -d i~ t r ib~u t ion  parameter. A correct calculation of which. shelLs :. 

.are available, i ,e., which neutron-hole s t a t e s  of the product .nucleus . 
have small particle-emission widths compared t o  the gamma-emission 

widths, i s  quite beyond the  scope of t h i s  work. ' However, one  can use 

the eigenvalue s .of a reasonable 'independent .papticle model as a guide 

t o  determine which..shells are .avai lable  and then use the p,pn .cross 

sections with Eqs; (29a) and (33) or  (34) and Figs,. 17 or  18 t o  deter-. 

mine g o r  r . These.values o f ' r  can be compared.with values ob- 
0 0 

tained by other experimental methods. Later ,  mother  method .of treat5ng 

the data  which considers both the s h e l l  ava i l ab i l i t y  and ro as  unknowns 

A .  Rad5us .Parameter. Determinations 

The .independent pa r t i c l e  calculations of Ross, Mark, and Lawson, 04 

which appear to be .successful in .predic t ing  the experimentally observed 

' s h e l l  f i l l i n g ,  . w i l l  be -used here .as .a guide . to 'determine the .excitatioli 

energy of neutron-hole . s t a t e s  . in  .various she l l s .  Tbe ava i lab i l i ty  of a 
, 

i 

s h e l l  i s  .determined by subtraction of the exci ta t ion .energy of the neutron- 
. . 

s h e l l  hole - s t a t e  from the .highest par t ic le-s table  .excitaCion .energy o f .  the 

'product, Only ' i f  the r e su l t  i s  greater  than .zero i s  the s h e l l  available.  

. The highest pa r t i c l e  -s table  exci ta t ion .energy of the broduc t i s  

mer'ely tha t  .excitation .energy for  'which the t o t a l  garticle-emission -width 

i s  roughly equal t o  i t s  gamma-emission width,. I f  a .neutron i s  the legs t -  

. bound! par t ic le ,  . i t s  .binding ,energy i s  usually the highest par t ic le-s table  

.exci ta t ion ..energy. If a ppoton i s  the .least-bound par t ic le ,  etn appropri'ate 

ba r r i e r  correction must b,e added and .the sum compared to  the neutron .bind- 

ing energy. Except fo r  a few cases, alpha pa r t i c l e s  need not be .considered. 
t Appendix I V '  gives a metho,d .of estimating the effect ive ba r r i e r .  

' Table .KC l i s t s  the par t ic le  binding energies and highest .par t ic le-  

s table  exci ta t ion,  ener$ies for  the p,pn -products fo r  which cross sections 



Table V I  - 
- - Pa r t i e l e  binding energies and effective barr iers  

product -fiucl&k5. par t ic le  binding Effective coulomb Lowest pmt ic le '  ernit- . . 
... . 

energies (Mev). b e r i e r  (Mev) . t i ng  excltation.of 
product alpha proton neutron alpha' . proton product rwleus  ( :~ev )  Reference 

7.55 ..8,70 13,11 - 8.0 a 2 1 

JJ13 9..50 1.94 :' 20.4 < 0.43 <'; 2.37 p 2 1  

015 10.26 7.35 13 . 30 < 0-26 < 7.61 p . . 2 1 
18 . . 

F- 4.41 5.61 .9.16 - 514.a .. . 2.1 
2 2 

N a  8.48 6.74 lo.  9 1.8 . .0.4 7.1' P 21932986 

a- 
p ,2p product. 



are available fo r  proton bombarding energies of 3 Bev o r  more. Column 

one gives the p,pn products fo r  which cross sections were measured. 
100 Both the p,pn and p,2p products are included for  the target Mo , be- 

cause the experimental cross sectio-n i s  the sum of both. The subscript 

"a: refers t o  the p,2p product, !The next three c o l m s  give the 

binding energies for  the product nucleus. Error limits me given fa r  

the data taken from References 85 and 88 only. Error limits are not 

given in  Reference 21, a,nd a comparison of error  limits given in  Ref- 

erences 85 and 86 indicates that  it is  inappropriate t o  use error limits 

on t o t a l  binding energies t o  determine error l imits  on the last-particle 

binding energies, Columns f ive and six give the effective Coulomb bar- 

r i e r  comwted from the results of Appendix IV.  For the nuclei with Z 

l e s s  than 9, no entr ies are needed, because the available shells  can be 

bet ter  determined from the level  schemes2' and buried-shell nucleon 

scattering2' (see Part I). For the entries with Z greater than 9, 
proton barriers  were computed for  those cases for  which the proton 

binding energy w a s  less  than the neutron binding energy. A few alpha 

barriers  were also determined, Column seven gives the lowest excitation 

energies a t  which part icle emission from the product competes favorably 

w i t h  gamma decay. The part icle t o  which t h i s  excitation energy refers 

i s  also given. This energy is determined by adding the barrier  cor- 

~ e c t i o n s  i n  columns five and s ix  t o  the binding energies i n  columns two 

t o  fom and choosing the smallest of the resulting excitation energies. 

The centrifugal barrier  can also be neglected for  most cases, because 

it i s  s m a l l .  A case w i l l  be discussed la te r  for  which t h i s  barrier  

should be included. The references from which the binding energies were 

obtained are given i n  column f ive  . 
Table VII gives the experimental p,pn reaction cross sections 

and the values of g and r derived from the cross sections, the 
0 

number of available shells,  and values of Mn Column one gives the 
f&l p,pn product (p,2p product i n  the case of La ) Column two gives the 

proton bombarding energies in  Bev at which the cross sections in  column 

three were determined. The cross sections a t  both 3 t o  4 Bev and 5.7 
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t o  6.2 Bev are given, if available, to  indicate the spre@d in  the experi- 

mental data. Equation (34) was used for the 4-Bev data. The references 

t o  the experimental cross-section values are given in  column four. Column 

f ive  gives a possible choice of available shells determined, as has been 

discussed, from the eigenvalue calculations of Ross, Mark, and Lawson 84 

and the highest particle-stable excitation energies given in  Table VI. 

The target neutron occupation numbers are given i p  parentheses immediately 

below each shell. Values of g and ro derived from the cross sections 

by the use of Eqs. (26), ( ~ g a ) ,  (33), or (34), and Figs. 17 or 18, are 

 giver^ hi columns six and seven respectively. Pigures 14 and 15  can be 

used to  interpolate for  errors made in  using Eq. (29a) i f  desired, In 

t h i s  work, the only t q@s  for  which such an interpolation was made were 
142 F" and Ce a 

The values for g determined for the target 1n115 must be corrected 

for  the fact  that  the measured p,pn cross section refers  only t o  the isomer 

In  'lku (J = 5+) and does not include contributions from 1nU4 (J = 1+). 7 

This correction can be deterplined by adding vectoria.lly the j value of the 

neutron hole i n  a given shell,  jl, t o  the spin of the target nucleus j2 

to  get resultant J ' s  between j1+j2 and 1 jl-j2 1 The fraction of each J 

s ta te  which aecays t o  either one or the other of the isomers i s  found by 

considering the decay to  proceed by emission for  a gamma ray of the ap- 

propriate multipolarity and comparing by mearis of the published formulas 90 

the lifetimes for  such gamma decays. It turns out that, except fo r  the 

s ta te  with a J value midway between the spins of the two isomers, the 

s ta tes  decay essentially entirely into one or  the .other of the isomers. 

For a given neutron shell, the number of neutrons effective i n  producing 

one of the isomers i s  obtained by weighting each J s ta te  by the fraction 

decaying into the isomer and the s t a t i s t i c a l  weight, 2J+1, summing over 

'all allowed J states, and dividing by C (2~+1) ,  This f i na l  fraction is 
J 

multjiplied by the t o t a l  number of neutrons i n  the shall. .For I I I " ~ ( ~ , ~ ~ )  

Inllh, the effective number of neutrons for  each available shel l  was 

found by taking the ground-state spin of 1n1l5 t o  be 9/2+ (due t o  a l g  

9/2 proton hole).7 The effective number of neutron@ so obtained for  each 



she l l  are given i n  column five, Table VII, t o  the right of the neutron 

occupation numbers. It is  not possible to  make such a correction for  
380m Ta because the spins of the two isomers are not available. Conse- 

\ 

quently, values of g and ro, camputed as i f  the only product were 

~ a l ~ ,  represent upper and lower limits respectively. 

Figure 19 i s  a plot of the half-density radius parameter, ro, 
given in  Table VII, as a function of the target atomic weight. Points 

for  3 t o  4 Bev, . , and 5.7- t o  6.2-~ev data are denoted 

by triangles a d  circles respectively. The error l i m l L u  8fwn on each 

point are the experimental error  limits only. The dashed 1 b e s  connect 

half-density radius parameters as given by the electrbn-scattering 

results  .'12 The solid l ines corulect a few radiue parmetera, ro, ealcu- 

la ted t o  be necessary t o  give the observed p,pn cross section6 fur nuclei 

containing a degenerate Fermi gas with a uniform density distribution. 

This i s  the nuclear model used i n  the Monte Carlo ~ ~ a l c u l a t i o n s . ~ ~  The 

radius parameter, ro, w a s  calculated from the observed p,pn cross sections 

at 3 Bev by the use of the equations derived in  Appendix V with ul = 36 mb - 
and a = 150 mb , The value of 2 was lowered by an estimated 10 mb from the 

value used i n  Eq. (34) . t o  account for  the greater effect  of the exclusion 

principle for  a square w e l l .  

A number of interesting po%nts are revealed on examination of Fig. 

19. The very lwge values of ro needed for  the uniform-density model 

(roughly 1.8 fermis) t o  reproduce the experimental p,pn cross sections, 

compared with the points for  the harmonic-oscillator model, the electron- 

scattering results ,  and l i tera ture  data obtained from t o t a l  nuclear cross 

sections,91 shpv tha t  the p,pn reaction cross sections' cannot be explained 

without the diffuse nuclear surface. This has already been suspected from 

the Monte Carlo calculations. 27y52 m e  values for the half-density radius 

parameters (1.0 t o  1.3 femks) determined from the harmdc-oscil lator  

well l i e  f a i r l y  close t o  the half-density radius parameters. (1.0 t o  1.1 

fermis ) determined from electron scattering work, Other determinations & < 
of nuclear radii give values fo r  ro of 1.07 fqrmis (exponential-well half - FVU - - derhaty radius parsrmeters)92 and 1.25 fernis  ( s q m  density US tribution) . 



Target  atomic weight, A 

Pig. 19. The half-central-den~ity raUus'paranaeter, ro, as  
a function of tatrgert; @bomic w e i g h t .  The points are 
obtained from erprrirntal  1.0-Bev (A) sad 5.7-Bev 
(0) p,p-reacticm cross sections ( E ~ B .  33 or k), a 
the static l eve l  spaciags of  and Lawson. 
The broke  Ilne connects values 
the eZeetron scattering 
connects values (V) of square.ilensity radii, calculated 
from the formulae in Appndix 'Q, necessary t o  give thw 
ob.ar.vetd p , ~  cross sections. These square density rad i i  
ar?e the, 0-8 which irould have t~ be used In the I4~n-b 
Carlo caleula%ioas to give agreement b & m  exPeri~testal 
and calculatd P I P  cross ~ectioas. 



