

CONF-9610188-1

LA-UR-96-3043

Title: INVESTIGATION INTO THE JOINING OF MOSI2 TO 316L STAINLESS STEEL

Author(s): VAIDYA, RAJENDRA U., MST-6
BARTLETT, ANDREW H., MST-6
CONZONE, SAMUEL, MST-6
BUTT, DARRYL P., MST-6

Submitted to: AMERICAN CERAMIC SOCIETY PROCEEDINGS
INDIANAPOLIS
OCTOBER 1996

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

INVESTIGATIONS INTO THE JOINING OF MoSi_2 TO 316L STAINLESS STEEL

Rajendra U. Vaidya, Andrew H. Bartlett, Samuel D. Conzone, and Darryl P. Butt

*Materials Science and Technology Division, Los Alamos National Laboratory,
Los Alamos, New Mexico, 87545, USA.*

ABSTRACT

The partial transient liquid phase (PTLP) joining and low temperature brazing techniques were applied in joining MoSi_2 to stainless steel 316L alloy. Exploratory studies were carried out on various interlayer materials. The mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and the substrate materials were investigated. The effect of the thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. This paper outlines some of the preliminary findings of the joining processes as applied to MoSi_2 and stainless steel 316L.

1. INTRODUCTION

Molybdenum disilicide (MoSi_2) is a potential high temperature structural material owing to its excellent oxidation resistance, high melting temperature, a brittle to ductile transition near 1000°C , and stability in a variety of corrosive and oxidative environments [1-5]. Some potential uses for MoSi_2 include furnace components, gas burners and ignitors, gas injection tubes, and high temperature nozzles [1,6].

In order for MoSi_2 to be used in many of the aforementioned applications it must first be joined to other materials, in particular ferrous and non-ferrous alloys. However, direct bonding of MoSi_2 to most metals is difficult due to the large differences in the coefficients of thermal expansion (CTE) between MoSi_2 and other refractory metals. The large thermal expansion mismatch coupled with the necessity of using high joining temperatures (in the case of refractory brazes) result in large residual stresses, and can lead to joint failure upon cooling. Low temperature brazing techniques and the use of ductile interlayers of intermediate CTE can alleviate the problem of large thermal stresses developed upon cooling from the bonding temperatures.

In this work, MoSi_2 was joined to 316L stainless steel, a typical industrial material, utilizing a variety of interlayers and brazes. Desirable interlayer properties included a CTE intermediate to the MoSi_2 and the 316L, sufficient ductility, and adequate oxidation resistance. Interlayers investigated in this study included Ni, Ni-10Fe, Ta, and Nb. This variety of interlayer materials allowed for exploration of the effects of the above properties on final joint integrity. Brazing materials were chosen to allow for low to intermediate temperature joining. A silver-copper eutectic (Cusil™, Wesgo Inc., Belmont, CA 94002) was chosen as one typical industrial braze. Aluminum was also investigated as a braze owing to its low melting temperature. Additionally, aluminum can act as a transient phase because of its reactivity with MoSi_2 and the interlayer materials.

Transient liquid phases have been investigated as a method to join at low temperatures while allowing for eventual formation of a refractory joint [7]. The advantages of utilizing transient liquid phases is the fact that the brazing or joining operation can be carried out at relatively low temperatures. The low melting phase eventually reacts with one or more components of the joints and transforms into a more refractory material. This technique has the advantages of low joining temperatures and high refractoriness upon completion of the joining process.

Following is a summary of the results of our preliminary experiments on the joining of MoSi_2 to 316L stainless steel.

2. MATERIALS USED

MoSi_2 powder was obtained commercially (Cerac, Inc., Milwaukee, WI 53201) and hot pressed into billets with densities greater than 95% of the theoretical density. Stainless steel 316L was in the form of discs with a diameter of 15.8 mm and a thickness of 2.4 mm (Metal Samples, Inc., Munford, AL 36268) for joint chemistry investigations, and also as 12 mm x 12 mm x 12 mm blocks for use as mechanical test specimens. Foils of 125 and 250 μm thicknesses of 99.9% pure Ni, Nb and Ta were obtained commercially (Aldrich Chemical, Inc., Milwaukee,

WI 53233; Alfa Aesar, Ward Hill, MA 01835-9953). Ni-10Fe interlayers were produced by rolling to a final thickness of 500 μm . Braze materials were 50 μm thick silver/copper eutectic foil (Cusil™), subsequently rolled down to 20 μm , and 8 μm 99.9% Al foil. A plot of the CTE's of all joining materials is given in Figure 1.

