

DOE/PC/94254--T5

**Computational Modeling and Experimental Studies on NO_x Reduction
Under Pulverized Coal Combustion Conditions**

Technical Progress Report
Seventh Quarter
July 1, 1996 - September 30, 1996

Subha K. Kumpaty
Kannikeswaran Subramanian
Victor P. Nokku
Tyrus L. Hodges

Rust College
Holly springs, MS 38635

Submitted to:

U.S. Department of Energy
Pittsburgh Energy Technology Center
P.O.Box 10940
Pittsburgh, PA 15236-0940

Work Performed Under the Contract DE-FG22-95PC94254

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Ch

MASTER

RECEIVED
36 NOV - 1 AM 10:31
ACQUISITION & ASSISTANCE DIV.
USDOE/PC

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table of Contents

Introduction	1
Reburning Experiments with Methane/Ammonia	
Experimental	1
Discussion	4
Coal Feeder and Future Work	5

Technical Progress Report
Seventh Quarter

INTRODUCTION

During this quarter (July-August 1996), the experiments for nitric oxide reburning with a combination of methane and ammonia were conducted successfully. This marked the completion of gaseous phase experiments. Preparations are underway for the reburning studies with coal. A coal feeder was designed to suit our reactor facility which is being built by MK Fabrication. The coal feeder should be operational in the coming quarter. Presented here are the experimental results of NO reburning with methane/ammonia. The results are consistent with the computational work submitted in previous reports.

REBURNING EXPERIMENTS WITH METHANE/AMMONIA

EXPERIMENTAL

The experimental procedure employed for nitric oxide reburning with methane/ammonia was very similar to the one employed for reburning with methane/acetylene combination. First, the furnace was started and with its temperature set point control, a furnace temperature in the neighborhood of 1140 C was set. Slowly, helium, oxygen and carbon dioxide cylinders were opened and the flow levels calculated for a particular reburning stoichiometric ratio (SR2) were set. Oxygen simultaneously flowed through the NOx analyzer. The analyzer was turned on and allowed to warm up. The parameters on the analyzer were checked until they reached the normal operating conditions. Then, the nitric oxide flow was adjusted to 1000 ppm which was expressed on the NOx analyzer digital readout. The Omega probe measured the gas temperature inside the reactor which

was digitized on the thermometer readout. The furnace temperature was adjusted slightly so as to maintain the reactor gas temperature at 1100 C. When all the flow parameters were stable, methane and ammonia were introduced according to the calculated flow rate for the particular SR2 in question. Instantly, the NOx output decreased and once it reached a steady value, the reading was recorded. A constant check on gas leaks was crucial to the success of the experiments. The procedure was repeated for various SR2 values (0.8-1.0) as well as for two reburn fuel combinations of methane and ammonia (98/2 and 96/4). The model results steered the choice of input conditions in this experimental study on the reburning effectiveness of methane/ammonia.

While the gas temperature 3" inside the reactor was steady at 1100 C, the experiment was performed for five SR2 values, namely, 0.8, 0.85, 0.9, 0.95 and 1.0. The total flow rate of the gas mixture was 1950 cc/min. Given in Table 1 are the various flow rates of pure gases calculated for NO reburning with 98/2 fuel combination of methane and ammonia. Table 2 lists the actual flow rates, adjusted to accommodate varying gas proportions (that is, percent concentrations) in the cylinders such as oxygen/He, methane/He, ammonia/He and NO/He. These were calibrated for rotameter scales and fed through the respective flow meters. The steady readings on the NOx analyzer before addition of reburn fuel and after addition of reburn fuel were recorded. The experimental results for 98/2 combination of methane/ammonia, with introduction of methane only, methane and ammonia together and ammonia only (by closing methane feed and increasing ammonia to the allowable maximum through the rotameters) are shown in Table 3. The flow rates of pure gases and the adjusted rates were calculated for the 96/4 combination of methane and ammonia and the entire cycle of experiments was performed at SR2 values of 0.85, 0.9, 0.95 and 1.0. The results of these experiments are presented in Table 4.

Table 1. Simulated flow rates of various pure gases for NO reburning with 98/2 combination of methane/ammonia

SR2	CO ₂	O ₂	CH ₄	NH ₃	NO	He
0.80	315.8	36.2	69.3	1.41	1.95	1525.3
0.85	318.3	36.5	54.6	1.11	1.95	1537.5
0.90	320.6	36.8	41.4	0.84	1.95	1548.5
0.95	322.6	37.0	29.3	0.60	1.95	1558.4
1.00	324.5	37.4	18.4	0.38	1.95	1567.5

Table 2. Adjusted flow rates accounting for gas proportions (% concentrations) in the cylinders

SR2	CO ₂	O ₂	CH ₄	NH ₃	NO	He
0.80	315.8	180.4	344.9	151.4	553.4	404.2
0.85	318.3	181.8	271.8	306.2	553.4	318.5
0.90	320.6	183.1	205.8	445.9	553.4	241.2
0.95	322.6	184.3	146.0	572.5	553.4	171.1
1.00	324.5	185.3	91.5	687.9	553.4	107.3

Table 3. Experimental results on NO reburning with reburn fuel of 98% methane and 2% ammonia

Gas Temperature 1100 C

SR2	NO in	NO _{out} [*]	NO _{out} CH ₄ and NH ₃	NO _{out} [*]
		methane only		ammonia only
0.8	1020	43	24	885
0.85	1010	37	24	860
0.9	990	31	22	845
0.95	1022	310	275	934
1.0	1080	940	905	1045

NO in/out Concentrations are measured in ppm.

