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The single crystalline elastic constants of AlZCu and Zeri*
Frank Richard Eshelman

Under the supervision of J. F. Smith
From the Department of Metallurgy
Iowa State University

A pulse-echo-overlap system was used to measure the
single crystalline elastic constants of the tetragonal Zeri
and AlZCu phases in the temperature range 4.2 to 300 K. The
mathematical relationships needed to calculate theée elastic
constants have been determined.
| The longitudinal elastic constaﬁts of Zeri, C11 and C33,
both exhibit a monotonic decrease with increasing temperature.
The C66 shear constant of ZrZNi has a 72% monotonic increase
with increasing temperature ih the 4.2 to 300 K temperature
range and the other shear constants, C44 and 1/2(C11-C12),
are essentially temperature independent. The shear constants
are noticeably smaller than the 1ongitudiﬁa1 constants, with
Cge Only 3.5% of Cq; at 4.2 K.

All the elastic constants of A12Cu exhibit a monotonic
decrease with increasing temperature. The Cyq values of Al,Cu
show a 2% variation with direction that has been attributed to
the presence of occluded particles of a second phase whose

long dimension is oriented normal to the [001] direction.

*USAEC Report Is-T-661. This work was performed under
contract W-7405-eng-82 with the Atomic Energy Commission.



There is evidenée that Al,Cu forms peritectically which gives
rise to the second phase particles. Arguments are given to
show that the maximum error from the occluded second phase
particles is about 2%.

ZrZNi4and AlZCu both have 1ow longitudinal elastic
anisétropy ratios and at least one high shear anisotropy
ratio. In addition, one shear anisotropy ratio changes by
50% or more in tﬂe 4.2 to 300 K temperature range.

The polycrystalline moduli for Zeri and Al,Cu from
Voigt-Reuss-Hill averaging are given. The low shear modulus
for Zeri is in keeping with the low values of the shear

elastic constants of single crystals of this phase. The

Debye temperatures for these phases are given.



INTRODUCTION

Singlé crystalliné elastic constant measurements are an
important means of gaining insight into the nature of inter-
metallic phases. ELasticity is closely associated with many
of the physical, thermal, and mechanical properties. The
intention of the present study is to examine the elastic prop;
erties of some compounds of the common AléCu-type structures.

A12Cu is the prototype of the C1l6 "Strukturbericht” type
(1). This structure has sﬁace group symmetry I4/mcm with
point group symmetry 4/mmm. In these alloys, the Cu-type
atoms are located at 0,0,1/4; 0,0,3/4; 1/2,1/2,1/4; and 1/2,
1/2,3/4 while the Al-type atoms are at 1/6,2/3,0; 5/6,1/3,0;
2/3,5/6,0; 1/3,1/6,0; 2/3,1/6,1/2; 1/3,5/6,1/2; 1/6,1/3,1/2;
and 5/6,2/3,1/2. The Cu-type atoms thus form continuous
chains parallel to the unique crystallog;aphic axis while the
"Al-type atoms form a three-dimensional network separating the

~individual chains of the Cu-type species.

Crystal Elasticity
The equations of crystal elasticity can be derived ffom
Hooke's law and Newton's second law of motion. .Hooke's law
states that in an elastic solid the stress is proportional tu
the strain. This is valid provided that the strain is suffi-
ciently small. If higher order terms are neglected, the

strain components can be defined by
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‘where u, v, and w represent the displacements in the x, vy,
and z directions, respectively. Following the notétion and
development of Kittel (2), a capital letter designates the
direction of force and the subscript the plane normal to which

the force is applied. The stress components are Xy Xy, X, ,
Zy’ and Zz‘ Since Yz = Z Zz. = X and

Z y’ X Z’

Yoo Yo, Y, 2y,

Y’
Xy = Yx’ the number of independent stress components reduces

to six. These are X, Y , Z,, Y, , Z and Xy' These nota-

y’ Z’ Z’ X’

tions allow us to write Hooke's law as six linear functions:

Xx =~Cllexx * C12eyy * C13ezz * C14eyz * C15ezx * C16exy
Yy = CZlexx * CZZeyy * C23ezz * C24eyz * CZSezx * C26éxy
Z, = C318xx * C328yy * C338,;, * C348y; * G359, * C36°ky 2
Yz = C4lexx * C4zeyy * C43ezz * C44eyz * C'4Sezx * C466xy‘
Zx =cSlexx * CSZeyy * CSSezz * CS4eyz * Cssezx * C56exy
xy =‘C6lexx * C6Zeyy * C6SeZZ * C64eyz * C65ezx * C66exy

The treatment in Kittel (2) shows that

CCi5 7 Gy

This reduces the number of constants in Lhe above relation-

ships to 21. Crystal symmetry further reduces this number to

six for the 4/mmm Laue class of tetragonal crystals. The



elastic stiffness constant matrix thus becomes:
Cll C12 ClS 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0 (3)
0 0 0 C44 0 0 '
0 0 0 0 C44 0
0 0 0 0 0 C66'
From Newton's second law of motion the following rela-
tions result:
2 aX X aX
5 ] g = X ., Y . z
at 9X Yy 9z
2 oY oY 3Y 9X aY oY
o 2 ‘zr = X+ Y+ 2 Y, _ ¥, _Z (4)
ot X ay 9z X Ay 3z :
2 3l 32 WA oZ Y az
o 2 g RS + —2 4 2
ot X oy 92 X 3y a9z
Combining Equations 2 and 4 leads to:
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P —7=Cy * C12 * Cy3 * Cyy * Cee
ot 93X 3X 32 9z ay
2 e de e e oe
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P 7= C2 *Chp * Cy3 * Oyt CppL (5)
at oy dy 3y 3z ax
2 e e e e
o e G e Ao B2 BV ixz
ot 2z 9z 9z oy 44 X




If the strain components defined in Equation 1 are sub-

stituted in these equations the following relationships are

obtained:
2 2 2 2 2 2
a”u 37u 9"V 97w 3 W 9”u
p —5 = C — * C + C + C, . ( + )
atz llax 1Zaxay 13axaz 44 9X9d2 azZ
) (6a)
2 2
+ Coe (5 + 2
9y axay
2 2. 2 2 2 2
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at’ 90Xy oy dydz 02 dyodz ‘
(6b)
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)
+ Co (Xt v =)
9y oxX X
2 2 2 2 2 2
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:p—= = Cy4( + ) + Caz=— + Cyyl +
at 13 9Xx9z dydz 3382 44 dydz Byz
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Table 1 lists the propagation directions and the polari-
zation directions of the various plane waves together with the

corresponding terms for pV2

for the 4/mmm class of tetragonal
crystals. The development of these relations follows.

