

LET JUL 9 1959

X-822

MASTER

OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY

Division of Union Carbide Corporation

Post Office Box X

Oak Ridge, Tennessee

ORNL

CENTRAL FILES NUMBER

59-6-82

For Internal Use Only
EXTERNAL TRANSMISSION AUTHORIZED
COPY NO. 38

DATE: June 22, 1959

SUBJECT: Hexone Extraction-Coulometric
Titration of Uranium

TO: See Distribution

FROM: E. L. Blevins

ELB-3

ABSTRACT

Samples containing 5 to 10 mg of uranium were extracted with hexone (methyl isobutyl ketone) and titrated coulometrically in sulphate media. Relative standard deviations of 0.43% for samples containing 5 mg and 0.56% for 10 mg were determined by precision studies.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent manager, Legal and Information Control Department.

676

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

HEXONE EXTRACTION-COULOMETRIC TITRATION OF URANIUM

E. L. Blevins

I. PURPOSE

To develop a method for the determination of uranium in reactor dissolver solutions which is specific, relatively free from interferences, practical for use with highly radioactive materials, and which can be run in a reasonably short length of time.

II. EXPERIMENTAL

A. Instrumentation

The "Mark I" Controlled Potential Coulometer was used for these tests. The extraction cell is composed of a 25 mm test tube with a glass rod mounted on a mechanical stirrer entering through the top. The titration cell has been described previously.⁽¹⁾

B. Reagents

1. Aluminum Nitrate Salting Solution. This acid deficient solution was prepared according to the directions given by Booman, et al.⁽²⁾

2. Hexone (methyl isobutyl ketone). This reagent (Matheson Coleman and Bell 56M) was obtained from ORNL stores, washed with 1 M HCl, and pre-equilibrated with the acid deficient aluminum nitrate prior to use in order to allow for volume change.

C. Procedure

1. Transfer 5 ml $\text{Al}(\text{NO}_3)_3$ salting solution, 5.0 ml pre-equilibrated hexone, and 1.0 ml aliquot of the U sample to extraction cell.

2. Stir mechanically for 5 min (10 min for a 10 mg U sample). Allow phases to separate and remove a 4.0 ml aliquot from organic phase to the titration cell.

3. Evaporate to dryness under an infra-red heat lamp and "Flame" over a Mecker burner for 5 min to destroy last traces of organic material.

4. Dissolve residue in 20 drops 1:2 HNO_3 and evaporate to dryness. Cool and add 10 more drops HNO_3 . Evaporate to dryness again to be sure that all the oxide has been converted to nitrate.

5. Take up in 4 drops conc. H_2SO_4 , and add 4 drops conc. HCl to eliminate nitrate interference. Evaporate to H_2SO_4 fumes.

6. Cool, add 5 ml 1 N H_2SO_4 , and heat until hot but not boiling.

7. Cool, add Hg for the cathode, and deaerate for 5 min.

8. Pretitrate at +0.125 v vs. Ag-AgCl electrode and titrate the uranium at -0.3 v vs. Ag-AgCl electrode.

III. DISCUSSION AND RESULTS

At the present time much work is being done toward developing methods for the determination of uranium in highly radioactive dissolver solutions. One such method developed by Booman and Holbrook⁽³⁾ is based on the fact that uranium may be almost specifically and quantitatively extracted from such solutions with methyl isobutyl ketone. The uranium was then titrated coulometrically in a citrate medium.

The purpose of the tests run during the course of this experiment was to modify that method so that the titration could be done in a sulphate medium and to shorten the time involved. The data in Table 1 indicate that this modified method has good possibilities as a means of determining uranium in nuclear fuel solutions. To date, no work has been done along this line, but this will be the next consideration.

Samples containing up to 10 mg of uranium may be successfully extracted and titrated by the method presented in approximately one hour. Approximately 5 mg of uranium seems to be the optimum amount to run since the $\text{Al}(\text{NO}_3)_3$ salting solution was made up for samples of this size. Larger amounts may be extracted by increasing the tetra-propylammonium hydroxide concentration in the salting solution, but this also increases the fission product extraction. There is also the possibility that one may be nearing the saturation point of the organic phase. Also, the precision of this method could probably be improved by making improvements in the titration cell and by decreasing the variation in the temperature at which the samples are run. The data obtained by use of a conventional titration cell support these latter statements.

Table 1

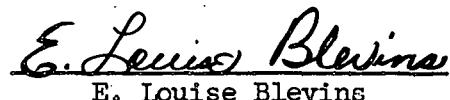
Results of Precision Studies

<u>mg U Taken</u>	<u>Ext'd</u>	<u>Cell</u>	<u>N</u>	<u>o, %</u>	<u>Error, %</u>
5.44	No	Vycor	14	0.18	none
5.44	Yes	Vycor	17	0.43	-0.8
10.31	No	Vycor	9	0.16	none
10.26	Yes	Vycor	14	0.56	-0.5
10.54	No	Conventional	9	0.17	none
10.53	Yes	Conventional*	13	0.38	none

N Number of samples

* The solution was transferred to this cell for titration.

IV. CONCLUSION


The original hexone extraction-coulometric titration for uranium can be shortened considerably by the procedure given herein. It should prove to be a useful supplement to other uranium methods which are being studied as part of the dissolver program because this method is reported to be almost specific for uranium. However, it is felt that the procedure can be further improved, and this is planned before application to actual dissolver solution samples is undertaken.

References

1. Blevins, E. L., Preliminary Report ELB-1.
2. Booman, G. L., Holbrook, W. B., and Rein, J. E., Anal. Chem. 29, 219 (1957).
3. Booman, G. L., Holbrook, W. B., Anal. Chem. 31, 10 (1959).

P. F. Thomason

Supervisor

E. Louise Blevins

E. Louise Blevins

Distribution

1. M. T. Kelley
2. C. D. Susano
3. J. C. White
4. Oscar Menis
5. L. J. Brady
6. A. S. Meyer, Jr.
7. J. A. Norris
8. H. P. House
9. J. R. Lund
10. C. K. Talbott
11. D. L. Manning
12. W. F. Vaughan
13. M. A. Marler
14. J. M. Peele
15. G. R. Wilson
16. L. T. Corbin
17. P. F. Thomason
18. S. A. Reynolds
19. G. W. Leddicotte
20. E. I. Wyatt
21. D. J. Fisher
22. C. Feldman
23. U. Koskela
24. W. R. Laing
25. C. E. Lamb
26. C. L. Burros
27. T. E. Willmarth
28. J. H. Cooper
29. D. E. LaValle
30. R. L. McCutchen
31. H. P. Raaen
32. B. B. Hobbs
33. W. D. Shults
34. H. E. Zittel
35. E. L. Blevins
36. R. H. Rainey
37. J. H. Goode
38. L. M. Ferris
39. M. J. Skinner
40. ORNL-RC
- 41-42. Laboratory Records

PHOTOSTAT