*Not representative of SR2 value. Based on cutting off one or the other reburn fuel from the reaction mixture.

Table 4. Experimental results on NO reburning with reburn fuel of 96% methane and 4% ammonia

Gas Temperature 1100 C

SR2	NO _{in}	NO _{out} methane only	NO _{out} CH ₄ and NH ₃	NO _{out} ammonia only
0.85	994	38	34	697
0.9	1012	32	22	789
0.95	1000	431	352	861
1.0	1014	928	865	929

NO in/out Concentrations are measured in ppm.

* Not representative of SR2 value. Based on cutting off one or the other reburn fuel from the reaction mixture.

DISCUSSION

It can be seen from Table 3 as well as Table 4 that for the case of methane only as reburn fuel, NO reduction increases with increase in SR2 ratio until the optimum SR2 value of 0.9. The reduction is not as high for the cases of SR2 > 0.9. This behavior was documented in the previous report and is consistent with the numerical predictions carried out earlier in the program.

For the case of 98% methane and 2% ammonia (Table 3), a significant NO_x reduction is observed. The inlet concentration of NO (1000 ppm) reduces to lower twenties in the ppm level for the SR2 values upto 0.9. The reduction is 73% at SR2=0.95 and only 16.2% at SR2=1.0. These experimental results of NO reduction with a combination of methane and ammonia follow the same trend predicted computationally.

It can be noticed from Table 4 that that NO reduction is similar (to the above trend) for 96/4 combination of methane/ammonia. The maximum reduction occurs at SR2=0.9. The reduction is less at higher SR2 ratios: 64.8% at 0.95 and only 14.7% at 1.0. However, comparing the levels with the introduction of methane only, it can be inferred that a slight addition of ammonia favors the NO_x

reduction further by strengthening the reductive effectiveness of methane. It can be further observed from Tables 3 and 4 that the additional effect of ammonia on NOx reduction is more pronounced at $SR2 > 0.9$ than $SR2 < 0.9$. This is due to the fact that the methane-NOx reaction is not close to the equilibrium in the former case ($SR2 > 0.9$) than the latter case.

Also shown in Tables 3 and 4 is the exit concentration of NO when methane feed was cut off and only ammonia was used as the reburn fuel. This was deliberately planned to see the performance of ammonia as a primary reburn fuel. The reduction of nitric oxide was not much, a maximum of 14.6% for 98/2 run and about 22% for 96/4 run. Thus it was concluded that the use of ammonia in small quantities is helpful in NOx reduction chiefly as a reburn fuel additive to methane.

The above findings are significant in terms of the industry needs. With methane as a reburn fuel, the narrow operating window calls for precise cascade control between the primary zone combustion feed inlet, the reburning zone methane inlet and the NOx analyzer in order that the NOx emissions be within permissible limits. However, with the addition of acetylene or ammonia to methane as reburn fuel, the NOx emissions will be within permissible limits as long as a set point control is given to the methane/acetylene or methane/ammonia reburning feed inlet not to exceed the SR2 of 0.9. With the latter case, the operation is easier to keep the NOx emissions within limits even if there arise some changes in the primary zone combustion feed inlet.

COAL FEEDER AND FUTURE WORK

The coal feeder was designed with the following specifications: coal tube, 12mm internal dia glass; outer tube, 1" SS tubing; piston, SS with O ring seal; piston rod, 1/8" SS; end seals, swagelok type SS fittings with teflon ferrules; feed screw, 1/2" dia X 20 TPI; drive connection, acme nut type; linear

bearings, Grainger 2X567; shaft bearings, permanently lubricated 2X897; linear shafts, $\frac{1}{2}$ " polished rod; frame plates, $\frac{1}{2}$ " aluminum; travel stops, SS ring 1L636; drive motor, Dayton 4Z536; flexible motor coupling; outlet tube, 1/8" SS tube. The design was provided to MK Fabrication and the coal feeder is being built. At the facility, the furnace-reactor setup is being adjusted to accommodate the coal supply into the reactor by the use of the coal feeder. The details of design and operation of coal feeder will be discussed in the coming quarterly report. It is expected that the reburning experiments with coal will be initiated in the next few months.