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ABSTRACT

A class of exact solutions to the Vlasov equations which shows electro-
magnetic radiation is constructed, and a typical -example discussed iﬁ some
detail. Since velocities larger than c appear to be possibly of importance
in these solutions, an exact radiating solution'to the'relétivistic'Vlééév
equations is constructed, which, though much more specialized than the non-
relativistic solutions, shows that unphysically large veiocities‘in the

nonrelativistic solutions are not essential for the radiation there obtained.

&

Al

iii



TABLE COF CONTENTS

Page No.

Abstract LR iii
Introduction and Summary ...........;................... 1
Method of Soélution eseoesccossrosressressssssesessscoass 2
Construction of Integrals .........;...................Q' b

Construction of a Typical Solution  seccesccecsecsncacncs 5
Properties of the Nonrelativistic Solution eeescsessessse 9
Extension of a Relativistic Solution .cecceecccececcscoccs 1L
Acknowledgement e eecesesianecerresec s nerereseseananae 18

APPENDIX: Derivation of the Relativistic Constants ...... ‘19

iv



[

' INTRODUCTION AND SUMMARY .

There has been some discussion as to whether radiation can be emitted -
b& an oscillating plasms which obeys the Vlasov equation. The available
results on radiation in the Vlasov case do not provide a clear-cut.answer
to this problem° Previous proofs of the extence of this radiation such as
that by Dawson and Oberman,l and by Harris,e‘have been restricted to the

use of the linear approximation. Since the résults obtained by Bernstein.

et gl,B show the necessity for a very careful interpretation of any conclu-

sions stemming from linearized equations, one might reesonably hold that the
existence of radiatlng solutlons to the Vlasov equations has as yet not been
demonstrated. '

The content of the work reported below is'a constructlon of a class of
exact solutions to the (nonlinear) Vlasov equatlons, and a demonstration t
that these_solutlons correspond to coherent radiation by the plasma as a
whole. The plasma given by these solutions is infinite in extent, and the °
meaning to be attached to this radiation is appropriately epecified.

While this counter example is logically sufficient to disprove the
conjecture mentioned above, it is not completely satisfactory from a phys1cal
point of view. The reason is that the solutions involve radial velocity
distributions centered about velocities greater than the velocity of light.
This is a consequence of the use of nonrelativistic mechanics in the Vlasov
equations, a limitation generally of no importance. However, the distribu-
tions do seem to involve velocities near c¢ in possibly an essential way
(es could conceivably be the situation if Cerenkov radiation were the

radiation mechanism).

1. J. Dawson and C. Oberman, The Physics of Fluids 2, 103 (1959) .
2. E. G. Harris, private communication.

3,. I. B. Bernstein, J. M. Green, and M. D. Kruskal, Phys. Rev. 108, 546
(1957).




To eliminate this objection'a second exact solution to-the Vlasov
equations is comstructed in_whi¢h.relativistic'mechanics is used. This . N
latter solution is more restricted than in the nonrelativistic oase, for
it is now required that the masses of the two plasma constituents be equal.
Nevertheless, this'solution shows. that velocities larger than ¢ are not
. essential to obtain radiation, and that this objection to the nonrelativistic

solution is probably not of importance.
' METHOD OF SOLUTION

We shall cons1der in the following a plasma composed of two spe01es

one with mass m, and charge (+&) ("ions"), and one with mess m.e and charge

(=-e) ('Electrons"), collectively designated by i, as in m, and e;. This

_ plasma is: to be . 1nf1nite in -extent, but possessing cylindrical symmetry

about the ‘z-8Xis. and displacement symmetry along the z=axis-.

It is exp1101tly assumed that’ all.quantlties vary only with .

(7 /VX + y ) and t, and that the scalar potential is zero. - E - . v

The Vlasov equations for the plasma are as usual

arf of of, > of
A S 3---—:} + gt . —:i =0, ' (1)
dt ot or T o° . . '
- > ' oy
U A="Po‘]’_ S . o (2e)
g =o, S (o)
B Faiete [ Bitrwen|. *
i e, (E +_v_x._B)-=.ei-_-§+vx(va) . . (3)
4. E. G. Harris, Self-Consistent Field Theory for a Completely Ionized Gas, v

Naval Research Laboratory Report h9hh (May 1957).