Waves propagated in the [100] direction

A longitudinal wave will have particle displacement that

can be expressed by

u = u exp[i(kx-wt)], (7)



Table 1. The propagation directions and polarization direé-
tions of plane waves with the corresponding terms
- for pV2 for the 4/mmm class of tetragonal crystals

Propagation

Polarization

direction direction pV2
[100] - [100] C11
[010] C66
[001] Caq
[001] [001] C33
{100] or [010] C44
' 1
[110] [110] -2—(C11+C12)+C66
= 1
[110] 7(C11'C12)}

[001] C44

45° from [001]
in (100)

45° from [001]
in (100)

45° from [001]
in (010)

[100]

1 1
7(C11%C33) * 3C44

1, 24 2,1/2
7l(Cy17C33)7+4(Cy5%Cyy)

1 1.
7(C11%C33) * 304y

1, o 2 e 224172
4[C11-C33) "+A(Cy3#Cy )7

1
5(Cy4*Cep)




where u 1is the.k component‘qf the displacement, k = 2w/} is
the wave vector with ) the wave'iength'and w = 27v is the
angular frequency. If Equation 7 is substituted into Equation
6a, the result is

ow” = Cy k°. (8)

The relationship between the velocity, V, the wavelength, 3,
and the frequency, v, 1is ‘

V = Av. (9)
Introducing factors of 27 and substituting k and ¢ as defined

above gives

w .
V=—. 10
> (10)
Substituting Equation 10 into Equation 8 results in
2 _ B
Ve = C. .. (11)

11
A shear wave polarized in the [010] direction will have

particle motion that can be represented by
v = Voexp[i(kx—wt)]. ’ (12)

Substituting this into Equation 6h gives

2 _ 2
pu? = gkl (13)
Combining this with Equation 10 as above results in
Ve = C (14)
. 66°

In a similar manner a shcar wave polarized in the [001]
direction would give

w = woexp[i(kx-wt)]. (15)'



Substituting this into Equation 6c gives

2

ow C44k2, : . (16)

which reduces to

: : 2 _ .4 .
pV™ = Cyyg. | (17)

Waves propagated in the [001] direction

A wave polarized longitudinally would have displécement‘
w = wgexp[i(kx-wt)]. ' - (18)
Combining this and Equation 6c gives
pwz = C33k2. : (19)
Substituting V into this results in
pV® = C33, : - (20)
A shear wave polarized in the [100] direction would have
displacement
u = ugexp[i(kx-wt)]. ' (21)
Combining this With Equation 6a gives
ow? = Cqqk2. | (22)
Substituting as above results in
2 _ | ‘
pV = Cyqgq. (23)
A wave polarized in the [010] direction produces dis-
placement

v = vyexp[i(kx-ut)]. (24)

When this is substituted into Equation 6b the result is



©
€
|

= Cqak?, (25)
which reduces to

Waves propagated in the [110] direction

The motion of a wave polarized in the [001] direction

~would be represented by
‘W = woexp[i(kxx+kyy-wt)], (27)

where kx = ky = k(cos 45°) = k/vV2.

If this is substituted into Equation 6c, the result 1is

2

) 2,, 2
pu” = Cpqlk,“*ky

2
) = Cyok” (28)

and

oVZ = Cyay- (29)

If waves are both propagated and polarized in the (110)
plane, particle motion will be in both the x and y directions
simultaneously, thus motion would be described by the two

equations

=
"

uoexp[i(kxx+kyy-wt)] (30)

and

' voexp[i(kxx+kyy-wt)], (31)

where kx = ky = k/V/2.

The results from these relationships and Equations 6a and 6b

give
2

2. 2 . _
puu = (Cp k “+Ceek TIu ¢ (Cpokik +Coek kv (32)



“and T

2. _ 2
pw-v = (CIkaky+C66kxky)u + (Cllkx +C66k

2

y v (33)

1f substitutions are made for k  and ky, the results divided

by kz, and w/k replaced by V, these equations can be re-

arranged to give

.u[%(cll+c66)fpv2] + VIF(C ,*Cedl = 0 DY

1 1 2. '
u[F(C5*Cg) ] + VIZ(Cq +Cee)-pV ] = 0 (35)
These will be satisfied if the determinant of the coefficients

is zero. This gives a quadratic equation with two roots
't 1
V™ = 7(C11*Ce6) £ 7(C15%Cq6) (36)

A longitudinal wave would then give

2 1
pV" = 7(C11%Cy2) *+ Cep (37)

while a transverse wave polarized in [110] would give

2

_1 | | »
pV® = 3(C17-Cy5) | (38)

Waves propagatéd in the (100) plane at an angle g to [001]

The particle motion for a wave polarized in the [100]

direction would be represented by
u =.uoexp[i(ky sinB+kz cosB-wt)]. (39)

Substituting as above into Equation 6a results in:

2 _ 22 :
pw- = C44k cos B + C66k251n28. (40)
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Substituting for w2 and k2 gives
| 2 2 2 '
.pV = C44cos B + C6651n B. (41)
If g = 45°, then
2 1
Ve = E(C44+C66)' (42)

If a wave is propagéted in the (100) plane at an angle of
B to [001] and is also polarized in the (100) plane, particle
motion wouid be in both the y and z directions. The equations

of motion could then be described by

v voexpti(ky sinB+kz cosB-wt)] (43)

and

w woexp[i(ky sinB+kz cosB-wt)]. o (44)

Substituting these into Equations 6b and 6c gives

prV = (Cllkzsin23+c44k2cosze)v + (C13kzsinscoss
A (45)
+ C44kzsinscoss)w
and _
20 2. 2_. 2.2
pw“w = (C,.k“singcosg+C, ,k"singcosg)v + (C,.k"cos”R
13 44 33 (46)

| + C44kzsin23)w.
Substituting V2 = wz/k2 and rearranging Equations 45 and 46

results in:

(Cllsin28+c44coszs-pvz)v + (Clssinscos3+C44sin3cosﬁ)w

[l
o

(47)

1]
o

(C, rsinBcosB+C, ,sinBcosp)v + (C cosZB+C SiHZB‘pVZ)W ..
13 44 33 44 (48)

LR G
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These equations will be satisfied if the determinant of the
coefficients vanishes. The result will be a quadratic equa-

tion in pVZ'whdSe solutions'are;
- . sl 2. 232
pVe = %(C1151n28+C33cos B+C44) + 7[(C1151nA8—C33cos B)

+ 4C 2sin28C0526+8c C sin26+coszﬁ+C 4 . (49)
13 13~44 4

S 2a11/2
* 2C11C44Sin26coszs-2C33€44coszc05261 / .

If g = 45° and the degree of anisotropy of thermal expan-

sion is assumed to be negligibly small, this becomes:

2 _ 1 1 ) 2.1/2
pV® = 70C11%C33) + 5044 £ FL(Cy1-C33)™ + 4(Cp5#Cy ) 71777, (50)

Sj

where the positive sign represents a longitudinally polarized
wave and the negative sign a transversely polarized wave.

'Equation 50 can be simplified by subtraction;. This giveé_

C, - Cp = %[(Cll-c33)2_+ 4(C13+C44)2]1/2’ ) - (51
where CL = V2 for the'iongitudiﬂally polarizeh wave and |
CT = *V? for the transverse wave. Adding'EQuation 50
gives:

= 1 ~
CpL + Cp = E(C11+C33) + Cyy- | , . (52)
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EXPERIMENTAL PROCEDURE

Sample Materials -

All materials that were used in sample preparétion were
of high purity. Ziréonium was obtained from Westinghbuse
AAtomic_Corp., and the supplier's analysis is given ih'Table 2.
Belmont Smelting and Refining Works supplied the nickel and
their analysis is élso included in Tablé 2. The copper and
aluminum were certified to be 99.999% pure and were supplied
by Cominco American, Inc. and American Smelting and Réfining
Company, respectively. Again, the analyses as reported by

the respective suppliers are given in Table 2.

Sample Preparation

The zirconium was.made by the crystal-bar process, and
the bars were ~3/4 inch in diameter. Lengths of these were
etched)in a mixture of SO%thydrofluoric acid and 50% nitric
acid for about 2 minutés until the surface was bright. The
bars were then cut into lengths about 3/4 inch long. Siﬁée
the nickel that was used to make the alloys had a bright sur-
face, no attempt was made to clean it. The copper was in the
form of 1/4 inch bar stock. This ﬁas cut into lengths about
1/2 inch long and was surface cleaned for 2 minutes in a solu-
tion of 20% nitrit écid. The aluminum was in the form of an
ingot with a 2 inch square cross section. It was cut with a

hack saw into cubes approkimately 1/2 inch on an edge. Sur-

v PR N AN L
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Table 2. Analyses of the metals used in preparing the alloyé.
Concentrations are listed in parts per million by

weight
Impurity Zirconium Nickel Aluminum = Copper
element

C 43 100 - T -
Al <35 - - -
Ti 42 - - -
Mﬁ <10 - - -
Fe 90 70 5 <0.7
Cu - | 10 2 | -

S - 20 - <1
Sb - - - <1
Pb - - - <1
Sn : - - - <1
Ni. - : - - <1
Bi - - - <0.1
Ag _ - - - <0.3 -
As - - - <2
Cf - - _ - . <0.5
Si | - - - <0.1
Te - - - <2
Se - : - - <1

/

N. , <5 - - -

VRN BRI s gVE
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face irregularities were removed by hand filing and‘the cubes
_were then etched in a solution of sodiumlhydroXide for about
5 minutes.

Stoichiometric weights corresponding to the composition
of the desired'phase were arc melted under an inert atmosphere
using a non-consumable tungsten electrode with the procedure
described by Hungsberg and Gschneidner (3). Homogeneity'was
- facilitated by repeated arc melting with the solidified saﬁple
~ being invgrted'between each successive melting. |

The ZrZNi alloys were segled under argon in 0.75 inch
Adiameter tungsten crucibles having conical tips. The crystals
were thén groﬁn in a Bridgman furnace under pressures of 10_5
Torr or less. -ZrZNi did not adhere.to the crucibles and was

removed by.cutting the tops off the'cfuéibles and sliding the -
.samples out.

| Thé A12Cu crystals were grown in 0.75 inch tantalum
crqcibles in a manner similar to that used in preparing fhg
Zszi samples. A12Cu shatters easily and the crucibles were
cut away from the samples ﬁsing an electrospark cutting
machine. No perfect crystals of A12Cu were produced. Figures
1(a) aﬁd 1(b) are photomicrographs of the (001) and (100)
faces, respectively, of these crystals showing the size and’
extent of an occluded second phase. The effect of this second

phase will be discussed in a later section.

To facilitate alignment and cutting, the crystals were .
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(a)

(b)

Figure 1. Photomicrographs of Al2Cu (200X). (a) is the
(001) face and (b) is the (100) face with [001]
vertical
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attached to a goniometer head with an electrically conducting
mixture of Duco cement and graphite powder. The Zr,Ni crys-
tals were further electrically grounded by attaching a copper
wire to the goniometer basé and affixing the opposite end of
the wire to the crystal with electrically conducting silver
cement. Grounding the Al,Cu crystals with a wire was not
found to be necessary. The desired crystallographic direction
was located by means of X-ray diffraction with the back re-
flection technique of Meyerhoff, Bailey, and Smith (4). The
goniometer with the crystal in place was then transferred to a
. Sparcatron electrospark cutting machine. Three crystals were
machined with faces normal to the [100], [110], and the [001]
crystallographic axis, respectively. A fourth'crystalAwas cut
with faces parallel to the [010] axis and at an angle of 45°
to both the [100] and the [001] axis. The faces of the sam-

- ples were hand-lapped on progressively finer metallographic
polishing paper, finishing yith 600 grit paper. The samples
were then rechecked with X-rays using the back reflection’ Laue"
method to insure that they were propcrly aligned and that

there was no evidence of worked metal.

