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This report was prepared as an account of Government sponsored 
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A ,  Makes any warranty or  representation, expressed o r  
implied,. with respect t o  the accuracy, coslpleteness, 
or  usefulness of the information contained i n  t h i s  
report, or tha t  the use of any information, apparatus, 
method, or process disclosed i n  this reportqmay not 
infringe privately owned rights;  or  

B. Assumes any l i a b i l i t i e s  with respect t o  the use of, 
or  f o r  damages resulting from the use of any 
information, apparatus, method, or process disclosed 
i n  t h i s  report. . 

A s  used i n  the above, "person acting on behalf of the C~mmission~~ 
includes any employee o r  contractor of the Comrmission, or employee of 
such contractor, t o  the extent tha t  such employee or  contractor of 
the Canrmission, o r  employee of such contractor prepares, disseminates, 
or  provide's access to,  any information pursuant t o  h i s  employment or  
contract with the Cospnission, or  h i s  employment with sucb contractor. 

Distribution of t h i s  report has been made, i n  accordance wlth,AEC 
instructions t o  a l ls t  of addressees given under Category UC-80 
( ~ e a c t o r s  - ~ e n e r a l )  of TID-4500 (14th Edition, October 1, 1958); 
plus additional addresses l i s t e d  i n  the "Supplementary Distribution 
List f o r  Reactor Safety Reports" given i n  a document with t h i s  t i t l e  
furnished by the U.S. AEC Reactor Safety Branch, Division of Reactor 
Development ( JUy, 1958). 
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I. ABSTRACT 

An evaluation of the power and temperature versus time h is tor ies  

of three typica l  water-cooled and moderated reactor8,during a nuclear 

excursion has been made by applying a previously reported method of 

analysis. These reactors are characterized by one of the following 

types of fue l  elements: U-A1 alloy, highly enriched, aluminum 

jacketted, f l a t  plate;  U-Zr al loy, highly enriched, zirconium clad, 

f l a t  plate;  and U02, s l igh t ly  enriched, zirconium clad rods. The ' 

.. , 

va l id i ty  of the method of analysis was evaluated by comparing the 

resu l t s  with experimental data derived from the BORAX I and SPERTI 
. . 

t e s t s .  The e f fec t s  of varying some of the input data, such 'as heat 

transfer. coefficients , and of considering various' nuclear skutdown 

mechanisms were a l so  obtained. 

For reactors with f la t  p la te  highly enriched ' fuel ,  , t h i s  evalua- 
i. . ' 

t i on  has indicated tha t  the chemical energy available from the reaction 

of a l l  of the material with water, is several times the amount of energy 
' I  

required t o  melt the fuel.  A reactor period has been found,, above which 

no - .., melting of metal w i l l  occur i n  the f u e l  elements. For incidents more 

severe than these threshhold cases which'barely produce molten metal 
., . . 

( 1  .e. incident's with shorter ieactor  periods), it has been ihown, fo r  
- .  

t h i s  type of fuel ,  t ha t  only a very narrow range of periods is  possible 

between zero and 100 percent melting. For these high e n r i c ~ e n t - f l i e l s ,  

the pr incipal  mechanism for  the shutdown of the nuclear t ransient  is  

the formation'of steam a t  the surface of the fuel elements. ' This i n  



e f fec t  reduces the hydrogen density of the system so t h a t  the reactor 

loses reac t iv i ty  through under-moderation. Gas formation due t o  

radiolysis of water, and other e f fec ts ,  contribute only s l igh t ly  t o  

the t ransient  termination mechanism. 

The resu l t s  of the analysis f o r  the Z r  clad, uranium oxide, low 

enrichment, rod type f u e l  indicate t h a t  during the nuclear incident, 
I .  