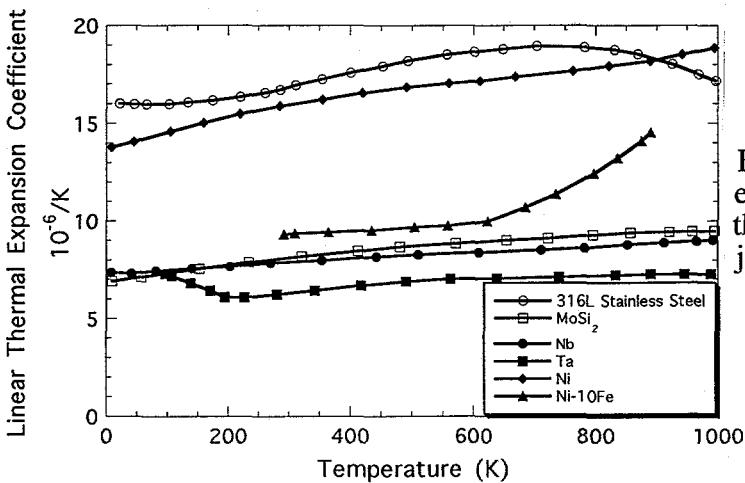


Figure 1. Thermal expansion coefficients of the interlayers used in the joining experiments.

3. EXPERIMENTAL PROCEDURES

A diamond wafering saw was used to cut rectangular specimens (5 mm x 5 mm x 3 mm and 12 mm x 12 mm x 12 mm) from the hot pressed billets of MoSi₂. The smaller samples were used for joint chemistry, while the larger samples were used for mechanical testing. The MoSi₂ specimens were polished to either a 600 grit finish or a 1 μm diamond finish using standard metallographic techniques. Similar sized samples and surface preparation techniques were applied to the stainless steel 316L. The as received Nb, Ni, Ta, Ni-10Fe, Cusil, and Al foils were cut to sizes slightly greater than the silicide and steel pieces. All materials were then ultrasonically cleaned in acetone followed by deionized water. After cleaning, the samples were dried at 150°C for 5 minutes.

Bonding was achieved using the block/interlayer/block assembly. Dimensions and a schematic of the loading assembly can be found elsewhere [8]. After arranging the foils and substrates in the block/interlayer/block orientation, the entire assembly was placed into a loading device consisting of two Al₂O₃ platens and four Al₂O₃ bolts. The Al₂O₃ bolts were hand tightened. This procedure ensured sufficient contact between the various components of the joint. For those samples joined under a controlled atmosphere, the loaded Al₂O₃ press was placed into a tube furnace which was vacuum purged with ultra high purity Ar-6% H₂ gas (three times) at room temperature and again at 250°C to remove oxygen and absorbed water from the furnace and bonding assembly. The furnace was then purged continuously with Ar-6% H₂ gas. The ultra high purity Ar-6% H₂ gas was

gettered by passing it first through calcium sulfate at room temperature and then 99.9% pure copper at 650°C.

Joints in air were made by loading the Al_2O_3 press assemblies into a standard box furnace. For joints made using the Cusil braze, a ramp rate of 5°C/min. was used to heat the furnace to the joining temperature of 830°C (50°C above the 780°C Cusil eutectic). The temperature was then held at 830°C for times ranging from 10 min. to 1 h before cooling at 2°C/min. to room temperature. For joints made with the Al braze, similar ramps rates and times were used, with bonding temperatures ranging from 710 °C to 750 °C. After bonding, the specimens were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS).

Mechanical test specimens of approximate dimension 2 mm x 2 mm x 25 mm were electro discharge machined from the Cusil/Nb/Cusil and Cusil/Ni/Cusil joints. The tensile face of the beam was ground to a 600 grit finish, and the edges were beveled to prevent corner failures during mechanical testing. Four-point bend tests of the joined specimens were done at room temperature at a strain rate of $\approx 10^{-4}$ /s. Fracture surface and crack path investigations were done post-test.

