
ORNL-2809 
UC-34 -Physics and Mathematics 

TID-4500 (15th ed.) 

AN IBM-704 CODE FOR A HARMONICS METHOD APPLIED 

TO TWO-REGION SPHERICAL REACTORS 

R. Chalkley 
C. W. Nestor, Jr. 
M. L. Tobias 

OAK RIDGE NATIONAL LABORATORY 
operated by 

UNION CARBIDE CORPORATION 

for the 

U.S. ATOMIC ENERGY COMMISSION 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



Printed in USA. Price $0.75 • Available from the 

Office of Technical Services 

Department of Commerce 

Washing1on 25, D. C. 

,------------------------------LEGAL NOTICE-----------------------------, 

This report was prepared as an account of Government sponsored work. Neither the United States, 
nor the Commission, nor any person acting on behalf of the Commission: 
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of 
any information, apparatus, method, or process disclosed in this report may not infringe 
privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of 
any information, apparatus, method, or process disclosed in this report. 

As used in the above, 11 person acting on behalf of the Commission" includes any employee or 
contractor of the Commission, or employee of such contractor, to the extent that such employee 
or contractor of the Commission, or employee of such contractor prepares, disseminates, or 
provides access to, any information pursuant to his employment or contract with the Commission, 
or his employment with such contractor. 



.· ... ! 
/ 

Contract No. W-7405-eng-26 

REACTOR EXPERIMENTAL ENGINEERING DIVISION 

AN IBM-704 CODE FOR A HARMONICS METHOD APPLIED 

TO TWO-REGION SPHERICAL REACTORS 

R. Chalkley, C. W. Nestor, Jr.; M. L. Tobias 

DATE ISSUED 

MAR 151960 

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 

· operated by 
UNION CARBIDE CORPORATION 

for the 
U.S. ATOMIC ENERGY COMMISSION 

ORNL-2809 



THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



CONTENTS 

Abstract .................................................................................................................................................................. .. 

Introduction ........................................................................................................................................................... . 

Notation.................................................................................................................................................................... 2 

Preparation of Input Data and Illustrative Example ........................................................................................ 2 

Operating Instructions 7 

APPENDIXES 

A. General Plan of the Code 9 

B. Least-Squares Procedure for the Calculation of Flux Expansion c;oefficients in the 
Harmonics Method Reactor Computing Program ...................................................................................... 10 

C. Formulas Used in Neutron Balance.............................................................................................................. 14 

iii 



,. 

AN IBM-704 CODE FOR A HARMONICS METHOD APPLIED TO TWO-REGION 
SPHERICAL REACTORS 

R. Chalkley C. W. Nestor, Jr. M. L. Tobias 

... 
ABSTRACT 

·": 

The present report describes gn IBM-704 computer code for the harmonics 

method criticality calculation for s'phericol reactor_s. In the harmonics method, 

the criticality condition corresponds to the v~nishing of o certain infinite-order 

determinant; in practice, this condition Is replaced by equating o finite-order 

approximating determinant to zero, Generally speaking, the quality of the ap­

proximation should improve with the order of the Iotter determinant. 

By hand, the calculations can be performed conveniently only for second­

order approximating determinants. With the code described in this report, the 

approximating determinant is customarily of the seventh order, losses of 

significant figures have pr~vented the use ~f larger determinants, Generally, 

the machine running time per case is about 30 sec, 

INTRODUCTION 

In the harmonics method of Edlund and Noderer, 1 the thermal flux in a two-region 

reactor is approximated by a linear combination of the first few eigensolutions of the 

Helmholtz equation. A set of N linear homogeneous equations in the expansion coef­

ficients is obtained which invoives the fuel concentration in a linear fashion. The 

condition for criticality is that the determinant of this set. vanish; this is essentially 

an Nth-deg~ee algebraic equation in the fuel concentration from which {in principle) may 

be extracted the smallest root; this in turn establishes the critical concentration. 

The geometry considered here is that of a two-region reactor in which the regions 

are defined by a pair of- concentric spheres. It is assumed that the inner and outer 

spherical regions {the core and the blanket) may differ in any respect except for the 

slowing-down properties and the thermal diffusion coefficient, which must be uniform 

throughout the reactor. Fissions may occur at thermal energies only, but resonance 

obsorption is considered. 

