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ABSTRACT 

Nfvkn  hydromagnetic waves a r e  propagated through a cylindrical 

plasma.  The wave velocity, attenuation, impedance, and energy t r ans fe r  

a r e  studied. The theoret ical  equations predict  cor rec t ly  the.functiona1 

dependence of the velocity and attenuation, and f rom these  quantities accura te  

measurements  .of plasma density and tempera ture  can be obtained. A 

qualitative .agreement between theory and experiment i s  obtained for the 

hydromagnetic coaxia.1. waveguide impedance, and the energy t r a n s f e r r e d  

f r o m  an oscillating circui t  to the hydromagnetic wave i s  measured  to  be 

43 * 1@. 
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INTRODUCTION 
8 

The .generation and propagation of AlfvCn waves. in a gaseous discharge 
. . 

plasma have, been repor ted  recent iy at  ~ e r k e l e ~ '  and Harwell. Such 

3 .  
hydromagnetic waves were  f i r s t  postuaated by Alfvkn to account for cer ta in  

propert ies  of sun spots.  Hydromagnetic waves were f i r s t  generated in the 
. . . . 

laboratory by Lundquist4 'and by Lehnert  using liquid metals .  The p i e  sent 

experiments a r e  s imi lar  except , that the use  of a gaseous p lasma allows .a 
. . 

m o r e  detailed study of the  phenomena, 
. .  . 

' I t  

' . The purpose 'of this  is to  determine various propert ies  
. . 

of Alfvgn-wave propagation in a plabnia. Among the proper t ies  investigated 

were propagati0.n velocity, attenuation,. energy t r ans fe r ,  and dielectr ic  con- 

stant. 
, . 

1. 
In a conducting fluid. an imbedded magnetic field will be constrained 

to  move approxima?ely with t h e  f1ui.d. Such f t f rozen-inu 'magnetic f ie ld l ines 
'. _ . 

propagate AlfvCn waves in  a manner  analogous to  t r ansmiss ion  of waves by 

. a string. F o r  A.lfv.Cn waves the tension o f  the magnetic l ines  i s  given by . . 

2 
Bo /4n, and the density p b y t h a t  of t,he plasma c a r r i e d  ;long with the 

l ines.  Here . . Bo i s  the s tat ic  magnetic-field intensity produced by external  
. . . . 

cbils. Thus the propagation velocity i s  given by 

* 
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in agreement with the resul t  derived from Maxwell1 s and the hydrodynamic 

equations for infinite conductivity. A more general resul t  will be stated 

below. 

The dielectric properties of a plasma may often be used to discuss 

plasma behavior. In particular,  the propagation velocity i s  related to the 

velocity of light c by 

v = v  -c/- A - ( 2 )  

and the impedance of a plasma-filled wave guide by 

where K i s  the dielectric . . 'constant of the plasma .and . Z the vacuum 
0  

- -i,mpedance of the guide. 

When an electric.  field E i s  imposed upon a plasma in a direction 

perpendicular to  an  externally applied .static. magnetic field B  the di- 
0 ' 

electr ic  constant may be calculated directly. The energy added by imposition 

of a field . E  i s  

The magnitude of v i s  E C / B ~ ,  and thus  we have 

2 2 which correct ly yields Eq. (1) for . 4np.c /B0 )) 1 ,  a s  in these experiments. 



THEORETICAL DISCUSSION 

Theoretical discussions of Alfv4n-&ave propagation under conditions 

s imilar  $0 those imposed in the present experiments have been given by 

7 
~ e w i o m b  a n d  by Lehnert. Their resul ts  for propagation velocity and 

attenuation in the presence of noninfinite conductivity and plasma inertial  

effects will be.stated here. 
. . 

' 

A plasma of cylindrical geometry i s  assumed. A uniform magnetic 

field Bo i s  in the z direction along t h e  axis of the cylinder. 
. . 

Torsional waves a r e  induced by an electr ic  field acting between two con- 

centric electrodes 'at  one, end of the cylinder. The radial dependence .of the 

azimuthal magnetic field component b s f  the resulting torsional wave i s  8 

given by 

when the wave frequency i s  smal l  compared with the ion cyclotron frequency. 

The solutions to this equation a re ' f i r s t -o rder  Bessel  functions,. and k i s  
.c. 

