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SUMMARY

s
Traveltimes of head waves propagating within a three-dimensional (3D) multilayered earth are described

by straightforward mathematical formulae. The earth model consists of a set of homogeneous and
1sotropic layers bounded by plane interfaces. Each interface (including the surface) may possess arbitrary
strike and dip. In this model, the source-to-receiver raypath of a critically refracted wave consists of a set
of straight line segments, not confined to a single plane. Algebraic derivations of the traveltime
expressions are greatly simplified by using a novel 3D form of Snell’s law of refraction. Various
generalizations of the basic traveltime equation extend its applicability to arbitrary source-receiver
recording geometries and/or mode-converted waves. Related expressions for the traveltimes of reflected
waves and one-way transmitted waves propagating in the same layered earth model are obtained as
byproducts of the analysis. The expressions contain a set of unit raypath orientation vectors that depend
implicitly on source and receiver coordinates. Hence, the equations cannot be characterized as “closed-
form” in the mathematical sense. However, for critically refracted waves, these vectors can be obtained |

by a minimal amount of numencal raytracing. The traveltime formulae are useful for a variety of

forward modeling and inversion purposes.
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INTRODUCTION

The traveltimes of head waves propagating in layered earth models have been studied extensively
since the incéption of applied seismology in the 1920’s. Head wave arrival times are particularly useful
for inferring the seismic velocitiés of layered subsurface media. One- and two-dimensional (1D and 2D)
multilayered earth models are commonly used for anélysis and interpretation of critically refracted arrival
times. However, there is a notable paucity of papers on the subject of head wave propagation in three-
dimensional (3D) layered earth models. Chander (1977) examines a model consisting of uniform velocity
layers separated by plane interfaces with arbifrary strike and dip, and describes a method for calculating
head wave traveltimes between specified source and receiver positions on a horizontal surface. If an
array of receivers is colinear with the source, the wave arrival time curve is a straight line. Hence, if two
points on this line are established, then arrival times at all offsets can be determined simply by drawing
the connecting straight line. Chander locates the two initial points via raytracing.

Chander’s work is purely numerical and does not provide much insight into the dependence of head
wave traveltime on the parameters that define the earth model. Moreover, it is restricted to conventional
(i.e., line profile) data acquisition geometries. Buried sources and/or receivers as well as non-profile
recording geometries require a more general treatment. Diebold’s (1987) work constitutes the seminal
contribution on this topic. He also considers a 3D multilayered earth, and derives traveltime formulae for
both reflected and critically refracted waves. These formulae are logical extensions of more familiar
traveltime expressions appropriate for 1D and 2D layered models. Thus, they offer the possibility of
extending several known traveltime inversion techniques to accommodate 3D planar structure.
Unfortunately, Diebold’s derivations are very ambiguous. Furthermore, his generalization to arbitrary
source-receiver geometries yields an incorrect traveltime formula. Finally, he does not present a
numerical technique for computing the traveltimes. These deficiencies are addressed in the present work.
Nevertheless, Diebold (1987) should be credited with an original contribution to traveltime analysis for
this particular class of earth models.

Richards ef al. (1991), using a rather convoluted geometric argument, “rederive Diebold’s result from
first principles”. However, their traveltime equation retains the difﬁculfy of accommodating arbitrary 3D
recording situations. In particular, it yields an erroneous result when source and receiver are located on
different, non-parallel interfaces of a multilayered earth model.

This work provides a rigorous derivation of the 3D head wave traveltime formula. An algebraic,
rather than geometric, viewpoint is adopted for the analysis. Related expressions for traveltimes of
reflected waves and one-way transmitted waves propagating in the same earth model are obtained as

byproducts of the analysis. The mathematical proofs of the formulae are simplified by using a novel form




of Snell’s law of refraction and reflection. Various generalizations of the basic traveltime equation extend
its applicability to arbitrary 3D recording geometries and/or mode-converted waves. Finally, a rapid
numerical method for computing the arrival times of critical refractions is presented, and is illustrated

with simulated examples from shallow refraction exploration and vertical seismic profiling (VSP).