For convenience in treating the relativistic case to follow, we use
momentum space in place of velocity space. Thus the distribution functions

for the plasma constituents are of the form:
fi = fi(r:t:l?): - (h)

and the charge and current densities which are the sources of the fields are:

SRPAYET: e
. i ’

3 = 21 eivfidp , ' (6)

-

It follows from the symmetry requirements on the system that the vector
potential has only a component along 2z, and that the radial and tangential
currents are identically zero. That is:

*

FyR A (r,t), 1)

rd
J

% i(n,t). (8)

The method of constructing solutions to Egs. (1) and (2) follows Harris:
The charecteristics of the partial differential equations of (1) are given
by solutions to the mechanical equations (3). It is necessary to have suf-
ficient integrals to these equations to fix the length of the momentum vector;
and we shall obtain three integrgls below; A,
Calling these integrals o., @ _, aﬁd o_, it follows that égz function

1 2 3
fi(OE) satisfies Eq. (1). In terms of these distribution functions, fi, it



is necessary then to satisfy Eq. (2) as restricted by Egqs. (5) and (‘8). The
final restriction we shall inpose on the vector potential is that A be a

function of the single variable u = r - ct.
CONSTRUCTION OF INTEGRALS

Two integrals of Eq. (3) can be found at once from the symmetry of the
problem. Using Eq. (3) one has:

dp . XV + yv
z_o. [ _(x""y|oal __, [ (9)
at i ot r or i at

so that one integral is:

A S = Y
P, + e, (r,t) oy constant (10)

The remaining two equations,

dp

¥ - 1 2A '
at ERACE I (11)
dp

x _ 124

at %1 27T 3¢’ (12)

have the z-component of the angular momentum as an integral. That is:

= constant. (13)

&
i
"
Q

y X 2
Since the radial acceleration (nonrelativistically) has the form:

2 .
(yv. = xv.) av dv ' .
a (dr) _ " x Y X _X_ ¥y _¥Y
at (dt) = 3 tra tr @ (14)




it follows from Eqs. (11) and (12) that

a

da OA
c. (pr) = - te, v, = - (15)

i

o -

"i

Explicitly introducing the assumption that A = A(r - ct), it follows from

(15) that:
o2 : ~ ‘
a d % 1 2]
p.gx (p) -me g (p) = 3 (p. - m C) -3 [(p m, c) = (@) - e8)7 |,
i
o2 m
2 _ i 4 - 2 ;
= (p, - me) - 3= F (@ -8 (17)
m,Ir
i
so that, for a2 = 0, a third constant is:
2 e
0y = (pr - mic) + P, - (18)

The three integrals given by Egs. (10), (13), and (18) are sufficient for
constructing suitable distribution funétiéns that satisfy Eq. (1). By reason -
of the restriction of Eq. (18) to zero angular momentum, the distribution
functions all involve %(a ).

CONSTRUCTION OF A TYPICAL SOLUTION

It will be clear from the follow1ng that a great many solutlons to
Eqs. (1) and (3) can be constructed from the integrals obtained above. It
will suffice, however, for the purpose at.hand to give a single example.
Let us take the distribution functions: ’
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_fi(r,t,pxy-py;pz) = BiNirr"l/a S(XPy - yp,) 1) [pz + eiA(r - ct)] .

]

° exp {- Bi Lr . (X'Px +:}.’y.py)

where Ni and ipi are positive constants.

2

i

(19)

It is necessary that the distribution,?flinctions of Eq. (19) satisfy the
conditions that e 'jr’ and j 5 vanish identicelly. Consider first the-c'harg_e

density defined by:

!