, '  

the , . oxide temperature increases rapidly while the clad temperature is 
. .. . . 

slow . . t o  respond. The thermal properties of the f u e l  elemenix and the  
. .-. 
nuclear properties of the core a re  such tha t  neither the oxide nor the 

cladding a t t a ins  the melting temperature of zirconium fo r  the accidents 

considered. For t h i s  f u e l  with a low #35 content, the traxisient shut- 
. ,  

d o k  mechanism ar i ses  largely from the Doppler broadening arid iricrease 

b i - t h e  absorption eroas-section of the $38 present, as the temperature 
. . 
i s -  raised. A s  a r e su l t  of , this ,  the paras i t ic  loss  of neutron6 t o  the 

hon-fissionable uranium i n  the fue l  increases t o  such an ex ten t ' t ha t  

ultimately the reactor mishap is quenched because of a deficiency i f  , 

*;?btrons t o  sustaip the reaction. The steam void formation,' which. i s  

th& main process by which shutdown occurs f o r  the enriched f&l''&stems 

described above, is of r e l a t ive ly  minor importance f o r  t h i s  case. 

The objective of the Metal-Water study i s  t o  combine t h i s  and 

other analyt ical  work with chemical kinet ics  data t o  determine the 

extent and ra te  of metal-water reaction i n i t i a t e d  by a nuclear incident, 

and, . . . t o  apply the r e su l t s  t o  the evaluation of the safe ty  hazard resul t ing 
. , .  , , 

from such a metal-water reaction. 



11. INTRODUCTION 

Since nuclear fuels  are  fabricated from chemically reactive 
materials such as  aluminum, zirconium, and uranium, it is possible 
t o  release large mounts of energy i n  the reaction 

Metal + Water = Metal Oxide + Hydrogen Gas + Heat: 

This chemical reaction i s  unique i n  t h a t  it appears t o  be the only 
primary process, other than the nuclear reaction i t s e l f ,  which can 
add energy t o  the reactor system during a severe: nuclear excursion. 

Extensive laboratory studies a t  many d i f fe rent  s i t e s  have 
iddicated that rapid and' dangerous metal-water reactions of ' t h i s  
type c a ~ o t  be expected t o  occur unless the metal is  a t  an elevated 
temperature and f ine ly  dispersed. These conditions appear t o  re- 
quire tha t  the metal be molten. There a re  two basic mechanisms,that 
can conceivably lead t o  t h i s  s i tua t ion  i n  a water cooled and moderated 
reactor: a severe nuclear incident and a loss  of coolant accident. 

. . 
.. The following evaluation of nuclear excursions i n  l i g h t  water 
cooled reactors i s  pa r t  of the work performed t o  investigate the 
magnitude and r a t e  of metal-water reactions under severe reactor 
incident conditions. For the three reactors described i n  Table 1, 
t h i s  report  presents data on the relationship between power, temper- 
a ture  and time a s  a function of i n i t i a l  reactor period. The reactors 
a re  characterized by one of the following types of fue l  elements: 
(1) U-A1 a l loy,  highly enriched, aluminum Jacketted, f l a t  plate;  
(2) U-Zr a l loy, '  highly enriched, zirconium clad, f l a t  plate;  and 
( 3 )  U02 s l igh t ly  enriched zirconium clad rods. Hereafter, reactor 
cores containing these fue l  elements may be referred t o  as the A l ,  
Z r ,  or  U02 reactors. This evaluation was limited t o  short  reactor 
periods,from low power and temperature conditions, t h a t  potent ial ly  
could r e su l t  i n  rapid metal-water reactions. 



METHOD OF SOLUTION - COlJlPUTER SETUP 

The bas ic  method of solution i s  outlined i n  Reference A, i n  which 
an analog computer model i s  developed fo r  an Alallpy fueled reactor.  This 
method was modified (see ~ppendix)  t o  include d i f fe rent  shutdown mechan- 
i s m s  t o  accommodate the reactor fueled with UOg and t o  allow f a s t e r  
t ransients  t o  be studied, 

The e f fec t  of radiolyt ic  gas formation was omitted i n  these new 
calculations. I n  Reference A, it i s  shown tha t  the importance of water 
decomposition on the reactor t ransient  parameters is  not great; and,in 
fac t ,  the omission of t h i s  process from the calculated model gives s ig -  
nif icant  improvement i n  the resu l t s ,  as  can be determined by comparison 
with the BORAX I experimental data, A s  temperature dis t r ibut ions within 
the fue l  a re  highly desirable, the model i n  Reference A was<expanded t o  
provide this information. 