4. RESULTS AND DISCUSSION

Following is a summary of the joints that were successfully made:

1. MoSi_2 /Cusil/Nb/Cusil/316L (controlled atmosphere)
2. MoSi_2 /Cusil/Ni/Cusil/316L (controlled atmosphere)
3. MoSi_2 /Cusil/Ni-10Fe/Cusil/316L (controlled atmosphere)
4. MoSi_2 /Al/Ta/Al/316L (controlled atmosphere)
5. MoSi_2 /Al/MoSi₂ (air and controlled atmosphere)

4.1 Joint Chemistry

4.1.1 Cusil/Nb/Cusil interlayer: Joints with Cusil/Nb/Cusil interlayers were dense and crack-free. Scanning electron micrographs of the diffusion zones produced at the 316L/Nb and MoSi_2 /Nb interfaces are shown in Figure 2. At the 316L/Nb interface, gross segregation of the Cusil eutectic during bonding caused the formation of two Ag/Cu alloys rich in either Ag or Cu. These Ag (92-94 at%) rich and Cu (96-98 at%) rich alloys have approximate melting temperatures of 925°C and 1070°C, respectively.

Three major phases formed at the MoSi_2 /Nb interface are also seen in Figure 2. As with the 316L/Nb interface, gross segregation of the Cusil eutectic composition during bonding caused the formation of a Cu/Ag alloy composed of 92-94 at% Ag, and a Cu/Si phase composed of 88-90 at% Cu. This Cu/Si phase is a peritectic composition with a melting point of 852°C. The Mo_5Si_3 phase formed near the interface as Si diffused out of the pure MoSi_2 to form the Cu/Si phase. Mo_5Si_3 is a refractory phase which has a melting temperature of 2180°C.

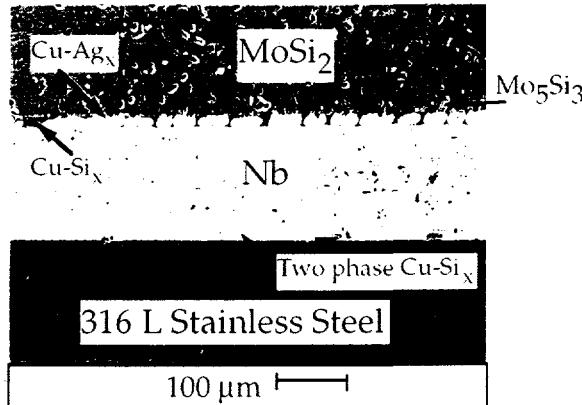


Figure 2. SEM micrograph of a MoSi₂/Cusil/Nb/Cusil/316L joint.

4.1.2 Cusil/Ni/Cusil interlayer; Cusil/Ni-10Fe/Cusil interlayer: Pure Ni was examined owing to its ductility and enhanced oxidation resistance with respect to Nb. Its CTE is somewhat higher and would be expected to lead to increased stresses, as has been observed by other investigators [9]. Because of these potential CTE mismatch effects, Ni-10Fe was also investigated because its CTE, for the temperature range of interest, is below that of the silicide and would be expected to lead to diminished joint stresses. Successful joints were produced using both the PVD Ni (500 nm) and Ni-Fe (90-10, 500 nm thick) alloy as the interlayer. The chemistry of the interfaces were very similar in the two interlayer systems, and is summarized as follows. Copper and silver diffusion from the Cusil foil occurred into the bulk MoSi₂. These elements presumably entered into solid solution. An Ag-rich zone was observed adjacent to the MoSi₂. This region was devoid of significant amounts of Cu. A solid solution of Cu and Ni (approximately 70-30) was detected next to the Ag rich phase. Similar elemental separation was observed on the SS 316L side, namely the region in the vicinity of the Ni or Ni-Fe interlayer consisted of a Cu-Ni alloy (approximately 70-30) while the region in the vicinity of the SS 316L consisted of a Ag rich zone. These features were identical for both the interlayers, and can be seen in Figure 3.