\ N |
g Q(r’t) = -~ eifi’ dpxdlﬁdpz o

(5)

To carry out the integral over dpxdpy we make an orthogonal transformation to:

= VP, = XD,
¢ = op +yp) (20)
X vy’

and

dpxdpy = J dn af, (21)
with the Jacobian J = 1/r. (The integration limits is still -oo %o +oo for -
both ¢ and n.) The charge density is easily found to be:

| 1 [ 222, ,
Q(r,t) = Z eiNir exp [«- B;e A (r - ct)] o - (22) ..

i

b

LS



To satisfy the condition that p= O it is necessary that'B, = B, and N, = N,

The condition that the aximuthal current (j ) be zero is seen to be

satisfied in view of S(xp - ¥P, ). The radial current is given by:
@
-1/2
. _ A > ) A > —> Z eiNBﬂ / ’
Jr(r,t)“-: rej =/ e, r-vf.dp = /  — dn d¢ dp, £ -
i i rm,
- =00

. S(U)S(PZ + eiA) clexp -B2 ‘[(g - mic)2 + pi] = cé(ryt)E 0. (23)

It remains to calculate the current in the z-direction. This is found to
be: o

e NB
5,(m%) = 2, il /y/an at ap (o, >8<n) S(o, + e,h)
i
exP{: 52 [(é - mic)? + pi‘lj

2 o 222 .
= - (ﬁ) 1 +-x]i:1_‘> A(r - ct) e P é A (1' ) (24)

m,
1 e

To complete the calculation it is required to find the field generated by
the current in Eq. (24), and show that it is a functlon only of u=r - ct.
The equation determining A is given by:



2 1 -p%e A"
(Npe”) [ = += | ae
5 : o m, o om
D,Az == Podp =
r
T \r oar e 2 oty T & r du

Putting this in a more transparent form we have the equation:

da _ ae-a2
dw ’
whez;e'
oo L i .1
v B (NPo,e) (m + m.> (r .Ct)’-
e i
a = BeA(r -~ et)s

The solution to Eq. (26) is:

or,

(2_5)

(26)

(27)

{28)

(28)

~i
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where g(x) is the exponential integral of Jahnke-Emde, and a(e) is defined
such that ﬁi‘(ai) = 0. :

The function Ej':(x) has the behsavior:

®
(1) E(x) =An Gl 21: ;’%
x —>0
(2) g(x)f" i—x-‘ (1 +-}]i£ + eoo)

The vector pot'enti&pl is a monotonicelly increasing function of u = r - ct.
For u —» =00, A becomes small exponentially, i.e., '

- |w]
e as w— =0 .

~
a =

For u—> +m,; A becomes infinite, but relatively slowly, ‘

1/2

a ~(log 2w) as w —> +00

PROPERTIES OF THE NONRELATIVISTIC éOLUTIOl\T

The solution found in the previous section is given by:

W) (56D = (Y250, - )80, + e/8)

2

' 2 Xp_ + ¥ypP o
+ exp anB [ -_}5---——1 - mic + pZ ) » (29)
) r ; :
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(2) Z:iA(r-Ftv),' | o o (30)

where:

2 (1 Ce—, 2 2 :
2}1°Ne (;IJ: + ;];I (r - ct) = Ei(B 62A ). (%1)

In order to determine the properties of fhis‘solution let us first consider

the particle density and barticle current. let us define:

R

'(a) n(r,t)_; "particle densmty" '(//ﬂ%?i‘ == exp (- 82 2 2) I (5?)

The pdrticle dénéity is the same for each species.

> | e | > _[a (% ’A] 4 '
(b) j(r,t) = "particle current" = dpxdpydvaf-= er - | = Fn(r,t). (33)
i/ <

Only the radial particle current is independent of the type of particle.
It follows from Eqs. ( 52) ‘and ( 53) that:

' div J + gt = O, for’r %-O.' S : (34)

The radiel flow_across a cylinder cOaxial-with‘fhe symmetry exis is given by:

222
A%),

J = 2n-Ne exp ( B“e (35)

so that there exists a net inflow gg‘ﬁarticles from the axis. That is:

avFe B S<r> e op (- $%22). (36

-

¥
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The distribution function given in Eg. (29) is not well defined in the.