The calculated periods were obtained by introducing a s tep increase 
of react ivi ty .  While t h i s  i s  a somewhat over-simplified type of 
accident, it is believed t o  be r e a l i s t i c  f o r  t h i s  study where the ex- 
cursion i s  begun a t  source leve l  and the required period i s  so short .  
  or t h i s  condition, the amount of reac t iv i ty  t h a t  must be compensated 
i s  almost exactly t h a t  which would be required i f  the inser t ion had been 
l inea r  with t h e ,  provided the ramp i s  terminated a few decaides below 
the point where shutdown mechanisms become important. Therefore, the 
excursion w i l l  be prac t ica l ly  ident ica l  whether a s tep i n  reac t iv i ty  o r  
a ramp, t ha t  terminates before one percent peak power i s  reached, i s  
used. 



I V .  RESULTS 

Figure 1 indicates a comparison between the predicted behavior and 
ac tua l  Borax transients.  It w i l l  be noted t h a t  the t o t a l  energy released 
i n  the excursion compares favorably with .that calc ted  by the technique 
developed. The deviation (approximately 10$ a t  5 ms' 'Y a t  very short  
periods could be due t o  ac tua l  shutdown mechanisms 'not included i n  the 
analysis such as  mechanical deformation of the core. It might a l so  a r i s e  
from experimental uncertainty since very few data points a re  available 
f o r  periods shorter  than 10 m s ,  In  any, case, the agreement i s  considered 
adequate f o r  the purpose of t h i s  evaluation. 

Examples of the t ransient  temperature and power data obtained are  
presented on Figure 2 f o r  the UOp fueled reactor and on Figure 4 f o r  
the highly enriched p la te  type - fueled reactors. It should be. ,noted 
t h a t  ekch s e t  of data is f o r  a d i f fe rent  i n i t i a l  period. . . 

Figures 3 and 4 i l l u s t r a t e  a power excursion f o r  the three reactors 
studied. The systems have such dissimilar character is t ics  tha t  d i rec t  
comparison is  d i f f i c u l t .  I n  general, however, the A 1  and Z r  highly 
enriched, f l a t  p la te  ' fuels  respoxd:. as  would be expected .qualitatively.  
The poorer thermal d i f fus iv i ty  of Z r  allows l e s s  heat t o  en ter  the 
water, and consequently, the Z r  reactor experiences larger  power ex- 
cursions due t o  the greater  length of time t o  shut down, Comparison 
of the curves obtained by t h i s  computational technique with'experimental 
dab ( t h a t  is, the BORAX and SPERT resu l t s )  shows t h a t  while the t o t a l  
energy is given rather  accurately by the model, the shape of the power 
.versus time curves i s  i n  somewhat poorer agreement, The experimental 
curves do not show the f a i r l y  slow fa l l ing  off past  the power peak 
i l l u s t r a t ed  by the A 1  curve i n  Figure 3; rather  they tend t o  be nearly 
symmetrical about the peak, l i ke  the curve labelled U02 i n  t h i s  figure.  
Thus, there i s  a shortcoming i n  the analysis,  which i s  believed t o . a r i s e  
because the model assumes a unique dependence, of steam void on f u e l  
.temperature. This i s  reasonably correct f o r  short  times - u n t i l  the 
power peak, f o r  example; however, f o r  longer times it i s  incorrect since 
water i n e r t i a  is no longer overriding and the. steam can continue t o  
expand. Note t h a t  this phenomenon is not observed with the low enriched 
oxide f u e l  since the pr incipal  shutdown mechanism i n  t h i s  case i s  the 
Doppler temperature coeff ic ient  . 

I n  order t o  determine the amount of molten metal produced the 
important character is t ic  of the system i s  the in tegra l  of the power- 
time curve, t h a t  is, the energy associated with the t ransient ,  This, 
from Figure 1, is given quite accurately by the model used. Figure 5 
i l l u s t r a t e s  the e f f ec t  of period on (1)  the peak fue l  temperature 
normalized t o  the melting temperature, and (2) on the percent of molten 
metal produced. The A 1  and Z r  p la te  fuels  behave as  expected since 
the low thermal d i f fus iv i ty  of the Z r  system resul t s  i n  higher tempera- 
tures  f o r  longer period accidents. One r e su l t  which i s  somewhat surprising 

* The abbreviation "ms" w i l l  be used f o r  milliseconds. 