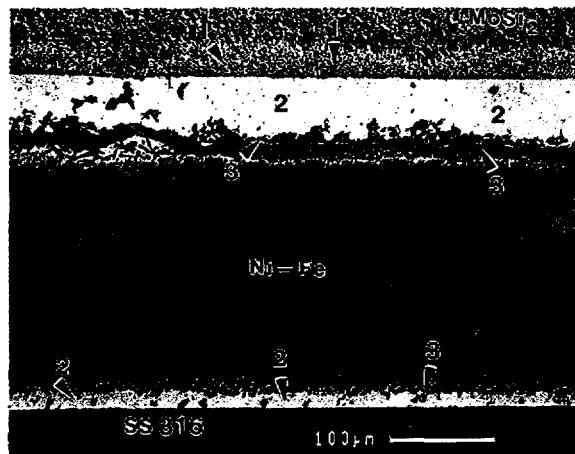


Figure 3. SEM micrograph of a MoSi₂/Cusil/Ni-Fe/Cusil/316L joint.
 (1: Diffusion zone,
 2: Ag rich phase
 3: Cu-Ni solid solution)

4.1.3 Al/Ta/Al interlayer: Tantalum was investigated because its CTE falls below that of the silicide, and so would be expected to reduce residual thermal stresses in any joints produced. It is highly refractory, but exhibits poor oxidation resistance; however, because Ta-Ti alloys have been shown to have good oxidation and corrosion resistance [10], the chemistry of Ta interlayers was of interest. Aluminum is a low melting point braze that wets MoSi₂ [6] and reacts with Ta, allowing for a possible transient phase effect.

Figure 4 shows the interface after bonding at 1h. at 710°C. Energy dispersive spectroscopy identified several Ta-Al phases. Reference to the Ta-Al phase diagram suggests these to be Ta₂Al and TaAl, whose melting temperatures are 2100°C and 1770°C, respectively. The near complete reaction and disappearance of the Al after only 1 h. of bonding time suggests that this is a potential high temperature joining system, particularly if Ta-Ti alloys were used as interlayers.

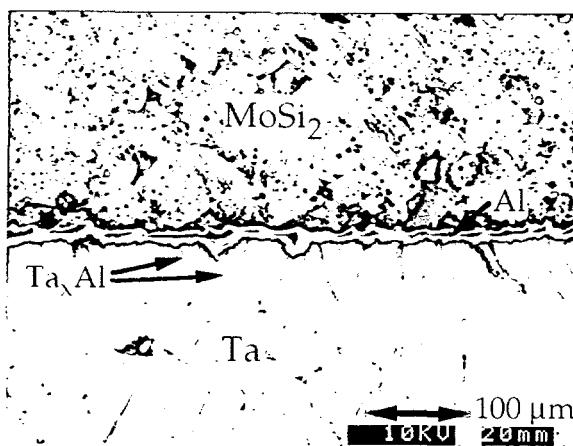


Figure 4. SEM micrograph of an Al/Ta/Al interlayer.

For this system, the Ta thickness used was 125 μm . Despite its low CTE, the extent of stress relief is still limited by thickness. In this case, cracking occurred in the MoSi_2 , initiating at the free surface and eventually propagating parallel to the interface at a distance of about 500 μm , Figure 5. This type of residual stress cracking is common in dissimilar material joints [11], and could likely be alleviated by thicker interlayers. Despite this cracking, the interface away from the crack appeared to be strong, dense, and continuous, suggesting that further investigations into Ta and Ta alloys as interlayers are warranted, in particular using thicker interlayers.

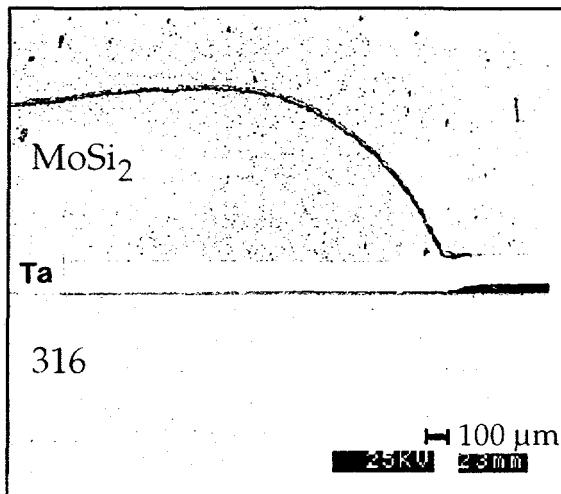


Figure 5. SEM micrograph of a $\text{MoSi}_2/316\text{L}$ joint using an Al/Ta/Al interlayer. Note the crack path.

