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ABSTRACT 

A class of exact solutions· to the Vlasov equations Which sho~s·. ~lectro­
magnetic radiation is constructed, and a typical ·example discussed in some 

detail. Since v~locities larger than c appear to be possi~ly of importance . . . . ·. . . . .. . . ' ... 

in these solutions, an exact radiating solution to the relativistic Vlasov 

equations is constructed., which, though much mor~ specialized than the··n~n­

relativistic solutions, shows that unphysically larg~ velocities in the 

nonrelativistic solutions are not essential. for the radiation there. obtained. . . . .. . 
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. INTRODUCTION AND SUMMARY . 

There· has been some discussion as to whether radiation can be! emitted 

by an oscillating plasma which· obeys the Vlasov eqUa.tion. The available 

results on radiation in the Vlasov case·do not provide a clear-cut.answer 

to this problem. Previous proofs of the extence of this radiation such as 

that by Dawson and Oberman, 1 and by Harris, 2 have been restricted to the 

use of the linear approximation. Since the results obtained by Bernstein 

~ !!·3 show the necessity for a very careful interpretation of any conclu­

sions ste~ng from linearized equations, one might reasonably hold that the 

existence of radiating solutions to the Vlasov equations has as yet not been 

demonstrated. 

The content of the work reported below is'a construction of a class of 

exact solutions to the (nonlinear) Vlasov equations, and a demonstration. 

that these solutions correspond to coherent radiation by the plasma as a . . 
whole. The plasma given by thes~ solutions is infinite in extent, and the 

meaning to be attached to this radiation is appropriately specified. 

While this counter example is logically s~ficient to disprove the 

conjecture mentioned above, it is not completely satisfactory from a physical 

point of view. The reason is that the solutions involve radial velocity 

distributions centered about velocities greater tban the velocity of light. 

This is a consequence of the use of nonrelativistic mechanics in the Vlasov 

equations, a limitation generally of no importance. However, the distribu­

tions do seem to involve velocities near c in possibly an essential way 

(as could conceivably be the situation if Cerenkov radiation were the 

radiation mechanism). 

1. J. Dawson t;~.nd c. Oberman, The Physics_£!: Fluids 2, 103 (1959). 
2. E. G. Harris, private communication. 

3• I. B. Bernstein, J. M. Green, and.M. D. Kruskal, Phys. Rev. loB, 546 
(1957). 
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To eliminate this objection a secorid exact solution to-the Vlasov 

equations is constru.cted in which . relativistic mechanics is used. This 

latter solution is more restricted than in the nonrelativistic case, for 

it is now required that the masses of the two plasma const:i,tuents be equal. 

Nevertheless, this solution shows.thatvel~cities larger than care not 

essential to obtain. radiation, and that. this objection to the nonrelativis.tic 

solution is probably not·of importance. 

METHOD OF SOLUTION 

We shall consider in the following a plasma composed of two species: 

One with maS~ mi and Charge ( -f-e) ( "iOnS II) 1 and One with mass lne and Charge . 

(-e) ("electrons"); collectively designated by i, as in m
1 

and ei ~ This. 

plasma is: to be.infini1:;e in-extent, but possessing cylindrical symmetry 

about the·z-.axis.aild displacement symmetry along the z.;.axis. 

It is explicitly assumed that· all quantities vary only with 

r (= 1x
2 

+ l ) and t, and that the scalar potential is .Zero. 

4 
Th~ Vlasov equations for the plasma are as usual: 

dfi ofi _., 
-- = -.- + v 

. dt at 
(1) 

(2a) 

¢ = o, (2b) 

(3) 

4. E. G. Harris, Self-Consistent Field Theory for !: Completely Ionized Gas, 
Naval Research Laboratory Report 4944 (May 1957). · 

~· 

... 
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For convenience in treat.ing the relativistic case to. :follqw, we use 
. . . . . . 

momentum space in place of veloc;i. ty space. Thus the distribution functions 

for the plasma constituents are of the form: 

(4) 

and the charge and current densities which are the sources of.the fields are: 

e=o= zf.f.~ 
i . l. l. 

-? 

j = (6) 

It follows from the symmetry requirements on the system that the vector 

potential has only a component along z, and that the radial and tangential 

currents are identically zero. That is: 

_,. " 
A = k A (r,t), 

z 

~ •1\ 

j = k j(r,t).· 

('7) 

(8) 

The method of constructing solutions to Eqs • .( 1} and ( 2) .follows Harris ~­

'!'he characteristics of the partial differential equations of (1) are given 

by solutions to the mechanicaJ. equations (3). It is necessary to have suf­

ficient integrals to these equations to fix the length of the momentum vector' 

and we shall obtain three integrals below. 