The principal virtue of the harmonics method is that it enables use of any arbitrary 

slowing-down kernel. In the present code, the form of the Fourier transform of the 

slowing-down kernel P(Bf) is token as 

(1) 

1 . . . . 
M. C. Edlund and L. C. Nodcrcr, !In Harmonics MetiJud Applied to D

2
0-Moderated Reactors, 

ORNL CF-54-3-120 (March 1954). 



where Bi is the ith eigenvalue and the r's ore associated. with the neutron slowing-down 

distance for the ith energy group. Thus, the slowing-down kernel may be permitt~d to 

be the convolution of o Gaussian slowing-down kernel with any number of diffusion 

kernels up to 4, or to be o convolution of diffusion kernels only. 

With the present code, it is possible to treat reactors which hove fuel in the bl onket 

region as well as those i~ which the blanket is a reflector only. In addition, it is pos­

sible to specify either a fixed blanket fuel concentration or the ratio of the blanket fuel 

concentration to the core fuel concentration. In any case, the code computes the 

critical concentration of the effective fuel material in the core in units of grams per 

I iter. 

To compute the thermal flux distribution, the coefficient of the lowest eigensolution 

is set equal to unity. There results o set of N equations in the remaining N- 1 coef­

ficients. Since in actual practice the critical determinant never vanishes exactly, the 

coefficients obtained by solving o particular group of N- 1 equations out of theN which 

ore ovoi l·able may not satisfy the remaining equation. Such a procedure may in fact 

yield negative fluxes or oscillating fluxes. To ovoid these difficulties,. a leost,squores 

proc~dure has been employed to utilize all N equations in determining the coefficients 

of the ,eigensolutions. 

The present code does not make any provision for nonthermol fissions and, as pre­

viously mentioned, operates under the assumption that the thermal diffusion coefficient 

and the slowing-down properties in· core and blanket ore the some. Further, only two 

reg ions may be treated so that effects produced by oddi tiona I regions, such as a shell 

between the core and blanket or a pressure vessel outside the blanket, ore not explicitly 

computed. 

Further details of the mathematical basis for the code may be found in the appendix. 

NOTATION 

Table 1 gives the notation used in the specification of the input data. The units in 

which each item must be given ore cited .. 

PREPARATION OF INPUT DATA AND ILLUSTRATIVE EXAMPLE 

A single set of values for each of the 28 input items described in the previous sec­

tion specifies o single hypothetical reactor and wi II be referred to as a case. Each 

case requires four IBM-704 data cords with information arranged as shown in Table 2. 

Except for LIM and N0FDIV all of the input numbers must be provided with o decimal 

point. The input numbers LIM and N(2$FDIV ore integers and must not be provided with 

a decimal point. The decimal numbers must satisfy on E10.6 specification: (See IBM 

Fortran Programmers Manu a I.) 

2 



Symbol 

A 

B 

SMACA!Zl 

SMA CAB 

SMACPC 

PF 

SMICF 

TAUl, TAU2, TAU3, 

TAU4, TAUS 

DC!ZlEF 

XKB 

PC 

PB 

ETA 

Table 1. Notation Used in Code 

Units 

em 

em 

-1 em 

-1 em 

-1 em 

barns 

2 em 

em 

Definition 

Radius of inner sphere 

Radius of outer sphere 

Macroscopic absorption crass section of the 

moderator 

Total macroscopic absorption cross section of 

material in blanket region 

Note: For problems where the fuel concentration 

in the blanket is in a fixed ratio to that in the 

core, an estimate for SMACAB is used here which 

is automatically adjusted in the course of the 

computations, These are cases where the input 

number EITHER (q.v.) is set equal to 1.0. When 

EITHER is given as 0.0, SMACAB remains fixed 

Macroscopic absorption cross section for core 

poison present in an amount independent of core 

fuel concentration 

Ratio of core poison macroscopic absorption cross 

section tot he core fuel macroscopic absorption 

eros s section for those poi sons which are present 

in an amount proportional to the concentration of 

core fuel 

Thermal microscopic absorption cross section of 

fuel in the core 

The corresponding numbers for -r1, -r2, 7"3, -r4, TS 

in the expression for the Fourier transform of the 

slowing-down kernel 

1Ti 
where B.=- , 

z B 
i = 11 2, 3, 

Thermal diffusion coefficient 

Average number of neutrons produced per neutron ab· 

sorbed in the blanket, If there is no fuel in the 

blanket, this number is zero; if blanket composi· 

tion is specified including the fuel concentration, 

XKB is the number appropriate to that composition; 