i s  the very narrow range of accidents between i n i t i a l  and complete 
melting of the core. It i s  a lso  interest ing t o  note f o r  the U02 
core tha t  even a t  the 4.34 m s  period excursion the U02 and Z r  clad 
temperatures are below the melting temperature of zirconium. To- 
achieve melting of the Z r  clad periods of l e s s  than about three 
milliseconds, would apparently be required. Whether f a s t e r  periods 
than t h i s  can ever be achieved f o r  a low enrichment U02 reactor is  
a problem f o r  the system designer and safeguard engineer t o  evaluate 
f o r  the specif ic  system under consideration. It seems improbable. 

Figure 6 supplements the information given i n  Figure 5 by showing 
the energy released i n  these excursions. The re la t ive ly  lower amount 
of energy produced i n  the A 1  fue l  compared t o  the Z r  p la te  should be 
o f  i n t e re s t  f o r  research and t e s t  reactors.  The dashed l ines  show the 
t o t a l  energy released assuming a l l  the metal present t o  react  chem- 
i c a l l y  with the water added t o  the nuclear excursion energy. This 
assumption i s  not just i f ied,  since the extent of the chemical reaction 
w i l l  be largely determined by the amount of molten metal available.  
The dotted l ines  f o r  the two high enrichment fue ls  show the upper 
l imi t  of the e f f ec t  taking t h i s  factor  in to  account. Any r e a l  energy 
release due t o  a metal-water reaction must l i e  i n  the shaded region 
between the so l id  and the dotted curves. 

Figures 7 and 8 give the temperature dis t r ibut ion as  a function 
oS period and time fo r  the Z r  f l a t  p la te  element and the U02 Zr-clad 
fue l ,  These curves have been useful i n  determining the ampunt of 
molten metal available and i n  performing s t r e s s  analyses on these 
f u e l  elements. The f l a t  p la te  Z r  element w i l l  deform, but pro- 
bably not rupture before melting. I n  the case of the A 1  fuel ,  the 
high thermal conductivity of the material  w i l l  r e su l t  i n  a nearly 
uniform temperature dis t r ibut ion across the so l id .  Stress  analysis . 
of the Z r  clad, U02 f i l l e d  element (~e fe rence  B) indicates tha t  the 
yield strength.of the cladding w i l l  be exceeded long before the oxide 
becomes molten. The exact nature of the fue l  d is tor t ion  or  f a i lu re  
w i l l  be discussed i n  d e t a i l  i n  a forthcoming report  i n  t h i s  se r i e s  
(B) . It i s  expected, however, t ha t  the core w i l l  be deformed follow- 
ing excursions with i n i t i a l  periods of a few milliseconds o r  Pess. 
Figure 9 indicates the maximum s t r a i n  i n  the clad versus the reactor 
period, due t o  the d i f f e ren t i a l  expansion of the'oxide and the clad. 
These s t r a ins  are  f a r  below the values of 7 t o  10% which it i s ' b e -  
l ieved i r radikted zirconium can stand without rupture (B); but are  
~ u f f i c i c n t  t o  produce s ignif icanl  ~ ~ l e c k a u l c ~ l  deformation. 

Figures 10 and 11 provide a study of the importance of various 
shutdown mechanism f o r ' t h e  low enrichment U02 rod. In  Figure 10 the 
so l id  curve indicates the power t ransient  with a l l  important shutdown 
mechanisms i n  e f f ec t .  The lower dashed curve i s  the same transient  
assuming the fue l  t o  be perfect ly  insulated thermally. The apparent 