EARTH MODEL

Consider an earth model consisting of a set of homogeneous and isotropic layers bounded by plane
interfaces. In general, each interface may possess a 3D dipping attitude. The i interface of the model is
illustrated in Figure 1. O is the origin of a right-handed, rectangular Cartesian coordinate system with
orthonormal basis tﬁad ijk. The xy plane is defined to be the horizontal plane and the depth coordinate z

increases in the downward direction. The locus r of plane interface 7 satisfies the equation
r-m;,=d,, M

where n; is a unit vector normal to the interface, and d; is the perpendicular distance from O to the

interface. Figure 1 indicates that n; is conveniently described by two interface orientation angles:

n; =(sing; cosd,)i+ (sing, sind,)j+ (cosg,)k. 2)

¢ (0 < ¢ < 72) is the dip angle and &, (0 < 6; < 27) is the azimuth angle of the interface. If the +x and +y
axes are taken to point toward geographic north and east, respectively, then 8. + 772 (modulo 27) is the

interface strike angle. Although these angular coordinates are descriptive, a certain compactness in

notation is achieved by specifying n; in terms of its Cartesian components:
n, =n i+n j+n K, » 3)

with |jnj} = 1. This convention is followed in the sequel.

Solving equation (1) for z as a function of x and y yields the vertical depth of interface i:

n;, By
Zi(X,J’) =Zi(030)_xli - :I“J”:—] s (4)
ni,z ni.z




where z{0,0) = dy/n; is the vertical depth of the i” interface below the coordinate origin.
The surface (not necessarily horizontal) is interface 1, and subsequent interfaces are numbered
sequentially in the downward direction. Interface i overlies layer i. The vertical thickness of layer i is

defined to be h{xy) = z;1(xy) —z{xy). Thus

. i n; i,y ni+ , .
h;(x,y) = h;(0,0) + x{n”’ - L} + y[—i - ——"—} , (5)

iz i+1,z ni.z ni+1.z

where £1{0,0) = z;:,(0,0) — é,(0,0) is the vertical thickness of the i layer beneath the coordinate origin.
Finally, the seismic wave propagation speed assigned to layeri is given by v;. This may be either the
compressional wave speed «; or the shear wave speed f;. This flexibility allows the resulting traveltime

equations to apply either to P, S, or mode-converted waves.

RAYPATH GEOMETRY

Initially, the analysis is restricted to the case where both source and receiver are located on the surface.
Generalization to an arbitrary data acquisition geometry is straightforward and is given in a later section.
The horizontal coordinates of the point source S and point receiver R are (xs,ys) and (xg,yz), respectively.
Their vertical coordinates are easily obtained from equation (4): zs = z;(xs,ys) and zz = z;(xg,V&)-

In order to facilitate derivation of the traveltime, the total head wave raypath is divided into three
major portions: downgoing, critically refracted, and upgoing paths. In Figure 2, these correspond to
raypath segments SP, PQ, and OR, respectively. The propagation time along each portion is calculated,
and then all three are summed to obtain the surface-to-surface head wave traveltime.

Within each layer, the raypath is a straight line segment. On the downward portion of the raypath, the

propagation direction within layer i of a wave critically refacted at subsurface interface & is described by

the unit vector pu:
Pi = Pa A+ Py, J+ Py K (62)

Similarly, the upward propagation direction within layeri of the wave critically refracted from interface k

1s specified by another unit vector q:

Qi =G5 A+ 95,5+ 9.k (6b)




The complete head wave raypath is described by the set of unit vectors pi and q (i = 1,2,...,k-1) together
with a critically refracted propagation direction pu = qu- .

At interface i in the overburden, the wave is refracted in accordance with Snell’s law. The situation
for thé downgoing wave as it encounters the i interface from above is depicted in the upper portion of
Figure 3. The plane of this diagram is the plane of incidence defined by the incident propagation

direction p;;; and the interface normal n;. Snells’ law of refraction consists of the following two

conditions:

(1) the unit propagation vector of the transmitted ray (px) is contained in the plane of incidence,

(2) sinu /vy =sinv/y; where gand vare positive acute angles measured from the interface normal to the
incident and transmitted propagation directions p;.; x and pi, respectively.

