LA-S0B--23-224
Cost/Benefit Analysis for Video Security Systems

BEC 85 o

OSTl

Dr. Don Hush and Scott Chapman, in conjunction with the Electrical and Computer Engi-
neering Department of the University of New Mexico (UNM), have been contracted by Los
Alamos National Laboratories to perform research in the area of high security video analysis.
The first phase of this research, presented in this report, is a cost/benefit analysis of various
approaches to the problem in question. This discussion begins with a description of three ar-
chitectures that have been used as solutions to the problem of high security surveillance. An
overview of the relative merits and weaknesses of each of the proposed systems is included.
These descriptions are followed directly by a discussion of the criteria chosen in evaluating
the systems and the techniques used to perform the comparisons. The results are then given

1 Introduction

in graphical and tabular form, and their implications discussed.

The project to this point has involved assessing hardware and software issues in image
acquistion, processing and change detection. Future work is to leave these questions behind
to consider the issues of change analysis - particularly the detection of human motion - and
alarm decision criteria. This project break point is shown in Figure 1. The criteria for

analysis in this report include:

o Cost

Speed

e Tradeoff issues in moving primative operations from software to hardware
e Real time operation considerations

e Change image resolution

Computational requirements

2 Competing Architectures

The current system, developed at Los Alamos National Laboratories (LANL) by Steverson,
is seen in Figure 2. Ten consecutive frames are digitized and passed directly to the control-
ling CPU. Here they are averaged to reduce noise before being compared and thresholded.

DISTRIBUTION OF THIS DOCUMENT IS UNUMITED
LN

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

This has the advantage of reducing noise without loss of resolution. Comparison is done by
holding the previous frame and substracting it from the current image. This leaves an image
composed of difference values that are then thresholded. Thresholding involves selecting a
critical value. Pixels that have an absolute value of the difference below the threshold are not
considered to represent significant change. Pixels above the threshold value are considered
to show real change, above simple noise. Change detection is accomplished in this same
manner in all three architectures to be compared. The final step is to apply a median filter
to further reduce the noise. This system has the advantage of low cost (minimal hardware),
simplicity and the fact that it is in place. Its primary disadvantage is that cannot be used

to perform real time surveillance because of the temporal averaging.

In Figure 3, the Video Motion Detection (VMD) system (also known as TCATS) is shown.
This system was developed at Sandia National Laboratories (SNL) by Dr. Don Hush and
Dr. Greg Donohoe. Here, a frame is acquired, digitized and briefly stored. After change
detection (and in parallel with subsequent operations) the reference frame is refreshed by
combining it with a low-weighted version of the current frame. The reference frame, thus,
is an exponentially weighted time average of the input frame. This is a slower, more subtle
update of the reference than in either of the other two architectures. The change detection
is passed through a Low Pass Filter (I) or a High Pass and Low Pass (II) combination to
remove noise, then passed to a controlling CPU. There, it is subsampled and thresholded.
Subsampling creates a new image that is smaller than the original by a factor of 64. Each
pixel in the smaller image is an average of an 8x8 field of pixels in the original difference
image. After thresholding, any pixels that remain active are considered to represent real
change. This architecture has two main advantages. First, it can be implemented in real-
time and has been shown to work well with continuous real-time data. Secondly, the spatial
High Pass Filter is useful in reducing alarms due to changes in illumination (shadows, etc.)

A disadvantage is that spatial averaging results in a lower resolution.

The third architecture is seen in Figure 4. Known as MIPS, it was developed at UNM,
for SNL, by Dr. Don Hush and Cliff Wood. Here, we begin by moving the Low Pass Filter
(and possible High Pass Filter) and image subsampler up front immediately following digi-

tization. The advantage to subsampling as early as possible is that it reduces the number

of computations required in all subsequent processing. This spatial averaging reduces reso-
lution, but this is not considered critical in this application, since the concern is for large-
scale changes in the scene. The remainder of the processing is as discussed above - difference
calculation followed by thresholding. Note that the reference frame is replaced each iteration

by the current frame, as it is in system 1.

3 Gain and Offset

The figures for all three architectures show gain and offset adjustments at the analog input
signal. These critical terms are intended to adjust the input to make better use of the digi-
tization process. The gain term is a weighting constant that will spread the digitized values
over a larger number of the available digital values, resulting in greater resolution in the
digitized image. The offset term is intended to shift the adjusted image so that changes in
the mean value of the image, introduced in the gain term, will be eliminated. An example
of the effect of the gain and offset terms is presented in Figure 5. The inclusion of these
terms is critical in that information is lost during quantization and cannot be recovered in
subsequent processing. This effect is particularly destructive in attempting to detect change
in the scene. Gain and offset terms can reduce the loss in information by maximizing the
entropy of the digitization process. Most digital image acquisition hardware allows for pro-

grammable control of gain and offset.

Not shown in these figures is the computation of offset and gain for the images being pro-
cessed. Both terms are highly dependent on the input images. When using a camera as the
analog video source it is common to adjust the amplitude and offset of the analog signal by
adjusting the iris setting on the lens. The iris controls the amount of energy (light) incident
on the sensor array (CCD array). Typically the iris is adjusted by hand so that the image
”looks good” on the monitor. Also, many cameras come with an "auto-iris” mechanism
which automatically adjusts the iris to maintain a specified average power level in the video
signal. In either case the video signal produced by the camera is not always appropriate for

digitization, even though it may "look good” on the monitor.

There are numerous possible techniques for adjusting the offset and gain. A detailed study
of these techniques is currently being performed by Professor Donohoe and his students at
UNM, but for now let us describe a rather simple and straigthforward technique that has
proven to work well in the systems in Figures 4 and 5. This technique searches for a setting
of the offset and gain that will yield a digitized image with a desired mean and variance.
The search is performed iteratively: first the offset is adjusted to achieve a desired mean,
and then the gain is adjusted to achieve the desired variance. This process is repeated until
both the mean and variance are within a specified tolerance of their desired values. Typically
settings for the desired mean and variance are 127 and 3800 respectively.

4 Analysis

.

The comparison metrics chosen for this analysis are cost and speed. Both of these issues are
more complex than the simple comparison of the three architectures presented. The primary
impact on both cost and speed is the fact that the analysis of the proposed systems does
not hold the hardware/software boundary constant, but allows it to move from as far left as
possible in, Figures 2 - 4, to as far right as possible. The graphs shown in Figures 7 - 9 show
that moving the boundary from left to right increases speed (decreases processing time) at

the expense of increased cost.

Two other factors relate directly to speed and are presented in the analysis. The primary
one is the question of whether to subsample the image - that is, to perform a spatial average
of each 8x8-pixel section to reduce the image from 512x512 to 64x64. This has the double
benefit of increasing processing speed in subsequent stages, while reducing the storage re-
quired to hold the image. The speed increase is only evident in the software domain, and
so the hardware/software boundary should always adjoin the subsampling operation. The
subsampling itself may occur in hardware or software. The disadvantage of subsampling is
that resolution is lost. Therefore, this process should always be preceeded by a low pass

filter to smooth out the data.

A more minor speed issue relates to the subtraction performed when the current frame
is compared to the reference image. If this is performed in software, then the issue of signed
verses unsigned subtraction has a fairly dramatic effect on the processing speed. The abs()
function takes a significant amount of time. See the results below for further clarification.
The analyses performed below consider only the unsigned values since the absolute change

value must be examined at some point in the change detection.