Instrumentation

The pulse-echo-overlap method was used to measure the
transit times of the individual crystals. The overlap tech-
nique is one of several ultrasonic pulse-echo methods. May

(5) and Papadakis .(6) developed the method and it was later
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modifiedAby.ChUng; Silversmith, and Chick (7).  The electronic
instrumentation that was used in this investigation represents
a simplification of the earlier overlap systems. The pulse-
echo~overlép method has several advantaées over other ultra-
sonic pulse-echo methods. It allows cycle by cycle examina-
tion of the echoes which can essentially eliminate any ambi-
guity in the proper matching of the echo envelopes. Another

advantage is that a transit time datum can be taken in a few

seconds ‘which facilitates measuring the transit time at rela
tively short temperature intervals. A further édvantage of

the system is that the matching of éuccessive echoes permits
reproducibility to within about 0.05% for most‘timé measure-
ments and.permits measurements on éamples whose delay times

are'only'slightly greater than the pulse length. In addition,
since only two distinct echoes are needed, measurements can

be made on samples that are highly attenuating.

A block diagram of the pulse-echo-overlap apparatus is
shown in'Figure 2. The counter, pulse generator, and oscillo-
scope are Hewlett-Packard units 5325B, ZZZA, and 180 with
1801A and 1820A plug-in units, respectively. The repetitibﬁ-
rate generator is a Waveform 40ZA audio generatof and the
pulsed oscillator is an Arenberg model PG-650C. The frequency
divider and limiter were constructed especially for this
instrumentation. The frequency divider circuit is shown in

Figure 3. Three Fairchild CﬁL9958 decade counters form the
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FREQUENCY

REPETITION-RATE
GENERATOR

DIVIDER
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OSCILLATOR
TIME-DELAY |
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TRIGGER INPUT TRANSDUCER
0SCILLOSCOPE SAMPLE

Figure 2. Block diagrambof the pulse-echo-overlap apparatus

81
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heart of the divider."A switch allows the unit to be set for
difisioﬁ by 10, 100, or 1000 and a Qne—transistor output prd-
vides a 4 volt negative spike whiéh triggers the pulse gener-
ator and the pulsed oscillator. The limiter circuit is shown
in Figure 4. Two 1N914 diodes are wiréd in pafallel with. |
opposite polarity. These are conducti#e above a few volts
but' are non-conductive for small voltages. The limiter clips
the high voltage pulse from the pulsed oscillator while Te-
ducing the echo amplitude by iny about 10%. This prevents
"overloading the oscilloscope and allows the use of higher

pulse voltages.

Use of the Pulse-Echo-Overlap System

In‘using the system, the pulse generator amplitude 15
initially turned down and the oscilloscope triggered inter-
nally. The repetition-rate generator is édjusted to'a conven-
ient period (5 microseconds) and the oscilloscépe adjusted to
allow obsgrvation of the echo train. The approximate transit
time can then be observed on the oscilloscope screen. Next
the repetition-rate generator is adjuéted to this period and
the oscilloscope intensity turned down. The echoes selected
for observétion are displayed by increasing thé pulse genera-
tor amplitude and adjusting the pulse delay and pulse léngth.
At this stage the system is ready to be switched to ihe pulse-
echo-overlap mode.

The'oscilloscope triggered switch is moved to the external
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position so that the repetition-rate generator triggers the
oscilloscope. Adjustments are made in the frequency of the
repetition-rate generator to cause the second echo to.super—
impose upon the first. Reading the period of the repetition-

rate oscillator gives a direct measure of the transit time.

Wave Velocity Determination

The individual elastic constants were determined from the:
respective plane velocities. The velocities were calculated

from the transit times using the relationship

_2d | '
Ve = (52)

where V is the wave velocity, d the thickness of the crystal
under.examination, and t the time required for the wave to
travel from one face to the opposite face and return to the
first face. |

A micromgter giving direct readings to 0.0001 inch was
used to make room temperature measurements of the sample
thickness. Three measurements were taken on each face, and
thé micrometer was moved between each readiﬂg. The three
measurements for each face agreed within the precision of. the
. micrometer.

Sample temperatures were determined with thermocouples
taped to the crystals. A Au + 0.03 a/o Fe vs Ag thermocouple
was used over the temperature range 4.2 to 50 K and a copper

vs constantan thermocouple was used in the 40 to 300 K tem-
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perature range.

The longitudinal and. transverse waves wefe generated by
X and Y-cut quartz transducers having resonance frequencies
of 10 MHz. The bonding agent for all measurements using X-cut
transducers was Nonagq stopcock grease. The Y-cut transducers
‘were bonded to the samples with Nonaq stopcock grease for data
taken at temperatures below 270 K and with salol (phenyl.
“salicylate) for measurements o?er the 250 to 300 K tempera-
ture range.

The crystal under examination was mounted in a copper
sample holder. At low temperatures, when Nonaq was used as
the bonding agent, the data were taken with the sample holder
suspended in a cryostat consisting of two concentric Dewars.
Figure 5 is a cross-sectional illustration of the cryostat
with the sample holder and sample in place. Over the tempera-
ture range 77 to 300 K liquid nitrogen was maintained in the
outer Dewar. Pressure in the vacuum chamber of the inner
Déwar was varied to control thermal cdndpctivity and hence
the cooling rate of the sample. The transit time data were
taken as the sample cooled over a period of several hours.

For transit time measurements at temperatures below 77 K, it

. was necessary to refrigerate with liquid helium. A mechanical

pump was used to produce a vacuum of at least 10 microns in
the vacuum chamber of the inner Dewar and then sufficient

liquid helium was transferred into the cryostat to immerse
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the sample holder and the sample. The transit time at 4.2 K
was then taken. Transit time data in the‘temperature range
4.2 to 77 K were taken as the liquid helium slowly boiled
away and thevsample warmed toward liquid nitrogen temperature;
Since the temperature changes were not rapid and the samples:
were mounted in a copper sample holder, temperature-gradients
were small and the associated errors negligible.