Both conditions are contained in the single vector equation

0, XP; i B XPy )
Pt MXPa )
V. v

i-1 i

The vector formed by the cross products points out of the plane of the diagram in Figure 3. In component

form, equation (7) is

1
v_ '(”i,ypi~x.k.: - ”i,_-Pi~1.1.-.y) = ;—(ni.ypik,z - ni,:pik_y) >

(8a)
i-1 i
1 1
— (M Pichx ~MixPicinz) = — (M Pis =i Diz) s (8b)
Vi Vi
1 1
T(ni..xpi—l,k.y - ni,ypi-l,k,x) = ;_'(ni.xpik.y - ni,ypik,x) . (8c)
i-1 i
Similarly, when the upgoing wave encounters interface i from below, Snell’s law in form
n; xq;_ n.xq.,
q 1.k — 9 , (9)
v v

i~ i




holds (see bottom of Figure 3). In this case, angles #and vexceed 72 radians. The component form of
the vector expression (9) is analogous to equations (8a,b,c).

The 3D statement of Snell’s law of refraction given by the above expressions is quite different from
the form typically used in raytracing applications (e.g., Sorrells e al. 1971; Shah 1973; Chander 1977).
However, it can be demonstrated that these expressions are equivalent to the raytracing formulae. The

value of the current formulation is that it leads to a substantial simplification in the mathematical proof of

the traveltime equations.

TRAVELTIME DERIVATION

Downgoing Traveltime

An expression for the traveltime increment of the downgoing wave as it traverses layer i is derived
first. Let the position vectors r; and ry; denote the intersection points of the downgoing ray with
interfaces 7 and i+1, respectively. Then, rs; =r; + /; ps where /; is the length of the (straight line) raypath
segment within layer i. Solving for /; gives /; = px - (rz1 — r;). The traveltime increment is obtained by

dividing this path length segment by the layer velocity v;:

Pirx

I .
fo=ti (x, P,
V;

H

pi .2
-x;)+ Vi =Y+ : (zin —2:)-
V. Y

i i i

The vertical (z) coordinates of the intersection points can be expressed in terms of the horizontal (x and y)

coordinates by using the equation for a dipping plane interface. Equation (4) gives

n, n. n, n,
_ ix iy i+l,x i+1,y
Ziy —2; = h;(0,0) + x; +y; X — Vi )
n;. n;, Pz IR

where 440,0) = z;41(0,0) — z(0,0) is used. Substituting this result into the equation for ¢; and grouping

terms yields the required expression for the traveltime increment:




/= h(0,0)p; + Xia | Min:-Pix M Pk + Viey | BistzPiky ~ My Pix 2

i
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X; | PPy " MixPi.: Vi | MizPiky ~MiyPi;
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The total downgoing traveltime is obtained by summing all of the layer traveltime increments ¢; for

i=1,2,...,k-1. Thus

k=1 k-1 — -
: Z h; (O’O)P;k,.- Z Xi1 | BinzPax ~MiaxPi.z Vi | Minrz Py ™ Miny Pixz
T down = + +
v Vv, n Vv,

i=l i i=t \ Mz i i1,z i

k-1 _ ; -
X; | MizPax — Mix P,z + Vi | Mi-Pixy iy Pis

o | n Vv, n, V;

1,z 14 (%4 H

The sum involving x;.; and y;, is now re-indexed and combined with the other sum, yielding

0 h(0,0)py . + Xy (nk,:pk—l,k,x "’1k.xpk-1,k,:) + ¥y (nk,:pk—l,k,y "nk,ypk-x,k,z)

=1 v : Vil z

X (nl.:plk,x =1 Pu.) 0 (n],zplk,y - nl.yplk,z)

vlnl.z

X; W PzPiakx " MixPicrk,z n Pax N Pa.:
n

i=2 1, Vi Vi

k-1 — _
Z Yi | PiyPicapz " MizPictky n, Pa: " Hi:Puy
i=2 1; V;

iz . i-1 i




At interfaces 2,3,...,&-1 in the overburden, Snell’s law of refraction must apply. Equations (8a,b) then

imply that all terms in the summations involving x;and y; vanish! The downgoing traveltime from (x;,y,)

= (Xs5ys) 10 (xk.ye) = (xp,yp) Teduces to

Sh (O’O)pik,z Xp (nk_.:pk-l.k,x =M Draxz) T Ve (nk.:pk—l,k.y - nk,ypk-l.k.z)
Tdau‘n = +
i1 Vi L Vil 2
Xs (M Piae =M Pus)+ }’s(”x.zpu-.y - nl,yplk,z) (10)
N vlnl,z
Upgoing Traveltime