inconsistency of the lower peak power with no heat loss  is  due t o  the 
importance of the Doppler temperature coefficient.  Insulating the f u e l  
produces somewhat higher temperatures tha t  more than compensate f o r  
the smaller amount of steam void t h a t  would have been formed due t o  
lower conduction. If the rods were larger  than the assumed 0.45" 0 .D. 
(see Table l ) ,  there would be l e s s  difference between these two cases.. 
The upper dashed curve indicates the e f fec t  of neglecting the neutron 
and gamma heating i n  the water. It can be seen tha t  t h i s  i s  an 
important mechanism, reducing the peak power by more than a fac tor  of 
two. The remaining dashed curve i l l u s t r a t e s  the very important e f f ec t  
of the Dop l e r  coefficient.  This parameter was assumed constant a t  
1.67 x 10-5 per OF. It i s  known tha t  the coefficient w i l l  be lower 
a t  'elevated temperatures; however, f o r  lack of detailed information 
t h i s  decrease i n  the p a r a t e r  was ignored. Perhaps future studies 
should include the variation, although it i s  not expected t o  a l t e r  the 
basic conclusions drawn. I n  ~ i ~ & e  11 the e f fec t  of assuming an 
i n f i n i t e  heat t ransfer  coefficient between meat and clad i s  shown t o  
be small. This again i l l u s t r a t e s  strongly the weak influence of the 
heat being conducted out of the fuel ,  and the f a c t  t ha t  a s l i g h t  
reduction i n  fue l  temperature has a greater influence on the Doppler 
coefficient,  due t o  the low enrichment, than it has on the steam void 
coefficient.  



CONCLUSIONS 

The techniques i l l u s t r a t e d  above are  applicable t o  any reactor, 
and can be used i n  ,safeguards evaluation. Even the somewhat general- 
ized and diffused exaaples considered show trends which should be of 
considerable usefulness. One of the most s t r ik ing  examples i s  i l l u s -  
t r a t ed  i B  Figure 5 where it is  noted tha t ,  f o r  the f l a t  p la te  fuels ,  , 

the range from the period which (1) produces l iquid  metal t o  t h a t  
which (2) completely melts the core, i s  extremely short. For the Al* 
core f o r  example, a period of 4.9 m s  does not r e su l t  i n  f u e l  melting; 
while a t  3.3 ms a l l  the f u e l  is  molten before termination of the .'' 

reactor excursion;; The same trend is seen i n  the Z r  fue l ,  and the 
respective periods a re  .12.2 and 8.6 ms . This deviation i n  period f o r  
melting i s  t o  be expected due t o  the re la t ive ly  poorer thermal dif  - 
fus iv i ty  (resul t ing i n  slower void formation) i n  sp i t e  of the higher 
melting point of Z r ,  However, the short  range of nuclear t ransient  
accidents i n  which there is only p a r t i a l  core melting suggests t h a t  
it is  not reasonable t o  assume l e s s  than t o t a l  melting f o r  z+ny system 
which i s  considered capable of achieving periods t h a t  w i l l  produce 
an? melting a t  a l l .  

The low enrichment UOg-Zr clad element has a long thermal relax- 
a t ion  time and as a re su l t  t ransfers  re la t ive ly  l i t t l e  heat i n to  the 
water during. a. .rapid:.:transient, This resu l t s  i n  oxide temperatures 
that a re  reasonably uniform across the radius, and clad temperatures 
t h a t  a re  low compared t o  the melting point (see Figure 8).  Stress  
analysis of the Blement (~e fe rence  B) indicates t h a t  the y i e ld .  strength 
of the cladding w i l l  be exceeded long before it becomes molten, I n  
such a system, a nuclear t ransient  insuf f ic ien t ly  rapid t o  produce 
molten metal (and consequently a metal-water reaction) may still re-  
sult i n  s ignif icant  core d is tor t ion  and deformation. It i s  easy t o  
conclude, therefore, t h a t  large metal-water reactions, f o r  t h i s  type 
of 'accident, w i l l  not readily occur f o r  low enrichment high-melting 
point m e l .  Other accidents, such as loss  of coolant and accidents 
while the core i s  at  f u l l  power, should be examined f o r  t h i s ,  and . 
other fue l  types before concluding tha t  the metal-water reaction 
hazard can be ignored as a safe ty  problem. 

* one of the few cases on record where a metal-water reaction was repor ted  
to-have taken place following a reactor mishap was the NRX geltdow&i 
which occurred a t  Chalk River on December 12, 1952. I n  t h i s  reactor, 
the f u e l  was low enricbment uranium jacketted with aluminum and mod- 
erated with heavy water. Thus, both the NRX reactor and incident a re  
quite d i f fe rent  than the cases considered i n  this report. A review of 
the published data on t h i s  mishap indicates t h a t  t h i s  accident resembles 
a loss  of coolant incident more than the nuclear t ransient  case examined 
i n  this report ,  
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TABLE I 
. . 

