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AN 1BM-704 CODE FOR A HARMONICS METHOD APPLIED TO TWO-REGION
SPHERICAL REACTORS '

R. Chalkiey . C.W. Nestor, Jr, M. L. Tobias

ABSTRACT R

The present report describe:'s: an IBM-704 computer code for the harmonics
method criticality calculation for spherical reactors. In the hormonics method,
the criticality condition corresponds to the vénisHing of a certain infinite-order
determinant; in practice, this condition is replaced by equating a finite-order
approximating determinant to zero. Generally speaking, the quality of the ap-
proximation should improve with the order of the latter determinant.

By hand, the calculations can be performed conveniently only for second-
order approximating determinants, With the code described in this report, the
approximating determinant is customarily of the seventh order, Losses of
significant figures have pr‘évemed the use of larger determinants, Generally,
the machine running time per case is about 30 sec,

-

INTRODUCTION

In the harmonics method of Edlund and Noderer,' the thermal flux in a two-region
reactor is approximated by a linear combination of the first few eigensolutions of the
Helmholtz equation. A set of N linear homogeneous equations in the expansion coef-
ficients is obtained which involves the fuel concentration in a linear fashion. The
condition for criticality is that the determinant of this set vanish; this is essentially
an Nth-degree algebraic equation in the fuel concentration from which (in principle) may
be extracted the smallest root; this in turn establishes ‘the critical concentration.

The geometry considered here is that of a two-region reactor in which the regions
are defined by a pair of concentric spheres. It is assumed that the inner and outer
spherical regions (the core and the blanket) may differ in any respect except for the
slowing-down properties and the thermal diffusion coefficient, which must be uniform
throughout the reactor. Fissions may occur at thermal energies only, but resonance
dbsorption is considered.

The principal virtue of the harmonics method is that it enables use of any arbitrary
slowing-down kernel. In the present code, the form of the Fourier transform of the
slowing-down kernel I;(Biz) is taken as

. ~™B
P(B2) = - , M
(1+ 7,83 (1 + 7,82 (1 + 7,82 (1 + 7,B2)

'M. C. Edlund and L. C. Moderer, An Harmonics Methud App.lied to D _U-Moderated Reactors,
ORNL CF-54-3-120 (March 1954), 2



where B, is the ith eigenvalue and the 7's are associated yvith the neutron slowing-down
distance for the ith energy group. Thus, the slowing-down kernel may be permitted to
be the convolution of a Gaussian slowing-down kernel with any number of diffusion
kernels up to 4, or to be a convolution of diffusion kernels only.

With the present code, it is possible to treat reactors which have fuel in the blanket
region as well as those in which the blanket is a reflector only. In addition, it is-pos-
sible to specify either a fixed blanket fuel concentration or the ratio of the blcnkgt fuel
concentration to the core fuel concentration. In any cose;- the code computes the
critical ‘concentration of the effective fuel material in the core in units of grams per
liter. . :

To compute the thermal flux distribution, the coefficient of the lowest eigensolution
is set'equal to unity. There results a set of N equations in the remaining N — 1 coef-
ficients. Since in actual practice the critical deferminont never vanishes exactly, the
coefficients obtained by solving a particular group of N =1 equations out of the N which
are available- may not satisfy- the remaining equation. Such a procedure may in fact
yield negative fluxes or oscillating fluxes. To avoid these difficulties, a least-squares
procedure has been employed to utilize all N equations in determining the coefficients
.of the lei-ge_r)soluﬁons.

The present code does not make any provision for nonthermal fissions and, as pre-
vuously mentioned, operates under the ossumptlon that the thermal dlffusmn coeffncnent
and the slowing-down properties in core and blanket are the same. Further, only two
regions may be treated so that effects produced by additional regions, such as a shell
between the core and blanket or a pressure vessel outside the blanket, are not explicitly .
compufea. 4

Further details of the mathematical basis for the code may be found in the appendix.

NOTATION

Table 1 gives the notation used in the specification of the input data. The units in

which each item must be given are cited. -

PREPARATION OF INPUT DATA AND ILLUSTRATIVE EXAMPLE

A single set of values for eéch of the 28 input items described in the previous sec-

tion specifies a single hyéothetical reactor and will be referred to as a case. Each
. case requires four |BM-704 data cards with information arranged as shown in Table 2.
Except for LIM and N@FDIV all of the input numbers must be provided with a decimal
point. The input numbers LIM and N@FDIV are integers and must not be provided with
a decimal point. The deC|mC|| numbers must scmsfy an E]O 6 speufucohon (See I1BM

Fortran Programmers Manual.)