The traveltime along the upward propagating portion of the total raypath is derived by similar

techniques. Snell’s law in form (9) is used at each interface in the overburden. The result is

T =

up

i=1 V;

i vk—lnk.z

_H h(0,0)g, . _{xQ (nk,:qk—l.k,x - nk.qu~1,k,:) + Yo (nk.:qk-l,k,y e nk.qu‘l,k,:)}

+ [x" (fl!_:qlk,x " Palin) T Vn Oliony = M ):’ ) (1)

vl nl.z

Equations (10) and (11) give one-way transmission times of a wave propagating through a stack of
homogeneous and isotropic layers with plane interfaces. Mode conversions are allowed at the layer
boundaries. Hence, these expressions (and their generaliiations to equations (19) and (20) below) could
be used for stﬁdying propagation times of seismic waves through layered crustal structure to or from

remote (teleseismic) sites.
Critically Refracted Traveltime
The final traveltime increment needed for the derivation corresponds to the critically refracted segment

of the total raypath. Let position vectors rp and ryp refer to the intersection points of the downgoing and

upgoing portions of the raypath with interface £, respectively. The critically refracted segment is a




straight line connecting these two points (and thus lying entirely within the planeof interface k). Then

ro=rp+ [ p and hence [, = pu - (rp - rp). The propagation time along this path length is

lk — pkk,x

t, =

Puy D
(xg“xp)'*' kk}(yg_y;:)"' B

(zg = 2p) -
Vi Vi Vi Vi

Since points P and Q reside on the same plane interface, equation (4) gives

Zo—2p =2;,(xp,¥0) — Z; (X5, ¥p) = —(xg —xp)t:gk’_x}“’(}’g —YP)[nk’}' } .

k,z nk,z

The expression for the critically refracted traveltime increment then reduces to

T, =t = [(xg —Xp )My Prae =T o Pracs)+ (Vo = Y )Xy Dy — nk.}'pkk,:):‘ ' (12)

vk nk.:
Total Traveltime

The total surface-to-surface traveltime of the wave critically refracted on interface % is obtained by
adding the traveltime contributions of the downgoing, critically refracted, and upgoing raypath portions:

Tioit = Taown + Terip + Tp. Summing equations (10), (11), and (12) yields

= B (0,0Mp,.—9q. . Xo(My Gy =M i)+ n_.q,. ., —mn.4q,.
Tk(xs>y$axmyx)=z i )(p‘:k.z qlk,_)+{ & (M .9, @iz ) F (G, 1,}‘]11:,‘):‘
i=1 i

1

wn, .

[XS (nl.zplk,x - nl,xplk,z ) + yS (nl,zplk,y - nl,yplk,z )}

vl nl.z

+F(xp,yp,xg,yg).

The quantity F depends on the horizontal coordinates of the two points of critical refraction, and is given

by




1
_(nk,:pkk,x — N Pu.: ):\

X 1
_ _r _ —
F(xp,Yp:%g,¥,) = (1 Prorpe = MixProris)
_ Mz | Vi k

yp| 1 1
-=£ \i'_—(nk.ypk—l,k,: - nk.:pk—l.k,y) - ;_(nk.ypkk,z - nk,:pkk.y)}
’ k

k

X | 1 1
- —(’7k,z‘1k~1,k.x - nk.qu—l,k,z) - 7 (nk.:pkk,x - nk.xpk}:,:)

ol 1 1
+ (nk.qu—l,k,z - nk.:qk—l.k.y) - _<nk,_\'pkk,: - nk,:pkk,y) *
Mz | Via Vi

Since the wave is critically refracted at interface k, the propagation directions py and q are identical.
Then, requiring Snells’s law [equations (8a,b)] to be satisfied at points P and Q results in F = 0. The ﬁnal

formula for surface-to-surface head wave traveltime thus becomes

20,00 Ppy: —Gu.) | Xz (e — M) T YR Gy — 1,05 2)
Tk(xS?yS’xRayk)zz 2 i : : ! y 11

i1 v i, .

