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SUMMARY

A two-level preconditioning method for the solution of elliptic boundary value
problems using finite element schemes on possibly unstructured meshes is introduced.
It is based on a domain decomposition and a Galerkin scheme for the coarse level
vertex unknowns. For both the implementation and the analysis, it is not required
that the curves of discontinuity in the coefficients of the PDE match the interfaces
between subdomains. Generalizations to nonmatching or overlapping grids are made.

1.1 Introduction

The Black Box Multigrid method of [Den82] is considered robust for diffusion problems
with possibly discontinuous coefficients on structured grids. More specifically, the
application of this method requires that the coefficient matrix has a 3%-coefficient
stencil, where d is the dimension of the problem. Thus, Black Box Multigrid is not
applicable for more complicated (e.g., unstructured) finite element schemes resulting
from realistic engineering and applied science problems. Furthermore, it is pointed out
in [Sha94a] [Sha95] that Black Box Multigrid stagnates for certain diffusion problems
with high diffusion areas separated by a thin strip. Surprisingly, this stagnation
occurs when the discontinuity curves are aligned with all the coarse grids, case which
can be handled easily by either standard multigrid or the method of [BPS86]. The
AutoMUG method introduced there avoids this stagnation but diverges for other
examples. In {Sha94b| this stagnation is explained and a modified version of Black
Box Multigrid which avoids it is introduced. This version is related to the method of
[Den80] [KM81} and based on ‘throwing’ certain matrix elements to the main diagonal
when constructing the prolongation operator from coarse to fine grids. It is shown in
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[Sha94b] that this version is robust both theoretically (for a certain class of problems)
and numerically (for the above example and others). In [Sha96| the robustness of the
method is shown for locally refined finite element schemes.

In this work, a method in the spirit of the above version is applied to general finite
element schemes which not necessarily arise from local mesh refinement. It is assumed
that a suitable domain decomposition is available (see Figure 1.1). The idea is to
choose suitable vertex variables on the interface between subdomains to serve as the
coarse grid. The prolongation operator extending a coarse grid function to the whole
grid consists of two steps: first solve low order systems (resulting from the coefficient
matrix by ‘throwing’ certain elements to the main diagonal) to extend the function to
the interface unknowns; then extend the function to the interior of the subdomains by
solving the original scheme on each subdomain (for simplicity we consider the 2-d case;
in 3-d, three steps are needed). The coarse grid equation is obtained from a Galerkin
scheme; it is solved either directly or iteratively using some preconditioning method or
multigrid. Both the formulation of the coarse grid equation and the actual restriction
and prolongation involve mainly local operations which are well parallelizable. The
method can be supplemented with presmoothing and postsmoothing as in multigrid
or with an outer acceleration scheme. We call the method Domain Decomposition
Multigrid (DDMG).

Note that the method analyzed in [Sha94b] for the structured grid case may be
obtained from DDMG by considering four-cell unions in a uniform grid as subdomains.
The present analysis is a modification of that of [Sha94b] in which matrix elements
are replaced by suitable submatrices. Unlike in [BPS86], it is not necessary to assume
neither for the implementation nor for the analysis that the curves of discontinuity in
the coeflicients of the PDE match the interfaces between subdomains. Also, it is not
assumed here that the domain is polygonal; for simplicity, however, we use polygonal
domains in the present example.

1.2 The Domain Decomposition Multigrid Method

Consider a finite element scheme for an elliptic boundary value problem on a mesh
of the type used in [BPS86] (illustrated in Figure 1.1). Assume that the underlying
linear system is given by

Az =B,

where « is the vector of unknowns corresponding to the nodes in the mesh and B is
the right hand side vector and A is the coefficient matrix.