if the blanket fuel concentration is in a fixed ratio 

to that in the core, XKB is an estimate which is 

corrected in the course of the code's iterative 

process 

Resonance escape probabi I ity in core 

Resonon.:.e escupe probability In blanket 

Average number of neutrons produced per neutron 

absorbed in core fuel 

3 
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Symbol 

AW!Z)FF 

SHIFT 

RH¢ 

LIM 

N¢FDIV 

FACT!Z)R 

EITHER 

RAT I¢ 

PFB 

SMACPB 

ETAB 

Units 

-1 em 

Table ·1 {continued) 

Definition 

Atomic weight of fuel material in core 

Amount by which the machine changes Z {see defirii-. 

tion of RH¢) in successive attempts to isolate the. 

lowest of o certain polynomial, SHIFT should be 

spe~ified at about ~O of on estimated value of Z 

to ovoid excessive running time 

Convergence criterion for determining the ·zero of the 

determinant polynomial. If Zn denotes the nth 

estimate of the ratio of the macroscopic absorption 

cross section of fuel in core to the macroscopic ab­

sorption cross section of the moderator, then when 

< RH¢ 
z 

n 

the critical determinant is considered sufficiently 

close to zero 

One of the positive integers.3, 5, 7. which i~ the de­

sired order of the determinant polynomial approxima­

tion 

Some integer·~ 100 whkh indicates the number of 

equally spaced points in the interval 0 ~ r ~Bot 
which th~ flux is to be computed 

A scale foetor by which all the elements of the de­

terminant ore multiplied. So far, FACT!Z)R has 

always been mode 1.0 

EITHER may be mode either 0.0 or 1.0. If it is 0.0, 

the blanket composition is completely specified; 

if it is 1.0, the ratio of core to blanket fuel must 

be specified instead {see RATI¢) 

Ratio of the macroscopic absorption cross section 

of blanket fuel to the macroscopic absorption cross 

section for fuel in the core 

Ratio of blanket poiso.n macroscopic absorption cross 

section to blanket fuel macroscopic obsorpt ion 

cross section for those poisons which ore present 

.in on amount proportional to the concentration of 

blanket fuel {PFB is used only if EITHER= 1.0. 

if EITHER= 0.0, set PFB = 0.0) 

Macroscopic absorption cross section for blanket 

poison present in on amount independent of the 

blanket fuel concentration {SMACPB is used only 

if EITI-!ER = 1.0. If EITHER= 0.0, set SMACPB = 
0.0) 

Average number of neutrons produced per neutron 

obsorb~d .by fuel in the blanket. region 



Table 2. I BM-704 Data ·cards and Information Required for Each Case 

Card 1-10 11-20 21-30 31-40 41-50 51-60 61-65 66-70 

A B SMACA¢ SMA CAB SMACPC PF SMICF 

2 TAU1 TAU2 TAU3 TAU4 TAUS oc¢EF XKB 

3 PC PB ETA AWS1FF SHIFT RH!2f LIM N¢FDIV 

4 FACT!2fR EITHER RAT I¢ PFB SMACPB ETAB 

Consider the following illustrative example .. The reactor to be studied has a core· 

radius of 16 in. (38.1 em) and a blanket radius of 23 in. (58.42 em), is fueled with U235 

(71 = 2.06), and is moderated with heavy water. The Fourier transform of the slowing· 

down kernel is obtained from the convolution of an age kernel with a single diffusion 

kernel (T1 = 36.46, T2 = 54.68). The poison fraction in the core is 0.06, while that in the 

blanket is zero. There is no resonance capture in the core (core resonance escape 

probability is 1.0). The ratio of neutron productions to absorptions in the blanket is 

0.839905, and the blanket resonance escape probability is 0.817667. The flux is to be· 

determined at l-in. intervals (23 points). Other necessary input data are shown below: 

Macroscopic absorption cross section of all core material other than fuel 

and associated poison fraction (SMACA¢), cm- 1 

Total macroscopic blanket absorption cross section (SMACAB), em~ 1 

Microscopic fuel absorption cross section (SMICF). barns 

Diffusinn coefficient (DC¢EF). em 

Atomic weight of fuel (AW¢FF) 

SHIFT 

FACT¢R 

Convergence criterion on ratio of fuel to moderator cross section (RHO) 

Order of critical determ.inant 

3.24 X 10:- 3 

2.61732 X 10- 2 

411 

0.602 

235 

20 

1.0 

10-4 

7 

The input data would be written on sheets having vertical divisions which can be 

grouped into sets of 10 columns, such as IBM-650 data sheets, illustrated in Table 3. 