4.1.4 $\text{MoSi}_2/\text{Al}/\text{MoSi}_2$ Joints: Applications exist in which it is necessary to join MoSi_2 to itself. Normally, high temperature (> 1500 $^{\circ}\text{C}$) methods are used to promote sintering between the pieces to be joined. A thermodynamic analysis, discussed later in this paper, suggested low temperature routes for joining using Al as a transient braze. Joining was accomplished both in the controlled environment, and also in air. The braze consisted primarily of Si saturated Al. After 60 minutes at 730 $^{\circ}\text{C}$, approximately half of the Al was replaced by a Mo-Si-Al ternary phase. The remaining interface consisted of Si saturated Al, and a SiO_2 based phase.

$\text{MoSi}_2/\text{Al}/\text{MoSi}_2$ joints were also bonded in a controlled atmosphere at 730 $^{\circ}\text{C}$. After 15 minutes the Al foil remained intact with no noticeable diffusion observed. However, at 60 minutes of exposure, Si enriched Al regions were detected in the sample. The extent of Al diffusion was fairly large. Additionally, a ternary phase of Mo-Al-Si was also detected at the interface. The phases observed were identical to those observed in joints produced in air excepting for the absence of the SiO_2 -based phase. A micrograph of the joint produced in the controlled atmosphere can be seen in Figure 6. Further work will investigate the thermodynamics of bonding and phase development, as well as performing mechanical testing of the joints.

One problem that will be studied is the impact of Al on the pesting behavior of MoSi_2 . Previous studies have indicated that under certain conditions the presence of Al can accelerate the pesting reaction [12].

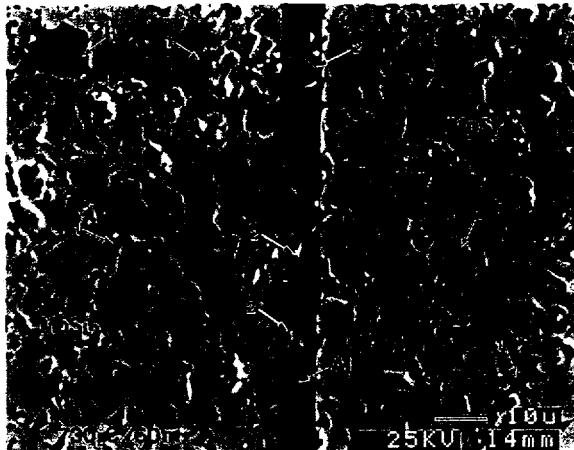
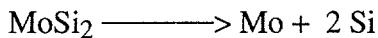
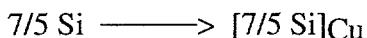
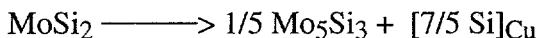



Figure 6. SEM micrograph of a $\text{MoSi}_2/\text{Al}/\text{MoSi}_2$ joint produced in a controlled atmosphere at 730°C for 60 minutes.
(1: Si saturated Al,
2: Mo-Si-Al ternary)


4.1.5 Al/ MoSi_2 and Cu/ MoSi_2 Chemistry: Wetting experiments of both Al and Cu on MoSi_2 have been carried out in previous studies [6]. Wetting and subsequent joining of both of these metals to the silicide can be understood by examining the reduction of MoSi_2 to Mo_5Si_3 and the solution of Si into molten copper. The reactions at 1127°C can be written and summed as follows [13].


$$\Delta G^\circ = 116,732 \text{ J/mole}$$

$$\Delta G^\circ = -67,592 \text{ J/mole}$$

$$\bar{\Delta G}_{\text{Si}} = RT \ln (a_{\text{Si}})$$

$$\Delta G^\circ = 49139 + RT \ln (a_{\text{Si}})$$

where ΔG° is the standard state free energy change at 1400K, $[\text{Si}]_{\text{Cu}}$ indicates Si in solution in molten Cu, and $\bar{\Delta G}_{\text{Si}}$ is the partial molar free energy of mixing for Si in Cu, and is a function of the activity of Si, a_{Si} , in the melt. The solubility of Mo in molten Cu is minimal at the temperature of interest and therefore was not considered. Assuming Raoultian behavior of Si in Cu, this simplified analysis rationalizes the ready reaction of MoSi_2 with Cu. These calculations illustrates the reactivity of MoSi_2 with braze materials, and also the ease with which MoSi_2 is wet by a variety of metals. This is due to the significant solubility of Si in many braze materials of interest. Similar calculations hold for Al as well.