REACTOR CHAFUCTERISTICS 

Case 1 Case 2 . Case 3. 

Fue 1 

Clad 

~1 -u  a l loy  zr-u a i loy  
. . 

. . 
Enrichment ($I P35) 93 0.5 93.5 2.5 . . ,  

Weight fract ion of U i n  fue l  - 4 17 

Meat Thickness ( ~ n c h e s )  ... 0.020 

Meat .Diameter ( 1nches ) - - - 
Doppler Coe~f ic i en t  [ ~ K / K )  ('F-lJ 0 

Temperature ~ o e f  f ' cient  
. en K/K) ( o F - l t 4 ~  

n and b / ~ e a t i n ~  of Water IA K/K) ( o ~ -  0 

(corresponding t o  3% reactor power) 

Neutron' Lifetime (Sec) 6.5 x 10-5 

~ e l a y e d '  Neutron Fraction 0.0075 

* I n i t i a l  Pressure ( ~ s i a )  14.7 

* I n i t i a l  Temperature (OF)  212 

~hermal  Conductivity of Fuel 100 8 1.15 
' ( B T U / H ~ - F ~ - ~ F )  5 

Thermal Conductivity of Clad 
(BTU/H~-~t -OF)  

Heat . . Ctipacity of Fuel (BTU/L~-OF)  0 .183 0.08 o .07 
..,. 

p a t  Capacity of Clad (BT~;/L~-oF) 0.183. 0.08 0.08 

Total ~ e t a i  & ' F u e l  Region ( ~ b s )  

Total Metal i n  Clad Region (Lbs) 

Heat Transfer Coefficient Fuel Surface 
, t o  H20, (BTU/H~-F~~- 'F )  1000 1000 1000 

. - 
* These i n i t i a l  conditions were a rb i t r a r i ly  selected; but it i s  believed tha t  the 

t ransient  behavior of a nuclear reactor i s  re la t ive ly  insensitive t o  these parameters. 



ENERGY PRODUCED I N  A BORAX I NUCLEAR EXCURSION 
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TIME - MILLISECONDS 

TYPICAL POWER AND TEMPERATURE EXCURSION 
FOR A UOp Zr CLAD ELEMENT 

FIGURE 2 



COMPARISON OF POWER BURSTS FOR 
THE THREE REACTORS VS TIME 

NOTE DIFFERENCE IN INITIAL PERIOD 

FIGURE' 3 



F TIME - MILLISECONDS 

COMPARISON OF POWER AND THE .RATIO OF HOT SPOT TO'MELVING 
TEMPERATURE FOR THE TWO FLAT PLATE ELEMENTS 

-NOTE DIFFERENCE IN IN lTl AL PERIOD 

FIGURE 4 



COMPARISON OF'HOT SPOT TEMPERATURE AND PER CENT MOLTEN 
M E T A L  FQR T H E  T H R E E  REACTORS VS. REACTOR PERIOD 

FIGURE 5 



REACTOR PERIOD - M I  LblSECONBS 

COMPARISON OF  ENERGY RELEASED' IN  AN EXCURSION 
FOR T H E  T H R E E  REACTORS VS REACTOR PERIOD 

FIGURE 6 



DISTANCE FROM FUEL CENTERLINE - INCHES 

TEMPERATURE VS DISTANCE FROM FUEL ELEMENT CENTER 
'Lr FLAT PLATE ELEMENT 

FIGURE 7 



DISTANCE FROM CENTERLINE - I,NCHES 

TEMPERATURE VS DISTANCE FROM FUEL ELEMENT CENTER FOR A 
REPRESENTATIVE TIME AFTER NUCLEAR EXCURSION: ~ = 4 . 3 4  MS 

CYLINDRICAL U02 t r  CLAD ELEMENT 

FIGURE 8 



REACTOR PERIOD - MILLISECONDS 

CLADD' ING STRAIN AS A 'RESULT OF 
TEMPERATURE INCREASE I N  THE U 0 2  

zr CLAD FUEL ELEMENT 

FIGURE' 9 



TIME - MILLISECONDS 

POWER EXCURSIONS FOR THE UOp t r  CLAD FUEL ELEMENT SHOWING 

RELATIVE IMPORTANCE OF VARIOUS SHUTDOWN MECHANISMS 
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T I M E  - MILLISECONDS 

POWER EXCURSIONS FOR T H E  UOp Z r  CLAD F U E L  ELEMENT 
S H O W I N G  T H E  E F F E C T  OF F U E L  CLAD T H E R M A L  R E S I S T A N C E  

FIGURE I I  
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NUMERICAL DATA USED I N  THE EXCURSION CALCULATIONS 

This appendix summarizes the  numerical data t h a t  were used i n  per- 

forming the calculations t h a t  a re  given i n  the t e x t  of the  report .  