Calling these integrals a
1

, a
2
, and a

3
, it follows that any function 

fi(ar) satisfies Eq. (1) •. In terms of these distribution functions, fi' it 

. ~-
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is necessary thep to satisfy Eq. (2) as restricted by Eqs. (5) and (''8). The 

final restriction we shall inpose on the vector potential is that A be a 

function of' the single variable u = r - ct .• 

CONSTRUCTION OF INTEGRALS 

Two integrals of' Eq. (3) can be found at once from the synnnetry of' the 

problem. Using Eq. (3) one has: 

dp z .. 
dt = ei 

so that one integral is: 

[-~-ot 
()Al 
orJ 

p + e . A ( r, t ) 3. a
1 

= constant • 
z l. 

The remaining two equations, 

(9) 

(10) 

dp 1 oA 
~ = ei yv z r ?)r ' (11) 

dp 
---2£ = e x:v 1 oA (12) 
dt i z r br ' 

have the z-component of' the angular momentum as an integral. That is: 

xpy - ypx :: a2 = constant. (13) 

Since the radial acceleration (nonrelativistically) has the form: 

d 
dt 

2 

( :~) = _(_yv_x;;;;....:"""'3"'"x:v__..y~)- + ~ (14) 

.''1 
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it f'ollows f'rom Eqs. (11) and (12) that 

2 
0 2 oA =--+ev-. 

r3 i z ()r m. 
]. 

(15) 

ExPlicitly introducing the assumption that A ; A(r - ct), it f'ollows f'rom 

Eq. (15) that: 

d 
- m c­

i dt 

so that, f'or a 2 = o, a third constant is: 

m. _ _! 

2 

(18) 

The three integrals given by Eqs. (10), (13), and (18) are suf'f'icient f'or 

constructing suitable distribution f'unctions that satisf'y Eq. (1). By reason 

of' the restriction of' Eq. (18) to zero angular momentum, the distribution 

:f:'unctions all involve b(a
2

). 

CONSTRUCTION OF A TYPICAL SOLUTION 

It will be clear f'rom the f'ollowing that a great many solutions,to 

Eqs. (1) and (3) can be constructed f'rom the integrals obtained above. It 

will suf'f'ice, however, f'or the·purpose at.hand to give a single example. 

Let us take the distribution ·f'unctions: 
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f'i(r,t,p ;P.,...,p ) = t3iN.n:-l/
2 b(xp - yp ) b [P + e.A(r - ct)l 

· X 3 Z ~ y X . z· ~. ~ · 

(19) 

where Ni and f3i are positive constants.. ., 

It is necessary that the distribution)'u.nctions of Eq. (19). satiiif.y the 

conditions that e~ jr' and je vanish identically. Consider first the·charge 

density def'ined by: 

(5) 

To carry.out the integral over dp dp we make an orthogonal transformation to: 
.. X y . 

and 

7]=yp -xp 
. X y 

~l ) 
~ = r (xp + YP ' X y 

dp dp = J d17 a~, 
. X y 

with the Jacobian J = lj'r. (The integration limits is still -oo to +00 for 

both ~ and 17~) The charge density i~ easily f'ound to be: 

~(r, t) 

(20) 

(21) 

(22) 

~-.-, 



To satisfy the condition that p : 0 it is necessary that ~. = ~' and N. = N. 
. . 1 1 

The condition that the aximuthal current (j
8

) be zero is seen to be 

satisfied in view of b(xp - yp ). The radial current is given by: 
y X 

1\ ...., 

j (r,t)= r·j = r I·je.~·~.d~ = I 
i 1 1 i 

dp ~ • z 

It remains to calculate the current in the z-di'rection. This is found to ··· 

be: 

j (r, t) 
z =I 

i 

= 
-~2e2A2(r-ct) 

- ct) e (24) 

To complete the calculation it is required to find the field generated by 

the current in Eq. (24), and show that it is a ftinction orily of u = r - ct. 

The equation determining A is given by: 
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fJ2.Az = j' - Fo z = 

. 2 2 2 (1 1 ) -~ e A . 
- +- Ae m m. e . ~ . . -. 

r 

=·(! ~r £._. - .L o~~. A= l ~ = _rl dA 
r -ar . or 2 ot . r ar du . '. c 

Put~ing this in a more transparent form we have the equation: 

where 

da -a2 
'""'"" ::: ae , 
dw 

. w = i (Np
0
e) (~ + !.) (r- ct), 

.... e ~ .. 

a = 13eA{r - ct.),;· 

The solution to Eq.: (26) is: 

or,. 