Beyond the question of subsampling, the cost metric is affected by the variety of hard-
ware available. This analysis is concerned only with the image processing hardware and
does not include direct comparison of CPU’s or software platforms. Two manufacturers
were included in the comparison - DataCUBE and Imaging Technologies. Both are leaders
in the field of real-time image acquisition and processing. The hardware available from these
manufacturers are directly comparable in features, applications and price. Prices quoted in
the tables below are based on catalog data acquired in January 1992 and are considered to

be estimates subject to change.

Many other factors will go into the choice of an architecture for the high security envi-
ronment. A few include the importance of low pass and high pass filtering, the merits of
spatial vs temporal averaging, possible parallelism in the architecture, and slow vs immediate
update of the reference frame. These contributors are not dismissed, but do not contribute
directly to this analysis except as they effect the cost and speed of processing.

5 Procedures and Results

The speed measurements shown below centered primarily on those operations that are to
be implemented in software. The primitives that make up the operations were defined and
coded as distinct programs to measure their timing. (A sample program is given in Figure
10.) Each primitive except subsampling was performed on both a 512x512 and a 64x64 pixel
data array. (The results are over-reported in that the LPF will always precede subsampling.)
In order to avoid additional overhead and look solely at the primitive in question, data ar-
rays were simply malloced. (As seen in Figure 6, the malloc() operation did not contribute
significantly to the execution times of these primatives.) They were not initialized (except
as noted below) and no image was read in. The values present in memory at the time of
allocation were the values worked on. In order to eliminate the possiblility of overflow, data
arrays were declared to be of type integer. The operations were run on Sun 4 Workstations
during low-use hours. Execution times were measured using the UNIX ’profile’ utility. Each

task was profiled five times and the results averaged. Two sample profile runs are shown in

Figure 6.

Table 1 presents the execution times as measured. In Table 2, the cost and features of
the hardware required to perform the various operations are shown. Table 3 applies these
results to each architecture over a variable hardware/software boundary and considering
the issue of subsampling. Since the primitives displayed in Table 1 only apply to software
implementation, all hardware operations are considered to occur at 30 frames per second
(FPS). (This is the maximum rate at which these operations will occur.) Table 3 also takes
into account the fact that all operations performed in hardware may occur in parallel as the

available hardware is extended.

Note that the offset and gain operations are performed on the analog image as it is ac-

quired and are not represented in Table 1. The primitives measured are:

e Subsample - A reduced 64x64 pixel image is formed by copying the pixel from every
eighth row and eighth column (every 64th pixel) from the original image into the

reduced image. The gains in software processing speed and data storage are thought
to Sutweigh the loss in image resolution, particularly since large-scale change is what

‘is being investigated in this project.

Superpixel - Each pixel in a 512x512-pixel array is replaced by the average over an
8x8 array of pixels to produce a 64x64 image. This operation has the advantage of
increasing software speed while decreasing storage. It should be the first operation in
software or the last in hardware. A disadvantage - not considered to be critical here -

is that resolution is lost in this spatial averaging.

Subtract - Appears in all architectures when the current image is compared to a refer-
ence image to detect changes. Both a signed and an unsigned version of the subtraction
are presented. The unsigned version is slower, but represents the sort of comparison

that should be made in detecting change.

Add - In the current LANL architecture, 10 consecutive frames are acquired and av-
eraged. The addition of these frames will occur in parallel with the acquisition of the
next frame. If the image is not subsampled, this operation is slower than the acqui-

sition and therefore Table 3 considers only a single acquisition time followed by nine

summations.

Divide-by-Const - This primitive also occurs in the temporal averaging of architecture
1. The constant, here, is 10. A single divide is performed for each averaging operation.

Threshold - The decision process in all proposed architectures. This operation involves
a comparison and a value substitution for each pixel in the difference image. The result

is a binary-valued array with pixels of sufficiently large change flagged.

Convolve - The LPF and HPF filters are performed by replacing each image pixel with
the weighted sum of its nearest neighbors. In this case, the weighting is unity and the
number of nearest neighbors is 64, with a 8x8 square area providing the summation
zone. This 8x8 kernel moves across the image, which has been placed in a framing
image that is 7 pixels larger than the original in every direction. The borders of this
frame are initialized to zero. It is the lower right pixel of the kernel that is replaced
by the summation. As the kernel moves along it produces and image that is 7 pixels
larger than the original both toward the right and towards the bottom.

Median Filter - This filter serves well in cleaning up isolated pixels that differ widely
from the general image. That is, speckle patterns and the like are filtered by this
technique. Here, the center pixel of a 3x3 array of pixels is replaced by the median

6

value of the array. The process involves sorting the array for each pixel that is replaced.
A quicksort was chosen as it has the fastest average sorting time of known sorts.
Nevertheless it is this sorting that makes this a very slow operation. An alternative
that may speed things up is to sort only the kernel around the first pixel to be operated
on. The values that will not contribute to the next pixel are known and can be flagged.
These can be discarded in the next iteration and the three incoming pixels can be
inserted in the proper order. This more sophisticated coding has not yet been tried,
and it is not clear that the possible gains will be significant. Note that this operation
also requires a framing image initialized to zero. This frame extends one pixel wide

around the entire original image.

The cost analysis was performed by identifying the specific board from each manufacturer
that would perform each specific primative. The prices of these boards were recorded. Table 2
presents, by function, the applicable hardware of both Imaging Technologies and DataCUBE,
comparing price, functionality and storage. The analysis of the cost of the hardware is also

presented in Table 3.

6 Other Issues

A variety of additional issues are of concern to the client. Not all relate directly to the
cost /benefit analysis phase of this project, but all will be considered throughout the project.

e The software concerns involve data formats and compatibility, portabillity, object-
oriented programming and designing for modular and flexible solutions. These issues

will become more critical as the project moves away from the cost/benefit analysis

stage.

o The issue of system networking will also be addressed throughout the project. The
perceived advantages of proper networking are multifold. First, the computational
load could be distributed to all the processors on the network, speeding up the image
processing tasks by using otherwise underworked processors. Secondly, a cost reduction
could be seen by placing all the required image processing hardware in a single machine
for use by all stations. A third important advantage is in fault tolerance. If any single
station fails, the tasks that it performs can be quickly distributed among the remaining
stations without loss of continuity. Finally, it is simply easier to keep all systems
current, in a network environment, through the systemwide distribution of updates.

e As the project moves from analysis to design, software will be developed using an
object-oriented organization. This will provide an improved environment for the engi-

7

neering of modularity, flexibility and extendability into the software.

7 Conclusion

The video security system that we are working towards in this project should be capable of
monitoring several sites simultaneously. The system will be comprised of a host computer
(probably a SUN workstation) that will reside at a location physically removed from the
sites that are to be monitored. The question then arises as to how much of the processing
should be done on site, and how much should be done by the host. One of the orginal
purposes of this cost/benefit analysis was to provide information that would help in making
this decision. The most cost efficient solution, and the one recommended here, is to do as
much of the processing at the host as possible. This will prevent duplication of resources at
each of the remote sites. At a minimum, the remote sites must be equipped with a camera
and a transmitter (or some mechanism for transferring the video signal to the host). All of
the remaining processing can be performed by the host (as long as it is able to process the
information from each site in time to move on to the next site). Our analysis shows how
hardware can be added to the host to help enhance its processing capabilities (if needed),
and the computational cost incurred as a result. Aside from being the most cost efficient
solution, performing all the processing at the host has other advantages. System upgrades
are much easier since the only part of the system that will need to be modified is the host.
System development is also easier if it is concentrated on one machine. Using a workstation
(like a SUN) as a host makes it possible to take advantage of the numerous software tools
available for program development, data display, and user interface development. The host
should reside on high-speed network to make for easy communication with other hosts. This
would have the added advantage of allowing a second host to take over if the primary host

fails.