. determined ,by appropriate boundary conditions on those solutions .. If the 

wave. frequency is, not smal l  compared with $he ion cyclotron frequency, the 

bg solutions a r e  not easily separated f rom those for br and bZ, but can be 

written. a s  the sum over a set  ,of "principal' mode solutions which a r e  

characterized by'being divergence-free. Newcomb has shown that the 

higher principal modes suffer progressively l a rge r  damping. For this 

reason only the f i rs t  principal mode i s  considered in this discussion, although 
L 

future measurements m i y  yield more  infor&tiori about this approximation. 

The magnetic field components for the lowest-order principal mode 

have .the following form: 



where J and J ;  a r e  t h e  ze ro - and  first-drda; Bessel  functions; 
0 

0 
l3 3' 

O r '  bO z a r e  the amplitudes of the 8, r ,  and z components, 

respectively; k i s .  the complex propagation.constarit; o i s  the wave angular 

frequency; and kc i s  determined by the boundary condition that at the outer 

radius we have 

for  a surrounding conducting .cylinder of radius a .  

The propagation velocity . i s  .contained in the rea l  part  of k. When 

collisions with ne i t r a l s .  are .assumed negligible, the propagation velocity 

8 
i s  given by 

where o is the conductivity. s imilarly,  the.  attenuation i s  contained i n  the 
. . 

7 
imaginary part df k- and is given. by 



I The attenuation caused by neutral  damping may be included with an additional 

9 t e r m  in the total  attenuation factor E = E + E involving the ion-neutral  
. . 1 2 .  . . 

collision frequency v df the fo rm in  
. . 

I 
i 

Both E . and E ' have t h e  same  dependence on B .. Since this  added t e r m  
I 0 

as sumes  the los s  at  each collision of correlat ion between the colliding ion 

and the o rde red  wave mof.ion, Eq. (13) provides an upper l imit  to the effects 

of neutral  clamping. Fgr  the conditions imposed in this experiment we have 

2 2 
kc )) k and 6 G 1 . 3  m - ' a t  B 0 '  12kgauss .  

. . 

GEOMETRY , ,  . .. , 

The geometry of the apparatus used ,in these  experiments  i s  shown in 

1 Fig. 1. A 5- 3/4-in: i .  d; , .34-in. -long copper cylinder is placed. in  a 
. . 

uniform axial  magnetic field o f  the o r d e r  of 10 kgaussi At each  end of the 

cylinder i s  a pyrex insulator in which i s  mounted a coaxial e lectrode 2 in.. 
I ~ in  d iameter  and 2 in. long. After evacuation of the cylinder to  approximately 
I 

\ .  

'016 micron  of Hg. hydrogen gas i s  allowed to flow through thd cylinder a t  a 

3 p r e s s u r e  of 100 microns  Hg ( 7 . 1 ~  protons/crn ). The equilibrium 

p r e s s u r e  ' is  monitored with a P i ran i  gauge which i s  periodically cal ibrated 

by use  of a McLeod gauge. 'The voltaige on each electrode is .  measured  with 
. . 

a sesi.stive divider,  and the res,ults a r e  presented on a dual- t race oscil loscope. 

PLASMA PR'EP-ATION 

The gas i s  ionized.by disch,arging a 45-pf t t s lowtf  co.ndenser bank be- 

tiveen the two center'  e lectrodes.  The resulting cu r ren t  and.voltage waveforms 
. . 

a r e  dispiayed in  Fig. 2 .  The (induclive) impedance of the e x t e r n a l  c i rcu i t  i s  



,, 4 5-/L f d 
Slow b a n k  

1 
lynitron switch Solenoid 

\ '  I 
Transmitted 
wave form 

' ~ v r e x  i n s u l o t o r k o o o e r  cvl inder 

Fig. 1. Experimental geometry. 
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Fig. 2. Slow-bank voltage and current.  Horizontal scale 
1 . 0 ~  sec/large division. . Top t race  i s  voltage between 
the center electrodes at 1000 v/large division. Bottom 

. t race  i s  current  at 40 ka/large division; 
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l a rge r  than the impedance .of the tube,. so that while the condenser bank i s  

charged to 10 kv, only 2 kv appear acr,oss the tube. The ionization mechanism 

i s  not well understood, and has not been studied in this experiment. After 

the .plasma has be.en formed by the s.low bank, a 0.2-pf 'fast condenser bank 

i s  discharged between one electrode and the outer cylinder. This voltage 

c rea tes  a radial electr ic  field at one end of the plasma which induces the 

hydromagnetic 'wave. The resulting voltage triiavefor~~ls url the sending and 

receiving electrodes a r e  displayed in Fig. 3.  