When salol was used as the bonding agent, a different
sample holder was used aﬁd‘this sample holder was mounted in
a closely fitting heat sink which minimized temperature gradi¥
~ents. Transit time measurements in the 250 to 300 K tempera-
ture range were made by suspending the sample holder éssembly,

in a Dewar above boiling liquid nitrogen.
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RESULTS. -

The directly measured quantities were the transit times.
These transit times were converted to wave velocities via
Equation 52 and these Velocifies were theﬁ converted to elas-
tic constants with the pV2 relationships of Table 1. ’This
gave the raw elastic constant data for Cll’ C33, C44, C66’
l/Z(Cll-Clz),'CL, agd CT. Values for-these constants as func-
tions of temperature for Zeri are shown in Figures 6 and 7
and for AlZCu in Figures 8 and 9. The third law of thermo-
dynamics requires a zero slope at 0 K for curves of elastic
constant vs temperature and the figures were drawn accerdingly.
Smoqthed values from interpolated curves for these constants
and calculated values for C12 and C13 are given in Table 3 for
Zeri and in Table 4 for AléCu. In the foregoing treatment
density and dimensional changes have been neglecfed because
no data covering thermal expansion are available.

The calculation of C13 requires the extraction of a
square root with an attendant sigﬁ ambiguity. Alers and
Neighbours (8) haveldiscussed the resolution of this sign
embiguity in terms of crystal stabilitf and have given the
mathematical requirements relating the elastic constants to
crystal stability. In the case of Zr,Ni only the positive
root satisfies these requirements. However, in the case of

AlZCu both roots satisfy the stability requirements and the

selection of the correct value was made by other means.
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propagated at 45° to [001] in (100)
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Table 3. Smoothed values for the elastic constants of ZraNi in 1011 dynes/cm2.
Cr, and CT are associated with the quasi-longitudinal and quasi-
transverse waves, respectively, propagated at 45° to [001] in (100)

T(K) c C C C C c E TR c

11 33 44 66 12 13 2'711 712 L T

402 156952 14683 24817 06562 134310 Te 722 1e321% 13583 3e465
i0e0 15951 146650 20417 06562 136309 7e723 le321 134583 30464
2060 156943 140647 2e417 O0e 564 134299 T7e723 16322 13.580 30461
306 0 156932 146642 20418 0e570 13¢284 Te723 1le324 13578 3e458
400 15¢ 916G 14635 20419 Oe 580 136267 74723 14326 136574 36452
5060 154906 144628 24420 0e590 134248 70727 l1e329 136571 3e444
606 0 15889 14622 26421 0e 604 13225 Te 729 14332 134567 3,437
70e O 154875 14615 20822 Oe618 13207 7e732 le334 13564 34430
8060 15861 146 509 2¢ 423 O0e 633 130187 7e¢732 1¢337 136561 36425
S0e O 15846 140502 2e424 0e650 13e168 Te734 16339 134558 30419
10060 15831 140596 20425 O0e 666 136149 7e¢ 735 1e 341 13e55S 3e814
1100 15817 13589 20426 06682 13el129 Te737 16344 134552 Jed 08
12060 156802 146 582 2e 426 0e 699 130110 Te 737 10346 13e548 34403
13040 154788 144575 20426 06714 13,090 7e741 14349 13+546 36397
1406 0 15773 144568 2e425 O0e730 13073 7e744 16350 136542 3391
15040 154758 144562 20424 Oe 746 13056 70748 1351 134539 36385
160. 0 154744 144556 20424 Qe762 136040 7e749 14352 13e¢536 3¢380
1706 © 154730 146 549 2e 423 Qe777 136020 7753 14353 13533 3374
18040 154716 140543 2422 0e793 13008 76756 1354 13529 3e368
190¢ 0 154701 146537 20420 0e 809 126991 7e760 1355 13e526 26363
2000 154687 146531 20418 0e 825 126975 7763 16356 13.523 3358
2106 O 15672 144 524 2416 0e 840 126960 7768 le356 13520 36352
2200 154657 144518 2¢415 06855 124943 Te?772 1357 136517 Je346
23060 1Se641 14¢ 513 20413 0e 870 120927 7e776 1¢357 136514 36341
24040 154624 144507 24410 0e886 126910 7780 164357 13.510 Jeu35
2506 O 15606 144 502 2¢408 06900 12890 7785 1358 13507 36329
2606 0 154587 144497 20405 0e914 12871 7791 1358 134504 36323
2706 0 156566 1444952 20403 0927 12850 7e794 1¢358 136501 3¢318
2800 0 1Se542 144487 264402 0e 940 120824 7e797 1359 13497 36312
2900 154514 14,434 2e¢401 06954 12796 7801 1¢359 13494 3305
3006 0 156477 144430 ‘26399 0e 966 126759 7¢807 16359 136491 30297

I¢



Table 4. Smoothed values for the elaétic constants of AlzCu in 10lldynes/cm2.

CL and CT are associated with the quasi-longitudinal and quasi-

transverse waves, respectively, propagated at 45° to [001] in (100)