Operation Image Size Time Comments
Subsample - 512x512 60 ms 512x512 to 64x64 subsample
Superpixel 512x512 264 ms 512x512 to 64x64 spatial average
Subtract (signed) 512x512 640 ms
Subtract (unsigned) | 512x512 946 ms
Subtract (signed) 64x64 10 ms
Subtract (unsigned) 64x64 10 ms
Il Add 512x512 676 ms
| Add 64x64 8 ms
Divide-by-Const 512x512 428 ms
Divide-by-Const 64x64 12 ms
Threshold 512x512 94 ms
Threshold 64x64 2 ms
Convolve 512x512 | 17.78 sec | 8x8 Convolution Kernel - all coeflicients = 1
Convolve 64x64 346 ms | 8x8 Convolution Kernel - all coefficients = 1
Median Filter 512x512 | 27.74 sec 3x3 Kernel
Median Filter 64x64 434 ms 3x3 Kernel

Table 1: Software Execution Times of System Primitives - These figures were derived by per-
forming the UNIX service routine "Profile’ on all computational primatives. Each operation
was coded minimally - see figure 10 - and executed 5 times on a Sun 4 work station at low
use hours. The average time of execution for each primitive is represented here. Maximum
resolution of the profile utility is 10 ms. Higher resolution terms given here are a function

of the averaging process.

Operation DataCUBE Imaging Technologies 11
Digitization DigiMAX ADI-150
$2450.00 $2995.00
30 FPS - 10 MHz 30 FPS - 10 MHz
” 8-Signal Multiplexing 4-Input
Gain and Offset Control Programmable Gain and Offset
Storage Framestore FB-150
$3850.00 $2995.00
" 3 512512 8-bit images 2 512x512 images 8-bit (1 MByte)
Pan and Scroll Pan, Scroll and Zoom
or
FB-150-1k
“ 3495.00
8 512x512 8-bit images (4 MByte)
Convolution MaxSIGMA ALU-150
$5100 $1995 l
Programmable Kernel Size General Purpose IP Board ‘
Or
N RTC-150
$m
Real-Time to 4x4 Kernel
Or
RTMP w/Convolver
| $995.00 + $1495.00
General Purpose Computational Module
w/Add-on Convolver
Up to 8x8 Kernel
Subtraction MAX SP ALU-150
$1550.00
General Purpose IP Board
Thresholding MAX SpP ALU-150
Reference Frame MAX SP, Framestore ALU-150, FB-150

Median Filter

$3300.00 (Estimate)

$3300.00 (Estimate)

Table 2: DataCUBE/Imaging Technologies Hardware Comparison - Prices given are quoted
from catalog information received in January 1992. These prices are intended as references

only and are considered to be subject to change at any time.

10

Arch.

1

2

3

1

5

6

comments

I- LANL

$2450.00

$6300.00

$7850.00

$7850.00

$11150.00

N/&

D.C. Cost

$2995.00

5990.00

$7985.00

-$7985.00

$11285.00

N/A

I.T. Cost
FB-150

$2995.00

$6490.00

$8485.00

$8485.00

$11785.00

N/A

LT. Cost
FB-150-1K

34.38 s

29.15 s

28.23 s

28.17 s

470 ms

N/A

Total System
Run Time

IT- VMD/

TCATS

$6300.00

$7850.00

$12950.00

$12950.00

$12950.00

$12950.00

D.C. Cost

$5990.00

$7985.00

$10475.00

$10475.00

$10475.00

$10475.00

I.T. Cost
FB-150
RTMP w/
Convolver
(Only option
considered)

$6490.00

$8485.00

$10975.00

$10975.00

$10975.00

$10975.00

LT. Cost
FB-150-1K

1891 s

18.00 s

18.00s

250 ms

230 ms

170 ms

Total System
Run Time

No HPF

36.69 s

35.78 s

18.03 s

290 ms

260 ms

200 ms

Total System
Run Time

With HPF

MIPS

$2450.00

$7550.00

$7550.00

$9100.00

$9100.00

$9100.00

D.C. Cost

$2995.00

$5485.00

$5485.00

$7480.00

$10475.00

$10475

I.T Cost
FB-150
RTMP w/

Convolver

$2995.00

$5485.00

$5485.00

$7480.00

$10975.00

$10975

LT Cost
FB-150-1k

1891 s

1.71 s

1.71 s

114 s

230 ms

170 ms

Total System |
Run Time
No HPF

36.69 s

18.95 s

1.20 s

1.17 s

- 260 ms

200 ms

Total System
Run Time
With HPF

Table 3: 3-Architecture Cost/Speed Comparison - This table is a consolidation and reduction
of Tables 1 and 2. Software execution times given consider only unsigned subtraction in the
change detection operation. This is the slower subtraction, but is necessary to obtain absolute
change values. Imaging Technologies costs consider both the 1 MByte and 4 MByte frame
buffers, but only the RTMP board with the convolver option is considered. Numbers across
the top of the table refer to the hardware/software break points shown in figures 2 through

4.

11

§.

-

Image Offset & Spatial/Temporal . Change Data g
Acquisition Gain Averaging Filtering Detection Storage | . g
Change Human Motion Alarm E

Analysis Detection Decision 5

' =

Figure 1: Project Overview

12

Average of 10

e } o e
i:ii... {.Offset :
Analog /37 bf5™ In .
? o : put Current !
Ilnr;put X Z Frame Frame Threshold
age
] ()
Ref Median
Dehy Frame Filter
Y C
- Hardware Software

Circled numbers indicate hardware/software break points sampled in table 3.
Figure 2: LANL System

Analog L S) R
g e k) e O :
Image . ew ve
0<ax<l
Ref
Frame
Delay

‘Hardware | Software

. HPF LPF g Subsample I

I - Image

©

Circled numbers indicate hardware/software boundary test points refered to in table 3.

Threshold

8 x 8 Superpixels

Figure 3: VMD - Video Motion Detection (TCATS)

14

: Gain gesreesensveny
Analog :r' (3 Y '.."’ ';': poecesmesseavany
Inpuc — X > i——= AD LPF > HPF
Image St
< Hardware Software -
Subsample Current ;
Image Frame Threshold
Y
Delay Ref
1 Frame Frame

Circled numbers indicate hardware/software boundary test points for table 3.

Figure 4: MIPS

Digitization Values

Digitization Values

Digitization Values

255

B
:

BN
>
$

/\ X/ - Image Mean
127 \\/ \/‘\/\/ \v4 Y/U V \Y \J

&

o

a) Analog Input Image ~ Unprocessed

191
A\

127

63

b) Input Image w/Gain of 2

il ANA L

127 V U \) V V ~+—— Image Mean

255

- 191

¢) Input Image w/Gain of 2, Offset of -127

Figure 5: Advantages of gain and offset processing. In a) the unprocessed input image
covers a small range of A/D values giving low resolution. Gain is applied in b) resulting in
a better spread of the image over A/D values, but moving the mean of the image away from
its original value. In c) an offset is applied to the gain-processed image to return it to the
original mean. The entire process doubles the resolution without distorting the input image.