I n  addit ion,  the f u e l  models chosen a r e  described. The d e t a i l s  of 

the analysis  follow the procedure outl ined i n  Reference A .  Basic- 

a l l y ,  the calculat ional  method involves a def in i t ion  of the  shut-  

down mechanisms and a mathematical description of these conditions 

f o r  the reactor  under consideration. These equations were then 

solved by means of an analog computer. 

The subjects presented a re  : 

1. Nomenclature 

. 2. Shutdown Mechanisms 

3. Constants f o r  the  A1-U Alloy Fueled Reactor 

4. Constants f o r  the Zr-U Alloy Fueled Reactor 

5 .  Constants f o r  the U02-Zr Clad Reactor 



1. Nomenclature 

C~ - spec i f i c  heat  

hgap - heat t r ans fe r  coef f ic ien t  from f u e l  
meat t o  clad BTLJ/R~. -m2 -OF 

. . 
. . . . hw - heat t r ans fe r  coef f ic ien t  from f u e l  

element t o  water - 2 0  B T U / ~ . - ~ t .  - F 
AK/K - r e a c t i v i t y  Dollars 

thermal conductivity 

power 

temperature above the  temperature 
a t t = O  

time 

temperature of f u e l  surface 

densi ty  

resonance escape probabi l i ty  

$38 e f f ec t i ve  resonance i n t eg ra l  

0 
F 

Seconds 

OF 

~ b s  . / ~ n .  3 

- 

Barns 



2. Shutdown Mechanisms 

The shutdown mechanisms considered i n  t h i s  study were, f o r  the A 1  and 
I 

Z r  a l loy  highly enriched reactors,  the formation of steam due t o  

conduction from the fue l .  Thermal capacities and conductivities used 

a re  summarized i n  Table 1 i n  the report .  It was assumed t h a t  the 

r eac t iv i ty  associated with void formation followed the re la t ion  

A K/K a 0.1415 (TS) 1/4 a s  developed from Appendix B of Reference A. 

The constant i s  derived from the geometry, thermodynamic s t a t e  of the 

f lu id ,  pressure gradient and surface and saturat ion conditions, I n  

studying the U02 rod type fue l ,  two addi t ional  shutdown mechanisms 

were s igni f icant :  heating of the water by absorbed radiat ion and the ' 

Doppler temperature coeff ic ient .  ~ r o m ' t h e  core composition and nuclear 

properties,  it was calculated t h a t  3s of the power was absorbed d i r e c t l y  

i n  the water producing nearly instantaneous heating. Secondly, since 

t h i s  f u e l  i s  only s l i g h t l y  enriched, there i s  a s igni f icant  amount of 

38 present. The u2 Doppler temperature coeff ic ient  of r eac t iv i ty  

may be calculated using the relat ionship 

The resonance escape probabi l i ty  p i s  an exponential function o f w a n d  

the e f fec t ive  slowing-down croes sect ion i n  the resonance region. In  

t u r n , w  depends on the  f u e l  surface-to-volume r a t i o  and on the f u e l  

clumping. A value p 0.8 was used f o r  calculating the Doppler temp- 

era ture  coefficient,  based on an 0.4 inch diameter U02 fuel rod sur- 

rounded by, cold -ter with a 1.6 t o  1 water-to-fuel volume r a t i o  and 

no rod interact ion.  