limit r —> 0, for the three constants @ ., @, @_ do not map all of momentum .

space in this limit. For any r = > 0} whgre 2 is a small constant, -the
distribution function ig well defined, and the solution developed previously
defines the meaning to be associated with the limit r —= 0. .Thus the solution
given by Egs. (29), (30), (31) is a solution to the Vlasov equations for »
r # 0, but for r = O there exists a line_ source of particles given by the
right hand side of Eq. (36). - ' '

| The total number of particles in a coaxial cylinder of radius R and

length L is given by:

2nlp

E

The number of particles that flow in from the source from time - T to ¢ is :

N(R,t) =

In [A(R ] ct')/A(-'-“ é:t)J : (37)

given by:
 onlp |
N, ouree(~Tr8) = —— — En_[A(- er) /A(- ct)] (8)
Cone(weE)

Equations (37) and (38) verify the rather obvious p'oint-that the number of .
particles that flow in from time -0 to t are found within a cflinder of
infinite radius. The number of particles (per unit length) in the system at
" any finite time is, however, infinite. ' '

From Eq. (32) one sees that the particle density for fixed r (# 0) is
zero for t —» -, rises as t increases, and asymptotically a.pfproaches a
constant final value of n(r,t —= o) = N/r.

From Eq. (33) one sees that the particle currents in thé z direction are

~ oppositely directed for the two species, and are zero at t —.-oo0, rise to
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" & meximum andAagain.approach'zero for.t — +00.  The average particle speed’
(in the z direction) on the other hand monotonically decresses, corresponding
to a transfer of energy. to the electromagnetic field. -

Let us comsider now the electromagnetic fields. From the .vector potential
given by (30), it follows that: ' |

Nuéce

S A ' 2 -
1 1 - A
E =k : 5 o A Be_ (59)
] \ c i
Np ce ) ‘ 2 2,2 : o ' '
- A - .
B=6 0 i—+—l aePeA (40)
B Ter i

The-electromagnetic~energy-fiow is”fherefOre‘radially'oﬂtward-at“all”
times; and the energy flowing through a coaxial cylinder of radius r and
length L per unit time is:

at o | \m T

‘For flxed r, gz is zero for t-—w =oo, rises s meximum and goes to zero again

(i1)

for t——e>+co This energy flow does nct all represent radiation, however, for
some of the flow only represents a change in the local energy demsity. Accord-
ing to Peynting's theorem, however, the radiation results from the work done

on the current sources, that is:

(=L

+

w

my
—_— ) ’

il

8

o) 1,2
dl‘V (ExH)+at [E(E~

p_ce / SN\ - 2 _,p2.2,2 T :
-2 (}’WL) R )
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One sees that energy is monotonically put into.the electromagnetic field at
every point in space and since the electromagnetic energy density is zero at
both t = =0 and t = +00 , it is correct to say that the transfer of mechanical
energy (from motion in the z-direction) to the electromagnetic field represents
radiation by the plasma. | a "

| The final point to investigate is the energy balance. Rather than

consider the various terms separately we shall simply establish local energy
conservation for the Vliasov.equations. The mechanical energy density is

given by the expression: ‘(NonrelativiStically)

U, -_-.;'. Z / a’ L fi, and therefore, ' C(u3)

2. -5 . __> > ) :,':.'"",‘i‘f. s
- l l * B . W
I % / i>[mi ’ Vfi + ei('E + ﬁ; x B) V’Pfi] > (h—h)

o . Oof, . . A S
using Eq. '(._-T-) tO eliminate, gf'- . It follows that: . R

e
___=_v Z\ +Z_l . d3p';f.~ (45)
Letting the mechanical energy flux be defined by JM = Z d’p ( g-m—) 5}%— fi’
: : , i i i
we obtain the obvious result:
oy > > ->';:
ﬁM +aivJg, =] . B (46)
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Upon combining this. with the Poynting integral  (Eq. 42) the -final result
5 .

is obtained:

S (U, +3 E-D + 2 B.H) +aiv(J, +EXH)= 0. (47)

=

‘Equation (47) shows that the_Vlasov equations-explioitly conserve the sum of
the mechanical and electromegnetic energies (including radiation) locally.
Since the solution given in Egs. (29) through (31) satisfies the Vlasov
equations everywhere except r = O, Eq. (k7) establishes energy conservatlon
everywhere, except for r = 0. For r = O, however, it is clear from Egs. (59)

and (40) the net flux of electromagnetic energy vanishes. The source terms

at r = 0 are therefore sources only of partlcles and mechanical energy.