The agreement between these values of the half-density rad i i  and the values 

found in  this work i s  quite satisfactory, especially i n  the l ight  of the 

discussed uncertainties contributed by the use of the harmonic-oscillator 

model. It is, of course, not correct t o  compare half-density radi i  direct- 

l y  with square-density radi i .  However, the comparisons made above are 

rough enough so that errors from th i s  source are relatively small. 

Unlike the other nuclei studied in  th i s  work, the half-density 

radius parameters obtained from the p,pn cross sections for c12, I?14, and 

016 can be direct ly compared with those obtslned frun Llle r tsul to  of the 
electron scattering f r ~ m  these three nuclei. One reason i s  that the 

electron-scattering results  were analyzed in_ terms:of a harmonic-oscillator 

well, as was used here. Anather reason i o  that  the a v ~ i l a b l e  neutron 

shel ls  are known. Also, as has been discussed, Yqs. (33) cud (34) arc 

valid under J-3 coupling for  c12 and 016 because they are cloeed-shell 

nuclei. The s k e  holds for N14 even though it is not a closed-shell nucle- 

us. !This is due t o  the fac t  that only the one neutron outside the closed 

shells  is  available. Finally, there i s  no numerical error  made in  using 

Eqs . (25) and (26) for  c12 and o ~ .  This can be shown by substitutir@ the 
16 values of 1/@ for c ' ~  and 0 , given as a i n  Table I of Reference 72, into 

Eqs. (25) and (26), solving for ro, and ccmparing the values so obtained 

with those given in  Table IV, Column 8, of Reference 72, No electron-scat- 

ter ing data is  given for  N14, so the value of ro for  t h i s  nucleus i s  taken 
12 l6 

t o  be midway between that  of C and 0 

A direct comparison (see Fig. 19) between the values of ro obtained 

i n  this work end the electron-scattering work shows that, for  c12, d4, and 
16 0 , the nucleon half-density radius parameters are larger than the charge 

half -density radius parameter by 0.1 t o  0.5 fermis (exclusive of the 3-Bev 

N14 point because of i t s  large error l imit) .  This difference seems to  be 

somewhat larger than the value of 0.1 f 0.1 fermis obtained by other means 

fo r  the differences between the half -nucleon and charge -density radii (the 

factor of k1l3 i s  included in  th i s  value).94 It i s  d i f f i cu l t  t o  say where 

t h i s  discrepancy comes from. Perhaps the zero degree laboratory scatter- 

Lng-angle agproximation or errors inherent i n  the method of computing ;, 
as are discussed later,- the cause. It woqld seem tha t  these error: 



sources m e  not suff icient  t o  explain the above discrepancy, The crude 

method used t o  estimate the contribution from e l a s t i c  p-n col l is ions may 

also be contributing errors.  

It is interest ing t o  note that on the basis  of the available-shell 

assignments made, the p,pn radius parameters show a decrease with increas- 

ing A, Some of this decrease i s  probably due t o  the er ror  assoqiated with 

using Eq, (26). There also appear t o  be same irregt i lar i t ies  associated 

with major shells; i .e . , Fe 54, and Ni58 have 28 o r  Less protons 
64 and a smaller value of ro than do C U ~ ~ ,  C U ~ ~ ,  and Zn , which have more 

than 28 protons: Slmilacly, in115, .which has between 28 and 50 protons, 
142 has a larger  value of ro than doe8 I~~~~ Ce , or Ti181 with more than 

SO protons. Malybdenum-100 causes some difficultythere,  a d i f f icul ty  

which could be resolved by a study of more p,pn reactions around mass 100 

uncontaminated by p,2p reactions. The low-Z elements a g d n  show a val6e 

of ro similar t o  tha t  of copper, zinc, and indium. Thus it appears as  i f  

nuclei with 20 < Z < 28 protons and Z > 50 protons may have smaller half-  

density radius parameters than the other nuclei. Neutron mador shel l s  

appear t o  have l e s s  effect ,  because Mn55, ~ i ~ ~ ,  cuG3, cuG5, and ~n~~ all - - 

have more than 28 neutrons, and In115 and 1lZ7 have between 50 and 82 

neutrons. It must be realized tha t  these conclusions regarding she l l  

e f fec ts  on ro are of a moat tentat ive nature as  they depend on the nuclear 

models used t o  determine the values of Mnd and which neutron shel ls  are 

available. 

B. Available-Shell and Radius-Parameter Determinations 

It i s  perhaps more profitable to 'consider both the avai labi l i ty  

of the shel l s  and the radius parameter as unknowns. Then the p,pn cross 

sections can be used t o  determine, fo r  each target  isotope, values of 
ro as a function of the ' she l l s  selected t o  be available. This has been 

done by using Eqs. (26), (29a), (33) ,  o r  (34), Figs. 17 and 18, and 

occasionally Figs. 14 and 15, The resul t s  are given i n  Fig. 20. The 

ordinate gives the half-density radius parameter, and the abscissa gives 

t h e  neutron shel l s  i n  the order in which they appesr i n  the shel l .  33,84 



Neutron - shell availability 
MU- 17802 

Fig. 20. The half-central-density ~ a d i u s  parmeter as a 
functias ~f shell avaihbi l i t  . The poiats ars oZPtaiW 
froa mrlrtestal 3.0-Bev (A 3 and 5.7-13rtv (b)p,pn cr- 
sectiona an4 Ecyi. 33 or 34, The .solid 1-6 csnnaot 
p i n t 8  belo~aging .to the sass product. The abscissa of each 
point gives W 10~4~s-t a h d l  c c m s i M  amilabla, I,%, all 
shells lomr d m  in the potential wsU. are coneidAd 
unavailable, all the &ells higher in  taors p t C r n t i a l  -1 
up to the highest occupied neutrOSi s~~ (repraaented by 
the right hand wint of the serial for each product) are 
also c a s i d e r s d  available, TBe hem solid yacrtlcal l ines  
on the abscissa represent mador neutron-&ell.-closures. 



T e "x coordinate" of each point  i s  the  l a s t  s h e l l  considered available:  . ?  
i:..e., f o r  t h a t  point  a l l  s h e l l s  below are  unavailable, and . a l l  . shel ls  up 

t o  tbe  highest  neutron-containing she l l s  a re  avai lable .  The l i n e s  con- 

nect  points f o r  a given t a r g e t  i n  the  order of bhe neutron (proton i n  the  

case .of La 14') s h e l l  f i l l i n g  i n  t h e  wel l .  Other than t h i s  use, the  l i n e s  

have no meaning,. This i s  &ue t o  the  f a c t  t h a t  . e i the r  a .whole s h e l l  i s .  :.; 

avai lable  o r  none of it -is, so the  f i n i t e  s e r i e s  of points,  one f o r  each 

s h e l l ,  gives the  t o t a l  number of points possible.  .The s e r i e s  of points  

f o r  each t a rge t  ends a t  the  r i g h t ,  correspdpding t o  only the topmost 

lieutron-containing s h e l l  being ava i l ab l e .  .Each s e r i e s  extends t o  the 

l e f t .  a l l  ,the way t o  the  ls1/2 s h e l l  (:all the  neutrons avai lable  )-. How- 

ever,  the s e r i e s  were terminated much ' e a r l i e r  both t o  avoid c lu t t e r i ng  

t he  graph and .at a point  where the  number of s h e l l s  taken t o  be avai lable  

was considered t o  .be more than su f f i c i en t  f o r  any reasonable nuclear 

model. The x coordinates f o r  the  Mog9, Nb99 poin-ts r e f e r  t o  the  lowest 

avai lable  M6lo0 neutron s h e l l .  The lowest  a v a i l a b l e  Mo1O0 s h e l l  

f o r  the f i r s t  point  on 'the l e f t  w a s  taken . as  l f7 /2 .  The r e s t  of the  

points  were computed f o r  a zp3/2 proton She l l  a s  the  lowest avai lable .  

The ~i~~ and Cu64 da ta  were om5tted t o  avoid clutter:  points f o r  these  

t w o  elements would b e l  s imilar  t o  those f o r  ZnG3 . The major neutron s h e l l s  

a r e  indicated along thk abscissa  of Fig. 20. . 

Except . for  the  points  f o r  C,  N, and 0, Fig.  20 should be considered 

a s  .only approximately representing the  cor rec t  s i t ua t i on .  Under any cou-: . . .  

pl ing  scheme there  would.be more points  than s h e l l s .  This i s  because a 

given . s h e l l  could be . pa r t l y  avai lable ,  because some .of the  product .parent8 

. s t a t e s  with .a hole i n  the  given s h e l l  may.be par t ic le-unstable .  The posi-  

t i o n  of the  points  ..might be somewhat .d i f fe ren t  a l so  i f  the  wave functions 

corresponding t o  an inverse.exponentia1 wel l  were used. It i s  t o  be hoped, 

thou-gh, , tha t  the  general  cha rac t e r i s t i c s  of Fig. 20 would be preserved. ' if 

t he  .correct  model .were used: accordingly the discussion . w i l l  -be l imi ted t o  

the  general .features of  Fig.  20. 

The s e r i e s  of points  f o r  each elemerit a l l  show the  same character-  

i s t i c  o f  a decrease i n  ro as  more s h e l l s  a r e  made avai lable .  The steepness 



of the  i n i t i a l  por t ion on the  r i g h t  of each s e r i e s  i s  dependent on the  

nimber of nucleons i n  the  topmost occupied s h e l l .  Iodine-127 and Ta 181 

have many neutrons and protons respect ively  i n  the  topmost she l l s ,  where- 

as has o n l y  two neutrons. For severa l  elements, the  s e r i e s  . . of 

po in t s  make it possible t o  put  lower l i m i t s  on the  number of s h e l l s  av- 

a i l ab l e .  Thus f o r  In  114m the  large  value of r required, i f  only the  
0 

lg7/2 and lh11/2 s h e l l s  are  avai lable ,  make it qu i te  l i k e l y  t h a t  a large  

p a r t  o r  a l l  of the  2d5/2 neutron s h e l l  i s  a l so  avai lable .  Similar ly  the  
62 64 

unreasonable values of r required f o r  hln54, . ~ i ~ ~ ,  Cu , Cu , and Zn 3 
0 

i f  the  l f 7 /2  l e v e l  i s  unavailable show t h a t  much of o r  a l l  the  l f ' / 2  

neutron s h e l l  i s  probably allowed. This i s  r a t h e r  s t r i k i n g  i r i  'thaI; the 

lf7/2-lf ' j /2 spttclng mul-e L l l t u l  urusses tt uiaj~r s l ~ e l l  closure . . 
The upper l i m i t s  on the  number of s h e l l s  avai lable  can not be 

s e t  because of the  f l a tne s s  of the  point  s e r i e s  f o r  each element. Con- 

versely,  ,by t he  same token, lower l i m i t s  on r can be s e t  which vary 
0 

from about 1 .0  f e m i  f o r  the  l i g h t e s t  elements down t o  roughly 0.6 f e m i  

f o r  Ta 180me These lower l i m i t s  would correspond t o  a l l  t h e  neutrons 

being .available.  It i s  evident from Fig. 20 t h a t  i f  the avai lable  s h e l l s  

correspond t o  some point  i n  the  f l a t  region of t he  point  s e r i e s  f o r  each 

t a r g e t  element, then there  appears t o  be a general  decrease i n  t he  ro 

values from -1.2 fermis f o r  the  l i g h t  elements down t o  0-8 fermi f o r  the  

heavier elements. ( ~ ~ a i n  these  numbers a r e  model dependent. However 
. . they  should be l e s s  s ens i t i ve  t o  d e t a i l s  of the  model than other  qua t i . - . .  . .  . i . .  