16

[%time | cumsecs | #call | ms/call| name

Ftime | cumsecs | #call | ms/call | name |
iL 98.4 8.51 1 8510.00 | _main
1.0

I
50.0 0.01 266 0.04 .umul |
50.0 0.02 266 0.04 cfree |

8.60 794 0.11 sbrk
0.0 0.02 266 0.00 .udiv 0.2 8.62 1561 0.01 _malloc
0.0 0.02 1 0.00 exit 0.2 8.64 mcount
0.0 0.02 266 0.00 free 0.1 8.65 794 0.01 umul
0.0 0.02 1 0.00 _main 0.0 8.65 794 0.00 udiv
0.0 0.02 644 0.00 | _malloc 0.0 8.65 794 0.00 cfree

0.0 0.02 1 0.00 | _on_exit 0.0 8.65 1 0.00 exit
0.0 0.02 1 0.00 -profil lk 0.0 8.65 794 0.00 free
0.0 0.02 266 0.00 sbrk {{ 0.0 8.65 1 0.00 | .on_exit
{ 0.0 8.65 1 0.00 -profil

Figure 6: Example 'profile’ runs on Subsample and Convolution Primitives. Operations are
arranged, by the utility, in decreasing order of execution time. Maximum resolution is seen
to be 10 ms in the cumulative time analysis. It is the cumulative time that was used to
determine the tables and figures presented in this report.

Total Process Execution Time (Sec.)

A

| |

32

BR Y R 8E
NN NN NN NN N NN NN NN

[
N

-
H

S S S S S L

—
(=T N

N O ®

/AL

1 2 3 4 S 6 7 8 9 10 11 1
Cost (K$)

= Imaging Technologies w/4 MByte Frame Buffer

DataCUBE

Figure 7: Architecture I - Execution Time/Cost Comparison. 4 MByte I.T. Frame Buffer.

/g//z// 777777
/1
/1
/-——
/1
20
19/ ;_
18/ /"‘
17/ /""
6V A
15/ /""
14/ /"—
~ - _
g 13 /|
$ el A]
g |/ | _
§ 11/ /
i 1 |
i gn _
= v B _
& / ,
5/ JSS S S S STAS S S /56
45 4 ‘y&“
3 3 08
'Zj 2@60*‘@0
DI

1 2 3 4 5 6 7 8 9 10 11 1213
Cost (K$)
== Imaging Technologies w/4 MByte Frame Buffer
— DataCUBE

Figure 8: Architecture II - Execution Time/Cost Comparison. 4 MByte I.T. Frame Buffer.
19

No HPF.

' N7 7727777777
L a
g _
g _
n _
/]
20 —
L/ 71
19 -
m; 7 _
17 / /"— p—
16 p—
o g i
14 / —
= LV _
g |
N]
w 9 A]
g .V | _
£ 1 _
s 7 V4 /]
T TT T T AT 777
) |
4 / 4 Q6$
3 / 3 ‘bﬁ
e
2 ¢ 2 €,e‘*@‘
1 / 1 e‘éo
S S S S S S S S S Y

1 2 3 4 S 6 7 8 9 10 11

Cost (K$)
EE—— Imaging Technologies w/4 MByte Frame Buffer

—_— DataCUBE

Figure 9: Architecture III - Execution Time/Cost Comparison. 4 MByte I.T. Frame Buffer.
No HPF.

i

/x

Function: N/A

File: time_test.h

Programmer: Scott P. Chapman

Date: 5 January 1991

Project: LANL High Security Image Processing
- time testing code

Parameters: N/A

Functions Called: N/A

Called By: {(Used In:)

Description:

This is the header file contained in the test code for
the LANL High Security Image Processing project. This
test code is intended to time the various major function
blocks to be executed in the project. These blocks are:

- Spatial filtering by reducing an image from
512x512 to 64x64. This is achieved by re-
placing every 64th pixel by the average of
itself and its 63 nearest neighbors. The
pixel to be replaced will be the 3,3 pixel in
an 8x8 (0-7,0-7) block of the original image.
subsequent operations will be time tested on
both the original 512x512 image and the re-
duced 64x64 image.

- High and low pass filtering through 8x8
2-dimensional convolution.

[(512x512) or (64x64)] * {[8x8 (additions +
multiplications)] + 1 addition}

- Image subtraction -~ subtracting one image
from another to determine where changes have
occured - 512x512 or 64x64 signed subtrac-
tions.

- Image thresholding - comparing the change de-
tection to a threshold value to determine if
detected change is random and arbitrary or
real - 512x512 or 64x64 comparisons.

- Temporal image averaging - the filtering
performed by the present system. Ten images
are stored and then averaged pixel-by-pixel
[(512x512) or (64x64)] * (10 additions + 1

division)
Modifications:
*/

#include <stdio.h>
#include <strings.h>
#include <ctype.h>
#include <math.h>
/* BOOLEAN data type */
#define FALSE 0
#define TRUE 1

L T

typedef int BOCLEAN;

/* Macros */

#define MIN(a,b) (((a) < (b)) 2 (a) : (b))

#define MAX(a,b) (((a) < (b)) 2 (b) : (a))

#define STR_LEN 81 /* lines 80 characters+l for NULL */
#define NO_ANS -1 /* gparm answer file */

typedef ’ char STRING [STR_LEN]:

/* constants defined below represent the row and column lengths and total image
area for the normal and reduced images (512x512 and 64x64) and for those
images that have been extended to allow zero padding around their peri-
pheries to accomadate non-circular convolution with an 8x8 Kernel.

*/

#define NORM_X 512

#define : NORM_Y 512

#define NORM_IMAGE NORM_X * NORM_Y
#define RED_X 64

#define RED_Y 64

#define RED_IMAGE RED X * RED_Y
#define EXT_NORM_X 526

#define EXT_NORM_Y 526

#define EXT NORM IMAGE EXT _NORM X * EXT_NORM Y
#define EXT_RED_X 78

#define EXT RED_Y 78

#define EXT_RED_IMAGE EXT_RED_X * EXT RED_Y
#define KERNAL_X 8

#define KERNAL Y 8

#define KERNAL KERNAL X * KERNAL_Y
#define ABOVE_THOLD 1

#define BELOW_THOLD 0

void main ()7

je

Function: void main ()

File: subsample.c

Programmer: Scott P. Chapman

Date: 13 January 1992

Project: LANL High Security Image Processing
- time testing code

Parameters: None

Functions Called: malloc ()

Called By: User

Description:

The function reduces a 512x512 image to one that is
64x64 by copying pixels from every 8th row and column
from the original image to the target image. To reduce
the overhead of the file operations, no image is
actually read in, but the values returned by malloc ()
are considered acceptable. As in all primatives
measured, image values are declared to be of type

integer.
Modifications:
*/
#include "time_test.h"
void main ()
{
int **orig image,

**target_image;
int **temp_ image;
int i, 3, k., 1;

/* build original-sized image and reduced image data arrays */

orig_image =
(int**) malloc (NORM_ Y * sizeof (int*));

target_image =
(int**) malloc (RED_Y * sizeof (int*));

temp_image =

(int**) malloc (RED_Y * sizeof (int*));
for (i = 0; i < NORM Y; i++)
{

orig_image [i] =

(int*) malloc (NORM X * sizeof {(int)):;

} /* for */
for (i = 0; i < RED_Y:; i++)

{

target_image [i] =
(int*) malloc (RED_X *-sizeof (int));

temp_image [i] = (int*) malloc (RED_X * sizeof (int)):
} /* for */

for (i = 0; i < NORM_Y; i += KERNAL Y)
{
for (j = 0; j < NORM_X:; j += KERNAL X)
{
target_image [i/KERNAL Y] [Jj/KERNAL_X] = orig_image [i] (3]:
} /* for */

} /* for */

} /* main */

v

Function: void main ()

File: convolve.c

Programmer: Scott P. Chapman

Date: 18 January 1992

Project: LANL High Security Image Processing
- time testing code

Parameters: None

Functions Called: malloc ()

Called By: user

Description:

Function performs an 8x8 convolution on an image of size
512x512. The 8x8 convolution kernel consists of weight
values all equal to 1. To reduce overhead, no image is
read in. Rather, the values present when memory is
malloced are considered appropriate. The image is
placed in a frame, initialized to zero, that extends 7
pixels in all directions around the original image. As
the convolution proceeds, the resulting image is 7
pixels longer to the right and taller to the bottom.
The actual value of a pixel in the target image is the
summation of the pixels of the previous 8 rows and
columns. This value will certainly overflow the 8-bit
values of the original image. For this reason, all
image arrays are declared to be of type integer.