1 w=-
2 I . -lx 

x e dx 

2 
a 

0 

. - 2 
2w = E. (a ) 

~ 

(25) 

(26) 

., 

(27) 

(28) 
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where Ei(x) is the exponential integral of Jahnke-Emde, and a~ is defined 

such that ~(a2 ) = 0. · 
~ 0 . 

The function Ei(x) has the behavior: 

00 

(1) Ei (x) 4 J.,n _rx + l: 
i 

-. I n.n. 

(2) 
ex l! 

E.(x)rv -· (1 +- + ... ) 
~ X X 

The vector pot.ential is a monotonically increasing function of u = r - ct. 

For u ~ -oo, A becomes small exponent~ally, i.e., 

•lwl 
,.J . 

a = e as w ---? ·-oo • 

For u~ +00 1 A becomes infinite, but relatively slowly, 

(1) 

1/2. 
a "'--" (log 2w) • as w ~ +00 

PROPERTIES OF THE NONRELATIVISTIC SOLUTION 

The solution found in tl:).e previous section is gi v~.n by: 

~ 

f. (r,t,p) 
~ 

(29) 
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~ (\ 

(2) A = k A(r - .ct), (~) 

where: 

2u Ne - + - ( r - ct) = E. ( t3 e A ) • 2 (l l) . - 2 2 2 
1 o me mi ~ 

(31) 

In order to. determine the pro~erties of this. solution let us first consider 

the particle d.ensi ty and particle current. Let us define: 

(32) 

The p~rticle density is the same for each species. 

(b) 
~ 

j (r, t) ::: "particle current" I ~ .[ ". · (ei) " l . = dp dp dp Vf = cr -. - kA!1n(r,t). 
X y X mi -1 . 

(33) 

Only the radial part~cle current is independent of the type of particle. 

It follows from Eqs; (32) :a.nci (33}.that: 

, •. <. 

. -? on 
div J + ot = o, for r f o. (34) 

The radial flow across a cylinder coaxial with the syrometry axis is given by: 

so that there exists .!:!:. net inflow of particles ~ ~ axis. That is: 

;, 
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. The distribution function given in Eq. (29) is not well defined in the. 

limit r ~ o, for the three constants cx
1

, cx
2
, cx

3 
do not map all Of momentum 

space in this limit. For any r ::::[ > o, where E.. is a small constant, .the 

distribution function is well defined, and the solution developed previously 

defines the meaning to be associated with the limit r -7 o. .Thus the solution 

given by Eqs. (29), (30), (31) is a solution to the Vlasov equations for 

r f 0, but for r = 0 there exists a line source of particles given by the 

right hand side of Eq. (36). · 

The total number of particles in a co~ial cylinder of radius R and 

length L is given by: 

l_n [A(R - ct)/A(- ct)J • 

The numb.er of particles that flow in from the source from time - T to t is 

given by: 

2~L~ [ J 
Nsource(-T,t) =.P. -

0

- .. -e-.. -(-!-e-.. -+...,.!_i_)_ R.n A(- cT)/A(- ct) 

(37) 

(38) 

Equations (37) and (38) verify the rather obvious point·that the number of 

particles that flow in from time ~ob to t are found within a cylinder of 

infini1ie radius. The number of particles (per unit length) in the system at 

any finite time is, however, infinite. 

From Eq. (32) one sees that the. particle density for fixed r (f 0) .is 

zero for t --?> .. co, rises as t increases, and asymptotically approaches a 

constant final value of n(r,t -?oo) = Njr. 

From Eq. (33) one sees that the particle currents in the z direction are 

oppositely directed for the two species, and are zero at t ~--OOp rise to 
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· a maximum and again approach zero for . t ~ +00 • The average particle speed 

(in the zdirection) on the other hand.monotonically decreases, corresponding 

to a transfer of energy. to the electromagnetic field.· 

Let us consider now the electromagnetic fields. From the.vector potential 

given by (30), it follows that: 

-) /1 ~~:ce) (L+l~ . · -fJ262A2 
E = k A e . , (39) 

m mi 
.C 

. ' . 

~ /1 (~oce) ( L+ 1_) -f32e2A2. 
B = e A e (40) 

fJ me'' mi .. · 

The·· electromagnetic energy· f·low .is.· ·therefo:re. radially outward at all. · 

times, and. the energy flowing through a coaxial cylinder of radius r and 

length L per unit time is: 

dW .. 
- 21tu

0
•·. dt'·- r (41}. 

dW ·. · 
For fixed r, dt is zero for t- -oo_,. rises a maximum and goes to zero again 

for t~+ao. This energy flow does not all represent radiation, however, for 

some of the flow only represents a change· in the local energy ·density. Acc'ord~ 

ing to Poynting's theorem, however, the radiation results from the work done 

on the current sources, that is: 

~ ~ 0 
div (E X H) + ot (E • D + B • H) [-

12 ·~ .. ~ ~] 

(
1 1 ·) 

2 

-+-m m. e J. 