Consider a domain decomposition as in Figure 1.1, where nodes on the thick lines
correspond to interface or boundary unknowns. Let some of these unknowns (typically,
vertex variables such as those denoted by ‘e’ in Figure 1.2) serve as coarse grid
variables. In the following we denote by ¢ the set of coarse grid variables, by b the set
of the other boundary and interface variables and by s the set of all other variables
(corresponding to nodes in subdomain interiors). This induces a partitioning of the
coefficient matrix A as

Ass Asb Asc
A=1 Aps A Ape |- (1.1)
Acs Acb Acc
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Figure 1.1 The unstructured grid and the domain decomposition.
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Figure 1.2 The coarse grid variables are denoted by ‘e’

In the following we use this partitioning also for other matrices of the same order and
(unless specified otherwise) refer by ‘blocks’ to the blocks in such partitionings. We
also denote f = sU b (the set of fine grid points, namely, all variables but the coarse
grid ones). This induces another block partitioning for A:

= Asr Age
A= ( Acf Ace

where, for example,

Ass  Asp
Aps = A I 1.2
i ( Aps  Aw ) (1.2)
This partitioning will also be used for other matrices of the same order.

For any set g, let |g| denote its intensity. For any positive integer &, let I denote
the identity matrix of order k. For any set g C cU f, let J, : la(cU f) = I2(g) denote
the injection

(Jow); =wj, wel(cUf), jeg.
For any matrix M, M = (m;;)i<i<k, 1<j<L, define |M| = (|mi;|)i<i<k, 1<i<L;
define also the diagonal matrix of row-sums of M by

L
rs(M) = diag(z mMi;)1<i<K-

=1

Let us now define a matrix T(A) which is obtained from A by ‘throwing’ certain matrix
elements to the main diagonal. More specifically, T'(4) is of the same order as A and
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Figure 1.3 First prolongation step; from C, the set of variables denoted by ‘e’,
into B, the set of all the other variables on the thick line.
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Figure 1.4 First prolongation step; from C, the set of variables denoted by ‘e’,
into B, the set of all the other variables on the thick lines.

is upper block-triangular (with respect to the partitioning (1.1)) with T(A)cc = I}
The structure of T(A4) is thus

T(A)ss T(A)sb T(A)sc
T(4) = 0 T(Aw T(A
0 0 I

Furthermore, T(A), is block diagonal, with blocks corresponding to portions of
interfaces or boundaries. Consider, for example, the unknowns on the thick line in
Figure 1.3. Denote by C the set of the two variables denoted by ‘e’, by B the set of
the other variables on the thick line and by F' the set of all other variables. The rows
in A corresponding to B can be partitioned in the form

( ABr ABB ABC ).

The corresponding rows in T{A) are defined by

(0 Asp—rs(Asel) Asc ).

Consequently, the unknowns in B are coupled in T(A) only with themselves and
possibly with those in C. The rows of T'(A) corresponding to other boundary portions
of the form B C b (such as that of Figure 1.4) are defined in a similar way.
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Figure 1.5 Second prolongation step; from B, the set of variables on the thick
lines, into S, the set of variables in the interior of the subdomain bounded by the
thick lines.

Similarly, T(A)ss is block diagonal, with blocks corresponding to sets S C s
corresponding to interiors of subdomains. For example, denote by B the unknowns
corresponding to nodes on the thick lines in Figure 1.5, by S the unknowns
corresponding to the nodes in the interior of the subdomain bounded by these lines and
by F the rest of the unknowns. The rows in A corresponding to S can be partitioned
in the form

( Asr Ass Asp ).
The corresponding rows in T'(A) are defined by

( 0 Ass—7s(lAsr|) Ass )

Consequently, the unknowns in S are coupled in T{A) only with themselves and
possibly with those in B. Rows of T(A) corresponding to other subdomains of the
form S C s are defined in a similar way. For usual finite element schemes (such as that
of Figure 1.1) Agr = 0 and, hence,

T(A)ss = Ass, T(A)sp = Asp and T(A)se = Ase. (1.3)

However, by using the above definition we handle also the more general case, where
interiors of different subdomains might be coupled in A (e.g., when subdomains are
not aligned with finite elements). The above definition of T(A) ensures that such a
coupling cannot exist in T'(A); this allows efficient and parallelizable restriction and
prolongation operations.