Modifications:

== */

#include

"convolve.h"

void main ()

{

int **orig image,
**image_frame,
**target_image;

int **temp image:

int i,

jr X, 1;

/* build original-sized image and reduced image data arrays */

orig_image =
(int**) mal
target_image =

loc (NORM Y * sizeof (int*)):

(int**) malloc (TRG_NORM Y* sizeof (int*));

image_ frame =
(int**) mal

loc (EXT_NORM Y * sizeof (int¥*));

for (i = 0; i < NORM Y; i++)

{
‘orig_image
(int*)

[i} =
malloc (NORM X * sizeof (int));

} /* for */
for (i = 0; i < TRG_NORM_Y; i++)

{
target_image [i] =
(int*) malloc (TRG_NORM X * sizeof (int)):
} /* for */
for (i = 0; i < EXT_NORM Y; i++)

{
image frame(i] =
{int*) malloc (EXT NORM X * sizeof (int));
} /* for */

/* initialize image frame border to 0 */
for (i = 0; i < 7; i++)

{
for (j = 0; j < EXT_NORM X; j++)
{
image frame [i] [j] = O;
} /* for */
} /* for */
for (i = 7; i < EXT_NORM_Y; i++)
{
for (j = 0; 3 < 7; j++)
{
image frame [i] [j] = O;
} /* for */
} /* for */
for (i = EXT_NORM Y ~ 7; i < EXT_NORM Y; i++)
{
for (j = 0; j < EXT_NORM X; j++)
{
image frame [i] [j] = O:
} /* for */
} /* for */
for (i = 7; 1 < EXT_NORM Y; i++)
{
for (j = EXT_NORM X - 7; j < EXT_NORM X; j++)
{
image frame [i] [j] = 0;
} /* for */
} /* for */

/* read image into frame */
for (i = 7; i < EXT NORM Y - 7; i++)

{

May 3 09:55 1993 LANL_REPORT Page 1

Image Change Detection in a Static High Security Environment
Image Compression, Storage and Retrieval

I. Introduction

This document is presented to accompany initial delivery of the image data
storage and retrieval subsystem of a high security image change detection
alarm system. This work was sponsored by Los Alamos National Laboratories
(LANL) and performed by the Electrical and Computer Engineering Department of
the University of New Mexico (UNM) (NEED CONTRACT NUMBER??!!). The subsystem
performs image acquisition, data compression and storage. It also provides a
means for data retrieval and animated data review.

This report begins with a general description of the overall project into which
the work fits as a subsystem. The following section gives a more detailed
look at the subsystem itself, defining its tasks, implementation and

relation to the parent system. Section IV is a user’s manual. It presents
the configuration management of the software that makes up this project. It
proceeds to detail the various procedures an options the user has available.
Finally, a conclusion sums up the work do date and gives a brief analysis of
system performance. It also suggests directions the project might move over
the next year.

II. Image Change Detection Alarm System.

The work presented in this report is being sponsored by LANL in support of an
image change detection alarm system. These alarms are to be installed in low
level nuclear waste storage facilities. The environment is simulated in figure
1. Nuclear waste is stored in sealed, stacked metal drums. Drums are labled
for contents and serialized with high contrast characters. Surveillance is
performed by 4 to 6 cameras per storage area, which provide complete video
coverage. The environment is completely static in both lighting and motion.
This simplifies the matter of alarm generation, since any real change in the
scene can be interpreted as an alarm condition. The requirements for this
project are that even minor change be detected and recorded. For instance,
should a barrel be shifted even slightly, the fact would be noted and the barrel
in question identified. Images are acquired from each camera with about a

15 minute period.

The general process of image change detection is shown, along with a simple
example, in figure 2. Prior to putting the system into operation, a non-alarm
reference image is recorded for each camera. While in operation each camera
acquires a (presumably noisy) image that is then processed to produce a noise-
reduced image. Current processing includes a median filter, wherein each

image pixel is replace by the median value of itself and all its neighbors.
This technique is effective at removing random speckle noise. Another filtering
technique that is used is to acquire 10 images in rapid sequence and to produce
an acquired image that is the average of these images.

Once the image is acquired and processed, it is compared to the reference image
by subtracting the reference from the current image pixel-by-pixel. Where
there is no change, the absolute difference will be near to zero, while pixels

s

May 3 09:55 1993 LANL_REPORT Page 2

showing real change will have large absolute difference. 1In general, due to
noise, pixels showing no change are not exactly zero, but are within some
threshold value of it. TFor this reason, the change image is clipped by setting
pixels of absolute value below the threshold value to zero. The change image
is then scanned to determine if real change occured.

If change is determined to have occured, an alarm condition is set and the
image is examined to determine if the change involves human activity. Due to
the static nature of the environment, human intrusion is simply defined as
change that spans a large number of pixels. That is, change in the image of
greater than a particular size. If the activity is found to be human, the
subsystem described in this report is enabled. That subsystem acquires images
at an accelerated rate, compressing and storing them. Whether or not the
change is deemed to be human activity, further processing to analyze the
scene is performed by the main security system before returning to a no-alarm

state.

III. High Speed Image Acquisition, Compression, Storage and Retrieval

The image acquisition and storage system that constitutes the subsystem being
presented is intended to photograph the secure area at accelerated rates during
human intrusion. Such data can be recovered at a later date for analysis or
prosecution. The target frame rate throughout the project has been a maximum of
3 FPS (frames per second). A normal video frame is 512 x 512 pixels of 8-bit
grey scale data. Storage of decompressed images at such a frame rate would
reduce disc or memory space at a rate of 5.2 MBytes per minute. Extended
intrusions, or intrusions in the field of view of multiple cameras can quickly
deplete storage assets. For this reason, fast and effective data compression
techniques were desired. However, in image data compression, speed is gained
at the expense of accuracy and vice versa. To help balance the system, a
certain amount of loss of resolution was deemed acceptable.

The primary data reduction technique is simply a 16 times reduction in size of
the image. This is accomplished by placing the average of a 4-pixel-by~4-pixel
area of the original image intec a single pixel of the new image, then moving
the averaging window a full window width before repeating. An immediate 16X
compression is realized. This technique has the disadvantage of being
irreversible. However, given the large scale of the change being detected,

the loss in resolution is deemed acceptable.

Even in a dynamic environment, there is a great deal of redundancy in a series
of images. For this reason, although this subsystem is not concerned with
detecting change, the system was designed to operate on a change image that

is the difference between the current image and a reference taken with this
same camera. At first glance, this introduces a undesireable factor. The
signed difference image has a dynamic range of 9-bits, compared to the current
grey scale image whose dynamic range is 8-bits - A decrease in compression
efficiency by a factor of 1.13. This becomes a factor of 2.0 when one considers
that C does not support a 9~bit data type, causing the system to require a
16-bit short int data type to store the signed difference value. Experimenta-
tion showed that the problem could be solved by filtering the difference image
by shifting the signed difference value right a single bit and shifting out the
low order bit. This will shift the value of a pixel in the reconstructed image
by 1, over 50% of the pixels. That is, the shift leaves all pixels even valued.
On an average, half the pixels are odd valued and are altered in this process.