1
T(X) €11 Cz3 C4a Co6 €12 Ciz 5(Cy1-Cyp) € Cr
4,2 184618 17‘9‘2 20923 40724 Tel S& 7¢918 Se732 156444 40608
10,0 184618 17¢ 942 20923 Qe 724 Tel S4 Te918 5732 154843 3607
20,0 184615 17¢939 26923 4724 Te151 7e¢918 Se732 150842 4606
30, 0 150608 17¢ 938 2e922 44723 70146 Te917 Se731 156439 4605
404 0 186596 17¢933 20922 44721 Tel40 7¢ 915 Se728 154435 8603
506 O 18.581 17924 20920 44717 Te¢l135 T7e916 Se723 156430 40599
6Ce O 18.564' 17910 20917 4710 7¢130 76916 Se717 154422 44594
70e O 180549 176892 2¢914 44703 7Tel28 Tea916 Se?708 156413 40588
8Qe 0 18523 176871 2¢911 49 694 Tel 27 Te 917 50698 156404 44581
9Ce O 180498 17843 20907 40 685 Tel?24 76919 S5¢687 156394 44573
10Ce O 186473 176809 20902 44674 T7el125 Te919 Se6748 15380 40564
11Ce O 186449 17775 20897 40664 7.}27 Te920 Seb661 156366 4554
12Ce 0 180423 17742 2 892 44653 7131 7919 Se646 15350 44564
13C60 18392 17,708 20886 40642 . 7Tel30 7e¢918 Se631 156332 44533
1406 0 186372 17675 20880 44632 Telaa 76917 Seb14 156313 Q40522
15060 186347 176640 2e875 40621 7¢151 74903 Ce 598 156282 Q63510
1606 0 186321 176606 2e869 4¢611 Tel 59 7e891 Se581 15252 40498
17060 186295 17569 2e8564 44600 Tel 67 ‘TeB73 Se564 150218 44487
18060 18,271 176533 20858 44590 Tel 77 7854 Se547 15180 80474
1906 0 186246 17¢494 2e¢ 852 44 579 7el 86 76833 5530 15139 40461
20060 186220 176453 2847 ‘44568 Tel92 74809 e 514 156097 . 448448
21060 186195 170408 20841 44558 76201 T7e787 Se 497 156056 44435
222e¢ 0 180171 17¢ 365 2¢836 44547 7209 7762 Se481 15,013 Q40423
2300 1801404 176323 2831 44537 Te216 Te 740 Se 464 144973 44410
2406 0 186120 17279 20826 4527 - Tec28 Te717 Se448 14932 4397
2506 0 186094 176238 20822 44 516 76232 7¢ 691 S5e431 14,889 44385
260e O 18068 17199 2e817 44506 7e238 Te667 CellS 140848 4373
2706 0 186043 176151 2eB13 Q9 495 Te247 7643 Se398 14806 4.360A
2800 0 18017 17108 20808 40485 76255 7619 S¢381 144764 - 40347
290e O 17993 17066 2¢803 49474 7263 Te594 Se¢365 144722 44335
30060 17966 176023 2e¢798 4el64 7270 7¢570 €e 348 140680 -

44323

(A%
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Greiner, Schiltz, Tonnies, Spedding, and Smith (9) resolved
a similar problem for praseodymium by examining the poly-
crystalline moduli calculated from the single crystalline
elastic constants. Their approach was applied to the present
problem. Polycrystalline modulilwere calculated for A12Cu
using the Voigt-Reuss-Hill (10) average with both values for
C13' Table 5 gives these moduli along with the bulk moduli
of elemental aluminum and copper. The bulk modulus is pri-
marily an atomic property and one would expect the bulk
modulus of a binary alloy to fall bétween the bulk moduli of
the constituent elements. The negative value for C13 gave a
bulk mbdulus for the binary alloy significantly smaller than
~either elemental bulk modulus while the positive value gave
a bulk modulus value between the elemental bulk moduli. The
positivé value for C,z is thus more reasonable. In addition,
Poisson's ratio is negative for the negative value of C13'
This would mean that a sample under tensile stress would
show a lateral expansidnu This has not been observed in
metals. Since the negative value for C13 gave unreasonable
values for both the bulk modulus and—Poiﬁsdn's'ratio and
since the positive value for C13 ga#e values that were phys-
ically reasonable, the positive value was chosen.

Attempts to grow AlZCu single crystals from stoichiometric

alloys always produced polycrystalline samples. Since Havinga,
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Table 5. Comparison of Al7Cu polycrystalline moduli at 4.2 K
calculated from single crysta111ne elastic constants
by means of VRH average and using the two roots for
C13. The elemental bulk moduli of Al and Cu are
included. Poisson's ratio is dimensionless and the
other values are in 1011 dynes/cm?

Bulk Young's Shear Poisson's
modulus? modulus modulus ratio

C, 5<0 | 2.39 9.36 6.17 -0.21
C13>O ' 11.34 2 10.99 4.11 ' 0.34
Elemental 7.78 - ‘ - : -

Al
Elemental 13.71 - - -

Cu :

2The bulk modulus for Al was calculated from the single
crystalline elastic constant compilation of Hearmon (11) and
the bulk modulus of Cu is that reported by Overton and
Gaffney (12).
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Damsma, and qukeling (13). report the phase tb have a compbsi—
tion of Al, ,.Cu and Hume-Rothery and Raynor (14) repért
AlZ.OSCu,alloys were made with apprpiimately this composition.
Single‘crystals from these alloys had imﬁerfections in the
form of occlusioné measuring approximately 150 by 15 by 2
,_miérons. It is believed that the presence of these occlusions
can be explained on the basis of the phase diagram which is
‘given in Figure 10. In this phase diagram, it may be noted
that A12Cu (6 phase) appears to decompose peritectically in'
close proximity to the liquidus composition. The phase rule
precludes the junction at a sihgle point of the two liquidus
lines, the peritectic horizontal, and the phase terminus.

" Thus there must be a lever arm on the aluminum-rich side at
the peritectic temperature between the phase terminus and the
liquidus lines. Then, to grow.a single crystal, the molteﬁ
alloy to be solidified must have a composition more rich in
aluminum than the alumiﬁum-rich ferminus_of the peritectic
horizontal.. In this situation, sblidifitation of fhe matrix
will deplctc the copper conﬁequation of the supernatent
liquid and local regions will be driven to the eutectic com-
position and these are 5elieVed to be represented as the
occluded particles. Figures la and 1b are photomicrographs
of the (001) and (100) faces, respectively, of one of the
AlZCu crystals. The occluded particles are oriented with

their smallest dimension parallel to the [001] direction but
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show no well defined orientation of their 1§ng axis within
the (601) plane. | |

A comparison of Cqq data from waves propagated pérallel
to the [001] direction with data from waves pfopagated paral-
lel to the [100] direction aids in evaluating the effect of
the occluded particles on the measured values of the elastic
constants. Such a-comparison-of raw data 'is given in.Figure
11. In crystals of tetragonal symmetry, dafa from waves
piopagafed in the [100] direction with polarization in the
[001] direction should be identical to data from waves proﬁa-
gated in the [001] direction with polarization in the [001]
‘direction. The 2% difference between these data illustrated
in Figure 11 has been attributed to the presence of occluded
particles. - |

Table 6 gives a further comparison of room temperature -

data for Cyy- Again, waves propagated parallel to the [001]

Table 6. Comparison of room femperature C44 values obtained
" by propagating waves in the directions and with the
. polarizations shown

Crystal | Prdpagation Polarization C44
direction - direction (1011 dynes/cm2)
A - [o01] [100] 2.796
A [100] [001] 2.859

B [110] ' [001] 2.848
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direction gave data about 2% greater'than waves probagated
parallel‘fO'the [100]. direction or waves propagatéd parallel
to the [110] direction. The godd agreement of C,, from wéves
propagated parallel to the [100] and [110] directions is
further indication that the occluded particles have no pre-
ferred orientation‘within the (001) plane.