4.2 Mechanical Testing

Four-point bend tests for both the Cusil/Nb/Cusil and Cusil/Ni/Cusil joints showed linear strains to failure. Average failure strength of the Cusil/Nb/Cusil joints was 85 MPa. Failure appeared to initiate in the silicide and propagated along a path parallel to and approximately 10 μm from the interface, Figure 7. For the Cusil/Ni/Cusil samples, four-point bend strengths also had an average value of 85 MPa. Fracture again occurred in the MoSi_2 , and remnants of the MoSi_2 were observed to remain adhering to the fracture surface. Cracking parallel to the interface is often seen in joints of dissimilar materials [14]. Plasticity of the interlayer [15] and relative toughness of the interface and the silicide [16] all favor cracking in the MoSi_2 , though details such as the distance from the interface at which the crack propagates, and the above contributions to fracture energies, cannot be predicted.

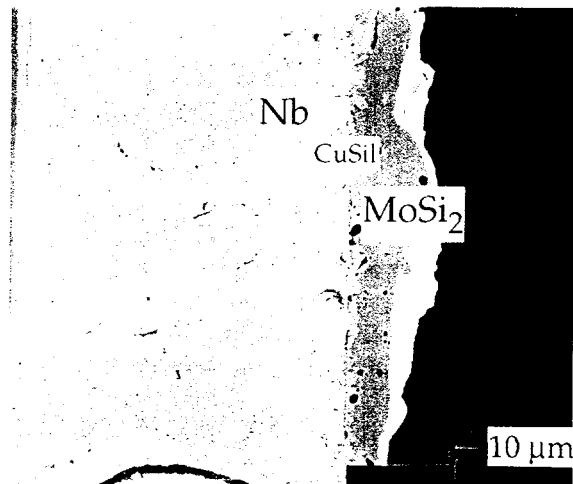


Figure 7. Crack path in a $\text{MoSi}_2/\text{Nb}/316\text{L}$ joint after four-point bending.

In both classes of samples, fracture was apparently limited by the strength of the MoSi_2 . However, typical strength values for hot pressed MoSi_2 of this quality are in the range of 400 MPa, significantly higher than the measured bond strengths. It is likely that residual stresses significantly reduced the strength of the bond below the intrinsic strength of the MoSi_2 . For instance, using the formulation of Kimura, *et al.*[17] for joined cylinders, residual tensile stresses of approximately 900 MPa could be expected at the MoSi_2 free surface. To estimate residual stresses, indentation cracks were placed in the MoSi_2 at a variety of distances from the interface. Figure 8 plots indentation crack length in the MoSi_2 for cracks, both parallel and perpendicular to the interface, as a function of distance from the interface. The increase in crack lengths parallel to the interface indicates residual axial tension in the test beams, which would reduce their apparent strength.

An estimate of the residual stress can be obtained by modeling the indentation as a centrally loaded crack using the formulation [18]

$$K = (\sigma_{\text{applied}} + \sigma_{\text{residual}}) \sqrt{\pi a} \frac{2}{\pi} \sin^{-1}(b/a)$$

where, K = stress intensity factor

σ_{applied} = indenter-applied stress

σ_{residual} = residual stress contribution

a = crack length

b = length of crack on which opening stresses are applied.

By assuming that cracks perpendicular to the interface are stress free, the value of residual stress contributing to the increased crack length parallel to the interface can be estimated. Using $b/a = 0.2$ and $K_{\text{MoSi}_2} = 3.5 \text{ MPam}^{1/2}$ gives a value of $\sigma_{\text{residual}} = 450 \text{ MPa}$. This stress value is in agreement with the reduced value one would expect in the stressed joint *vis a vis* the stress free MoSi_2 .

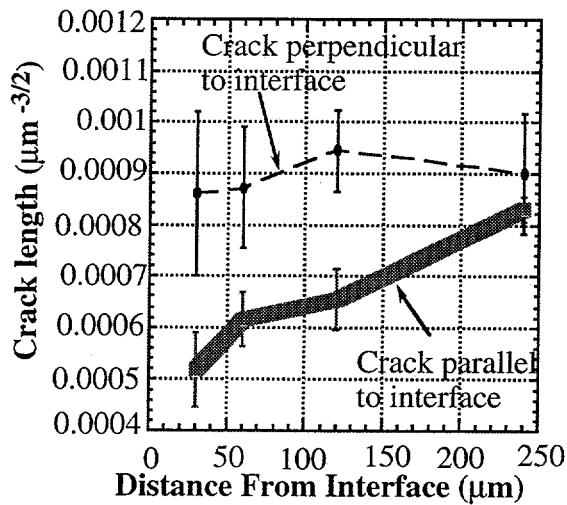


Figure 8. Indentation crack lengths in MoSi_2 parallel and perpendicular to the interface.