, .  t i e s  as  they a re  almost independent of the  number of avai lable  neutrons.  ) 

This decreise  i n  r i s  much the  same a s  t he  general  t rend observed i n  
0 

Fig .  19. 
The considerations of t he  last  two paragraphs show t h a t  some p,pn 

cross  sect ions  can be used t o  determine the  a v a i l a b i l i t y  of c e r t a in  s h e l l s  

and, through the  da t a  i n  Table V I ,  upper o r  lower l i m i t s  on the  exc i ta -  

t i o n  energy of the  neutron-hole s t a t e s  i n  these she l l s .  It has already 

been shown how the  zinc and copper p,pn'cross sect ions  were used t o  show 

t h a t  at  l e a s t  a considerable p a r t  .of . the  l f7 /2  neutron s h e l l  i s  probably 

ava i lab le .  From Table V I  it appears t h a t ' t h e  exc i t a t i on  energies of at 

l e a s t  most lf7/2 neutron-hole parent stai;,es, r e l a t i v e  t o  the  p,pn-product 



' ground s t a t e  formed by the removal of a l f  512 neutron, are  l e s s  than 8 
Mev. The sape r e s u l t s  a re  o6tained from the..mangese . . and n icke l  .cross 

sections' . fo r  the  p,pn-product ground s t a t e s  (removal of a 2p3/2 neutron).  

Similar  considerations apply t o  the  2d5/2 hole s t a t e  r e l a t i v e  t o  the  

ground s t a t e .  ~ t h k r ,  as  y e t  unmeasured, p ,pi  cross sect ions  would 

y ie ld  more s i m i l e  upper l im i t s .  For example the  p,pn cross sect ions  of 

~b~~ o r  Ilug6 would show whether the  lg9/2 neutron s h e l l  i s  avai lable  o r  

. . not.  From these r e su l t s ,  l i m i t s  on the  .exci ta t ion .energies of many,of 

the  lg9/2 neutron-hole parent s t a t e s  across the  N = 50 major s h e l l  

compared.to removal of a 2d5/2 neutron.can be s e t .  The f a c t  t h a t  the  

MO'OO r e s u l t  contains .p,2p~contributionsrn&es it d i f f i c u l t  t o  use it t o  

draw conclusions about the  lg9/2-lg7/2 hole-state .energy di f ference.  

C.  The Problem of Ce 
142 

The values of ro given i n  Fig. 20 and obtained from the  cross  
141 

sect ions  f o r  the  react ions  Ce142(p, Zp)La141 and Ce142(p,pn)Ce pose 

a problem i n  t h a t  the  maximum value of r obtained f o r  (0.67 * 
0 

0.05 fermis) i s  unreasonably small. The values of ro obtained from the  

ce141 production cross sect ion range from l e s s  than 0.67 fermis t o  1 . 5  
fermis. A possible explanation f o r  the  small value of r obtained f o r  

0 

i s  t h a t  there  i s  a strong coupling between the  two 2f7/2 neutrons 

and the  &7/2 proton hole i n  Therefore many of the  La141 parent  

s t a t e s  a re  unstable'  t o  p a r t i c l e  emission. This would decrease t he  

number of avai lable  neutrons ' and .increase t h e  value of r A s imi la r  
0 

.. s t rong.coupl ing can a l so  be allowed between .the two 2f7/2 neutrons and 

.lh11/2, 3s1/2, and .2d3/2 neutron-hole s t a t e s  of ce141 i f  one assumes 

t h a t  the  th ree  c losely  spaced lh11/2, 3 ~ 1 1 2 ,  and 2d3/2 neutron s h e l l s  84 

a r e  avai lable .  However the  e f f e c t  of t h i s  coupling on. seems un- 

r ea sonabg  large  -when compared t o  ,the e f f e c t  on other  nucle i  represented 

- i n  .Fig.  '20. 

.There @re several  o ther  poss ible  -explanations of the  small maxi- 
141 

mum value of r . obtained f o r  La The nucleus can .be large ,  with a 
0 

' . 141 
d i f fuse  sur face . (on ly  the  2f7/2 neutrons avai lable  f o r  Ce production) 



and with the  protons strongly concent'sated towards the  center.  This 

concentration i s  beyond t h a t  already given by the  sum over squared 

harmonic-oscillator wave functions f o r  N > Z [Eq. (22)] .  This seems 

unlikely,  because the  concentration required t o  f i t  the  cross 

sec t ion  i s  unreasonably l a rge .  Also other work shows t h a t  the  r a d i a l  

neutron and proton densi ty  d i s t r i bu t i ons  w e  not too d i f f e r en t  from one 

another . 142 94'95 Another a l t e rna t i ve  i s  t h a t  the  Ce nucleus i s  qui te  

s m a l l  and has . r e l a t i ve ly  l i t t l e  surface.  This a l so  seems unlikely in  

t h a t  a hal f -densi ty  radius  of 0.6 t o  0.8 f'ermis i s  an extreme reduction 

compared t o  other  nuc lew r a d i i .  A t h i r d  a l t e rna t i ve  i s  t h a t  the  order 

of proton-shell  f i l l i n g  i n  Ce142 i s  wrong, and the  highest  f i l l i n g  

proton s h e l l  i s  some s h e l l  ot1lelo than the lg7/2 ohe l l  with just. a few 

protons i n  it. However, t h i s  a l t e rna t i ve  i s  contradicted by the  ob- 

served ground-state spins  and p a r i t i e s  of t he  odd-Z; odd-A nucle i  from 

. antimony through ,lanthanum,.,' . 

142 
It i s  i n t e r e s t i ng  t o  exegline the  p o s s i b i l i t y  t h a t  the  .Ce 

nucleus c o n s i s t s  :of an e s s e n t i a l l y  square-density Ce14' core w5th a 

di f fuse  surface generated by t he  two 2f7/2 neutrons outside the  core. 
140 

Thus the La141 production cross sect ion and the  Ce -core contribution 
141 

t o  the Ce -production cross sect ions  can be determined by the  square- 

densdty r e s u l t s  given i n  .Appendix V. By the  use of the  highest  pa r t i c l e -  

s t ab l e  exc5tat ion energ ies  f o r  C e 1 4 1  atid Iia141 from Table VI a ~ d  Eqs. 

( ~ 3 ) ~  ( ~ 4 ) ~  ( ~ 6 ) ~  and (ET) i n  Appendix V [ fo r  N i s  replaced by 

Z i n E q .  ( ~ 6 )  3 t h e  ILal4l and %he Cel@-core p a r t  o f  the  Ce141 .production 

cross  sect ion tu rn  out  t o  be both equal  t o  3.7 mb (ro was taken t o  be 

1.3 fermis) ,  The surface contribution of the  two 2f7/2 neutrons t o  the 

Ce141-production cross  sect ion can be .estimated from Fig. 17 and Eq. 

(26) ( R ~  = 1.3 fermis) and Eq. (34) t o  be 12.5 mb. These r e s u l t s  give 
142 141 141 

c ross  sect ions  f o r  the  react ions  Ce ( p , p n ) ~ e  and Ce142(p,2$i~a 

of  roughly 16 and 4 mb, respect ively ,  .These numbers a r e  i n  s a t i s f ac to ry  

agreement with the  experimental values of 24 and 4.2 mb.54 The v a l i d i t y  
140 139 

of  t h i s  model can be checked by measul-ing the  Ce ( p ; p n ) ~ e  react ion 

cross  sec'tion .because t h i s  model would. p red ic t  a cross sect ion .&out 



equal t o  t h a t  fo r  The other  a l t e rna t ives  mentioned before a l l  
139 give a l a rge r  cross sect ion f o r  Ce production from, ce140 than-for  Ce 

141 

142 
production from Ce . 

D Nuclear Rearrangement 

The approximations used i n  ..deriving ,Eqs. (22) and (32) t o  (34) 

and t h e i r  use .with the  experimental high-energy p,pn cross  sect ions  revea l  

sn i n t e r e s t i ng  r e s u l t .  I n  t h i s  work p,pn react ions  have been assumed t o  

occur when a multi-Bev incident  proton.enters  a nucleon and s t r i ke s*  a 

neutron i n  a given she l l ,  and t he  reac t ion  products leave the  nucleus a l l  

i n  a time shor t  compared t o  nuclear rearrangement .tbne. This allows.one 

t o  consider the  nucleus .as  a container f o r  nucleons whose .momenta and 
- s h e l l  d iq t r ibu t ion  can 'be taken t o  be t h a t  of an unperturbed nucleus. 

AfteP the  co l l i s i on  products have escaped, the  nucleus i s  l e f t  i n  ariy one 

, of a .number of exci ted p a r e n t . s t a t e s  whose minimum excitatTon energy i s  

t h a t  .of the  independent -par t i c le  neutron-shell  hole . s t a t e .  .The energy 

d i s t r i bu t i on  of these  . s t a t e s  i s  equal '  t o -  the  .exci , tat ion energy of the  

neutron-hole s t a t e  p lus  the  d i s t r i bu t i on  of the  rearrangement .energy. 96: . 

I n  . th i s , con tex t ,  the  rearrangement .energy cons i s t s  of a l l  the  energy r e -  

leased when the  nucleus goes .from the  ground s t a t e  .of . the  t a r g e t  minus 

one neutron from a given s h e l l  t o  the  corresponding neutron hole s t a t e s  

of the product. This energy comes from such sources as the  recoupling 

of the nucle i  i n  open s h e l l s  .:when a.neutzm..is reiioved,. a: slight radial shrfnkage 

of the  .nuclear po t en t i a l  well ,  e t c .  The point  i n  t h i s  work i s  t h a t  the  

n.uclear rearrangement associated with the  snatching of a neutron from an 

.available s h e l l  must predominantly populate product . s t a t e s  whose exc i ta t ion  

.energy i s  l e s s  ' than the  highest  .pa r t i c le - s tab le  exc i ta t ion  energy of the  

product nucleus, . or  about 8 Mev. I f  the  rearrangement were such t h a t  a l l  , , : ,  - .. 
.populated s t a t e s  were more than 8 Mev above the  ground s t a t e ,  a l l  

.p,pn .cross sect ions  would .be..equal t o  .zero. 96 

It i s  poss ible  . in  severa l  cases t o  s e t  t he  upper l i m i t  .on the  r e a r -  

rangement. energy a s  socf a ted with. the  s t a t e s  .predominantly populated .by 
I 

nuclear reorganization at l e s s  than the  highest  pa r t i c l e - s t ab l e  exc i ta t ion  



energy of the product nucleus. As has been discussed i n  Pa r t  I, the  

only p a r t i c l e ~ s t a b l e  s t a t e  of i s  the  ground s t a t e ,  the  proton bind- 

ing energy (1.95 Mev) being below the  f i r s t  exci ted s t a t e  (2.37 Mev) . 21 

Further,  the  low value of the  p ,pn cross sect ion f o r  N14  i s  explained 

s a t i s f a c t o r a l l y  by the  low number of avai lable  neutrons (see  Table V I I  

and Figs.  19 and 20). Consequently, the  nuclear rearrangement associ-  

a t ed  with the  snatching of a l p l / 2  neutron from I?14 must predominantly 

populate the  ground s t a t e  of d3. The energy associated with t h i s  r e -  

arrangement t o  the  N~~ ground s t a t e  must be zero Mev. 