This Justifies once again the des1gnation of the solution given by Eqs° (29)

through (31) as an exact radiating solution to Vlasov's equatlons.
EXTENSION TO A RELATIVISTIC SOLUTIQN

The radiating solution discussed in the prev1ous ‘section has the dis-
turbing feature that the radial motion involves velocities vhose mean is
the velocity of light. Whlle it is the z-motion and not the radial ‘motion
that is coupled directly to the electromagnetlc field, this feature of the
; solution is nonetheless suffic1ently unphy31cal as to cast doubt upon its
usefulness as arcounter-example. To remedy this defect; we shall in this

- section utilize relaetivistic mechanics in Vlaeov's~equation° To be precise,

-
mv
O-

V1-(v/e)®

we shall construct the characteristics to Eq. (1) using p =

: -
in determining a% .

The two constants o and ae‘[?qs, (10) and (l}i], are once again constants

of the motion, as is to be expected since these‘are obtained from cousidera-

tions of symmetry that are valid relativistically. -

5. A simiiar, but less general, result has been'given by I. B. Bernstein,
Phys. Rev. 109, 10 (1958).
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~ The constant a3 is replaced by the new functional:

a5 = [kmic)e + pi + pi] - P : - (48)

which, as can be shown by direct calculation (see Appendix), is a constant

of the relativistic equations of motion if al = a2 = O.'\[ﬁhe symbol P, is

A -1
a shorthand for r - p = r (xpx + ypyi, .

The nonreletivistic constant, Eq. (18) (for the special case where O
is also zero), is a limiting case of Eq. (48).

It is clear from the form of Eq. (h8) that a3 0 if the squaere root is
chogen with a positive sign, The 81gn of the square root, however, is flxed
from the derivation (see Appendix) to be positive. This is an essentlal
limitation which is imposed on the admissible distribution functions.

The next point to establish is that there‘exists no distribution function
constructed from the constants a. = = 0 and @_ which satisfies simultaneously

1 3
the two (conditionss that e = = 0 and j Z 0, unless m o =m,. et the distribu-

f\)

tion functions be defined by:

£,(r,6,8) = N;8(c )b(e,)F, (o). (49)

The condition that the charge density vanish identically requires that:

' Y
w ol le)
=Ne/dgpe(l[(mc) + e2a® +: 12l ;2?). -~ (50)
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The condition that the radial current density vanish identically takes & "
little manipulation. The radial current involves the radial velocities,

and for each species, is given by:

- QO

i .= hehchd '/dZ,’ | ' I | L
A . 4 2,2 2] I S

-60 l:(zﬁic.‘)2 +eA + 1

- | | 1‘/2'

Fy [(mi°)2'+<e2A2 ¥ 4'2] I -c ) +(51)
Introduciﬂg.as- as the variable in Eq. (51); ‘one finds that:-
_ _ . | |
_ ,'eiNi,c : L
I S0 T T aoy Fy (o) o (52)
. : o N

If Eg. .(50) is- similarly: written in terms: of:a; - one: finds thats - o

‘ 3
: 2. 22| [/ -2 A P
i .[(mic)' ved ] / a5 dag Fy(as) + / a5 Fi@%)_
' ‘ o Y - o
2 7 2 b
= Ne I[mece + e A2] / a32 da5 Fe(aj) +/ da} Fe(aa) . (50 1)
: (o] o .