5. Concluding Remarks

This study focused on the chemistry and viability of joints using a variety of interlayer materials. Cusil is a common braze material that was successful in these experiments because of its ability to readily wet MoSi₂. Aluminum also worked well as a braze because of its good wetting behavior but had an additional advantage of acting as a transient bonding phase, thereby allowing for potentially higher service temperatures of the joints. Actual joint design, however, depends on many other factors including the geometry of the joint. It is well known that larger joints lead to larger values of residual stress, for the same interlayer thickness. Other work [8] has shown that under certain geometries, Ni interlayers lead to catastrophic cracking in the silicide, through a combination of geometry and CTE mismatch effects. The optimum combination of interlayer thickness, CTE, and yield strength has not yet been determined, but will sensitively depend on final application temperatures and joint geometries.

Other ongoing work includes joining MoSi₂ to other commercially important materials, in particular Inconel 600 and 60-40 brass. However, when using interlayers, this investigation has already proven several viable braze/interlayer combinations that will work with MoSi₂. In the case of difficult to braze materials, such as Ni superalloys, it will only be necessary to identify brazes compatible for joining to them. Because joints with brass will necessarily experience lower service temperatures, work is progressing to investigate direct bonding of MoSi₂ to the brass, using only an intermediate braze. Some success has been had using In-based alloys, and other low temperature brazes including Pb- and Sn-based materials are being tested.

Acknowledgments

This work was supported by the U.S. Department of Energy, Advanced Industrial Materials Program. The authors are grateful to our DOE program managers, Charles Sorrell and Suzanne Leonard. We are also grateful to John Petrovic and Rich Castro of Los Alamos National Laboratory for helpful discussions and for supplying some of the materials used in these studies.

References

1. J.J. Petrovic, *MRS Bull.*, **18**, 35 (July, 1993).
2. J.J. Petrovic, and J.S. Idasetima, *Mater. Res. Soc. Symp. Proc.*, **322**, 107 (1995).
3. T.C. Chou, and T.G. Nieh, *J. Mater. Res.*, **8**, 214 (1993).
4. D.A. Berztiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Pettit, and G.H. Meier, *Mater. Sci. and Eng.*, **A155**, 165 (1992).
5. J.J. Petrovic, *Mater. Sci. and Eng.*, **A192-193**, 31 (1995).
6. A. Bartlett, R. Castro, H. Kung, D.P. Butt, and J.J. Petrovic, *Industrial Heating, J. of Thermal. Tech.*, **63**, 33 (1996).
7. B.J. Dalglish, A.P. Tomsia, K. Nakashima, M.R. Locatelli, A.M. Glaeser, *Scripta Metall. Mater.*, **31**, 1043 (1994).
8. S.D. Conzone, D.P. Butt, A.H. Bartlett, submitted to *J. Mat. Sci.*
9. K. Suganuma, T. Okamoto, M. Koizumi, and M. Shimada, *J. Am. Ceram. Soc.*, **68** (1985) C334.
10. J.D. Cotton, J.F. Bingert, P.S. Dunn, R.A. Patterson, *Met. Trans. A*, **25**, 461 (1994).
11. A. Bartlett, M. Rühle, A.G. Evans, *Acta Metall. Mater.*, **39**, 1579 (1991).
12. D.P. Butt, unpublished research.
13. I. Barin, Thermochemical Data of Pure Substances, 2nd ed., VCH Verlagsgesellschaft mbH, Weinheim (1993).
14. J.W. Hutchinson, M.E. Mear, J.R. Rice, *J. Appl. Mech.* **54** (1987) 828
15. B.J. Dalglish, K.P. Trumble, A.G. Evans, *Acta Metall.* **37** (1989) 1923.
16. A.G. Evans, B.J. Dalglish, M.-Y. He, J.W. Hutchinson, *Acta Metall.* **37** (1989) 3249.
17. O. Kimura, T. Kawashima, *J. Am. Ceram. Soc.*, **76**, 757 (1993).
18. H. Tada, P.C. Paris, G. Irwin, The Stress Analysis of Cracks Handbook, 2nd ed., Paris Production Inc., St. Louis (1985).