A s imi la r  s i t ua t i on  e x i s t s  f o r  the  product 015- From Table V I  
16 

and Figs. 19 and 20 it can be seen t h a t  the  0 (p,pn)015 cross  sect ion 

i s  s a t i s f ac t a rd ly  explained by taking Lhe l p l / 2  and lp3/2 neutron shel ls  

t o  be avai lable .  I f  one assumes t h a t ,  because of a la rge  rearrangement 

energy, the  lp3/2 s h e l l  i s  not avai lable ,  the  densi ty  radius  parameter, 

r from Eqs. (26),  (29a), and (33) andFig.17 would have t o  be 2.1 
0 

fermis t o  give the  p,pn cross  sec t ion  observed, The la rge  discrepancy 

between t h i s  value and o thers  (see  Figs.  19 and 20 and ensuing discus- 

s ion)  supports s t rongly the  a v a i l a b i l i t y  of the  lp3/2 she l l .  The lp3/2 

neutron-hole s t a t e  of 015 i s  at 6.14 Mev; the re  i s  one more l e v e l  a t  

6.82 Mev before the  f i r s t  pa r t i c le -emi t t ing  l e v e l  a t  7.61 Mev i s  reached 

( p a r t  I )  .21 This pa r t  of the  l e v e l  scheme shows t h a t  t he  nuclear r e -  

arrangement occurring a f t e r  a lp3/2 neu.tron has been snatched out must 

predominantly populate e i t h e r  the  6 .14 -~ev  l e v e l  o r  the  6 . 8 2 - ~ e v  l e v e l  
15  of 0 The respect ive  energies  associated with rearrangement t o  these 

two l eve l s  a r e  zero Mev and 0.68 Mev. 

This same argument can be ca r r ied  i n t o  heavier nucle i .  It has 
65 already been shown, how the  buried l f7 /2  neutron s h e l l  i n  C U ~ ~ ,  Cu , 

64 and Zn i s  probably avai lable ,  because i t s  exclusion gives unreasonably 

l a rge  values of r . Snatching a neutron from the lf7/2 closed s h e l l  of 
0 

zinc o r  copper would give a product hole s t a t e  with appreciable exci-  
84 

t a t i o n  energy (roughhy 5 ~ e v ) ,  because it i s  across both a major and . 
minor ( the  zp3/2) s h e l l ,  . Since the  highest  $ a r t i c l e  -s table  exc i t a t i on  

energy f o r  zinc and copper i s  8 t o  9 Mev (Table V X ) ,  t he re  must be no 



l a rge  population of s t a t e s  whose associated rearrangement energy i s  

grea te r  than 3 t o  4 Mev. This f igure  i s  qui te  approximate and i s  only 

a rough f i r s t  guess. This same argument can be applied t o  other  cases 
142 such as  the  2d5/2 s h e l l  of 1n115 and possibly t he  lh11/2 s h e l l  of Ce 

E. .Further Uses of p,pn .Cross .Sections 

There are  other  ways i n  .which experimental p,pn .cross sect ions  

combined with .the . r e s u l t s  .of t h i s  work c& yie ld  more information about 

. nuc l e i ,  I t . . h a s  ..already been shown how the  . . t o t a l  p,pn cross  .sections 

.can yie ld  information about t h e  a v a i l a b i l i t y  of the  uppenyost . she l l s .  

A study of t h o s e . t a r g e t s  t ha t  y ie ld  p,pn products with isomeric s t a t e s  
I 

f o r  which cross sect ions  can be obtained f o r  each isomer .allows .the 

group of avai lable  s h e l l s  t o  be bioain i n t o  two smaller proups. Under 

t he  assumptions .of t h i s  .work, the  i n ' s t ~ t a n e o u s  removal of. a neutron 

from an even-N, even-Z t a r g e t  . leaves t he  .nucleus . i n  an . .excited . s t a t e  

wi th  the  .spin .and p a r i t y  of t he  s h e l l  from which the neutron .was  r e -  

moved. The strong dependence of the  gamma-decay l i f e t ime  on .the type 

and mul t ipo la r i ty  indicates  t h a t  neutron-hole s t a t e s .  i n  s h e l l s  havi.ng 

high .angular momentum would decay predominately i n t o  high-spin .isomers 

and conversely. This s p l i t s ,  the  avai lable  ,group i n t o  shells of .high 

.and low angular momentum ,which are  avqtlable t o  only the  highp :aiid ' low- 
4 ,.' r ,  

sp in  isomers, respect ively .  T h i s  methbd o f  studying a v a i l a b l e  s h e l l s  

having high.and low angular momentum separate ly  does not  apply t o  odd-Z, 
' 

even-N tyrgets ,  :because the  odd proton can .combine .wi th  the  odd neutron 

o f  the  p,pn product t o  give s t a t e s  y i t h  a large aanie of spins,  . which 

then ,decaya i n t o  the  isomers. It i.s .then qu i te  pgpsib.le f o r  both high- 

'and low-spin neutron-hole s t a t e s  t o  .populate .both low- and high-spin 

,.isomers, and no such d iv i s ion  .of the avai lable  s h e l l s  occurs a s  with 

t he  . even-N, even-Z t a rge t s .  The case of 'iii115 has already demonstrated 
. . 

t h i s  .point. I f  the  odd proton i q  i n  a low spin s t a t e ,  the  s i t ua t i on  

. for  even-N, odd-Z : t a rge t s  ..approa 'hes t h a t  of even-N, even-Z ta rge t s .  9 . .' 

Another way the  p,pn ' crods-section .data might .be ..used t o  give 

.usef%l information . i s  . revealed .from examination .of Eqs , (32) ko (34). 
I ' 



I f  a sequence of p,pn cross sect ions  i s  obtained f o r  an i so top ic  s e r i e s  

o f  t a r g e t s  i n  which a neutron s h e l l  i s  fill$.ng'up, Eqs. (32) t o  (34) 

p red ic t  t h a t  a p l o t  of the p,pn cross sect ion E. the  neutron occupation 

number of the  un f i l l ed  s h e l l  w i l l  give a s t r a i g h t  l i n e .  From Eq, (32) 

t he  slope of the  s t r a i g h t  l i n e  would be equal  t o  
. . . . 

. -  1 2  . '  

a M . =  ' a ' . -  
t o t  [ 1 + (F 

0, . - . '1) . .::I M&filled, neutron s h e l l .  (35) 

. , 

The in te rcep t  would be equal  t 6  the  sum over. avai lable  neu.l;ron s h e l l s  

exclusive of the  one being f i l l e d .  This assumes t h a t  no change i n  s h e l l  

a v a i l a b i l i t y ,  i s  occurring thrdughout the  . ' s e r ies .  . ' 3uc:h a change i s  not 

l i k e l y  t o  occur unless the  '.highe'st pur t i c le - s tab le ,  exc i t a t i on  energy 

changes a l o t  o r  is ,  ? lose '  t o  the  e x c i t ~ t i o n  energy of a hole s t a t e .  

Neither of these  fac tor$  would'be expected t o  be .very  l i k e l y .  'Thus it 
. 1 .  

may be poss ible  t o  experimentally determine the  iralues of u M f o r  d i f  - 
f e r en t  s h e l l s .  This argument assumes t h a t  the  . e f f ec t s  of nucleon- 

nucleon coupling are small.  I f  the  . d i s t r i bu t i on  i n  energy of the  parent-  

product s t a t e s  i s  largi, and the  value o f  the  sum Aver the  squares o f  

t he  appropriate f r a c t i o n a l  parentage coeffi 'cients i s  s t rongly dependent 

on the number of neutrons i n  the  un f i l l ed  s h e l l ,  then t h i s  argument 

f a i l s  completely. 

A good i l l u s t r a t i o n  of t he  ways discussed i n  which p,pn cross  

sect ions  might be used e x i s t s  i n  the  s e r i e s  of te l lur ium isotopes with 

a n  even number of neutrons. The p,pn of a l l ' t h e s e  lsotupes  - 
have two i'someric s t a t e s  of spins  11/2-'aqd l )2+  o r  3/2t.'( Except 

possibly f o r  the  l h l l / 2  neutron s h e l l  i s  f i l l i n g  throughout the  

s e r i e s  and i s  probably f i l l e d  a t  ~e l lu r ium-130  contains i n  

addi t ion two 3s1/2 o r  2d3/2 neutrons. 7~'3 I f  one assumes t h a t  the  

lh11/2, lg7/2, and 2d5/2 neutron' s h e l l s  Are avai lable  but  t he  lg9/2 

s h e l l  i s  unavailable,  then the  lh11/2 and lg7/2 s h e l l s  a re  available 

t o  the 1112- isomer and t he  2d5/2 s h e l l -  i s  probably ava i lab le  t o  the  

1/2+ isomer. If the  low-spin isomer i s  a 312-k) then the  lg7/2 s h e l l  

would pr ibably  be ava i lab le  t o  t h e  low-spin isomer. For the  
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3 ~ 1 1 2  o r  2d3/2 neutrons would be avai lable  t o  the  low-spin isomer. The 

choice  from the  1126 poin t  s e r i e s  f o r  the  same s e t  of avai lable  s h e l l s  

of r = 0 .,95 fermis, t h e  aboye .dssunlptions,. Eqs . (29a) and (33), and 
0 . . 

Fig.  18 allows the  determinatio; of the  p,pn c r o s s  sect ions  (neglect ing 

nucleon-nucleon coupling e f f e c t s ) .  The . r e s u l t s  of these computations 

a re  given . i n  Table V I I I  f o r  5.7-Bev protons. .The cross sections given 

i n  chiumn 3 i l l u s t r a t e  how the  isomer r a t i o  can change depending on the  

spins of the  isomers.' .It i s  unl ikely  t h a t  the  cross  sect ion of the .low.- 

spin  isomer would be l a rge r  t h ~ . t h e  values given, bu t  it could be small- 

e r  i f  the  2d5/2 neutron s h e l l  .were . p a r t i a l l y  avai lable  t o  both she l l s .  

Table V I I I  

Estimated isomer p,pn cross sect ions  f o r  even-N te l lur ium isotopes 

Twge t Product Predicted isomer 
isotope isomer spin  cross sect ion 

.(mb) 

Te 
120 

1112- (7) 2 2 

p~ 

For s h e l l s  such a s  t h i s . o n e  with j values.midway between the  .isomer spins,  

. t he  a v a i l a b i l i t y  t o  one .or the  othqr .of the  .isomers would be .expected t o  . 

depend s ens i t i ve ly  on t h e  d e t a i l s  .of the  exc i ted-s ta te  l e v e l  scheme. .The 

slope, 2 mb (lh11/2 neutron) i s  independent .of which s h e l l s  a r e  avai lable .  