May 3 09:55 1993 LANL REPORT Page 3

The degradation is not visible.

Once the 8-bit difference image is available, it is filtered by clipping all
values below a threshold. Once clipped, the thresholded change image lends
itself to a second level of data compression. In those areas of the image where
no real change is occuring, the change image will contain long strings of zeros.
Storing each pixel value over these regions becomes redundant. Instead one need
only store a single image value - 0 - and the length of the string of
consecutive zeros. An abbreviated example is given in figure 3. Note that the
efficiency is slightly reduced in that the length of runs of non-zeros must also
be stored. Also, run lengths of greater than 256 are to be hoped for. As a
consequence, the run length values must be stored as short int (16-bit). An
advantage to this system is that the original difference image that is so
compressed is completely recoverable,

A flow diagram of the entire subsystem is presented in figure 4. Once invoked
by the parent process, the subsystem runs as a process completely independent of
and in parallel with the parent. Communication is through a file read by the
subsystem and written to by the parent. This file ("stopfile" in the diagram)
is read after processing each image. It contains a single "stop" flag.

If true, the process quits. Otherwise, it continues with the next image.

The process begins by taking a single image. The image is subsampled from
512 x 512 to 128 x 128 and stored to its own file without further processing.
It is also held in memory to be used as the reference file for future images.

Once the reference image is processed the system begins to acquire images that
are fully encoded. An image is received and immediately subsampled. The
resultant 128 x 128 image has the reference image subtracted from it creating
a 9-bit signed difference image. This image is shifted and clipped. 1In
clipping, values below the threshold are set to zero, while those above it
retain their value. The new 128 x 128 8-bit clipped image is then run-length
encoded. This produces two files: the 16 bit run-length file and the 8-bit
data file. Finally, the stopfile is read to determine if the process should
continue.

Data retrieval performs the opposite operation from the encoding process. The
reference file is first read from disc. Then the data file and run length
file are read and used to reconstruct the difference image. The difference
image is shifted left one bit to create a 9-bit (16-bit data type) signed
difference image. This image is lost some information in reconstrution in that
the low order bit will always be zero due to shifting. This will alter an
average of 50% of the pixels by a single numeric value. The retrieved change
image is added toc the reference image to regain the 128 x 128 image that is
represented by the change image. This becomes the retrieved image. ©No further
reconstruction of the original image is possible.

IV. User’s Manual

Configuration Management:

This project was constructed under the Khoros software development
management tool. It is distributed into the standard Khoros
directory tree as described in reference 1. It is highly recommended

May 3 09:55 1993 LANL REPORT Page 4

that anyone who attempts to modify the routines describe herein
familiarize themselves with references 1 and 2. The Khoros toolbox
is called "learn" and has as its root directory:
/home/tardis/scott/learn
Executable files are located in:
/home/tardis/scott/learn/bin
Source files each have their own directory in:

/home/tardis/scott/learn/src

In addition, the decompress directory holds sample multi-band VIFF
images in:

/home/tardis/scott/learn/src/decompress/samples/...
Execution is generally tested in:
/home/tardis/scott/learn/src/rundir
For Khoros programmers only, the vf routine .form file is in:
/home/tardis/scott/learn/repos/cantata
and the panes in:
/home/tardis/scott/learn/repos/cantata/subforms
The xv routine decompress has its .form file in
/home/tardis/scott/learn/repos/decompress
The mf file is found in:
/home/tardis/scott/learn/repos/config/src_conf
and several .def files are in:
/home/tardis/scott/learn/repos/config/imake_conf
For the present, only learn.def should be used.
All the directory configuration given above is in accordance with
standard Khors distribution. The .Toolboxes file is located in
/home/tardis/scott. Files are set to read and execute for everyone.
In addition, write permission will be given to the group on all
project files. This slightly dangerous tactic will allow all concerned
to modify the code. It is suggested that once the project gains a
new developer, that that person remove the global write permission.

Write permission within the rundir and src directories is already
global to allow interested parties to execute the existing routines.

May 3 09:55 1993 LANL REPORT Page 5

User’s Guide

The functions described below are intended to be executed under the
Khoros Cantata visual programming environment. They may also be
executed from the command line, though guidance for doing so is not
presented. Executing Cantata as follows will allow the "learn"
toolbox to appear in the menu system - thereby allowing execution
of the non-Khoros routines described below:

cantata -form /home/tardis/scott/learn/repos/cantata/learn.form &

This discussion generally assumes that the user is familiar with
Cantata.

There are three main groups of functions described below. The first
of these divides the project into individual glyphs for each step

of the compression and image recovery procedure. This is useful

for demonstration purposes, as each step can be linked to an image
display glyph such as putimage. To arrange such a demonstration,
place the glyphs as in figure 5. The demonstration will take a single
image through data compression and recovery. Functions in this

group include get_image, reduce, subtr, clip, rl and recover.

The second group includes two functions that served as intermediate
stages in the development of the project. The functions they serve
are useful and should be retained for future availability. record vf
is the full compression routine. However, it takes its input from

a multi-band VIFF image rather than from a camera. This may have
applications in reducing the size of (then deleting) VIFF images.

dsply reverses the process of record vf by taking compressed image data
files and producing a multiband VIFF output.

The final group of routines is the deliverable project. It includes
record, for full camera-input image compression. decompress serves

as the image recovery, providing and animation of images compressed

into a file as discussed below. rec_strt and rec_stp are temporary

sexrvice routines.

A function-by-function description of the project is given below. Each
functional description is accompanied by a figure representing its
pane, including the default input values. Figure 6 (not yet available)
shows the function selection pane on Cantata - MORE DISCUSSION NEEDED.
Note that the images and defaults associated with each function are
constructed from an older version of this program and may not reflect
the current state of the Cantata panes.

get_image

Figure 7 -~ Used in the demonstration. Function takes an image
from the camera and creates a single VIFF output to be passed
to the next function. This project was created on DataCUBE
hardware, though LANL uses Videopix equipment. get_image
works only with the DataCUBE boards. For this reason, a VIFF
image should simply be written to the directory from which the
demonstration is running and passed to the reduce function.

May 3 09:55 1993 LANL REPORT Page 6

reduce

subtr

clip

Defaults:

Input Board (DataCUBE)} - 0
Input Framestore (DataCUBE) - 0
Output File - new_image

Figure 8 - A demonstration function. reduce takes a 512 x 512
input image and returns a 128 x 128 output image. Each pixel
in the output image represents the average of a 4 x 4 block

of pixels in the input image. This is the primary and
unrecoverable method of data compression in this project.

Defaults:

Input Image - i_image
Output Image - o_image

Figure 9 - For demonstration purposes, subtr takes two 8-bit
grey scale images - generally the current image and the
reference - and produces a 9-bit signed (actually 16-bit short)
image that is the difference of the inputs. This technique

is used to detect changes between two images, or, as in this
case, produce an image that is easier to compress and from which
the original may be regained.

Defaults:

Reference Input File - r_ input
Current Input File - c_input
Difference Output File - difference

x Dimension - 512
y Dimension - 512

Figure 10 - Demonstration. This function takes an input image
that is signed (short) and a threshold value. It returns an
image that is identical to the input for all values above the
threshold. All values in the input image that are at or below
the threshold are set to zero in the output image. This tech-
nique filters noise in the unchanged pixels and creates an
image that can be compressed using run length techniques. It
is at this point that the 9-bit signed difference is shifted
right to an 8-bit signed difference image.