1

xS (nl,zplk.x - nl,xplk.z) + yS (nl.:p]k,y - nl,,\'plk.z)

vlnl,z

(13)

This completes the derivation. Although equation (13) conveys an impression that head wave traveltime
depends explicitly on the source and receiver position coordinates, it should be emphasized that the
raypath vectors pi and q; also depend on the recording geometry. Hence, there is implicit dependence

on (xsys) and (xzz) as well. This issue is discussed more fully in the section regarding numerical

computation of traveltimes.




Variants of the Basic Formula

Obviously, if the source or receiver is located at the coordinate origin, then thetraveltime formula (13)
simplifies considerably. Another simplification arises with a horizontal surface (ny ;= n,, =0, n,. = 1);

expression (13) reduces to

n(x3$yS7xR:yR)=Z v
i=1 i

2 1(0,0)( Py, — i) +[(xR‘I1k.x +qu1k.y) — (X5 P +ySplk,y)] (19)
v, ,

This is equivalent to the surface-to-surface traveltime formulae given by Diebold (1987) and Richards et
al. (1991).

Conventionally, seismic refraction traveltime is expressed as a function of the source-receiver offset
distance. The current equation is easily converted to this form by specifying the receiver position in terms
of an offset distance X (X = 0) and an\azimuth angle ¥ (0 < ¥'<2x) relative to the source. The receiver

coordinates are given by
X, =xg +XcosY, Yr=ys + Xsin¥.

Substituting these expressions into equation (13) yields

E100)(py . —9a)
T (x5, y5, X, ¥) =Y. r: " 9a

i=1 V;

H

n . (plk,x - qlk,x) —n, (plk,: - qlk,:) BRI (plk.y Gy )— n . (plk,z ~Ge.z)
- X — Vs

ViR, . W,

X{COS l'P(nl.quk,x - nl.quk,:) +sin \P(nl.quk,y — NG )} ‘ (15)

vlnl.z

Note that X is the horizontal distance between source and receiver; the actual distance may be larger since

it is measured within the plane of interface 1. It is straightforward to demonstrate that the true source-




receiver distance is L = X \[l +tan’ @, cos’ (¥ - 6,) , where ¢ and 8, are the dip and azimuth angles of
the surface.

Equation (15) is an extension of the common “slope and intercept” head wave traveltime ‘formula to
3D multilayered earth models. For the particular case of a model consisting of only two layers and a
horizontal surface, it can be shown that (15) reduces to a simple closed-form expression derived by
Aldridge (1989). This serves as an important check on the validity of the general formula. The proof

entails some cumbersome algebra, and thus is not reproduced here; mathematical details are contained in
Aldridge (1992).

GENERALIZATIONS OF THE TRAVELTIME FORMULA

Heretofore, both the source and the receiver have been restricted to the surface. More versatile
formulae are needed to model data acquisition geometries with buried sources and/or receivers. These
situations arise in surface-to-borehole, borehole-to-surface, and borehole-to-borehole seismic

experiments, as well as with placement of sources and/or receivers in underground mines, tunnels, on the

seabed, etc.
Source and Receiver on Separate Interfaces

Let the source S be located on the j” interface with 1 <j < k. The downgoing traveltime is obtained by
summing the layer traveltime increments #;, i =J, j+1,...,k-1. Equation (10) retains its form except that the
index 1 is replaced by j throughout. Similarly, if the receiver R is located on the /* interface (1 < I <k),
then the upgoing traveltime is given by equation (11) with the index 1 replaced by . The critically

refracted traveltime increment is still given by (12). Summing these three components of the total
traveltime gives
S 0,00, . B 7:(0,0)g, .

T (X5, Y5:25 Xg5Ygs25) =z

i=j V; i= V;

vl nl,z

+ [xze (. Gue =M Gn)+ Vi (”1,:?11(,_‘- =M Gy )}

B !:xs (nj,zpjk,x = nj,.rpjk_:) + Vs (nj.:pjk,y - nj,ypjk,z)} _ (16)

anj,z

11




where the vertical coordinates of source and receiver are zs = z{xs,ys) and zz = z{xz,yz). This is the proper
expression for head wave traveltime when source and receiver are located on different interfaces of the
model. It differs significantly from the analogous formula published by Diebold (1987) and Richards et
al. (1991). Their expression is actually a special case of the general equation (16); in particular,.it is valid
only if both the source énd receiver interfaces are horizontal (. =n;, = n;; =n;, =0, n;, =n;.=1). The
difference between these two foﬁnulae 1s clearly revealed by examining an earth model for which head
wave traveltime can be derived by indépendent techniques. The analysis demonstrates that (16) reduces
to the known traveltime solution in this situation, whereas Diebold’s equation (21) yields an erroneous