. The wave has been propagated at various t imes after the slow bank 

has.be.en f i red , .  a s  indicated,by.the bracket an. Fig. 2. The fast bank was 

.fired at approximately 65 psec for , this  figure. At the earl iest  t imes  .(before 

the bracket). the . t r aces  a r e  hashy and.the ~ l f v k n  wavecannot. be distinguished. 

Over a range of 70 psec the measured wave velocity i s  essentially constant, 

a s  shown in  Fig. 4, which indicates . . that the density p i s  Eq. (1) i s  not 

changing during th is  t ime.  The .measured wave velocity i s .  shown in.Fig.  5 
. .  . 

a s  a func&ion.of the fast -bank voltage. Since. the velocity i s  constarit over 

the range f rom 4 to 16 kv, the density p in Eq. (1) i s  not changing due to 

ionization o r  other effects o f  the fast-bank voltage. As the slow-bank voltage 

i s  increased, ,  the measured wave 'velocity decreases.  This is. appcrre~l l l~  

caused by evolution f rom the tube walls. Since this effect has not been 

measured quant i ta t ive .1~~ and since the percentage ionization has not been 

independently determined, the d.ensity : p . in. Eq. (1) i s  c'omputed .from the 
. . 

observed .wave velocity* 



Fig. 3.  Received and driving wa.veforms. Horizontal scale i s  
1p sec/large division. Top trace i s  received voltage and 
bottom trace i s  driving voltage. A filter i s '  used to give 

. a horizontal base line. A delay of about, 2 ps ec in the 
received signal can be seen. 



Delay t ime ( microseconds) 

Fig. 4. Measured wave velocity vs. t ime delay between firing 
of slow bank and fast  bank.. ' 



Fast  bonk potent ia l  ( ki lovolts)  
M U  - 18259 

1 

Fig. 5. Measured wave velocity vs .  fast-bank.potentia1. 
- .  
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VELOCITY 

The wave velocity was determined as  a function of B f r o m  dual- 
0% 

beam oscilloscope t r a c e s  of driving and received voltage wave forms s imi l a r  

to those in  Fig. 3. The resul t ing velocities a r e  plotted in Fig. 6.  The 

dependence of wavc velocity on Bo i s  very  near ly  that predicted f r o m  Eq. ( l ) ,  

altho.ugh the dashed "best-fit s t ra ight  l ine extrapolates  to  a nonzero velocity 

in te rcept .  The cause  of this  intercept  i s  not kno.wri. 

 he plasma density can  be evaluated f r o m  the m e a s u r e d  w a v e  velocity 

7 a t  a p a r f i c u l a r  magnet ic  field. At Bo = 10 kgauss,  v = 2.8X 10 cm/sec  
A 

3 y i e l d s  p = 1 .O2 X 1 0 - ~ ~ r n / c r n ~  which i s  equivalent t.o 6; 1 1( 1015 p r o t o ~ l s / c m  . 

ATTENTUATION . 
. . 

. . 
The ra t io 'of  the  rece ived  to  driving wave voltage a s  m e a s u r e d  be-  

tween the center  e lec t rode  and the outer  cylinder i s  plott'ed a s  a function of 

magnet ic  f ie ld i n  Fig.  7 .  This  ra t io  R i s  equal to  

. . 
where  t is given by Eq. (1 2 ) .  e 2  i s  given by Eq. (1 3 ) ,  and L i s  t h e  length 

of  the  tube. The solid cu rve  has  been calculated by the  u s e  of Eq. (14) and 

i s  normal ized  to  fit the exper imenta l  data  a t  12 kgauss.  -We m a y  note that 

i f  the damping caused  by ion-neut ra l  collisions can b e  made  .negligibly 

s m a l l  ( c  << c l ) .  the t r a n s v e r s e  conductivity can  be calculated f r o m  Eq. (12) .  

Thus the e lec t ron  t empera tu re  can  be de termined f r o m  a theore t ica l  d i s -  

. c u s s i o n o f  conductivity such  a s  that given b y S p i t z e r .  l o  A srnall  change in 

t e i - ~ ~ p e r n t u r e  r e su l t s  in a l a r g e  change in the ra t io  of the rece ived  to dr iving 

wave voltage. 



Ax.ial magnetic f ield ( kilogauss) 

- Fig. 6 .  .Measured wave' velocity vs .  axial magnetic field. Dashed 
line' indicates linear depenience predicted by. theory. 