On the basis of Goggin's (16)Awork‘on'carbon—fiber in a.
resin matrix, it is believed that the smaller value of C44 is
-more representative of Cuy for perfect AlZCu.crystals,_ He

found that eléstic constant data from waves propagated normal
to the fiber were much nearer.the elastic constants of thé_
matrix than ﬁere data from waves propagated paralleltto,the
fiber. This was true for both longitudinal and shear modes.

Arguments based on the interaction of a wave and a
particle -concur that thesmallefvalﬁe of C44 is mostArepre-

sentative of Al,Cu. This follows from the fact that the
interaction of a wave and a particle involves the relative
size of the parficles in compariSbn to the wavelength_qfvthé‘
wafe. The interaction is greatest when fhe particle size is
the order of one-fourth the wavelength (17). Table 7 gives
the wavelengths of the waves that were used to determine the
.elastic constants, their prOpagétion directions, and the
approximate projective dimensions of the occluded particles
that are parallel to the wave propagation direction. All

measurements were made with a pulse frequency of 10 MHz and
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Table 7. The directly measured elastic constants. The propa-
gatlon direction of waves that were used in deter-
mining these constants, the wavelength of the wave
in microns, and the approximate dimension of the
occluded partlcles parallel to the wave propagatlon
direction in microns

pV2 Propagation | Wavelength Approximate
direction dimension of
occluded
particle
Ci11 [100] 640 15 to 150
Csz [001] 626 | 2
Chy [100] 254 ‘ 15 to 150
Cag [001] 254 2
Cee [100] 320 " 15 to 150
1 :
E(Cll'clz) [110] 351 15 to 150
CpL 45° from [001] 581 3
in (100)
Cor ) 45° from [001] 315 3

in (109)
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the differences in wavelengths are due to differences in wave
‘velocities. The wavelengths for'Cll, for C44 from a wave
:bropagated aléng the [001] direction, fo; C66’ and for
1/2(C11-Clz) are all near the ideal size for interaction with.
. the occluded particles and one woﬁld expect these constants
‘to be affected mosf by the occluded particles. The comparison
of C44 values given in Table 5 indicates that the error intro-
duced by the occluded particles shouid not be much greater
"than about 2% for any of these constants. For waves thatjare
long in comparison to the particle dimension, the sample would
behave like an elastic continuum (18). Therefore, the result-

ing errors from the occluded particles for the other elastic

constants would be much less than 2%.
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DISCUSSION
Anisotropy in Zr,Ni and AL,Cu

In contrast to the widely accepted elastic anisotropy
ratio for cubic crystals, there is no uniquely defined method
for describing the eléstic anisotropy of tetragonal crystals.
In addition, the lower symmetry of a tetragonal crYstal~pre;
clpdes completely describing the anisotropy by a single
parameter. Vold and Glicksman (19) have chosen four factors"
to evaluate anisotropy in a crystal of Laue class 4/mmm.
These are
A= Chq/Cs
B = C33/Cyq
C = Cyp/Cy3
D = 2C44/(Cqy3-Cy2)-
The B factor gives an evaluation of the anisotropy related fo
the longitudinal elastic modes and the A and D factors are
ratios of the shear modes. The.C factor is related to the
off diagonal stiffness constants and contains the largest
inherent uncertainty. These anisotropy ratios are given for
Zeri, A12Cu, Sn, and In in Table 8. These four are the only
metallic tetragonal materials for which elastic constant data .
are presently available.

As Table 8 shows, the longitudinal anisotropy rétio B is
near unity for all the materials listed. However, at least

one shear ratio for each material is significantly different



Table 8.

Anisotropy ratios and c/e
Anisotropy and c/a ratios

ratios for anNl, Al2Cu, Sn, and In.
are unitless

300 K

- a A= B= c= D=
Material c/a a a ' a
C44/Ces6 C33/Cq1 C12/Cy3° 2C44/(C11-Cyp)

ZryNi -at 0.812 4.303 0.919 1.724 1.830

1.2 X '
ZroNi at 0.812 2.483 0.936 1.634 1.765

“300 K
AlCu at 0.804 0.619 0.964 0.904 0.910

4.2 K
AlzCu at 0.804 0.627 0.948 0.960 0.523

300 K -
Sn at 0.546 0.956 i.246 1.691 2.120
4.2 K
Sn at 0.546 0.918 1.224 1.660 3,329

300 K »
In at 1.078 0.473 0.957 0.858 1.061

4.2 X
In at 1.078 0.439 0.996 0.965 2.359

4The c/a ratios for Sm and In were calculated from the lattice parameters
listed by Cullity (20), the anisotropy ratios for Sn were calculated from the
elastic constants given by Rayne and Chandrasekhar (21), and the anisotropy

‘ratios of In were calculated from the elastic constant data of Chandrasekhar
and Rayne (22).