Defaults:

Unclipped Input Image - i_image
Clipped Output Image - o_image

Clipping Threshold - not given

May 3 09:55 1993 LANL_REPORT Page 7

rl

recover

dsply

X Dimension - 512
y Dimension - 512

Figure 11 - Demonstration - This function takes the 8-bit
signed difference image and scans it for strings of zero (no
change) values. These strings are encoded by storing the
length of the string in one file and a single zero in another.
Strings of non-zero values are stored as the length of the
string and a single entry for each non-zero value. Compression
on the image is on the order of the length-of-the-string-to-2
for each string of zeros. This function works on a single

image.
Defaults:

Input Image - not given
Run Length File - rl
Output Data File - dat

X Dimension - 512
y Dimension - 512

Figure 12 - Demonstration function. recover takes the single
image encoded in the output of rl and rebuilds the change image.
It then adds the change image to the reference image to

recover the original image. Note that the 128 x 128 recovered
image is indistinguishable from the original image of that

size, except for the 1-bit loss in half the pixels due to
shifting to the 8-bit representation. However, the original 512
x 512 image cannot be recovered from this image.

Defaults:

Input Data File - not given

Input Run Length File - not given
Recovered Image - change
Reference Image - not given

Figure 13 - A developmental routine, dsply takes as input
compressed run length and data files as well as a reference
image. It performs the full decompression algorithm and
writes each input out as a serialized VIFF image. These VIFF
images may then be read in by a program such as "animate"

for animated display. This is the actual decompression and
works on input files that are not limited to a single image.

Defaults:

Reference Image Input File - ref

e

May 3 09:55 1993 LANL REPORT Page 8

Run Length Input File - rl
Image Data Input File - data
VIFF Array Output File - series.vff.x

record vi

record

Figure 14 - Another developmental routine. record vf performs

a full compression on the input images just as in the final
deliverable version of this program. The difference is that
this routine served as a transitional state between the
DataCUBE hardware that the project was originally developed on,
and the Videopix hardware the client uses. For that reason,
record vf takes as its input a multi-band VIFF image. This is a
format that is common to all Khoros users and is therefore more
universal than the hardware-~dependent function used in the

final product.

Defaults:

Multi-Band VIFF Imgae Filename - not given
Output Refernce Image - ref

Output Run Length File - rl

Qutput Data File - data

Clipping Threshold - 25

Output Path - ./

Figure 15 - This is the final deliverable version of the

data compression portion of the project. It takes as its input
a VIFF image from a Videopix image acquisition board. For
output it produces a run length and a data file. The first
image it acquires is the reference and this is written directly
out without differencing or run length compression. This
function appends to its data files as it acquires new images.
For this reason it is highly recommended that the operation

be performed in a new directory or the output be written to

a new set of filenames for each new set of data to be acquired.
Results have been unpredictable when an old data file is opened
for appending during a new iteration of the program. The
number of images to be taken by the record routine is open
ended. Each new image is followed by reading a flag from

a temporary file that serves as a communication vehicle with
the parent process. So long as the flag is set FALSE (don’t
stop) the process will continue with a new image.

Defaults:

Input Stop-Flag Filename -~ stopfile
Output Reference Image - ref

Output Fun Length File - rl

Output Data File - data ‘
Clipping Threshold - 25

Output Path - ./

Note: These defaults and figure 15 are out of date. For more

May 3 09:55 199

rec_strt

rec_stp

decompre

3 LANL_REPORT Page 9

accurate information FIX THIS ENTRY.

Figure 16 - This is a temporary function used to test the final
version of the project. This function will be replaced by
similar action in the parent process as the project is
integrated. This function opens the stopfile and writes a
"don’'t stop" flag so that the process may be started and
continue to read images.

Defaults:

Record control file - stopfile
Output Path - ./

Figure 17 - Identical to rec_strt except that it writes a stop
flag to the output file to order the record process to exit.

Defaults:

Record control file - stopfile
Output Path - ./

sSs

Figures 18 - 20. This function is the standard Khoros

animate utility with the front end data building portion of the
original stripped and replaced by a run length decompressor that
builds the requisite multiband VIFF structure from compressed
input files created by record. The function further adds the
capability to zoom an integer factor of the 128 x 128 image
size. Zoom factors range from 1 to 8. 2Zooming is achieved by
simply copying a single pixel into an x-by-x block of pixels in
the new image. The results become blocky and do not improve
resolution. Zoom factors greater than three or four slow the
building of the multiband VIFF and do not provide a better
image. Figure 18 represents the main xv pane. Several items
that appear are related to the original use of animate and are
no longer applicable. Defaults of interest include:

Reference Image Filename - ref
Run Length Filename - rl
Compressed Data Filename - data
Zoom Factor - 1

Once invoked, decompress builds the complete VIFF structure
before the images are passed to the animate portion of the
program for display. The more stored images and the larger
the zoom factor, the longer the delay in displaying the images.
The main display is shown in Figure 19. Images are shown in
sequence from first to last. Sequences may run in either

May 3 09:55 1993 LANL REPORT Page 10

direction and may be single step (single arrow) or continuous
(double arrow). The "Input" button is of no real use in this
version of the animation. However, the "Options" button will
open the window of figure 20. Here, the user can choose between
3 types of continuous animation. Loop will scroll through the
images, returning to the first (and continuing) upon reaching
the last. Single will scroll through and stop on the last
image. Autoreverse changes direction of scroll when it reaches
the first or last image. Scrolling then continues. The user
may also set the frame speed of the scroll in seconds. The
"Show Frame Number" button will make the index of the current
frame appear in the image window, when set to True. Default
values are as they appear in figure 20.

V. Analyses and Observations

The project being delivered in conjunction with this documentation is
operational and ready for integration into the parent system. Precise analysis
of its performance is unavailable as shall be seen. However, in this section
we present both a general analysis and a discussion of suggested improvements
that should accompany or immediately follow system integration.

Throughout this project frame rates have varied between about 5 and 8 seconds.
These frame rates are slower than the target rate. The primary factor seems to
be the architecture the project is running on and the loading of the particular
machine. Suggestions given below may speed compression slightly through
algorithmic improvements, but the real gains will be made as the project is
moved to newer, faster, more capable dedicated platforms. Such improvement is
planned.

The most significant compression ratio is that due to image subsampling. This
is a fixked 16x. As discussed above, this is accompanied by a loss in resolution
and an original image that cannot be recovered. Discussion of run length
compression can only be made in general terms. The efficiency is highly data
dependent. Two factors affect the yield directly: threshold value and the
number of pixels in the unchanged portion of the image. The higher the
threshold and the more unchanged pixels, the better the compression. Data
presented in the ISE paper saw compression factor of between 1.4 and 2.0 due to
run length encoding. Much better ratios might be achieved in an environment
where the change takes up a smaller percentage of the image. Critical analysis
of this issue depends on examining "real" data from an actual security
installation.

Several "next steps" suggest themselves to the developers of this project. As
the team is changing the guard, it is important that the shortcomings of the
project be noted so that they may be acted on. Here, then, are the logical
directions things might go.

- System integration - Since this subsystem is a separate process,
this step has been designed out, after a fashion, and should
be a relatively simple matter. The functionality of rec_strt
and rec_stp need to be absorbed by the parent system. After
that, a method needs to be devised to signal the subsystem
to start. Perhaps, the subsystem can loop in the background
waiting for the stopfile to be written with a start flag
which could also serve as the don’t stop flag. In this way,

May 3 09:55 1993 LANL_REPORT Page 11

the system would loop between an idle loop and an acquisition
loop.