Table 1. Notation Used in Code

Symbol Units ’ Definition
A cm Radius of inner sphere
B . cm Radius of outer sphere
SMACAZ em™ ] Macroscopic absorption cross section of the
moderator
SMACAB . em™! Total macroscopic absorption cross section of

material in blanket region

Note: For problems where the fuel concentration
in the blanket is in o fixed ratio to that in the
core, an estimate for SMACAB is used here which
is automatically adjusted in the course of the
computations. These are cases where the input
number EITHER (g.v.) is set equal to 1.0. When
EITHER is given as 0,0, SMACAB remains fixed

SMACPC em™) Macroscopic absorption cross section for core
’ poison present in an amount independent of core

fuel concentration

PF Ratio of core poison macroscopic absorption cross
section to the core fuel macroscopic absorption
cross section for those poisons which are present
in an amount proportional to the concentration of

core fuel

SMICF barns Thermal microscopic absorption cross section of

fuel in the core

TAU1, TAU2, TAU3, cm The corresponding numbers for Ty T T3 T4 Tg
TAU4, TAUS in the expression for the Fourier transform of the

slowing-down kerncl

2
-TB;
e

P (Y

1

.

(1+ 78D (1 + 7382 (1 + 7,82 (1 + 7482)

mi
whcchi=—, i=1,2,3,...
B

DC@EF : cm Thermol diffusion coefficient

XKB ’ Average number of neutrons produced per neutron ab-
sorbed in the blanket, If there is no fuel in the
blanket, this number is zero; if blanket composi-
tion is specified including the fuel concentration,
XKB is the number appropriate to that composition;
if the blanket fuel concentration is in a fixed ratio
to that in the core, XKB is an estimate which is
corrected in the course of the code’s iterative

process
PC Resonance escape probability in core
PB Resonance escupe probability In blanket

ETA Average number of neutrons produced per neutron

absorbed in core fuel



Table 1.(continued)

Symbol . Units

Definition

AWBFF
SHIFT

RH@

LIM
N@FDIV
FACT@R

EITHER

RATI®

PFB

SMACPB :  em™!

ETAB

Atomic weight of fuel material in core

Amount by which the machine changes Z (see defini-
tion of RH@) in successive attempts to isolate the
lowest of a certain polynomial, SHIFT should be
spec-ified at about kIO of an estimated value of Z

to avoid excessive running time

Convergence criterion for determining the zero of the

‘ dgtermiﬁcnt polynomial. If z, denotes the nth
estimate of the ratio of the macroscopic absorption
cross section of fuel in core to the macroscopic ab-

sorption cross section of the moderator, then when

Zn - Zn—l
< RH®
n .
the critical determinant is considered sufficiently

close to zero

One of the positive integers.3, 5, 7 which is the de- -
sired order of the determinant polynomial approxima-

tion
Some integer '§'|00 which indicates the number of

equally spaced points in the interval 0 s rg B at

which the flux is to be computed

A scole factor by which all the elements of the de-
terminant are multiplied. So far, FACT@R has

always been made 1.0

 EITHER may be made either 0.0 or 1.0, If it is 0.0,

the blanket composition is completely specified;
if it is 1.0, the ratio of core to blanket fuel must
be specified instead (see RATI®)

Ratio of the macroscupic absorption cross section
of blanket fuel to the macroscopic absorption cross

section for fuel in the core

Ratio of blanket poéso_n macroscopic absorption cross
section to blanket fuel macroscopic absorption
cross section for those poisons which are present
.in an amount proportional to the concentration of
blanket fuel (PFB is used only if EITHER = 1.0,
if EITHER = 0.0, set PFB = 0.0)

Macroscopic absorption cross 'section for bianket
poison present in an amount independent of- the
blanket fuel concentration (SMACPB is used only
if EITHER = 1.0, If EITHER = 0.0, set SMACPB =
0.0)