result (Aldridge 1992, Appendix C).
Arbitrary Source and Receiver Locations

A further generalization is obtained by allowing source and receiver to be located within designated
layers. Assume that the source is located in layer; at a vertical depth ds below the immediately overlying
interface (the /). Similarly, let the receiver be located within layer/ at a depth d beneath interface /.
These incremental source and receiver depths must satisfy 0 < ds < hfxsys) and 0 < dy < Iz,(xR,yR):
respectively. The previously developed techniques can be used to derive the head wave traveltime for
this situation. Traveltime increments induced by the source layer j on the downward path and the receiver

layer / on the upward path must be treated separately, because the wave does not propagate across the full

thickness of each layer. The result of the analysis is

05,0,0)p,. dspp. E100)g,, dpq,.
Tk(xs’ys’zs,xka}’R:ZR):Z d )p'k._“ sPiks —Z 0045, + 29

i=j v,— Vj i=1 Vi V[

+ lrx;z (M Qe =M Gy.) + Vi (”1,:‘]11:,3' —n Gy ):l

v,

(17)
vjnj.:

3 |ixs (M. Pox =M P ) ¥ Vs Py, =N P, )jl
b

where source and receiver depths are now zs = z{(xs,ys) + ds and zz = z{xz,yz) + dp. Note that the prior

expression (16) is recovered in the limit as ds — 0 and dy — 0, as expected. Moreover, it is possible to

12




demonstrate that (17) reduces to the proper form when source and/or receiver approach the basal
interfaces of their respective layers, that is ds — h{xs,ys) and/or dz — hxg,yz) (Aldridge 1992).

An additional benefit accrues from separating the downward and upward sums in the fraveltime
formule: asymmetric wave propagation paths can be treated. An asymmetric raypath is defined as one
where the mode of downgoing wave propagation in the i" layer differs from the mode of upgoing wave
propagation across the same layer. Strictly, different symbols should be used to designate the wave
speeds within layer i in the downward and upward sums (e.g., v and v for the velocities of the
downgoing and upgoing waves, respectively). However, this complication is avoided for the time being
in order to maintain notational simplicity. Thevelocity v; appearing in each sum is simply interpreted as
the propagation speed of the desired mode (P or S) across layer i. Equation (17) then constitutes a general

formula for point-to-point traveltimes of head waves propagating in a 3D layered earth model.
Arbitrary Reference Points for Layer Thickness

Individual layer thicknesses enter the traveltime expressions evaluated at the coordinate origin 0. An
alternate form of the traveltime equafion 1s characterized by layer thicknesses specified below the source
and receiver. This variant is particularly suitable for the time term, delay time, and reciprocal time
inversion methods. Hence, the previous derivation is now modified to incorporate layer thicknesses
prescribed at arbitrary reference locations; these points can then be specialized to the source and receiver
positions. The resulting traveltime expression forms the point of departure for a 3D extension of the
aforementioned inversion techniques.

The depth of the i* interface, referred to an arbitrary location 4 with horizontal coordinates (x,,v4) is
P Y.

Zi(x,y)zzi(x,a,y,q)—(x—x,q) Zi’x —(y_yA) n_’l'} ) (18)

iz iz

Consider the downgoing raypath first. The previous expression for the traveltime increment #; induced

by wave propagation across the i* layer is modified to

pi,x pi, P;_z
;= vk [(X.'n—x,()—(x,-‘“xA)]-*-————:y[(yi-u—yA)—'(yi_J’A)]+—v€—(zl_+l—Z‘_)_

i i i

t




The vertical (z) coordinates of the ray intersection points are expressed in terms of the corresponding |

horizontal coordinates via equation (18):

n; . n,-'y ni+l,y
Zifx"zi:hi(xmy,;)'*'(xi"xA) T +(y; =yl = = (X — Xy) = (Vi = Y4) ,

i,z iz i+l,z ni+l.z

ni+l.x

where h{xsy4) = Zin(xay4) — z{x4y4) i1s the vertical thickmess of layer i below reference point A.