- Image size generalization - This is probably the next most important
step. Right now, the system is designed to work on input
images of a hard-coded 512 x 512 pixels. The current Videopix
system is running images of 640 x 480. The solution has been
to clip the right side of the image, losing information and
slowing the process as the input image is copied into the
fixed size array. Generalizing input image {(and consequently
subsampled image) size should be a relatively simple matter.
The image returned by the camera read is in VIFF format. This
gives the programmer direct access to the image size. Either
this size or the reduced size must be passed to all the sub-
routines in the compression process. Furthermore, these values
must be passed to decompress through one of the output files.
So, while the changes are simple, they are pervasive.

- Improve decompress file reading - The decompress routine now reads a
single data value at a time, slowing the process with disc
reads. A better solution would be to read both the run length
and the data files into arrays and then index the arrays.
Arrays can be malloced with sizes based on the size of the
file (returned by stat () }. This change was attempted and
worked well on most data. However, some data produced
intractible segmentation faults.

REMOVE THIS??? Just want to double check...

- Updating the reference - Run length efficiency could be improved by
making the current image the reference for the next image
rather than relying on a single early reference. Images that
are closer together in time are likely to have fewer changed
pixels than those that are separated. A brief attempt was made
to perform this update. A closer look is needed at this

technique.

- Interprocess communications - Currently the parent and subprocess
communicate stop commands through a common file. As the system
grows, such a file might be formatted for use to communicate
a good deal more information. One such piece of information
that is needed right now is the clipping threshold. Currently
that value must be entered into the pane of the record
process.

- Automated thresholding - The current plan for setting the clipping
threshold is trial-and-error and to get the threshold as high
as possible (without losing too much resolution) in order to
improve run length compression ratios. A variety of techniques
exist to automate the threshold determination process. These
techniques could also be extended to the parent process which
performs its own thresholding. EXAMPLES AND REFERENCES NEEDED

HERE.

This concludes this programmer’s direct involvement with this project. The
work has been fruitful in many ways. Techniques in image processing we learned
and new modifications of those techniques developed. The Khoros tool was

May 3 09:55 1993 LANL REPORT Page 12

incorporated into the personal toolbox. Experience was gained in intricate
coding. Personal limits were tested. Finally, horizons were broadened as
contacts were pushed beyond the limits of this university. If I might be
forgiven the personal comment, these reasons and others made this project a
satisfying and personally productive endeavor.

References

1. "Khoros Manual Volume 2 - Programmer’s Manual", University of New Mexico,
1991

2. "Khoros Manual Volume 2 - User’s Manual", University of New Mexico,
1991

v

o \

)

v

Figure 1 - Static Secure Environment

uotssaxdwo)

eaeq

Jobbu)

Y

A3taTaioy

urumy

!putssovoagd
I9ylang

prouseayy
°z1§

2INJ02IY2IY TNV JUaLIND -)odfoud Judied - Z ainbig

pe3ioelad
abueyd

proyseayg
anTeA

abeury
*Joy

obewT
aouaI19Iayg

Burssedoag
snotaep

abewy
o9

Buipoouz Ybus uny - ¢ ainbiy

Jeyo
9)id ejeqg

/.|I\‘>
z2L SN

86

St

U Woys
alld yibuay uny

37

(
]

ojlo|oOo|lo|Oo]ojolOo]| N

eed
(2]

Sti

£ot

ool

olojlojOojlojlojo]l o] O

Jeyo - ejeq jeuibuo

wa)sAsqng jeasioy/abeioiguopisinbay — p ainbiy

e Jul 3I0Y4g SWRURTTA
eT13doas STTd w3eq OTTd YabueT uny eouszegey
; obvuwy
82T x 82T
abvuy °
VUBIBIIYS oo
abwuy
paddTTD 319 8 ebvwmy sTduegang obwury S3eTaTUL
82T X 82T 82T X 821 vy %, 399 Jusaeg
[4
[]
’ Hutpoduy 9dwe ob
do | : T sqns ewy abewy
W0 g7 & 43busT uny vxp [+ 395 fo—o 21S X 2TS
ON °
® [J
sbwuy ebeury
sbueyd 31q 6 zIs X ZI§

82T X 871

abfewpnd

JOA003)

dmjag uopessuowaq eieyue) — g ainbi4

ofew aouasoj
8cLxgcl

"

dio

nqns

abewnnd

afewnnd

abewpnd

abewnd afewnnd
aid ddIA ajid ddIA
10 10
ofewi)b abewy)ob
9id 4dIA ajid 4dIA
10 10

obew 126 obew 19b
abewnnd abewind

Input Board
Input Framestore
Output File

Run

| 0

0

new_image

Help

Figure 7 — get_image Pane

Reduce Pane
Input Image i image
Output Image | _o_image

Run Help

Figure 8 - reduce Pane

subtr Pane

Reference Input File
Current Input File
Difference Output File

x Dimension
y Dimension

Run

|Lr_input

¢ _input

difference

L 512

512

Help

Figure 9 - subtr Pane

Clip Pane
Unclipped Input Image |i_image
Clipped Output Image |0 _image
Clipping Threshold
x Dimension | 512
y Dimension 512
Run Help

Figure 10 - clip Pane

Run_Length Pane

Input Image
Run Length File d
Output Data File | dat
x Dimension 512
y Dimension 512
Run

Help

Figure 11 — rl Pane

Image Recovery Pane

Input Data File

Input Run Length File
Recovered Image _change

Reference Image

Run

Help

Figure 12 — recover Pane

dsply pane

Reference Image Input File |ref

Run Length Input File r

Image Data Input File ata

VIFF Array Output File series, vif

Run

Help

Figure 13 — dsply Pane

Full LANL Compress/Record Project Pane

Multi-Band VIFF Image Filename |

Output Reference Image ref
Output Run Length File r
Output Data File - |data
Clipping Threshold [25 l
Output Path W
Run Help

Figure 14 - record_vf Pane

Full LANL Compress/Record Project Pane

Input Stop-Flag Filename [stopfile
Output Reference Image ref
Output Run Length File r
Output Data File data
Clipping Threshold [15]
Output Path { J

Run

Help

Figure 15 - record Pane

rec-strt Pane

Record control file stopfile
Output Path J
Run

Help

Figure 16 - rec_strt Pane

iw

rec_stp Pane
Record control flle

Output Path

Run

stopfile

J

Help

Figure 17 - rec_sip Pane

Display an XVIFF image

Select a multi-band input image:

‘ . Reference Image Filename ref

Run Length Filename 1]
Compressed Data Filename data

Zoom Factor [1 | |

]l
oo
caun

Clip Mask
Shape Mask o ———
Colormap Image !

Use Pixmaps True
Use Rootwindow False |
Create Icons True

Colormap ' Used

X placement coordinate -1
Y placement coordinate -1
Update time 2

CTTT O] 1

D host:display.screen [1

Execute Help

Figure 18 - decompress Pane

[Giyph | DECOMPRESS

Input | Options HELP | QUIT

L < Il <e Ilstop|l > [[> |

Figure 19 — decompress Animation Screen

|HELP | [cLOSE |

Slide show animation of a multi-band VIFF

Animation control

D Loop . Single DAutoreverse

Show Frame Number
Decompress on Rootwindow m

Frame Speed 10.5000 |

Figure 20 - decompress Animation Options