If the lg9/2 neutron s h e l l  were avai lable ,  the  cross sect ion of the high- 

spin  isomer would remain the  same, but  the cross sect ion of the  low-spirt 

isomer would decrease. This conclusion i s  based on the  requirement t h a t  

the  lg9/2 s h e l l  would then probably be avai lable  i n  a lso ,  which 

necess i t a tes  a decrease i n  r . These r e s u l t s  given i n  Table V I I I  a re  
0 

r a the r  speculative a s  they depend on severa l  assumptions and are not 

meant t o  be quan t i t a t ive ly  accurate.  Rather, they serve t o  i l l u s t r a t e  

t he  kinds of information which might be obtained from such a study. 
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VII. POSSIBLE ERROR SOURCES 

It has been shown .how the  r e s u l t s  of the  theory embodied'in Eqs. 

(32)  t o  (34) and Figs.  17 and 18 may help , .to. understand nuclear s t ruc ture  

more c l ea r ly  by yf e lding informatiorl about nuclear r a d i i  and hole - s t a t e  

exc i ta t ion  energies .  These r e s u l t s  have been.derived from a theory based 

on .several simplifying assumptions; such .as .the impdse approximation, 

s ing le  nucleon-nucleon co l l i s i ons ,  and . c l a s s i ca l  nucleon and pion tra- 

jec to r ies  ins ide  the  nucleus. Besides these  assumptions and the  d i f f i -  

c u l t i e s  inherent  i n  us ing. the  independent-particle harmonic-oscillator 

model t o  represent r e a l  nucle i ,  the re  a re  other  impl ic i t  approximations 

i n  the  t heo re t i c a l  r e s u l t s .  A discussion of these points w i l l  he lp  t o  

put  th is .work i n  a b e t t e r  perspective.  

There a r e  a few sources .of possible e r r o r  i n  .the assumption made 
- 

. t ha t  .the e f f ec t i ve  average e x i t  cross sect ion,  a, i s  a sum of cross  

sect ions  f o r  pion-nucleon and nucleon-nucleon . co l l i s ions  averaged over 

event types and p a r t i c l e  energies ,and corrected f o r  the  .exclusion pr in -  

c ip le .  .One source stems from the  neglect  of the  wave proper t ies  of 

high-energy pions and nucleons. I f  a nucleon and a pion a re  sca t te red  
0 a t  an included angle of 20 and 300 Mev k i n e t i c  energy each -- not .un-  

reasonable f igures ,  56,57 -- then the  nucleon and pion must t r a v e l  0.8 . 

and 1.1 fermis respec t ive ly  before t h e i r  separation i s  g rea te r  than 

t he  pion reduced wavelength. This i s  an appreciable dis tance of t r a v e l  

compared t o  nuclear dimensions. For t h i s  pa r t  of t h e i r  paths where the  

p a r t i c l e s  a r e  c loser  than a wavelength apar t ,  the  cross sect ion f o r  

in te rac t ion  .with nucleons would not be jus t  a sum .of individual  nucleon- 

nucleon and pion-nucleon . co l l i s ion  c r o s s  sect ions  because there  would be 
' 

in terference of some s o r t  between the  pion.and nucleon. 

.Another source of e r r o r  which a l so  a r i s e s  from the  neglect  of 

t he  .wave proper t ies  of the  co l l i d ing  nucleons i s  t h a t ,  .depending on .the 

angular d5s t r i bu t i on  .of .the emitted nucleons and .me sons, the  momentum 

t r a n s f e r  t o  the  t a r g e t  nucleon along the  inc iden t -par t i c le  d i rec t ion  

can be very small f o r  high incident  energies.  The uncertainty p r inc ip l e '  



then shows . that  it can .be impossible t o  loca l ize  the  co l l i s i on  t o  within 

a nucleon  dimension^^ o r  even nuclear dimensions .as  has been done i n  .Eqs .  

(10) e t  seq. This problem has been t rea ted  i n  the  l i t e r a u t r e  and con- 

d i t i o n s  given t o  determine i f  the  co l l i s i ons  can be localized.97 The 

meson .energies i n  the ."recoristr6ct&dL.:., kventsfl used'.to deterpine a, were 
. . 

used i n  t he  appropriate. conditiorl equation ig7 I t  , . appears  t h a t  on t h e  

whole the p ic tu re  o f  a .col l i s ion local ized t o  wi thin  nuclear ' dimensions 

has approximate va l i d i t y . .  For aboGt one half  of the pprc- event8 and 
+ = n  

many of  he' pnn"'n a d  pnn fi n , eventt i  &D EN = 3 .. 8 * a.  4. Bev, the pol-  

l i s i o n s  a re  loca l ized  t o  .nucleon dimensions a 
. . . . 

An e r r o r  source a f f i c t i n g  2 m a i  e x i s t  i f  the ' i iobkr model of 
44,57 pion production frum high-encrgy nuoledns i s  va l i d  ins ide  the  nucleus. 

Since the  .isobar s t a t e s  have small but  f i n i t e  .life,Llu~ee, . t l ~ c  n.ueleon- 

nucleon co l l i s i on  products t raverse  the f i r s t  p a r t  of the  path as isobars 

which then each decay i n to  pions and a nucleon. Consequently f o r  the  - 
f i r s t  p a r t  of the  path, a cons i s t s  of cross  sect ions  f o r  nucleon isobar - 
nucleon co l l i s i ons .  No erroP i s  introduced only i f  these cross sect ions  

a r e  equal t o  the  sum of the  indivfdual  cross  sect ions  f o r  isobar decay 

product-nucleon co l l i s i ons .  

The assumption made t h a t  the  pion-nucleon-collisdan cross sect ions  

used t o  determine ';; are  t he  same ins ide  the  nucleus as out  may.be a fu r -  

t h e r  source of e r r o r .  Recent t heo re t i c a l  work shows t h a t  various parami 

e t e r s  describing pion in te rac t ions  ins ide  a nucleus vary sl;rungly with 

J98 However, the  e r ro r s  made i n  assuming the  f r ee  pion-nucleon energy. 

cross  sect ions  t o  hold ins ide  the  nucleus would be small, except pos- 

s i b l y  near the  resonance.98 The f r ee  n-p s ca t t e r i ng  da t a  do not show 

strong peaking i n  the  produced meson i n t ens i t y  a t  the  resonance energy. 

For t h i s  reason and possible s i m i l a r  hard-to-correct e r ro r s  i n  " l i f t i n g "  

the  f ree  n-p s ca t t e r i ng  da t a  i n t o  the  nucleus, no correct ion was made 

f o r  t h i s  e r r o r  source. 

The..magnitude of the  . e r ro r  a r i s i n g  from these  sources . in  the  ap- 

proximations used t o  .develop.the .theory i s  .very d i f f i c u l t  t o  determine. 



It i s  hoped . tha t  .it . i s  small, possibly through .cancellat ion e f f e c t s  of 

the  individual  e r ro r s .  Perhaps i n  the future  i t , w i l l  be possible t o  
' I 

evaluate the  uncer ta int ies  a r i s i ng  from these sources. 

There a re  se,veral .small e r ro r s  . a r i s i n g  f d m  the  experimental 

input p-n co l l i s i on  data .and the  methods .of handling ,it. A main .un- 
. ._ .+ - 0 ce r t a in ty  i n  the input .data . i s  .that', f o r  pn pnx x :JC and .o ther  l e s s  

. frequent , events, the  .number of neu t r a l  pions .produced: f s . 'uncer ta in  l '57 
0 For t h i s  ..work, the  number of rc . p a r t i c l e s  i n  .each event type . . exp l ic i t ly  

s t a t e d  i n '  t h e  input d a t a  was used. There i s  some evidence t h a t  the . . 

0 average ir .mul t ip l i c i ty  i s  sorn&wha.t l a rge r  than given by the  a'bove 

data.63 -Several e r ro r s  a r i s i n g  from the  ,method o f  treatment o f  the . 

input  , ,data include neglecting , the  few high meson-mult5plicity events 

i n  . the  input da t a  ( the  f i v e  -prong ,and a .few of the' three  -prong events 

. were neglected),,letting.A/2.=N = .Z  f o r  a l l  t a r g e t n u c l e b ,  etc, .  i n  

the  :determination -of :. These and' o ther  e r r o r s .  ari.si.ng from .the method 

of event . reconstruction .and es t imat ion .  of the  .reduction i n  .a due .to' the  

exclusion pr inc ip le  should .be s m a l l .  



V I I I .  S-Y AND CONCLUSION 

The f a i l u r e  o,f the  model useti i n  the Monte Carlo calcula t ions  t o  

p r e d i c t . e i t h e r  the r i g h t  magnitude o r  dependence on t a r g e t  element of the  

p,pn cross sect ions  f o r  Bev protons l l a ~  been evident f o r  some time. The 

lack  of a nuclear surface arld s h e l l  s t ruc ture  i n  the  model have been sug- 

gested as  the  most l i k e l y  reasons f o r  lack of agreement between theory 

and experiment. 

111 usdei- $0 ~cmody t h i s  s; i tai l~t, inn, t heo re t i c a l  treatment of 

simple nuclear-reaction cross sect ions ,  as exemplified by t h a t  of the 

p,pn react ion,  was developed which allows the  use of severa l  d i f f e r en t  

nuclear models, Q e  theory i s  based on severa l  simplifying fac tors  which 

appear t o  be val id  In  t he  multi-Bcv bombarding-energy s m g e ,  These fac- 

. t o r s  are  the  impulse and zero-degree scattering-angle approximations, 

use of c l a s s i c a l  t r a j e c t o r i e s  fo r  the  incident  and sca t te red  pa r t i c l e s ,  

and quantum mechanical treatment of the  t a rge t  p a r t i c l e ,  -'  tion& on& :(lg) 
and . (20) give the  f e s u l t s '  of the  t heo re t i c a l  treatment using the  above. 

simplifying approximat ions.  

I n  order t o  obtain.numerica1 r e s u l t s ,  the  . independen%-peticle 

harmonic-oscillator nuclear mod.el with spin-orbi t  'coupling was chosen 

because it gives a d i f fuse  nuclear surface,  s h e l l  s t ruc ture ,  and ana ly t ic  

wave functions.  I n  the  i n t e r e s t s  o f . s e l f  consistency, the  same wave 

functions were used t o  give the  t o t a l  nuclear densi.1.y as  we l l  as  the  

p r  b a b i l i t y  of f inding a nucleon with a given s e t  of quantum l abe l s  at a 

given po in t ,  Equation (23) was in tegrated on the  IBM-701 fo r  severa l  

s h e l l s  and t a r g e t  elements over the  periodic t ab l e  f o r  a range of values 

of t he  spr ing constant .  Cross sect ions  a and a2 were s e t  equal  t o  30 mb - 1 
and 180 mb respectively;  a was determined from the  4 - ~ e v  cloud chamber 

142 
da ta .  Then f o r  171g9 CuG5, and Ce , Mne was determined as a function of 
- - 
a.  The Bev cloud chamber da t a  were reworked using the  p l o t s  of M vs  U nk? - 
t o  weight the  values of Zaobta ined .  The new values of 2 obtained (168 

mb f o r  k - ~ e v  neutrons and 160 mb f o r  1.72-Bev neutrons) were included i n  

Eqs. (33) and (34) by means of Eq. (29b). 