‘Using Egs.(50') and (52), and _noting»'thatv the radial current and charge densities

must venish identically, the required relations are:
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2 -2 2 -2
N__imi/a daFi(a)=Neme/a que(a) (53%a)

=
(59
Q
1
B \ V]
&)
fte
~~
2
I
o=
QI
R\ )
&
m/'\
L

(¢ ] .
N / do F, (a)
v oo |
o

Equations (53a) and (53b) are inconsistent unless m, = mé. 

The distinction between this situation and the nonrelativistic cases . .
treated earlier, lies in the fact that in the nonrelativistic case the radial
current was proportional to the charge density, unlike Eq. (52).

Since our aim is only to demonstrate -that the use of relativistic
mechanics does not in itself-prevent a raediating solution similar to that
discussed for the nonrelativistic case, we shall simply take the otherwise

uninteresting case m, = mé = m, for which solutions can indeed be found.

';A particularly simple séiution results from the distribution functions:
| 2) = ¥ S0 )8a)S(a, -
£;(z,%,p) = N o(a;)o(a,)0(a; - &), 4 (5%)

where a, N are positive constants. It is easily seen that P’ jr’ and je are
now all identically zero. '

The current in the z-~direction is now.given by:

. 2 . . e . . ' ‘
3,(x8) = - <2f—ml“> LAlr o) (55)

(5%)

. o : o
Ne' '/m Fe(a) " - (‘55c}'
. 0 ’ :

i
o
(RS
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. From the equation forgthe vector potential, [ngz = = Pojz’ one . finds
that: - '

o 2P°e N ’
=‘A° exp || — (r - ct) ] . e (56)

am

The solution to the "relativistic" Vlasov equations ‘given in Egs. (54) and
(56)'is Qualitatively-similer to that discussed earlier for the nonrelativistic
1case, and the discussion need not be repeated° ' |

--We can conclude from this example that the radiation found and discussed
in a nonrelativistic exact solution to Vlasov's equations is not dependent
in any essentialiway on the-occurrenceaof unphysicaily large redial velocities.
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Appendix
DERIVATION OF THE REIATIVISTIC CONSTANTS

2 -» -»> -
From the equation %% = ei (E + T x B), the equations E = - %2— 5

> 9 5 A
B=VxB, A=kA(r - ct), it follows that:’

dp - ‘ .
z _ A x  OA ¥y, %A _ dA
at "G trVxar rVyar /T ST
or: a =p + giA = cor.ls“l.;a.nt, and: | ‘ (A-l)
- dp ' ' .
¥ - y oA A-
at ?ivz r Or ' ' (a-2)
dp - 4 - '
X _ x oA | | -
at  Si'zr or - (a-3)

From Eqs. (2) and (3) it follows that o, = x?py - yp, = constant.

Using the definition br = r - 7= (xpx + ypy)/r, one finds the identity:

oy x By By 3 -‘ l
T T w T o T OO - )l ) ()

From Eas. (2), (3), and. (4) it follows that:

dp )
—r _ , dr %A 2 -3 [ar )
P ap - %1% - o) <..d.t> oxr "% T (dt) S (A-5)
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'an_d.., using the fact that A = A(r - ct), one finds:

‘mc. dp o . ' .
(o} : T _ _ ooy - ny OA . 2,3
—— sl .ei(al eiA) 5 ca2/r . (A-6)
(1~ (vT/c7) ‘ ' "

Teking @, = @ = 0, (5) and (6) show that: .

12
: dp m c dp 2 - : o
r,& & (a3 _ 5.
t o W)=0 o (AT)

Pr dt ,\/1 i (v /c at

‘ | For’dl' =A0t2 = .0, the square: root: 'in‘.(7v)". may be written:irr‘te.rmS:nof‘p:i; ‘and A.
- That is: ' A
1/2

mc(l v/ )1/2 [(m c) + P, +e2A2] ‘(A-=8)

.IntrodUCiﬁg;(SQgiht01(7),.it:is@anzimmediateﬁresultﬁthaﬁ:amthird#integral,iSp“-.

_ given by:
-1/2

r

for the case where Q.. = qe' = 0.

 1 Q, = -[(%bC)2'+ p§_+ Pi] : .;Ap | o (A-9)-

[A

&y

)
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