Substituting this-expression into the equation for the traveltime increment #; gives

‘= hi(x,y, )pik.z
1 v‘.

n V; LR

+ (xi-l-l - xA) |:ni+l.:pik.x - ni+l.xpik:z :l + (yi+1 - y,q) l:ni-r—l.:pik,_v - ni+1.ypik.: :l
V.
i

i+l,z

V;

_ (x; —x,) [ni.:pik,x N P }_ Vi —Y4) l:ni.zpik,y NPz :|
vl

.

1,z

n.

1,z

The traveltime increments £; are now summed over all layers in the overburden (assumed here to include

all layers from the surface (i = 1) down to the critical refractor). Applying Snell’s law at each plane

interface results in

Shx,,y, )pik.z

(xp—x, )(nk,:pk—l.k,x M Piag: Y+ (Ve =y, )(nk.:pk—l,k.y - nk,ypk—l.k.z)

VietMi 2
N (xs—x, )(nl,:plk,x - Py )+s =y, )(nl,zplk,y - nl,yplk.z) (19)
vlnl,z .
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A similar analysis yields the upgoing traveltime. Layer thicknesses are now referred to a different
arbitrary position B with horizontal coordinates (xz,y5):

T = _’i h; (xB’YB)qik,z

up
il V;

vk—l nk.z

_ ‘:(xg —Xp )(nk,:qk—l,k,x - nk,qu-l,k,z) + (YQ — Vs )(nk,zqk—l,k,_\' =M v Grak: )]

+ {(xk - xB )(}zl,qu’l«t - nl.quk,:) + (yR - yB )(nl,zqur.y - nl,_vqlk.: )}

(20)
wn,

As indicated previously, equations (19) and (20) can be exploited to study one-way transmission times of

waves propagating through layered media. Finally, the critically refracted traveltime increment is given
by a simple alteration to the previous equation (12):

T [(xg —xg)—(xp —x, )knk.:pkk.x ~ My Pi.:)

erit T

vknk.:

+ [()"Q ~¥s)~(Vp— ¥, )](nk..—Pkk.y —nk,ypkk.z)

Vil

21

vknk.z

_{(XA =Xy Pyt —Mix P ) ¥ (Vg — Vs )(nk,:pkk,y - nk,ypkk.z)}

The total head wave traveltime is obtained in the usual manner by summing the contributions along all

three raypath portions. Adding expressions (19), (20), and (21) yields
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= h“(x >y )pi'z_hi(x 4 )q[-,;
Tk(xs’ys’xmyk)=z — Lv —

i=1 i

+‘:(x1z —Xp )(nl,quk,x =1y Gy.)+ (Ve _yB)(nl.:qlk,y —nl.yqu,:):‘
wh

1,z

_‘:(xs =X ) Py s _”qu.z) +(ys _yA)(n],zplk.y —"1,_‘-P1k.z)il

vl nl.z

+[(x8 —xA)(nk,:pkk,x _nk.xpkk.:) +(yB _yA)(nk,zpkk.y -nk,_rpkk.:)}

Vil

+F(xp_anyP“yAaxQ"xmyg"J’B), ‘ (22)

where the function F has been previously defined. Once again, apqplying‘ Snell’s law at the critically
refracting horizon demonstrates that 7 vanishes. Note that the above expression reduces to the previous
equation (13) if the reference points 4 and B are both situated at the coordinate origin O. Furthermore, it
is common (but not mandatory) practice to select points 4 and B to coincide with the source S and

receiver R, respectively. With these substitutions, the above expression simplifies dramatically to

b (xg,y )pi»z"hi(x YR
Tk(xs’ySaxRéJ’R):Z 5:Ys)Pi, r>Yr M,

i=] V;

Xp =X )M Py e My Pz )+ - M Py My Pz
N (xp —x5)(n, . Py, kP )V =Y )y Py, =N, P, )} 23)
Villg.z

This is the desired result. Since vertical layer thicknesses beneath source and receiver enter the
expression, equation (23) forms the logical point of departure for extending the time-term, delay time, and

reciprocal time inversion approaches to 3D layered models.
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Reflection Traveltime

The previous analysis has concentrated on waves that are critically refracted at the K" subsurface
horizon. However, it is straightforward to demonstrate that the traveltime formulae also apply to waves
that are reflected from interface k of the model. Snell’s law of reflection for this situation is illustrated in

Figure 4 and is compactly expressed as

nk xpk_]’k = nk qu—].k i V (24)

d u
Vi Vi

Note that equation (24) allows for a possible mode conversion upon reflection, i.e.,v";; is not necessarily
equal to V' ;.