Average number of neutrons produced per neutron

obsorbé.d'by fuel in the blanket region




Table 2. IBM-704 Data Cards and Information Required for Each Case
Card 1-10 11-20° 21-30 31-40 41-50 51-60 61-65 66-70
1 A - B SMACA@ SMACAB SMACPC PF ( SMICF ‘ )
2 TAU TAU2 TAU3 TAU4 TAUS DC@PEF ( XKB )
3 . PC PB ETA AWGFF SHIFT RHQ LIM NZFDIV
4 FACT@GR EITHER RATIY PFB SMACPB ETAB

Consider the following illustrative example. . The reactor to be studied has a core -
radius of 16 in. (38.1 cm) and a blanket radius of 23 in. (58.42 cm), is fueled with Y233
(n = 2.06), and is moderated with heavy water. The Fourier transform of the slowing-
down kernel is obtained from the convolution of an age kernel with a single diffusion
kernel (7, = 36.46, 7, = 54.68). The poison fraction in the core is 0.06, while that in the
blanket is zero. There is no resonance capture in the core (core resonance escape
probability is 1.0). The ratio of neutron productions to absorptions in the blanket is
0.839905, and the blanket resonance escape probability is 0.817667. The flux is to be

determined at l-in. intervals (23 points). Other necessary input data are shown below:

Macroscopic absorption cross section of all core material other than fuel 3.24 x 10'_3
and associated poison fraction (SMACAD), cm_]

Total macroscopic blanket absorption cross section (SMACAB), cm™ 2.61732 x 10~2

Microscopic fuel absorption cross section (SMICF), barns an '

Diffusion coefficient (DCPEF), em 0.602

Atomic weight of fuel (AWDFF) 235

SHIFT 20

FACT@R ' 1.0

Convergence criterion on ratio of fuel to moderator cross section (RHO) ]0_4

Ordet of critical determinant . . 7

The input data would be written on sheets having vertical divisions which can be
grouped into sets of 10 columns, such as IBM-650 data sheets, illustrated in Table 3.

As output the following items are printed out:

1. RX, $X, and TX, which are, respectively, the coefficients of Zg, Z,, and the
constant term in the quadratic equation equivalent to the 2 x 2 determinant approxi-
mation to the infinite critical determinant.

X, and X,, the two roots of the quadratic equation.

Z,, the smaller positive (or only positive) root of the 2'x 2 quadratic. In this case

7., = 3.83679.



Toble 3. Input Datc Specified on Data Cards

1-10 11-20 ) 21-30 31-40 41-50 ’ 51-60 61-65 66-70 -
3l.|8{1]|E{O(1 5[.18]4]|2|€|0] 3].12|4|E[ -] 0!3] ‘2.6.\7E—-02 0l.10 6|.10/E|-|0[2 4].11{1]E [0]2
34.16]4]6 |EIO[1 5|.]4]6[B|E[O}V 0] 0 0. 6|.|0j2|E[~| O]V 8[.13]9(9 |o[El-|0j1
1. 8].|1|7[s]|6 |E[-|0[1][ 2[.|0)6 2|.|3|5|Ej0] 2 2|.|0[E|0{1 1]0]. |01 E| - 0]4 7 2{3¢
1. 0. 0[. 0. 0], . 2[.[0f6

0.

*Integer formot numbers (15).

Z, Zg and Z,, the values of Z obtained from the 3 x 3, 5 x 5, and 7 x 7 deter-

3
minants. {If LIM were 5, the 7 x 7 vélue would not be printed because the calcula-
tion would have stopped before réoching the 7 x 7 determinant.) In fhis case,
Z,=4.31287, z, = 4.30023, Z, = 4.29603. |

The critical concentration of fuel in grams per liter, computed by the formula

(7, ) (SMACAQ) (AWDFF)

g/liter = x 1000 .
{SMICF) x 0.6023

In this case the concentration is 13.2137 g of U235 per liter.

'The value of the determinant U(i,j), where i, j range from 1 to LIM. This number is

of no importance to the user of the code. It was once used to check certain opera-

tions of the program.

‘The values of the coefficients of the thermal flux C,, where
LM .
. i
1 .
= —L sin —r ,
¢ Z 4 B

i=1

where 7 is the radius in cm and ¢ is the thermal flux. The C; values are norma-
lizedto C; = 1. )

The values of the flux at the number of points specified by the integer NGFDIV
(v;/hich is 23 here). The initial value is at B/N@FDIV.