As output the following items are printed out: 

1. RX, SX, and TX, which ore, respectively, the coefficients of 2~, 2 2, and the 

constant term in the quadratic equation equivalent to the 2 x 2 determinant approxi­

mation to the infinite critical determinant. 

2. X 1 and X2, the two roots of the quadratic equation. 

3. 2 2, the smaller positive (or only positive) root of the 2 ·x 2 quadratic. In this case 

72 = 3.83679. 

5 



Tobie 3. Input Ooto Specified on Doto Cords 

1-10 11-20 21-30 31-40 41-50 51-60 61-65 66-70 

3. 8 1 E 0 1 5.8 4 2 E 0 1 3.2 4 E - 0 3 2. 6 1 7 E - 0 2 0. 0 6. 0 E -0 2 4. 1 1 E 0 2 

3 . 6 4 6 E 0 1 5.4 6 8 E 0 1 0. 0. 0. 6. 0 2 E- 0 1· 8. 3 9 9 0 E 0 1 

1. 8 . 1 766 E- 0 1 2. 0 6 2.35 E 0 2 2. 0 E 0 1 1 0. 0 E- 0 4 7' 2 3' 

1. 0. o. 0. 0. 2 . 06 

•lnteger.formot numbers (IS). 

4. 2 3, 2 5, and 2 7, the values of 2 obtained from the 3 x 3, 5 x 5, and 7 x 7 deter­

minants. {If LIM were 5, the 7 x 7 value would not be printed because the calcula­

tion .would have stopped before reaching the 7 x. 7 determinant.) In this case, 

2 3 = 4.31287, 2 5 = 4.30023, 2 7 = 4.29603. 

5. The cr'itical concentration of fuel in grams per liter, computed by the formula 

. '. 
(ZL IM) (SMACA!"J) (AWfl)FF) 

g/1 iter = ---------- x 1000 
(SMICF) X 0.6023 

In t,his casethe concentration is 13.2137 g of U235 per liter. 

6. The value of the determinant U(i,j), where i, j range from 1 to LIM. This number is 

of ·no importance to the user of the code. It was once used to check certain opera­

tions of the program. 

7. The values of the coefficients of the thermal flux Ci, where 

LIM C. i7T 
¢ = l: ......!.. sin- r 

i=l r B 

where r is the radius in em and ¢ is the thermal flux. The Ci values ore norma­

lized to cl = l. 
8. The values of the flux at the number of points specified by the integer Nfl)FDIV 

(which is 23 here). The initial value is at B/Nj2jFDIV. 

9. The average core flux, calculated by computing 

(normoli.zed to cl = 1). 

10. The average blanket flux, computed from the ratio 

8 

4 
J 47Tr2¢ dr· 

-7T(B3-A3) A 
3 

(normalized to C 1 = 1). 

6 



11. A neutron balance on the basis of one neutron produced, including the items listed: 

total thermal absorptions 

total resonance absorptions 

fast I eakage 

slow leakage 

(See Appendix C for equations used for computing these values.) 

OPERATING INSTRUCTIONS 

Use output tope 9. 

When sense switch 1 is down, the quadratic equation coefficients RX, SX, and TX 

are recorded. 

If sense switch 2 is down, then the values Z, D (Z) are printed for each calculation. n 

These are not written on tape. 

If the machine should pause with 11111 displayed on the control panel, the dis­

criminant of the quadratic equation is negative. By lowering sense switch 2 the machine 

would then set 2 2 = 0 and proceed with the calculation. 

If the machine should pause with 33333 displayed on the control panel, there would 

be no positive roots (although the discriminant of the quadratic equation would be non­

negative). Lowering ·sense switch 3 would cause the machine to set z 2 = 0 in such a 

cose and to then proceed with the calculation. 