Define the prolongation operator P and the restriction operator R by

P=T(A)"! and R = (T(A%) — blockdiag(T(A")) + blockdiag(T(A)))™¢.

Here ‘blockdiag’ corresponds to the partitioning (1.1). Since T(A) is block triangular,

the application of P and R is performed easily by block back substitution and block

forward elimination, respectively. Furthermore, since the subdomain interiors (such as

S in Figure 1.5) are decoupled from each other in T(A) and similarly for the interface

portions (such as B in Figure 1.3), the applications of R and P are highly parallelizable.
Finally, define the coarse grid operator @ by

o=(W 0
=\ 0 J.RAPJ )’
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where W is a nonsingular matrix of order |f|. For the analysis in Section 1.3 to be
valid W should be symmetric positive definite (SPD) whenever A is. The reasonable.
choices are
W =1y
or, in the spirit of [Den82],
W = Rffdiag(Aff)blockdiag(Pff) (1.4)

(where ‘blockdiag’ corresponds to the partitioning (1.2)). The choice (1.4) yields better
numerical results in [Sha96]. Although W in (1.4) is not SPD, it is spectrally equivalent
to the SPD matrix blockdiag(W). Hence, the application of the proof of Theorem 1
below is essentially unchanged (see [Sha94b]).

It is assumed here that T(A4) is nonsingular. It is also assumed that J.RAPJ! is
nonsingular; this is guaranteed when A4 is SPD and holds in most cases.

The two-level method is defined by

Tout = Tin + PQ—IR(I) - AIin). (15)

(1.5) may be supplemented with relaxations before and after it in the spirit of
multigrid methods. This approach is used in [Sha94b] for uniform grids. Alternatively,
a Lanczos type acceleration may be applied to it. This approach is used in [Sha96].
For both approaches, the condition number of the preconditioned matrix PQ~'RA
is an important measure for the rate of convergence. In the following, this condition
number is estimated for SPD problems.

1.3 Analysis in the SPD Case
Here (-, -) denotes the usual inner product in lo{cUf) and ||-|| denotes the corresponding
vector and matrix norms. The following lemma is used in the proof of Theorem 1.

Lemma 1 Let M be a symmetric and positive semi-definite matriz of the same order
as A. Then, for any vector x € la(cU f),

(z, Mz) < 2(x, (J}Js M I} J; + JLJ M JL T )T).
Proof: Let = J;Jsx — J.J.z. Then we have
0 < (& M&) = (z,(JEJr M T T s + JLJ.M I )2) — (2, (Js Jp ML + JE I M T Jf)z).
The lemma follows from
(z, Mz) (z, (J}Is M I Tp + LI M T J)2) + (2, (J§ T ML e + JETM T} Jf)x)
2z, (J3JpMIL s + TEJMJLT)z).

it

IN

Theorem 1 Assume that A is symmetricr and (possibly weakly) diagonally dominant,
T(A) is nonsingular and W is SPD. Then the condition number of the preconditioned
coefficient matriz PQ 'RA is bounded by

2max(||W T RAPJL, 1)(1+ 2| PvnllAll + 0l RAP| + nl|WI)),
with n = (vV2+ 1)?||A]|.
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Proof: Since A is symmetric, R = P?. Since A is symmetric and diagonally
dominant, it follows from Gershgorin’s theorem that it is positive semi definite. Let
x € la(cU f) satisfy ||z} = 1 and denote € = (z, Az). Since 4 is symmetric and positive’
semi-definite, z may be written as a linear combination of the orthogonal eigenvectors
of A. Consequently, ||Az]|* < ||4lle.