Fig. 7 .  Received amplitude/driving amplitude vs. axial 
magnetic field. Solid curve i s  plot of Eq7(14) 
normalized at 12 kgauss. 
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IMPEDANCE 

The impedance of the device was determined a s  a function of magnetic 

field f rom the waveforms of the driving cur rent  and voltage: At 1.3.3 kgauss 

th is .measured  impedance was found to be 0.085 ohms and the theoret ical  
. . 

impedance obtained f r o m  Eqs. ( 3 )  and (4) to  be 0.080 ohms. However, the 

impedance was observed to  be not a s  strongly dependent upon Bo 
a s  the 

l inear '  relationship predicted f r o m  Eqs. (3) and (4). 

- ENERGY TRANSFER 
I 

The efficiency of the t r ans fe r  of energy f r o m  the external  oscil lating 

c i rcu i t  t o  t h e ' h y d r o m a g n e t i  wave .has been;measured; The energy delivered 
. . 

to  the driving e lec t rodes  by the oscillating circui t  h a s  beenobtained by 

numericdl  multiplication of the measured  cu.rrent and voltdge waveforms. 

The second and t h i r d  half cycles hav,e been chosen for this  comparison. The 

energy content of the wave in this  s a m e  interval  has  been measured  with 

magnetic' ;robes. For  a wave t ravel ing in the positive z direction Cowling 
11 

gives 

i3 
0 '  9 

- .  & - ,- 
J 

V~ . , 

where .q i i  the  magnetic fi:eld associated with the wave, 7 i s  the 

( t r ansve r se )  p lasma velocity, Bo i s  the s ta t ic  a x i a l  magnetic field, and 

2 
. .vA i s  the Alfv6n velocity. Then the magnetic energy,  b /8n per  unit 

. , 
2 

volume, equals the kinetic .energy,. 1/2 p.V per  unit volume. The magnetic 

field of the wave i s  measured  with a probe located 1-3/4 in. beyand the end 

of the driving electrode a t  a radial  position r = r midway between the 
P 

coaxial e lectrodes.  The l a rges t  magnetic-field component associated with 

the wave i s  be . We also  observe  the presence  of br and bZ,  but these  a r e  

2 sma l l  compared with b s o  that b r 2  and bz can  be neglected in  comparison 8 



2 : 2 .  
with be for a f i rs t -order  calculation, Thus f rom the energy density 

2 
be /8n we calculate the energy that flows past the probe during the second 

and third half-cycles of the wave, add ari equal amolint of energy to represent  

2 
the kinetic energy 1/2 pV , and compare the resul t  with the energy input from 

the external oscillating circuit  to the driving electrodes. 

We measure  with the magnetic probe the value of be at r = r Since 
PO 

our  analysis includes only the lowest-order mode, we have shown above that 

where boo 

The magneti 

is  determined f rom the measured value of bg at r = r 
P 

c energy of the wave i a  calculated by integrating bZe/8n over 

r and t at  z = 0. The time integral i s  done . . a s  a summation employing the 

output wave' forms of the magnetic probe. Energy input during the two 

6 
half-cycles is found'to be 9.5X 10 e rgs ,  while that in the wave for the same 

, . . . 

6 interval  is- 4,l X- 10 e rgs ,  indjcating the t ransfer  of (43.* 10) '-7'0 of the input 

energy to ,the wave.  

The fate of the:- remaining energy i s  not presently .known, but may be 

in insulator . or sheath losses ,  o r  possibly in a rapidly attenuated wave . 

propagated in'the negative z direction, In any event, the t ransfer  of an 

appreciable fraction of the input energy into .~ l fv&n-wave  energy i s  possible. 
13 

The magnetic probe measurement indicates that the field associated 

. with the wave i s  about 100 gauss. Since the static field i s  10,000 gauss, the 

wave field i s  .about 170, and therefore 'a. small-amplitude theoretical t r ea t -  

ment i s  valid. 
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The f i r s t  t e r m  i s  constant, the second i s  negligibly smal l ,  but the 

third t e r m  could be appreciable since Bo i s  la rge .  However, i t  can 

be shown that the spat ia l  integration of this  t e r m  over  the tube radius,  
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Under.these conditions Stix predicts that the wave energy will be 

absorbed and. thermalized by the  ions of the plasma,  thus providing'  

an at t ract ive heating mechanism. The proposed p lasma density - i s  
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UI such curl~rac t o r  p r e p a r e s ,  d i s s e m i n a t e s ,  o r  p r o v i d e s  a c c e s s  
t o ,  any  i n f o r m a t i o n  p u r s u a n t  t o  h i s  employment  o r  c o n t r a c t  
w i t h  t h e  C o m m i s s i o n ,  o r  h i s  employment  w i t h  s u c h  c o n t r a c t o r .  