Sense switch 4 governs the manner of machine output. If it is down, the results are 

both printed on the on-line printer and written on output tape 9. If it is up, the results 

are only written on output tape 9. 

If sense switch 5 is down, the machine calculat~s the critical concentration only 

before moving on to the next case. If sense switch 5 is up, the machine computes the 

corresponding flux distribution and a neutron balance in addition to the critical con­

centration. 

When (and only when) down, sense switch 6 causes the values of the determinant 

elements to be recor.ded. 

The output information is always written on output tape 9. When sense switch 4 is 

lowered, the information is also written on the on-line·printer. 

7 
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Appendix A 

DESCRIPTION OF THE GENERAL PLAN.OF THE CODE 

The· .harmonics method itself has been described by Edlund and Node~er; 2 the discus­

sion here pertains to the calculations performed during machine operation. 

Let 2 denote the ratio of the macroscopic absorption cross section of fuel in the 

core to the macroscopic absorption cross section of the moderator which will make the 

reactor critical. The harmonics method specifies the condition for criticality by re­

quiring that 2 correspond to the least positive zero of a certain order determinant ex­

pression. Implied in this method is.that a limit exists for a definite sequence of finite­

order determinants. For example, consider the array 

all a12 a13 . al4 aiS 

a21 a22 a23 a24 a2S 

a31 u32 a33 a34 a3S (I) 

a41 a42 a43 a44 a4S 

aS I aS2 aS3 aS4 ass 

where the symbols a .. represent definite numbers; the limit (provided it exists} of the 
ZJ 

sequence of numbers 

(II} 

is taken as the "determinant" of the infinite order array (1). 

The array (I} associated with the criticality condition of_the harmonics method in­

volves the unknown 2 in each of the elements a .. as a first-degree expression. The 
. . . ZJ . 

criticality condition then amounts to firrdin~ the least positive value of Z for which the 

sequence (II) converges to zero. In practice this reduces to finding the least positive 

value of 2 for which the furthest accurately calculatable determinant (i.e., term) of the 

sequence (II} is zero. Since the nth term of this sequence for n > 2 is a complicated 

nth-degree polynomial in 2, direct explicit specification .of the polynomials is out of 

the question. Instead, the following method was selected. 

First, the least positive solution 2 2 (if it exists} of the second-order determinant is 

obtained .. This merely requires solving a second-degree polynomial equation of the 

form (RX}2 2 + (SX}2 + (TX) = 0. .Then, barring exceptional cases, the value 2 2 is 

2M. C. Edlund and L. C. Noderer, An Harmonics Method Appl.ied to 0
2

0-Moderated Reactors, 
ORNL CF-54-3-120 (March 1954). . 
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used as a first guess in an iterative solution technique for the third-order determinant 

equation. From this point onward in a particular computation, all the determinants are 

evaluated for certain assigned values of 2 by means of an IBM-704 determinant sub­

routine. Experience has shown this procedure to be accurate only up to determinants of 

order 7. 

Let Dn(K) denote the value of the corresponding nth-order determinant evaluated at 

2 = K. The code then computes the following information: 

1. D3(22) 

2. D3(22) I D3(2 2 +SHIFT) 

3. D3(22- SHIFT) I D3(22) I D3(2 2 +SHIFT) 

4. D3(22- SHIFT) I D3(22) I D3(22 +SHIFT) I D3(2 2 + 2 x SHIFT) 

and it continues in this way until it detects a difference in sign (or a zero) between 

successive members of the most recently considered sequence. When once a zero of 

D 3(2) is isolated (by knowing that it lies in a definite interval of length SHIFT), then 

repeated bisections of the interval and the resulting subintervals with a similar sign 

test lead to a value of 2 3 which is within RHfZ) of the desired solution of D3(2) = 0. 

If the input number LIM were specified as 3, then 2 3 would be converted to concentra­

tion units and printed as the critical concentration of fuel in the core. If the input 

number LIM is 5 or 7, then the value 2 3 is taken as a first approximation in a similar 

iterative scheme to find a 2 5 (within RH0 of the corresponding solution) for D5(2) = 0. 

In this way each solution for a certain order approximation is used as a first ap­

proximation in the iterative solution of the next higher order approximation. Finally 

the odd integer n = LIM is reached, and the program prints the corresponding 2n (con­

verted to concentration units) as the desired solution. 