The average core flux, calculated by computing

i A
—4— f 47Tr2¢ dr

— A3 0
3 )

(normalized to C; = 1).

The average blanket flux, computed from the ratio
1 B
SRR
_ A

(normalized to C, = 1).




11. A neutron balance on the basis of one neutron produced, including the items listed:

total thermal absorptions
total resonance absorptions
fast leakage

slow leakage

(See Appendix C for equations used for computing these values.)

OPERATING INSTRUCTIONS

Use output tape 9.

When sense switch 1 is down, the quadratic equation coefficients RX, SX, and TX
are recorded. ‘ 4 _

If sense switch 2 is down, then the values Z, Dn(Z) are printed for each calculation.
These are not written on tape. ]

If the machine should pause with 11111 displayed on the control panel, the dis-
criminant of the quadratic equation is negative. By lowering sense switch 2 the machine
would then set Z, = 0 and proceed with the calculation.

If the machine should pause with 33333 displayed on the. control panel, there would
be no positive roots (although the discriminant of the quadratic equation would be non-
negative). Lowering sense switch 3 would cause the machine to set Z, = 0 in such a
case and to then proceed with the calculation.

Sense switch 4 governs the monnér of machine ou-tput. If it is down, the results are
both printed on the on-line printer and written on output tape 9. |f it is up, the results
are only written on output tape 9. '

If sense switch 5 is down, the machine calculates the critical concentration only
before moving on to the next case. |f sense switch 5 is up, the machine computes the
corresponding flux distribution and a neutron balance in addition to the critical con-
centration.

When (and only when) down, sense switch 6 causes the values of the determinant
elements to be recorded. '

The output information is always written on output tape 9. When sense switch 4 is

lowered, the information is also written on the on-line printer.
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Appendix A
DESCRIPTION OF THE GENERAL PLAN OF THE CODE

The harmonics method itself has been described by Edlund and Nodel"er;2 the discus-
sion here pertains to the calculations perforrﬁed during machine operation.

Let Z denote the ratio of the macroscopic absorption cross section of fuel in the
core to the macroscopic absorpﬁon cross section of the moderator which will make the
reactor critical. The harmonics method specifies the condition for criticality by re-
quiriné that Z correspond to the least positive zero of a certain order determinant ex-
pression. Implied in this method is that a limit exists for a definite sequence of finite-

order determinants. For example, consider the array

2y % %13 Yy Y

431 %3 93 44 95

437 433 933 934 935 M
@41 %2 %3 %4 %s

a

...................................

where the symbols a,; represent definite numbers; the limit (provided it exists) of the

sequence of numbers

lay,) . a9 22 . %2 93
41 43| @21 @22 433 (H)
934 832 @33 «

is taken as the ‘‘determinant’’ of the infinite order array (I).

The array (l) associated with the criticality condition of ‘the hormonlcs method in-
volves the unknown Z in each of the elements a; as a flrst degree expression. The
crmccllfy condition then amounts to fmdmg the least positive value of Z for which the
sequence (II) converges to zero. In practice this reduces to finding the least positive
value of Z for which the furthest accurately calculatable determinant (i.e., term) of the
sequence (ll) is zero. Since the nth term of this sequence for » > 2 is a complicated
nth-degree polynomial in Z, direct explicit specification of the polynomials is out of
the question. Instead, the following method was selected. A

First, the least positive solution Z, (if it exists) of the second-order determinant is
obtained.. This merely requires solving a second-degree polynomial equation of the

form (RX) + ($X)Z + (TX) = 0. Then, barring exceptional cases, the value Z, is

M C. Edlund and L. C. Noderer, An Harmonics Method Applzed to D O Moderated Reactors,
ORNL CF-54-3-120 (March 1954).



used as a first guess in an iterative solution technique for the third-order determinant
equation. From this point onward in a particular computation, all the determinants are
evaluated for certain assigned values of Z by means of an |BM-704 determinant sub-
routine. Experience has shown this procedure to be accurate only up to determinants of
order 7. _

Let D_(K) denote the value of the corresponding nth-order determinant evaluated at

Z = K. The code then computes the following information:

1. D4(Z,)

2 D4(Z,) ,  D4(Z,+ SHIFT)

3. Dy(Z,-SHIFT) , D4(Z,) , Dy(Z,+SHIFT)

4. D,(Z,-SHIFT) , D4(Z;) , DaZ,+SHIFT) ,  D,(Z,+2 x SHIFT)

.........................................................................