Define
(A=T(A))ss (A=T(A))sb (A=T(A))sc
A= (A=T(A)"ss 7rs(|(A=T(4)")ss}) 0
(A4- T(A)t)cs 0 rs(|(A - T(A)t)csn
and
' rs({A - T(A)"]) (A-T(A) s 0
Ay = (A—=T(A))ss (A=T(A))es - (A=T(A))se
0 (A-T(A)" s rs((A—-T(4)"e))

(note that 4; = 0 when (1.3) is satisfied). Since A;, 43, A — A; and A — A, are
symmetric and diagonally dominant, it follows from Gershgorin’s theorem that they
are positive semi definite. Using the same argument as in the beginning of the proof,
we obtain

14nz]? < 4all (2, Anz) < [[Aalle, n=1,2.

For convenience we use here the notation f; = s and f; = b. Note that
Jp Ay =Jp (A=P™H, n=1,2.
Consequently,

| 17s Azl = |y P | 2

IA

17p(A = P~)all?
2

= 23 )l

n=14iCf,

IA

2
D HAnzll® < (1Al + [ A2]De,
n=1

which implies that

7P~ 2l < v/mE, where 5 = (V][Aill + [[42]l + VII4I)* < (V2 + 1)*|| Al

As a result, we have

(z, R7'QP'x)

(P~ 'z, QP 1)
(Jidex + J; P 2, Q(Ji ]z + J}Jp P )

< (JiJex, RAP(J!Jcx)) +nllWlle
= (Plz~ JLJ;P g, RAP(P 'z — JLJ; P7lx)) + l|W e
< @+ 2PVl Al + nl|RAP|| + nllW]))e,
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Figure 1.6 A domain decomposition with nonmatching grids.

which implies that the function (z, R"'QP~'z)/(x, Az) is bounded. On the other
hand, we have from Lemma 1 that, for any y € l3(cU f),

(v, RAPy) < 2(y,(JoJ;RAPJL; + JLJ.RAPJLI.)y)
< 2max(|[|[W I RAPJLL D)(y, Qy),

which implies that the function (z, Az)/(z, R"'QP~'z) is bounded. This completes
the proof of the theorem.

1.4 Discussion

The bound derived in Theorem 1 for the condition number of the preconditioned
coefficient matrix depends mainly on ||A|] and [|P}]. In order to minimize the bound,
lJAll and }{P]| should be minimized. Hence, A should be taken in the undivided form,
as is usually the case for finite element schemes. On the other hand, ||P|] may be
large if one of the submatrices T(A)pp or T(A)ss (corresponding to variable sets
such as B in Figure 1.3 or S in Figure 1.5) are nearly singular. This might happen
if the variables in such a set B are nearly decoupled in the coefficient matrix A
(which is unlikely to happen for usual elliptic problems, see [Sha96]) or if one of the
submatrices Agg is nearly singular. The latter case might happen when the number
of nodes in a subdomain is large or when there is a large jump in the coefficients in
the PDE. However, for a bounded number of nodes per subdomain and a bounded
range of jumps in the coefficients the bound on the condition number is robust.
Furthermore, the assumptions made in [BPS86] (polygonal domains and discontinuity
curves aligned with the coarse grid) are not needed here. In practice it is expected
that the convergence rates for DDMG are independent of the jump in the coefficients
as well, as is the case for Black Box Multigrid for uniform grids.

Since the definition of DDMG relies on the domain decomposition and the coefficient
matrix only, it is applicable also for nonmatching grids (such as those of Figure 1.6),
provided that the underlying linear system is given. Furthermore, it can be extended
in a natural way to the case of overlapping subdomains. The key is the definition of the
prolongation operator from the coarse grid to the rest of the nodes. The prolongation
to the interface and boundary unknown is done as before. The prolongation to the
interior may be also done as before in each subdomain separately, and then taking the
average of the multiple definitions in the overlapping area.
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