In the preceding iterative scheme, after the second-order determinant has been con­

sidered, only odd-order determinants are used in order to eliminate the possibility of 

attempting to find the real roots of a polynomial having only nonreal roots. 

Appendix B 

LEAST-SQUARES PROCEDURE FOR THE CALCULATION OF FLUX EXPANSION 

COEFFICIENTS IN THE HARMONICS METHOD REACTOR COMPUTING PROGRAM 

The flux expansion coefficients are obtained from a set of N linear homogeneous 

equations by equating the coefficient of the lowest mode eigensolution to unity so that 

there are N equations inN- l unknowns (see "Introduction," this report). As the pro­

gram was originally written, the first N- 1 equations were solved for the required coef­

ficients. Since the fuel concentration is not precisely that which will make the deter­

minant vanish, the last equation may not be satisfied. The occurrence of negative 

10 



fluxes and rapidly oscillating flux distributions in some calculations {with N = 7) was 

interpreted as evidence that the calculated coefficients were in error. A least-squares 

procedure was then devised which would make use of all N equations. 

Discussion of Method 

The system of equations may be written in matrix notation as 

Ac = y , (B 1) 

where A is anN by N- 1 matrix, cis an (N- I)-element column matrix, andy is an N­

element column matrix. The least-squares procedure consists of finding the (N- 1}­

elemen! column matrix c for which the quantity 

(B2) 

is minimized. It is shown below that the required-;; is the solution of the set of N-1 

equations 

(AT A) c =AT y (B3) 

where AT is the transpose of A. 

This method is applied to the calculation of flux coefficients. 

Results 

The results of the two methods are compared in Table B.l for a typical two-region 

reactor, and the calculated thermo I flux distributions are plotted in Fig. B. l. The 

improvement in the flux distribution is obvious. 

Proof that c may be Obtained from Eq. (B3) 

The system of equations is of the form 

N-1 

,!: aijcj = Yi , 
j=l 

the quantity Q which is to be minimized is 

i = 1, 2, ... I N 

. N . N-1 ) 2 

Q = ,!: (Yi - ,!: "ijcj , 
i=l j=l 

Q= 

The conditions that Q be minimized are 

k=l,2, ... ,N-l. 

(B4) 

(BS) 

(B6) 

11 
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N 

3 

5 

7 

Table B. 1. Results Obtained With and Without Least-Squares Procedure 

Average F-luxes 

Values normalized to C 1 = 1 

Average Core Flux Average Blanket Flux 

FirstN- 1 

3.66726 X 10- 2 

3.67048 X 10- 2 

3.64800 X 10- 2 

N = 3 

Least: Sq!Jores 

3.66548 X 10- 2 

3.67332 X 10- 2 

3.67953 X 10- 2 

FirstN-1 

5.63S41 X 10- 3 

5.67877 X 10- 3 

4.80687 X 10-3 

Coefficient~ of the Thermal Flux 

Values.normalized to c 1 = 1 

Least Squares 

5.65312 X 10- 3 

5.69444 X 10- 3 

5.70863 X 10- 3 

N = 7 

Coefficient First 

N- 1 

·Least 

Squares 
First 

N- 1 

Least 

Squa~es 

First 

N- 1 

Least 

Squares 

12 

c1 

c2 
c3 
c4 
Cs 

c6 
c7 

Item 

1.0 

2 •. 17879- 1 

-5.84077·-2 

Total absorption~ 

Total resonance 

capture 

Toto I leakage 

Slow leakage 

1.0 1.0 . 1.0 1.0 1.0 

2.18222- 1 2.17813- 1 2.1.7495- 1 2.21422- 1 2.17088- 1 

-5.684707 2 -5.72361- 2 -5.74155- 2 -6.09492":72 -5.7579.0~ 2 

2.98929.- 4 6.08987- 4 1.0309r-.3· 8.9.037.9.-:: 4 . 

9.90643- 3 1.56763":" 2 1;96986- 2 1.5359.5~ 2 

-1.76905- 2 -1.00258- 2 

. -3.08284;, 1 -3.96497-5 

Neutron Balance 

Basis: 1 neutron produced 

N=7 N= 5 

FirstN-1 Least Squares First N - 1 Least Squares 

7.48593- 1 7.56637- 1 7.62494- 1 7.62520- 1 

5.44928;,_ 2 5.23292- 2 5.48771- 2 5.48267- 2 

1.11249- 1 1.51.810..:. 1 1.46911- 1 1.47859- 1 

8.56654- 2 3.92235- 2 3.57181- 2 3.47949- 2 



UNCLASSIFIED 
ORNL-LR-DWG 43190 

0.10 .-------.--------.------,-----..,.------. 