These r e s u l t s  and a r a the r  crude approximation f o r  the  contribution 

from the  e l a s t i c  p a r t  of the  p-n co l l i s i on  give the  p,pn cross sect ion as  a 

function of s h e l l  a v a i l a b i l i t y  and, nuclear densi ty  d i s t r i bu t i on  [Eq. (33) 
o r  (34) I .  Use of . the  experimental cross sect ions  and reasonable choices 

of s h e l l  a v a i l a b i l i t y  give reasonable values f o r  the  nuclear s ize ,  i n  

con t ras t  t o  the  model used i n  the  Monte -Carlo work which requires  too 

la rge  a nucleus t o  fit the  observed p,pn cross sect ions  (I?ig. 19). This 

r e s u l t  confirms the  requirement of a d i f fuse  nuclear surface f o r  the ex- 

planation of pppn reac t ion  cross  sect ions .  

The low-Z elements f o r  which the  ava i lab le  s h e l l s  are  known give 

values of the  nuclear hal f -densi ty  radius  parameter of 1.20 f 0.11 fermis 

(Fig.  19), l a rge r  than the  value of 1.03 fermis f o r  the  e lec t ron-sca t te r -  

ing  charge d i s t r i bu t i on  using the same nuclear model. Since a would have 

t o  be reduced ra ther  d r a s t i c a l l y  ( t o  about 100 mb) t o  b r ing  t he  radius  

parameter of the p,pn nucleon densi ty  down t o  t h a t  of the  e lect ron-  

s ca t t e r i ng  charge density,  it seems t h a t  nuclear matter  may extend some- 

what beyond nuclear charge. ! 

The r e s u l t s  (Fig. 20) show a l so  how the  idea  of a reasonable value 

of the  nuclear radius  parameter may be used with some p,pn cross  sect ions  

t o  determine the  minimum number of avai lable  she l l s .  Coupled with the 

highest  pa r t i c le - s tab le  exc i ta t ion  energy of  the  product nucleus, t h i s  

irlformation can be' used t o  help decide which nuclear models give more 

appropriate energy eigenvalues. For example, t h i s  argument shows t h a t  

i n  k6', C U ~ ~ ,  and Cu65 the  lf7/2-lf5/2 neutron-level spacing must be 

appreciably l e s s  than 8 Mev. 

!The Ce141 and La141 da t a  present somewhat .of a problem i n  t h a t  , 

the  p,pn and p,2p cross sect ions  axe low. One possible explanation i s  

t h a t  strong nucleon-nucleon coupling reduces the  number of avai lable  

nucleons fo r  the  p,pn and p,2p react ions .  Other possible explanations 

a re  t h a t  e i t h e r  the  protons a re  wel l  ins ide  the  neutrons -- more than 

given by the  f a c t  t h a t  N i s  grea te r  than Z -- o r  t h a t  the  Ce14' core has 

a negl igible  surface and t he  two 2f7/2 neutrons generate the  ~e~~~ d i f -  

fuse  surface.  The Ce14' p,pn cross  sect ion would allow a choice between 

these  a l t e rna t i ve s .  
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A general consideration of the  mechanism of p,pn react ions  a t  

high energies shows t h a t  .the rearrangement energy associated with s t a t e s  

predominantly populated by nuclear reorganization a f t e r  a neutron has 

been snatched away must be l e s s  than the  highest  pa r t i c l e - s t ab l e  exci-  

t a t i o n  energy of the  product nucleus (roughly 8 ~ e v ) .  This upper l i m i t  

on the  rearrangement energy of l a rge ly  populated s t a t e s  ctul be extended 

even lower f o r  severa l  t a r g e t  nucle i .  I n  pa r t i cu l a r ,  f o r  N14  and 0 16 

ta rge t s  t he  energy associated with the  rearrangement t o  the  N~~ ground , 

s t a t e  and the  -015 6.14- mid 6 . 8 2 - ~ e v  s t a t e s  must be Less than zero Mev 

and 0.68 Mev respect ively .  A s imi la r  conclusion holds f o r  t h e  t a r g e t s  

ZnG4, C U ~ ~ ,  and ~u~~ f o r  which it i s  shown t h a t  the  buried l f7 /2  neutron 
' 

s h e l l  i s  very l i k e l y  avai lable .  The appreciable l f 7 / ~  holc-c ta te  ex- 

c i t a t i o n  energy i n  these t a r g e t s  depresses the  upper l i m i t  of the  r e -  

arrangement energy f o r  populous product s t a t e s  wel l  below the  highest  

p a r t i c l e  -s table  exc i ta t ion  energy. 

The existence of isomeric s t a t e s  of the  p,pn products allows 

the  divis ion of the  avai lable  s h e l l s  i n to  high and low angular momentum 

groups and the  separate study of each group. Even-even t m g e t  11uclei 

a r e  much more su i tab le  f o r  t h i s  purpose than a re  even-odd nuc le i .  This 

i s  due t o  the f a c t  t h a t  there  i s  only one spin and p a r i t y  possible f o r  

a neutron hole i n  a given s h e l l .  For even-N, odd-Z, t a rge t s ,  a wide 

range of spins i s  usual ly  poss ible  f o r  a hole i n  a given neutron s h e l l .  

A possible s e r i e s  of p,pn cross  sect ions  fo r  t he  even-N te l lur ium i so -  

topes was computed t o  show how the  isomeric s t a t e s  can be used. The 

s e r i e s  a l s o  shows how fu r the r  information, such a s  experimental values 

of some of t he  constants [Eq. (35)], can be obtained. 

The r e s u l t s  of .this work . iodicate t h a t  'a l o t  of information ,may 

be obtained from p,pn-reaction cross sect ions  i n  the  multi-Bev region. 

Much more experimental da t a  i s  c e r t a in ly  needed. Furthermore, a l l  but  

a small p a r t  of th is .work covered p,pn cross  sect ions ,  whereas p,Zp, 
+ p,pa , and p,prc- ( o r  p,n) react ion cross  sect ions  can a l so  be t r ea t ed  in  

t h e  same manner a s  the  p,pn cross sect ions .  .Equati.on (20) holds f o r  ' 

p, 2p as  wel l  a s  .p,pn react ions  'and, with the  inclus ion .of another ...: 

4- . . . . , .  fac.tor can be . a l s o  used f o r  p , p ~  ,and ~ , ~ r r -  react ions .  . . .., .... . , . . . . 
, . 
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Angular and energy d i s t r i bu t i ons  a r e  e a s i l y  obtained from e l a s t i c  .. 
p-p co l l i s i ons  because the angular dependence,of the  sca t t e red  products 

a t  high energies  i n  the  c.m. system i s  known. 
65,66 I n  the absence of 

experimental da t a  a t  Bev energies,  idle angular depcndence of the p-n 

e l a s t i c  c ross  sec t ion  i n  the c.m. system i s  taken t o  be the same as t h a t  

of the prp:, e l a s t i c  c r  s s  sect ion i n  the  forward c .mb hemisphere. 99, 100 

I r l  a Llle e l a s t i c  lluelcon nuoleon cullis5 ms, t,he , r e c o i l  ener#;y, 

T2, i n  t h e  laboratory  system of L h r  t a r g e t  p a r t i c l e  i s  given by Eqs. (7a) 

and (.13) of Reference 100:. 

where @ ' i s  the  s c a t t e r i n g  angle of the  t a r g e t  nucleon i n  the  c.m. system, 
. . 2 

and 7-1 gives the  laboratory k i n e t i c  energy i n  u n i t s  '6f mc . From the  

same reference,  . the laboratory  s ca t t e r i ng  angle, Q2, of the  t a r g e t  par- .  

t i c l e  i s  given by Eqs. (6)  and (13) gnd a . t r igonometric i d e n t i t y  t o  be 

The numbers of neutrons from e l a s t i c  p-n c o l l i s i o n s  '.... . . .  s ca t -  

t e r ed  per  u n i t  sc,atCering c .m.  angle i n t o  the  so l i d  angle insin@d@ &d 

normalized t o  one inc iden t  proton, i s  given by . . 

d N  n - = (n+l )  cos Q s i n  Q. . 
dQ ( ~ 3 )  

This r e s u l t  i s  obtained from the  cosn@ dependence of the  p-p d i f f e r e n t i a l  
' 65 s cq t t e r i ng  cross  sec t ion  i n  the  forward c.m..hemispheres. ' .  . 

The f r a c t i o n  of co l l i s i ons ,  FT, which s 6 a t t e r  t a r g e t  neutrons . . 

with a laboratory  r e c o i l  k i n e t i c  energy of T o r  l e s s  i s  obtained by i n -  ,.. 

t eg ra t ing  Eq. ( ~ 3 )  between the  l i m i t s  n and %. ' The value of QM I s  
\ 

obtained from Eq. ( A l )  with T2 s e t  equal  t o  T. These operations give 

2T . 
n + l  1 

FT = [I- (1- ) I .  (~4) 
mc (y-1)  



: The t o t a l l y  dkisymmetcic nuclear wave functions f o r  the  ground 

s t a t e  of a s t ab l e  nucleus with two open s h e l l s  and A j - j  coupled nucleons 

i s  given by 69,101 

- The f i r s t  p-2 s h e l l s  a r e  the  closed s h e l l s  .with spin  and i s o  spin,  and . . 

' t h e i r  respective project ion quantum numbers, J ,  T, MJ, and % a l l  equal  

t o  zero. The.Clebsch-Gordan coeffici 'ent uncouples the  spins  of the* 

(p -1) th  . A d  p th  open s h e l l s .  ' A s imilar  C coef f ic ien t  uWoupling' the  

i so top ic  spins  of the  two un f i l l ed  s h e l l s  has.been l e f t  out .  This i s  
' 

(due t o  . the f a c t  that)  f o r  a l l  s tab le  nuclear 'ground s t a t e s ,  the C coef- 

f i c i e n t  uncoupl.l.'ng t,h.e i so top ic  spin  .of any  hell, f i l l e d  o r  unf i l l ed ,  

from the  r e s t  of the  nucleus i s  i n  i t s  s t re tched c ~ n d i t i o n , ~ ~  ( T ~ + T ~ = T ) ,  
2 

and consequently we .have [ C  ( = 1. This holds f o r  any number of s h e l l s  

i n  the  ground-state configuration with respect  t o  nuclear charge s t a t e s .  

For t h i s  reason .and the  f a c t  t h a t  nuc1ea.r ground s t a t e s  (configuration 

mixing excluded) contain a t  most two uhfi . l led s h e l l s . w i t h  respect  t o  the  . . 

spin  s t a t e s , .  Eq. ( ~ 1 )  w i l l  give, i n  t h i s  workj the  same r e s u l t s  a s  a 

more general  wave function t h a t  r e p r e s e n t s ' a l l  s t ab l e  nuclear ground 

, s t a t e s  with any number of open T = h'+ s h e l l s .  

, The antisymmetrizing operator,  9,  i b  given by 
101 

The sum i s  over a l l  permutations of nucleons between she l l s ,  q i s  the  

number of -nucleon exchanges required t o  give a permutation Q, and 
P - 

A = C n g  The number of nucleons i n  the  Zth s h e l l  i s  given by ni. 
1 ' - 

The i =l normalization f ac to r  i s  the  square r o o t . o f  the  number of pos- 

s i b l e  i n t e r s h e l l  permutations. 