(42) 

;,, 
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One sees that energy is monotonical~y put into the electromagnetic field at 

every point in space and since the electromagnetic energy density is zero at 

both t = -oo and t = +OD, it is correct to say that the tr~sfer of mechanical 

energy (from motion in the z-direction) to the electromagnetic field represents 

radiation ~ the plasma~ 

The final point to investigate is the energy balance. Rather than 

consider the various terms separately we shall simply estab.lish local energy 

conservation for the Vlasov.equations. The mechanical energy density is 

given by the expression: (Nonrelativistically) 

ofi 
using Eq. (:0 to eliminate. ot. It follows· that:. 

~-·· ~ z· ;L''.. . 
f. + 

mi ~ . i 
ei:...... I 3 -:P -·E ·• d p p f • 
lilt. . . i .. 

wtting the mechanical. ener!'!y nux be defined by JM = f /d}p ( ~J 
we obtain the obvious res:u1t: 

~ 
E. 

(43.) 

(44h 

. (45). 

(46) 
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Upon combining this. with the Poynting integral (Eq. 42) the ·f'inal: result 

is obtained: 5 

a ·1~-·1-;-- ·~ ~ ~ .·· 
ot (UM + 2 E•D + 2 B·H) + div(JM + E X H):= 0~ . (47) 

Equation (47) shows that the Vlasov equations explicitly conserve the sum of' 

the mechanical and electromagnetic energies (including radiation) locally. 

Since the solution given in Eqs;, (29) through· (31) satisfies the Vlasov 

equations everywhere except r = 0, E~. (47) establishes energy conservation 

everywhere, except f'or r = 0. For r = O, however, it is clear f'rom Eqs. (39) 

and (40) the net f'lux of' electromagnetic·energy vanishes. The source terms 

~ · r = 0 ~ therefore sources only of' particles ~mechanical energy. 

This justifies once again the designation of' the solution given by Eqs. (g9) 

through (31) as an exact radiating solution to Vlasov's equations. 

EXTENSION TO A RELATIVISTIC SOLUTION 

The radiating solution discussed in the previous.section has the·dis­

tlu-bing f'eatill:-e that the radiai motion involves velocities whose mean is 
the velocity of' light. While it is the z-motion and not the radial motio~ 

that is coupled directly to the electromagnetic :field, this feature of the . . . . . . . 

solution is nonetheless suf'f'iciently unphysical as to cast doubt upon its 

usef'u.lness as a counter-example. To remedy this def'ect, we shall in this 

section utilize relativistic mechanics in Vlasov's eqUation. To be precise, 

~ 
we shall construct the characteristics to Eq. (1) using p = 

~ 
. . ~ 
i.n: determining dt • 

___.. 
mv 

0· 

41-(v/c)2 
· 

The two constants o:1 and a
2 

[Eqs ~ ( 10) and ( 13 )] , are once again constants 

of' the motion, as is .to be expected since these are obtained f'rom considera­

tions of' symmetry that are valid reiati vistically. · 

5. A similar, but less general, result has been.given by I. B. Bernstein, 
Phys. Rev. 109, 10 (1958). · 

.... 
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The constant a
3 

is replaced by the new functional: 

(48) 

which, as can be shown by direct calculation (see Appendix), i·s a consi;!'l-nt 

of the relativistic equations of motion if a1 = a
2 

= 0. ·,[The symbol pr is 

/\ -+ -1 J !'!- shorthand for r • p = r (xp + yp ) 
X y 

The nonrelativistic constant, Eq• (18) (for the special case where a1 
is also zero), is a limiting case of Eq. (48). 

It is clear from the form of Eq. (48) that a
3 

2! 0 if the square root is 

chosen with a positive sign, The si~ of the sq~re root, however, is fixed:. 

from the derivation (see Appendix) to be positive. This is an essential 

limitation which is imposed on the admissible distribution functions. 

The next point to establish is that there exists no distribution function 

constructed from the constants a
1 

= a
2 

= 0 and a
3 

which satisfies simultaneously 

the two ccond<i.Ctia!ons:> · th_at D :: 0 and j : 0, unless m. = m • Let the distribu-
l r ~ e 

tion functions be defined by: 

!. 