and it continues in this way until it detects a difference in sign (or a zero) between
successive members of the most recently considered sequence. When once a zero of
D4(Z) is isolated (by knowing that it lies in a definite interval of length SHIFT), then
repeated bisections of the interval and the resulting subintervals with a similar sign
test lead to a value of Z; which is within RH@ of the desired solution of D4(2) = 0.
If the input number LIM were specified as 3, then Z; would be converted to concentra-
tion units and printed as the critical concentration of fuel in the core. If the input
number LIM is 5 or 7, then the value Z, is taken as a first approximation in a similar
iterative scheme to find a Z; (within RH@ of the corresponding solution) for D4(Z) = 0.

In this way each solution for a certain order approximation is used as a first ap-
proximation in the iterative solution of the next higher order approximation. Finally
the odd integer » = LIM is reached, and the program prints the corresponding Z, (con-
verted to concentration units) as the desired solution. »

In the preceding iterative scheme, after the second-order determinant has been con-
sidered, only odd-order determinants are used in order to eliminate the possibility of

attempting to find the real roots of a polynomial having only nonreal roots.

Appendix B

LEAST-SQUARES PROCEDURE FOR THE CALCULATION OF FLUX EXPANSION

COEFFICIENTS IN THE HARMONICS METHOD REACTOR COMPUTING PROGRAM
The flux expansion coefficients are obtained from a set of N linear homogeneous
equations by equating the coefficient of the lowest mode eigensolution to unity so that
there are N equations in N — 1unknowns (see ‘‘Introduction,’’ this report). As the pro-
gram was originally written, the first N — 1 equations were solved for the required coef-
ficients. Since the fuel concentration is not precisely that which will make the deter-

minant vanish, the last equation may not be satisfied. The occurrence of negative

10



fluxes and rapidly oscillating flux distributions in some calculations (with N = 7) was
interpreted as evidence that the calculated coefficients were in error. A least-squares

procedure was then devised which would make use of all N equations.
Discussion of Method
The system of equations may be written in matrix notation as
Ac=y , (B1)

where A isan N by N — 1 matrix, cis an (N — 1)-element column matrix, and y is an N-
element column matrix. The least-squares procedure consists of finding the (N — 1)-

element column matrix ¢ for which the quantity
0= |Ac—y? (B2)
is minimized. It is shown below that the required c is the solution of the set of N—1

equations
(AT4) c= 4Ty , - (B3)
where AT is the transpose of A.
This method is applied to the calculation of flux coefficients.
Results
The results of the two methods are compared in Table B.1 for a typical two-region
reactor, and the calculated thermal flux distributions are plotted in Fig. B.1. The
improvement in the flux distribution is obvious.
Proof that ¢ may be Obtained from Eq. (B3)
The system of equations is of the form
N=-1
Z al.].c].=yl., i=],2,...,N; (BA)
j=1
the quantity Q which is to be minimized is

N 2

© N-d
0=X (yi_ ) “ii%5 ] v
i=1 =1

) (85)
N ) N-=1 N=1
=X |»-2, K aijcj+< ) “i,ﬂ')
i=1 =1 =1
The conditions that Q be minimized are .

9 .

_Q=o, k=1,2,...,N=1. (B6)

dey,

n




Table B.1. Results Obtained With and Without Least-Squares Procedure

Average Fluxes

Values normalized to Cl =1

Average Core Flux

' Averoge Blanket Flux

N
First N - 1 Least: Squares First N - 1 Least Squares
3 3.66726 x 1072 3.66548 x 10~ 2 5.63841 x 10~3 5.65312 x 10~3
5 3,67048 x 10~ 2 13.67332 x 10™2 5.67877 x 10~3 5.69444 x 1073
7 3.64800 x 10~ 2 3.67953 x 10~2 4.80687 x 10~3 5.70863 x 10~3
Coefficients of the Thermal Flux
Values.normolized‘to C] =1
N=3 ' N=5 N=7
Coefficient First "Least First Least First Least ] -
N =1 Squares N -1 Squares N -1 Squares
c, 1.0 1.0 1.0 - 1.0 1.0 1.0
C, 2178797 21822271 2378137 2.174957' 22142277 2.17088™!
€y -5.8407772  -5.684707% _5.7236172 _5.74155"% _6.094927% _5.75790:"2
C, 298929~  6.089877%  1.0309273  8.9037974 -
Cs . 9.906437°  1.5676372  1.9698672  1.5359572
Ce ~1.76905"2 -1.00258~2
¢ - ~3.08284=" _3.9649775
Neutron Balance
Basis: 1 neutron produced
N=7 =5
Item
First N = 1 Least Squares First N = 1 Least Squares
Total absorptions 7.48593~! 7.56637) 7.62494~) 7.62520~"
Total resonance 5.44928~2 52329272 5487712 5.48267~2
capture c .
Total leakage 1.11249~! 1.51810~" 1.46911~! 1.47859~"
Slow leakage 8.56654~2 3.92235~2 3.57181~2