It , is  usefu l  t o  repeat '  Eq., (13) of the  t e x t  here: 

where t he  in tegra t ion  i s  over a l l  coordinates of  a l l  nucleons except the  

space coordinates of the  k t h  - nucleon.  ere Pk i s  the  probabi l i ty  t h a t  

t he  Lth nucleon i s  at  a given space point .  Subs t i tu t ion  of Eqs. ( ~ 1 )  

arid ( ~ 2 )  i n t o  Zq. ( ~ 3 ) ~  performing the  antisymmetrizing operation, and 

taking account .of the orthonormality of all. the  s h e l l  wave functions 

except f o r  the  - i t h  s h e l l  i n  each teru of the  i sum gives t he  r e s u l t ,  , 

where d r  r e f e r s  t o  a l l  the  i t h  s h e l l  nucleon coordfnates except the  
i - 

sgace coordinates of the  k th  - nucleon. The f ac to r  n . 1 ~  a r i s e s  from the  
1 

following considerations.  Out of a l l  the  A:/(n;!n ' . ~ - - n  I) nucleon 
2 ' P 

permutations between s h e l l s  there  are  (A-1) !/(nl!n2! (ni-1) ! On ! ) 
P 

permutations i n  which the  kth  - nucleon i n  the  - i t h  s h e l l  does not  take 

p a r t ,  i . e . ,  it occupies the  same place i n  the  - i t h  she l l .  Each one of 

these  permutations contr ibutes  an' i d e n t i c a l  term i n  Eq, (~4). The sum- 

mation over a l l  of these  permutations, , for  which t he  k t h  - nucleon i s  

f ixed i n  the  - i t h  she l l ,  and combination with the  normalization f ac to r  

obtained from Eq. ( ~ 2 )  give ni/Ae 



I n  .order t o  simplify the  .writing from here on, the  isotopic-spin 

quantum numbers and coordinates w i l l  be dropped from Eq. (84) .  The r e -  

quirement t h a t  the  s t ruck nucleon.be a neutron f o r  p,pn react ion can be 

f u l f i l l e d ,  as  i s  done i n  ..the main .p,art of t he  t ex t ,  by replacing ni by 

Ni9 the  number of neutrons i n  t h e  - i . t h  she l l .  One obtains the  same r e s u l t  

by keeping the  isotopic-spin formalism and i n se r t i ng  the  operator . . 

between the  Y* *d"P te 'ms i n  Eq. (84). Here r 23 +1/2 gives un i ty  if the  

exposed nucleon i s  a neutron and zero i f  it i s  'a proton. Transformation 

of the  wave functions i n  Eq. (84) t o  l i n e a r  combinations of s ing le -par t i c le  

wave functions aind in tegrat ions  over the  isospin  coordinates of a l l  nucleons, 

using the  above operator,  r e s u l t s  i n  the  f ac to r  ~ ~ / n : ~  ins ide  the  i sum. The 

combination of t h i s  fac to r  with the  n,/A gives the  same r e s u l t  a s  the  r e -  

placement of ni by Ni given above. 
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The wave functfons i n  Eq. ( ~ 4 )  have t o  be transformed so t h a t  t he  

coordinates of a s ingle  nucleon appear e x p l i c i t l y .  The terms i n  the  i sum 

f o r  closed s h e l l s  w i l l  be t r ea t ed  f i r s t .  We have6' ( t he  i sasp in  quantum 

numbers a re  a l i  suppressed) 

Here t he  l a s t  nucleon has been s p l i t  out  .of the  s h e l l  by use of the  f i r s t  

C coef f ic ien t .  The second C coe f f i c i en t  allows the  separation of the  

spin  and space p a r t s  of t he  single-nucleon Vave'.function, ..'The 'sfr'ac.t50nal- 

,.paren.tage coef f ic ien t  i s  un i ty  f o r  a closed she l l .  The - .. r a d i a l  par t .of . , the  -. . . 

s3ngle .nucleon- wave .f unc,tion , i s  '3. YJmf - : is  a spherical-harmonic ,.I .and rej'. .- J ,  



xs,M!-rn i s  a spin function. The f i r s t  and second C coefficients i n  Eq. 
. l a  '69 ( ~ 5 )  q e  equal t o  

Substitutton of t h i s  expression in to  Eq. ( ~ 5 )  and the r e s u l t  in to  Eq. ( ~ 4 )  

and integrating pver all rrucleull cwurdina$c~ cneopt the spacP rnnrdinatefi 

of the - kth nucleon gives fo r  the closed she l l s  

x = B ( J ~ + S - M ' - ~ ~ ) - ~  
i 1. a-I-1.e = even integer ,  Takfng account of the d e l t a  

functions and the h i t a r y  properties of the C coeff ic ients  gives 

which, by  the spherical-harmonic addition theorem,70 gives . . kinal ly  

P -2 
pk 1 2 

closed she l l s  "i Tri~ij i  
i=1 

This r e s u l t  a lso holds f o r  open she l l s  I f  J = Q. 

The treatment f o r  open she l l s  with J # 0 i s  more complex than for  

the  closed she l l s ,  Considering the ~ t h  open she l l s ,  one has, from Eq, 

( ~ 4 ) ~  a re la t ion  sfBli1a.r t o  Eq. ( ~ 5 ) :  69,103 



'where F i s  a f rac t ional  parentage coeff ic ient ,  The C coeff ic ients  on 
J0 

the right-hand side of Eq. ( ~ 8 )  are  not i n  a sui table  form for  t h e i r  

removal. They can be brought in to  such a form by use of the symmetry re -  

la t ions  of the C  coefficient^^^ and relationships between Clebsch-Gordan 

and Racah coefficients.  lo4 After use of ~ q s .  ($.l6b) b),6' (.6.4b), 
104 

(3.16b), (6.4b), (3.16b) ttwlce, (3.17a),69 and f i n a l l y  (3.16b) again, 

In  the order given (Ulr aqwt ion  numbers refer t b  the references given), 

one gets  the cumbersome :express$on 

C c( J J ~ ~ J ~ ; M ~ ~ ~ ~ - M ~ ) C (  J ~ J ~ ~ J ~ ~ ~  J ' J  M -M~ J -IU J -M" J ) ( -l lX 
M ; M ~ ~  



where x = 2J1 + 2Jg+s+ j  - J"' a MJ-mQ-& i s  an in teger .  The W coef f i -  
P 

c i en t s  a re  t he  Rac-ah coeff ic ients .  There i s  a s imilar  expression fo r  

t he  conjugate ~ t h - s h e l l  wave functicm. I f  Eq. (Bg) and i t s  conjugate 

a r e  subs t i tu ted  in to '  the  p th-she l l  -term of Eq. ( ~ 4 ) ~  and the in tegrat ions  

performed, the r e s u l t  i s  a form which allows the  M" and M' sum t o  be done - 
J 

over the  t h i r d  and second C coef f ic ien t s ,  respectively.69J One then ge t s  

f o r  the  g t h - s h e l l  t e ~  i n  .Eq. ( ~ 4 )  [ ( - 1 ) ~ ~ = 1 ]  

, 
The subs t i t u t i on  of Eg. ( ~ 1 0 ) ~  a sfmilas  expression f o r  the  ( p - l ) t h  

s h e l i ,  and Eq. ( ~ 7 ' )  i n to  Eq. ( ~ 4 )  gives a r e s u l t  which can now be substitu.4 ::'. 
tied i n to  Eq. (12) of the main t e x t ,  However, t h i s  r e s u l t  r e f e r s  t o  a tar.- . 

g e t  nucleus whose spin  project ion on the quantization ax i s  has a certain.  

value MJ. Equation (12) must be averaged over a l l  the  possible o r ien ta -  

t i ons  of the  nucleus with respect  t o  the  coordinate ax i s  (here t'aken t o  be 

t he  beam. d i r ec t i on ) .  Since the  nucleus ' i s  i n  an e s sen t i a l l y  f i e ld - f ree  

region, each .value of M i s  equal ly  probable, and the  averaging operator..: 
J 

f o r  Eq. (12) i s  

From Eqs. ( ~ 1 0 )  and (12) it can be seen t h a t  the  integrand does not depend 

on MJ o r  J. The averagfng over M may then be brought ins ide  the  i n t e g r a l  
J 

t o  operate on P and P i n  Eq. ( ~ 1 0 ) .  ' The. remaining- C .coeff , icient  i n  - 
kp kp -1 

Eq. (810)  is.: the  only fac tor  depending,on MJ, and so the M sum can be done 
J 

t o  give 



The uni ta r f ty  of the Racah and fractional-parentage coeff ic ients  allows 

the Jan, J", and Jg sums t o  be done i n  turn  t o  give the much simplified 

expression 
I 

' k P  = f J j 

M~ 
P P P  

ma 

1 The spherical-harmonic addition theorem7' gives the f i n a l  rbsul t  
1 

where.r i s  the pr incipal  quantum number of the pth she l l ,  Substitution 
P 

of Eq. . ~ 1 2 ) ,  a .similar eguation f o r  the (p- l ) th  shel l ,  and Eq. ( ~ 7 )  in to  

.Ego ( ~ 4 )  gives 

Comparison of t h i s  .equation .,with Eq. (17) of the main t e x t  shows tha t  Pk 

from Eq. ( ~ 1 3 )  equals Pk from Eq. (17). . !This r e su l t  shows t h a t  Eq. (1q 
of the t ex t  ..is .the same whether o r  not j-j coupling .is ,taken . into account. 

This neglects the f ac t  .that, under j - j  coupling, the density terms : in  -the . 

exponent .of Eq, (18) would be .composed a lso  of j -9 coupled wave functions 

l i k e  those given i n  Eq. ( ~ 4 ) .  Here one can-'t remove t h e  C  and'^ coeffi-  

c ien ts  by summing over MJ,becuase they are  i n  the.exponent. However the 

e f f ec t  of t h i s  would be. expected t o  be small because of both some smearing 



out  of the  di f ferences  by averaging..over M J and the  large  contribution 

t o  the  nuclear densi ty  from the  closed J s h e l l s  f o r  which no such e f f e c t  

ex i s t s .  Furthermore t h i s  e f f ec t  i s  nonexistent f o r  even-even nuc le i  

b,ecause J equals zero, 



APPENDIX I11 

Equations (25) and (26) can be .derived by considering the nucleus 

as a ,degenerate .Fern% gas, . Then the nuclear densi.ty, . p  i s  given by 
105 

where T is  .the Femi  -kinetic energy of the nucleons, and m is  -the 'nucleon 

.mass. 