¢Y
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Table 9. Superconductive transition temperatures T. for
ZrZNi, A12Cu, Sn and In

Material ‘ : T, (X)2
Zr,Ni - 1.58 + 0.02
Al,Cu 0.65 + 0.13
Sn 3.701

In 3.408

3The superconductive transition temperatures of Zr2Ni and
Al12Cu are from Havinga, Damsma, and Kanis (23) and of Sn and
In are from Matthais, Geballe, and Compton (24)
from unity and one shear ratio for each material changes by
- 50% or more in.the 4.2 to 300 K temperature range. It woﬁld
be interestihg to know whether otherltetragonal metallic
materials exhibit similar tendencies. |

All four materials listed in Table 8 are superconductors
and their superconductive transition temperatures are listed
in Table 9. Although it is known that valence modifies the
superconductive tran;ition temperature (23,24), the data show
that Al,Cu has both the lowest anisotropy and the lowest
superconductive transition temperature. Superconductivity
is generally thought to arise from electron-phonon coupling
aﬁd to be associated with soft pHonon modes (25). Although
the elastic constants give only the long wavelength limit of
the phonon spectrum, a small elastic constant value and a high

degree of elastic anisotropy may be taken as indicative of
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soft phonon modes and hence of a tendency toward supercon-

ducting behavior.
Polycrystalline Moduli

Althpugh it is generally not possible to calculate the
exact properties of pochrystalline materials from single
crystal data, approximations can be made using averaging
methods. Voigt (26) proposed an approximation based on the
assumption of homogeneous stress with averaging over strain.
An alternate approximation was proposed by Reuss (27), who
assumed homogeneous strain with averaging over.stress; Be--
cause of the constraints associated with the‘grain boundaries
in polycrystalline materials it is impossible'to maintain
either homogeneous stress or homogeneous strain. These
methods also assume random orientation of the grains in the

material, an assumption that is oftén violated. Hill (10) has
vshown that the prbcedures_of Voigt and Reuss represent makimum
and'minimum values of the polycrystélline moduli and has sug-
gested taking the mean of their approximations. This mean is
often referred to as the Voigt-Reuss-Hill approximation or
simply as the VRH average. The results of VRH averagihg for
ZrZNi'and Al,Cu are gi&en in Table 10.

Smith (28) has postulated that the bulk modulus of an
intermetallic phase can be approximated by the weighted mean
of the bulk moduli of the constituent'elements. Table 11

gives a comparison of the estimated and experimental values
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Polycrystalline moduli from VRH averaging of the
single crystalline elastic constants of Zr2Ni and
Al12Cu. The bulk modulus, K, the shear modulus, u,
and Young's modulus, E, are in units of 1011
dynes/cmé. Poisson's ratio, v, is dimensionless
T (X) K n E v
IZr,Ni 4.2 10.59 1.80 5.10 0.42
300 10.46  1.98 5.89. 0.38
Al,Cu 4.2 11,34 4.11 10.99 0.34
300 ‘10.90 3.90 10.46 0.34
Table 11. Comparison of estimated and experimental room tem-
perature bulk moduli of ZrNi and Al2Cu and their
constituent elements in units of 101l dynes/cm?2
a a - %
AAZB KA KB K KAZB error
ZT,Ni- 9.44 18.08 12.32 10.46 . +15
Al,Cu 7.78 13.71 9.76 10.90 -10

4The elemental bulk moduli of Ni and Al were calculated
from single crystalline elastic constants listed in the com-
pilation of Hearmon (11). The bulk modulus of Zr was calcu-
lated from the compressibility value given by Fisher and
Renken (29) and the bulk modulus of Cu is that repurted by
Overton and Gaffney (12). '
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for Zr,Ni and Al,Cu. The estimated and experimental values
are considered satisfactory if the discrepancy is ~10%.

The low value of the ZrZNi bulk modulus may be partially
due to interatomic spacing. The Ni-Ni Spacing in‘Zeri is
5.6% greater than that observed in elemental nickel. The
nickei sublattice may thus be contributing 1éss toward the
bulk modulus than the atomic percentage indicates. It i1s also
interesting to‘note the atomic coordination in this phaée.

The coordination of the nickel atoms is. 10 with 2 nickel near-
est neighbors and 8 zirconium nearest neighbors while the
éoordination nﬁmber for the more abundant zirconium atoms is
15 with 4 nickel nearest neighbors and 11 zirconium nearést
neighbors. The Ni-Ni interactions are thus much less numerous '
than the Zr-Ni or the Zr-Zr interactions.

In the case of Al,Cu, the expefimental value of the bulk
modulus is 10% greater than the weighted mean moduli of the
elementai constituents. Again an examination of the inter-
atomic spacing may give a partial ekplanation. The bulk
modulus vf cupper is 89% greater than the bulk modulus of pure
aluminum. The interatomic distances between nearest neighbor
copper atoms is 4.7% less than the interatomic spacing for
elemental copper. This spacing may cause the copper sublat-
tice to contribute more towards the bulk modulus than the
atomic percentage denotes and result in a higher bulk modulus

than the elemental weighted mean bulk modulus.
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Debye Temperature

The Debye temperature can be calculated either from low
temperature specific Heét data or from the elastic constants.
A linear fit of Cp/T Vs T2 curve is normally used to evaluate
the Debye temperature from specific heat data. This method
assumes only 1atticé and electronic contributions to the
specific heat and must be made using spécific heat data from .
near 0 K. The major difficulty in calculating the Debye tem- .
perature from elastic constant data is evaluating an integral
involving the elastic constants over the solid angle. In
order to overcome this. problem Anderson (30) has suggested a
method of deriving the Debye temperature from polycrystalline
elastic moduli using an isotropic approximation. The poly-
crystalline moduli were calculated by the VRH averaging method‘
that was discussed earlier. Anderson shows that his ﬁethod is
in good agreement with more complex procedures requiring sum-
mations over the solid angle. Anderson's method was used to
detgrmine the Debye temperature of ZrZNi and AlZCu. Table 12
gives these values along with values for the constituent ele-
ments of these alloys.

6, for AlZCu was nearly equal to the weighted mean G
values of the elemental constituents, while eo-for Zeri is
significantly lower than 9, for either constituent element.
This 6, value is in keeping with the melting points. Zeri

melts at 1120 C (31) and Zr and Ni melt at 1857 C and 1455 C
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(32), respectively. The low o  for Zr,Ni is related to the

soft C66 and 1/2(C11—C12) elastic shear modes.

Table 12. Debye temperature in degrees Kelvin for ZrNi and
Al12Cu and their constituent elements. Values are
from elastic constant data at 4.2 K

: N a

A,B 8, (A) 6,(B) 8, (A,B)
Zr,Ni 296 476 - 198
Al,Cu 428 345 S 402

AThe Debye temperatures of Ni, Al, and Cu are cited
from Gschneidner (33) and of Zr is cited from Fisher and
Renken (29). '
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