2. Shutdown Mechanisms (continued) 

The term (l/,-j-- ) ( d c / d ~ )  i s  the  temperature coef f ic ien t  of the  resonance 

i n t eg ra l .  Its value depends upon.the f u e l  surface-to-volume r a t i o  and 

the  temperature, the  coef f ic ien t  increasing with l a rge r  surface-to- 

vclume r a t i o  and decreasing a t  higher temperatures. One of the  most 

recent  measurements of the  resonance i n t eg ra l  of uo a s  a function of 
2 

f u e l  geometry and of t e q e r a t u r e  over a wide temperature range, 70 t o  

0 
1830 F, was made by Blomberg, iIel lstrand,  and Horner and reported i n  

a Geneva I1 Conference paper ( ~ e f e r e n c e  C )  . For an 0 .4  inch d i m e t e r  

U02 s ingle  rod 

coef f ic ien t  of 

, t h i s  da ta  y ie lds  a resonance i n t e g r a l  temperature 

0 
7 \ 5  x ~ o - ~ / o F  averaged over the 70 t o  1830 F f u e l  temp- 

e ra ture  range. %is represents the low temperature end of a power 

excursion. An estimate of the  temperature coef f ic ien t  of the  reson- 

ance i n t eg ra l  a t  the higher f u e l  temperatures during an e x c u r s i ~ n  w a s  

obtained from Pa r t  2 of the  Geneva paper. For example, a t  4 0 0 0 ~ ~  

f u e l  temperature, the coef f ic ien t  i s  6.7 x ~ O - ~ / O F ' .  The correspondF 

ing Doiipler coef f ic ien t  calculated f o r  p = 0.8 i s  then 1.67 x ~ o - ~ / o F .  

This i s  the f igure  used i n  the  body of t h i s  repor t  and probably repre- 

sen ts  a minimum reasonable value. 



3. Constants Used For The A1-U Alloy Fueled Reactor 

The core considered is  composed of 36 fue l  assemblies with 18 plates  

per assembly. The plate geometry i s  shown by the following sketch: 

Meat -4 

The plates are 24.625 inches long and 2.845 inches wide. 

The fue l  properties used were : 



Constants. UsedEor The A1-U Alloy Fueled Reactor (continued) 

A lumped fuel  model was used due t o  the hi&.conductivity of the 

material. This was 

The equation eoLved wae 
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4. Constants Used For The Zr-U Alloy Fueled Reactor 

The f u e l  geometry w a s  unchanged f rom the previous model; .however, 

the  physical  proper t ies  f o r  these mater ia ls  a r e  qu i te  d i f f e r e n t .  

They a r e  : 

., . 
Due t o  the  r e l a t i v e l y  poor conductivity of . t h i s  f ue l ,  it w a s  considered 

advisable t o  develop a nodal f u e l  model t h a t  would more accurate ly  p re -  

d i c t  the  t r ans i en t  hea t  t r a n s f e r  and would al low ca lcu la t ion  of the  

temperature d i s t r i bu t i on  within the  f u e l  p l a t e .  The model. used.~ms; 



4. Constants Used For The Zr-U Alloy Fueled Reactor (continued) 

The equations solved were : 

P 

1 where 1 = 1 + - 
h'n 6- h2 
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5 .  Constants Used With The U02-Zr Clad Reactor 

Tne f u e l  proper t ies  f o r  t h i s  reac tor  a re :  

p 
u02 649 L ~ s . / F ~  .3 

p clad - - 410 ~ b s . / ~ t . ~  

c of uog = O . O ~ B T J / L ~ . - F  o 
P 

The f u e l  geometry chosen was a U02 rod 0.40 inches i n  diameter with 

a 4 m i l  gap between it and the  25 m i l . t h i c k  c lad .  The f u e l  model. 

used was : 

/ - meat 0.20 -+ 

I 
I I 

I d.0975.%=-1- 0 ~ 0 5 7 5 " ~ 0 . 0 4 5 "  - p 
I 1 

\.. .:\l 

p q - ~ f - 2  
I 

r"  T c 2  T C 3 .  

gap a- 

c 0 . 0 0 ~ ' = =  

2 
. 

- 4 clad ' 

0.025"- 

M T3 

1/h5 -I- I 1 ~ ; h 7  

T c 4  

'%? + 

:. 



. . 

. .  . . . . - 5 .  'Constants Used With the U02-Zr Clad Reactor (continued) 

. .  ' . . .  
. .  . . . 

The transient equations to be solved are: 

where 