For a .hmmoni c-osci.llktor nuclear w e l l ,  1T i g  given .by 

where .T .is *the Fermi .energy at the center of the nucleus and w i s  the. 
0 

osci l la t .or  frequency, . I f  R ' .Is .the class . ical  turning ,point .of a nucleon 
0 

.with the .  Femi  energy [obtained from Eq. ( ~ 2 )  by se t t ing  T .equal t o  zero] 

. then it .can .be seen from Eqs, ( C l )  and (C2) tha t  we have 

where pO i s  the cent ra l  nuclear density. Normalization of Eq. ( ~ 3 )  t o  

,require tha t  A nucleons are contained i n  a sphere of radius Ro glves 

Since Eq. ( ~ 1 )  also gives a re la t ion  between po and T o use of Eqs. ( ~ 4 )  

and ( ~ 2 )  ( a t  T = 0) and Eq, ( ~ 1 )  gives 

Since we have 71 

we obtain 



-125 - 
' For l a t e r  use i t  i s  preferable t o  give B2 i n  terms of the half-density 

radius,  R ,  ra ther  than the turning-point radius. From Eq. ( ~ 3 )  it can 
2 be seen tha t  R =, Ro ( 1- ( 2 ) . writing r o = R/A-'I3 and evaluating 

. . 
the numeric& constants gives f ina l ly  . . 

where g , i s  given .by 

. 0.847. 
.%= 2 - ( ~ 8 )  

r 
0 

I n  ' sp i t e  of the approximations involved i n  usir;g Eq. (Cl),  lQ5 

Eqs, ( ~ 7 )  and (cA) ~ i i e  Palr ly  accurate values of the ha l f  -densitys radius 

parameter, r This was checked iy ylu t t i a g  the actua1: 'nu~lear density 
0 

dis t r ibut ion  as a function .of the radius for  a few values .of g by using . 

Eq,  (24) and the e n t r i e s  i n  Table V fo r  three nuclei, C U ~ ~ ,  and , 

~ . e ~ ~ ~  Table IX gives the resu l t s .  

Table M 

Comparison of half-density radius parameters 
-. - 

g Half -density radius parameter, r o ( f e m i s  ) 

Element ( fermid) -2 from Eq. ( ~ 8 )  from Eq. (24) and 
Table V 

$9 o -60 , l . l9  1.16 

0.80 1.03 1.00 

A comparison of the r e su l t s  i n  c,olmns 3 and 4 shows tha t  ro obtained 

from Eq. ( ~ 8 )  var ies  from being 3% too large for  F~~ t o  9% too small for  

~e~~~ when compared t o  the correct values of ro obtained from Ep. (24) 

and Table V., 



Appendix I V  

The effect ive bar r ie r  against nuclear emission of par t ic les  (S- 

wave neutrons excluded) when gamma decay i s  the only competing process 

can be roughly estimated i n  the following manner. 

The p a r t i a l  width for  emission of a pa r t i c l e  with energy E from 
P 

a compound s t a t e  of excitation energy, W, leaving a residual  nucleus i n  

s t a t e ,  a, is  glven by Eq, (33) of Reference 106: 

where p r e fe r s  t o  W e  emitted par t ic le ,  P c ( ~ )  i s  the leve l  density of the 

compound s t a t e  , $ i s  the s t a t i s t i c a l  weight of the residual  nuclear 

s t a t e ,  and a (E ) i s  the cross section fo r  formation of the compound 
* 

pa! P 
s t a t e  c from par t ic le  p and nuclear s t a t e  a .  The t o t a l  width I' i s  ob- < 

P 
tained by summing F over a l l  s t a t e s  a whose excitation energy is  l e s s  

P 
than WAB where B i s  the binding energy of par t ic le  p, Tor the cases 

P P 
under discussion, the enepgy of the emitted par t ic le ,  E 1s always well 

I 

P I 

below the bar r ie r .  The strong dependence of the barrie,r penetrabi l i ty  

on E effectively l imi t s  the sum oveF a t o  the ground s t a t e  and i n  some 
P 

cases the f ips t . exc i t ed  s t a t e s  of the residual  nucleus, Consequently, 

the sum over a w i l l  be lfmited i n  most cases t o  one residual  nuclear 

s t a t e .  The cross section o given by Eq. (49) of .Reference -106 t o  
P 

/ 

where % . is  the reduced pa r t i c l e  wavelength, . P . $ ( E ~ )  i s  the penetrabili ty,  . . 

and IS the s t icking probabili ty for  the particle' p, and .$ i s  the 
. I 

minimum value of the angular momentum which p must cafry away from the 

compound s t a t e  c t o  give the residual  s t a t e  a. The s& over .$ has been 

neglected i n  Eq, ( ~ 2 )  due t o  the strong dependence of the bar r ie r  pene- 

t r a b i l i t y  on k? for  s m a l l  values of E The ba r r i e r  penetrabi l i ty  is  
P a 

found by se t t ing  the gamma-ray width equal t o  the par t ic le  width: 



which gives, with Eqs. (Ill) 'and ( ~ 2 )  

I f  the l eve l  density i s  wri t ten i n  terms of the l eve l  spacing D(W) = 

lo6 then one gets'  lIpc(w), and i s  s e t e q u a l  to'unity,, 
PB 

Here. %, the s t a t i s t i c a l  weight of the residual  nuclear s t a t e ,  equals . : : 

2j+l ,  where j i s  the spin of the res'idual nucledr s t a t e  a t h a t  gives 

the  lnwest value of W s a t i s f y h g  Eq. ( ~ 3 ) ~  and a i s  usually e i the r  Lhe . 
ground or  first excited s t a t e .  The r e~ i idua l  ~lucleus i s  the p,pn product 

minus pa r t i c l e  p. 

The values of r /D(w) fo r  W = 6 t o  9 Mev can be obtained from .. 
Y 

the 1-Mev neutron-capture cross .sections by use of Eq; (4-7) \ 
~ e f e r e n c e  107: 

where k i s  the reduced wavelength of a 1-Mev neutron, Substitution of 

t h i s  equation in to  Eq, ( ~ 3 )  gives 

where B i s  given i n  barns, and 0 can be taken from the l i t e r a t u r e  
nY 

lqn' Since the values of s are not given f o r  the radioactive da tad  
n=r 

ta rge ts  under consideration here, the values for  a s table  t a rge t  can 

be used. The s table  ta rge t  . I s  chosen t o  give an ny compound nucleus 

whose masa, , ,excitation energy, and number of nucleons .or holes removed 

from a closed s h e l l  are similar t o  those of the given radioactive target .  

Sfnce R i s  d i f fe rent  for  each neutron hole s t a t e  of the p,pn product and I 

only rough estimates of the effect ive Coulomb bar r ie r  are needed, .4 was 

s e t  equal t o  zero i n  Eg. ( ~ k )  (~bwave proton or alpha emission) t o  give 



The effect ive Coulomb bar r le r  given i n  Table V I  was obtained from Eq. 

I ( ~ 5 )  and published formulas and graphsloe which give the penetrabi l i ty  

1 i n .  terms .of the r a t i o  -.E /B. . 
.P I 

I 



APPENDIX v 

The p,pn cross sect ions  as a function of r o f o r  each model of . 
t he  nucleus used i n  the  Monte Carlo c a l ~ u l a t i o n s 5 ~  can be computed 

e a s i l y  under the  assumptions made i n  t h i s  work, s ince  a l l  the  necessary 

in tegra t ions  can be performed ana1y.t i q a l l y  . The nuclear model used fo r  

t h e  Monte Carlo ,calcula;tfons w a s  t h a t  of a degenerate Fermi G a s  with a 

113 uniform r a d i a l  dens i ty  d i s t r i bu t i on  out  t o  Ro = r o A  For R greater  

than RoJ the densi ty  w a s  s e t  equal t o  zero. 

These cha rac t e r i s t i c s  can be e a s i l y  put i n t o  Eq. (20) of the  main 

p a r t  of t h i o  work. Since the  r a d i a l  d i s t r i bu t i on  i~ independent of the  

pos i t ion  ~u1d.momentum. of the  nucleons, t he  n, a,  subscr ipt  can be r e -  

moved from ? 2 2 
(r -t z ) , and wc can write f o r  the normalized s ingle-  

n91,J 
nucleon d i s t r i bu t i on  

where the  f ac to r  of 1/2 is outside the  i n t eg ra l s  i n  Eq. (20). I n  t h i s  

model, t he  two densi ty  fac tom,  p ( ~ )  and p ( R ) ,  w i l l  be s e t  equal  t o  

one another because the  one nucleon l e s s  i n  p ' ( R )  w i l l  have even a 

smaller e f f e c t  than f o r  t he  harmonic-oscil lator model. Normalization 

of p ( ~ )  t o  contain A nucleons i n  a sphere of radius  R o =r o gives 

Subst i tu t ion of Eqs. ( ~ 1 )  and ( ~ 2 )  i n to  Eq. (20) and chqg ing  the  i n f i n i t e  

l i m i t s  t o  limits on the  surface of t he  sphere gives 

J7-T 
R -r 

i.2.. 1 exp [-= 3 4nrO 
0 JR 2.q2 

0 
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Evafuatfon of the integrals  gfves 

where 
3 A 113' 

a, = 9 

. . 
For A >>.,I, the sllm over. the allowed shel ls  i n  Eqs. (33) and (34) can be 

replaced by an in tegra l  over the Fermi-gas density dis tr ibut ion from the 

Fermi energy TF t o  a depth % down from the top of the Fermi sea. Here 

5 i s  the highest particle-stable excitation energy  a able V I ) .  Because 

M given by Eqi ( ~ 3 )  i o  indcpcndcnt of the Pnteg~a%lon variable in Eqs.  

(33) and (34), :it ,can be removed outside the integration. -Then one has 

where n- is the number of allowed neutrons. 
a 
The neutron density per uni t  energy, ,>dn/dT, .for a Fermi gas i s  

found from Eq. ( e l )  o f  Appendix III'O~ t o  b e  . 

where the l a s t  factor  on the r igh t  converts dp/dT into,dn/dT. The Fermi 

energy i s  obtained from Eq. ( ~ 5 )  by the requirement . t ha t  

/' (dn/dT) dT = N, where N i.s 



t he  t o t a l  n&b&r of neutrons i n  the  nucleus. . Subst i tu t ion of Eq. ( ~ 5 )  

i n t o  Eq'. ( ~ 4 )  along with the  normalization condition f o r  TF gives, a f t e r  

reazrGgement, 
. 

. . 

Equations (33) and (34) give 

U = 0. naM, ppn . . 
(E7 1 

where a = 36 mb f o r  3-Bev protons and 33 mb f o r  5.7-Bev protons. Thc 

substftutiurl  uf Eqs,  ( ~ 6 ) ~  ( ~ 3 ) ~  and ( ~ 4 )  i n to  EQ,. ( ~ 7 )  allows one t o  

f i n d  what values of ro are  necessary t o  give Llle observcd p,pn cross 

sect ions  f o r  d i f f e r en t  t a r g e t  elements. The value of Eb i s  taken from 

Table V I .  A s  before, a f o r  3- and 5.7-Bev protons i s  36 2 3 mb and 
1 

32 2 3 mb, respect ively ,  and a was determined i n  the  same manner as  

before bu t  f o r  TF = 20 Mev and was found t o  be 150 mb f o r  4 Bev 

neutrons on hydrogen. If r i s  s e t  equal t o  1.3 fermis,  as was done 
0 

i n  the Monte C a r 1 0  c a l ~ u l a t i o n s , ~ ~  cr frrm Eq. ( ~ 7 )  f o r  3-Bev protons 
142 PPn 

o n C ~ ~ ~ a n d C e  t u r n s o u t t o b e 5 . 3 ~ 0 . 5 m b a n d 3 . 7 ~ 0 . 4 m b 9 r e -  , 

spectively.  These values are  i n  s a t i s f ac to ry  agreement with the  ac tua l  

Monte Caglo ca l cu l a t i onswh ichg ive  values of a fo r1 .8mBevpro tons  
PPn 

on cub4 and Ce14' of 7 * 3 mb and 10 * 5 mb respect ively .  27 
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