-0.02 
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0 

.... • • 
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• 5 X 5 I.E AST- SQUARES FLUX 

LEAST-SQUARES FLUX 

FLUX FROM Fl RST 6 
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25 

Fig. B. 1. Comparison of Least-Squares Evaluation of Thermal Flux Distribution with That 

Obtained by Solving First Six Equations. 

Equation (BS) gives 

N 

= -2 l: 
.i=·1 

N~ 1 a. c + (Nl-1 a .. c.) a.k l 
1.. zm m '- ZJ J z 

m=1 j=1 

(B7) 

Since the index of summation j moy be relabeled as m, Eq. (B7) becomes 

CJQ N N N-1 

- = -2 l' a,.kY,· + 2 l' l' a.ka. c = 0 
uck '- '- '- ' .zm m 

i=l i=1 m=1 

k = 1, 2, . . . I N - 1 

13 



exchanging the order of the summations and rearranging gives 

k = 1, 2, . . . I N - 1 . (B8) 

By definition, if (A)ik 

becomes 

aki" Thus, in matrix notation, Eq. (B8) 

Appendix C 

FORMULAS USED IN NEUTRON BALANCE 3 

The total number of thermal absorptions per neutron produced is 

LIM 

2: 
i=1 

LIM 

1: 
i=1 

where· 

LIM 
G.= l' (!. A .. +!. bv .. ) c. z ~ ac 17 a 17 1 

j=1 

LIM· 

E.= l' (k !. A .. + kb!. bv .. ) c. , z ~- c ac 17 a 17 1 
;:= 1 

C.= coefficient of the jth eigenfunction in the flux distribution, 
1 

r_.= radius, .em, 

1 i7Tr 
Z. =-sin--

1 r B 
i = 1, 2, 3, ... LIM (ref 4), 

!.ac =total absorption cross section of core material, cm- 1, 

!.ab =total absorption cross section of blanket material, cm- 1, 

kc =neutrons produced per neutron absorbed in core, 

kb =neutrons produced per neutron absorbed in blanket, 

\ . = ~ [ sin ( i ~ j). 7T A/ B _ sin ( i ~ j). 7T A/ B ] ' i ~ j ' 
l 7T z-7 ·z+J 

A 27TiA 

B 
--sin 
27Ti B 

i = j 

3 The notation used is that of Edlund and Noderer in ref 2. 
' . 

( C1) 

4 Edlund and Noderer. employ a ·factor of ..j2jB which is not used as such in the present code 
(this foetor is absorbed in the coefficients). 
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J/ .. =0 .. -A. .. I 
IJ IJ IJ 

0 .. =1, i=j 1 
IJ 

o .. =o, if.;, 
IJ 

A, B =core and blanket radii, respectively, em. 

The total number of resonance absorptions per neutron produced is 

LIM LIM 
1: Ai (-1)i+1/i- 1: Hi (-l)i+l/i 
i=1 i=1 

LIM 
1: Ei (-l)i+l/i 
i=l 

where . 

LIM 
H.= t' (P A.. +Pbv. )A , 

1 I. c 1n 1n n 
n=l 

P c' Pb =resonance escape probability in core and blanket, res~ectively, 

P(B~)"' Fourier transform of the slowing-down kernel. 
I 

The fast leakage per neutron produced is 

LIM 
1: Ai (-l)i+l;l 
i=l 

1-------
LIM t E;(-1)i+1/i 
i=l 

The slow I eakage per neutron produced is 

LIM LIM 
1: Hi(~ l)i+l/i- 1: Gi (-l)i+l/i 
i=l i=l 

LIM 
E Ei (-1)i+1/i. 

i=l 

Note that the neutron balance has been forced to add up to unity. 

The following formula is helpful in interpreting the above expressions: 

i B sin (i7Tr/LJ) (-l)i+l 82 
. r

2 dr = -----
0 T iTT 

(C2) 

(C3) 

(C4) 

(CS) 
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