The condition that the charge density vanish identically requires that: 

co 

Ni I d'I;F~ 0 [<mrc)2 + (eA)2 + 

-CD 

= N e 

-<D 

(49) 

(50') 
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The condition that the radial current density vanish identically takes a 

little manipUlation. The radial current involves the radial, velocities, 

and for each species, is given by: 

IntroduciDg cx
3 

as the v~riable in· Eq.· (51), one finds that:· 

00 

= N e 

/aa.3 Fi (a3) 

0 

.·(51) 

(52) 

. (50 I) 

·using Eqs.(50') and (52), and noting that the radial current and charge densities 

must vanish identically, the required relations are: 

· .. · 

l; 

· .. 

,';• 
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00 00 

2 I a-2 aa F1 (a) 
2 I a-2 aa F (a) N~imi = N m e e . e 

(53a) . 

0 0 

00 00 

N:1 I -2 aa F1 (a) = N. ja-2 aa F (a), a. e e (53b) .. 

0 0 

CD 00 

N .. .r aa F. (a) = N Ida Fe(a) :l •• •. 1 :l e 
J 

(53c) 

0 0 

Equations (53a) and (531;>) are inconsistent unless m = m .• 
i e · 

The distinction between this situation and the nonrelativistic cases. , 

treated earlier, lies in the fact that in the nonrelativistic case the radial 

current was proportional to the charge density, unlike Eq. (52). 
Since our aim is only to demonstrate that the use of relativistic 

mechanics does not in itself prevent a radiating solution similar to that 

discussed fer the nonrelativistic case, we shall simply take the otherwise 

uninteresting case m. = m = m, for which solutions can indeed be found. 
:l e 

• A particularly simple solution results from the distribution functions: 

(54) 

where a, N are posit~ve constants. It is easily seen that f' jr' and je are 

now ail identically zero. 

The current in the z-direction is now given by: · 

.. ·.,. 

A(r - ct) 
r 

(55) 
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From the equation for, the vector potential, t/~· Az = - p
0

j z' one. finds 

thE!.t: 

(56) 

. . . . 

The solution ·to the "relativistic" Vlasov equations given in Eqs. (54) and 

(56) is qualitatively similar to that discussed earlier for the nonrelativistic 

. case, and the discussion need not be repeated. 

We can conclude from this exa.nq)le that the radiation found and discussed 

.in a nonrelativistic exact solution to Vlasov 's equations is not dependent 

in any e.ssential way on the ·Occurrence . of unphysically large radial velocities. 
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Appendix 

DERIVATION OF THE RELATIVISTIC CONSTANTS. 

d~ - - ~ oA From the equ~tion * = ei (E + -:; x ~), the equations E = - ot , 

.... . ~ ~ 1\ 

B = V x B, A :::; k A(r - ct), it follows that:· 

or: 

-=-e -+-v -+~v-dp z ( oA x oA v oA) 
dt i Ot r X 0~ r y Or 

dp oA 
...:.1l. = e v X ;;:-_r· 
d'l:~ i z r v 

dpx x 3A 
-=ev--
dt .i z r or • 

From Eqs. (2) and (3) it follows that a2 = xpy - ypx = constant. 

(A.;.l) 

(A-2) 

(A-3) 

.· 
Using the definition p = ~ • p = (xp + yp )/r, one finds the identity: . r . x y 

dpr x dpx y dp 3 
-dt = -r - +- ~ + r- (yp - xp )(yv -XV ) •. dt r dt X y X · y . 

FromEqs. (2), (3), and, (4)'it follows that: 

oA 
or 

(A-4) 

(A-5) 



20 

and~ using the fact that A = A(r - ct), one finds: 

m c 
0 

) . 2 2 .. · . 1 - (v jc ) 

. Taking o:
1 

= o:
2 

= o, (5) and (6) show tb,at: . · 

dpr m
0

c 

p ...--- - ·-;=.======= r dt / . 2 2 
A/ 1 - (v /c ) 

(A-6) 

For. o: · = · o: :::; 0:, · the · square: root' ·in . ( 7} may. be :writ ten. in· .tertns of· p.r· · and A. 
1. 2 

That is: 

. (·1 . 2/ 2) -1/2 m c - v c · 0 . . 

1/2 

= [(moc)2 + p~ + e2A2 J 
Iirtrodi.lciri:g _(8:) · into·.:(7), .. it:· is. a.ri:., iimned:iate.:result ::that·.a:··third=.integra1L is· ... · 

. given by: 

-1/2 

o: = . [Cm c )2 + p'2 + p2] ' . - Pr 3 o r z 

for the case where a1' = 0:2 = o. 

l.i 

•.. , 

-~-· 
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