3.47949~2

12
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Fig. B.l. Comparison of Least-Squares Evaluation of Thermal Flux Distribution with That
Obtained by Solving First Six Equations.

Equation (BS5) gives

90 N 9 [~ /N=1 C /N=1
—-=—2Z A y+_ Z a..c. Z a. c
ik 71 - ; iy j im- m
dey, i1 dey | iz i=1 m=1
N N N=1 -1
=-2F ayy+ L o L 4memt| L %% ) %k | (B7)
i=1 i=1 m=1 =1

Since the index of summation j may be relabeled as m, Eq. (B7) becomes

90 N N N=1 . :
5C_k=_~22“ik>'i+22 L %%mm =0 k=12 ..., N-1

i=1 i=1 m=1

13



exchanging the order of the summations and rearranging gfves
N=1 © N .
z E a,a;.|c,= E @y k=1,2,. e N-1. (B8)

C m=1 i=1 : =1

By definition, if (A)ik = éz‘k' .then '(A.T)ik = a .. Thus, in matrix notation, Eq. (B8)

becomes

(ATA) c = ATy

Appendix C .
FORMULAS USED IN NEUTRON BALANCE®

The total number of thermal absotptions per neutron produced is

LiM B LIM . '
)X Gl.f anr? z(ndr Y G (-1)*V/i
0 ' j=

i=1 =1
- — = , : (ch
LIM B LIM o
E, 4z dr Y, E -1V
i=1 0 . i=1
where -
LIM
Gi = E (zac}‘z] +2ab 11)C !
=
LIM
E;= B (2, N+ k3, v,)C
]f]
C’. = coefficient of the jth eigenfunctiod in the flux distribution,
r = radius, cm,
] imnr ’
Z.=—sin — , i=1,2,3, ... LIM (ref 4),
1 r B .

1
I

2, = total absorption cross section of core material, em™

Eab = total absorption cross section of blanket material, cm=",

k_ = neutrons produced per neutron absorbed in core,
ky = neutrons produced per neutron absorbed in blonket

1 Isin(i — j)TA/B sin (i + j) TA/B L
i i- Y ! et

1 2miA :
sin , - i=j

3The notation used is that of Ediund and Noderer in ref 2.

4Ediund and Noderer. employ a factor of \/2/B which is not used as such in the present code
(this factor is absorbed in the coefficients).
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Vij =8 = Ay
81.1. =1, i=j,
81.]. =0, i#j,
A, B = core and blanket radii, respectively, cm.

The total number of resonance absorptions per neutron produced is

LIM . LIM )
Y AN ¥ o H (1)
i=] =1

LiM .
Y OE (=1t

i=1 .

where .
LIM .
> (R2
A;=P(B]) X (kczac)‘ij“'kbzabvi,’) Ci
j=1
LiIM
Hi: Z (Pc)\in*-vain)An '
n=1

P_, P, =resonance escape probability in core and blanket, resp_ecfi\./ely,

I;(Blz) = Fourier transform of the slowing-down kernel.
The fast leakage per neutron produced is

LiM

Y A=)
i=1
1 -

LiM .
Y E (-1

i=1
The slow leakage per neutron produced is

LiIM ] LIM .
Y 1DV ¥ G (-0t
1

=

i=1

LIM o
Y E -0tV
i=1
Note that the neutron balance has been forced to add up to unity.

The following formula is helpful in interpreting the above expressions:

r .
r e

B i (s )it g2
J‘ 2 sin (#77¢/3) g (-1"'B '
0

(€2

(C3)

(cd)

(C5)
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