For a wave reflected at interface &, points P and Q are coincident; there is no intervening critically
refracted raypath segment. The total traveltime is obtained simply by adding the downgoing and upgoing

components. Hence, setting (xo,y9) = (xp,yp) and summing equations (10) and (11) yields

S h0,0)py. 2 7:(0,0)g,
Tdown + ‘T:lp = Z d - u
i=j V; i=l Vi

I I

+ Xp 0y Gy, =19 ) YR Gy, — G .)

u
i,

X n..p, —n. S L)+ L Nl (N :
_ S( j..'.pjk.x _],ijl\,-)d yS( j..pjk,, j.)pjk.) +G(xp,yp), (25)

Villj:

where the quantity G(xp,yp) depends on the horizontal coordinates of the reflection point and is given by

xp | 1 1 ]
G(xp,yp) = ‘_’[T’(”k,zpk-x,k.x ST P Bt (PN R N FE

kz | Ve Vi

-
Yp 1

S (”k,sz-n.k,y - nk,ypk-l,k,z) = Gy — nk.qu—l.k.:) .
Rz Vi Vi

z
-4
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Distinct downgoing and upgoing layer velocities are incorporated into the above expressions in order to
emphasize the possibility of asymmetric mode-converted raypaths. Also, source and receiver are
assumed to be located on different interfaces. The component form of Snell’s law of reflection implies

that G vanishes. Equation (25) is then identical in form to the previous traveltime expression (16) that

was derived for head waves!
SPECIALIZATION TO TWO DIMENSIONS

- Specializing the above traveltime formulae to two spatial dimensions provides useful checks on the
correctness of the derivations. These 2D equations underpin several head wave inversion techniques in
current use. In the 2D layered earth model, all of the y-components of the interface normal vectors vanish
(equivalently, all interface azimuth angles are restricted to & = 0 or &= 7). Additionally, the recording
profile must be oriented perpendicular to the strike directions of the subsurface horizons. Hence, the
- azimuth ¥ =0 or ¥ = xas well. If this second condition is not satisfied, thé unit wave propagation
vectors py and q are not confined to the xz plane, and a full 3D treatment is necessary.

Since many previous investigators have assumed a horizontal surface, equation (14) is used as the

point of departure for the analysis. Setting ys =yz =0 gives

(26)
V.

H

= h'(o’o)(pik.z ~Guz) +|:xRQIk.x ‘xSplk,x}
v b

Tk(xs,xR)zz d
i=1

1

This expression is compatible with analogous equations developed by Diebold & Stoffa (1981) and
Diebold (1987). If the source is located at the coordinate origin, then (26) is also consistent with earlier
2D head wave traveltime formulae published by Dooley (1952), Adachi (1954), Ocola (1972), and
Johnson (1976). All of these investigatoré prescribe vertical layer thicknesses, either beneath the origin or
the shotpoint. In contrast, Ewing et al. (1939) and Mota (1954) measure thickness normal to the basal
interface bounding a layer. Hence, their traveltime equations, although designed to treat an equivalent
situation, differ in mathematical detail.

Specializing the traveltime variant (23) above to 2D yields a new and advantageous expression on
which the generalized reciprocal method (GRM) of refraction analysis can be based. The GRM is a
technique for delineating a subsurface horizon from head wave arrivals recorded by inline forward and
reverse profiles (Palmer 1980, 1981).

In the 3D earth model, interface dip is characterized by a positive angle ¢; (0 < ¢; < #/2). For

subsequent analysis of the 2D refraction problem, it is convenient to reparameterize the model in terms of
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interface dip angles that may be positive or negative. Hence, let the symbol ¢; refer to an interface dip in
a 2D earth model. ¢; is an acute angle (0 < |@]| < 7/2) measured with respect to the +x axis; it is
considered positive (negative) if the angle opens in the clockwise (counterclockwise) sense. This angle is
related to the 3D interface orientation angles via ¢; = (-cosé) ¢, where the azimuth &, is restricted to the
two values O or #. Then, familiar 2D expressions for the interface unit normal vector, interface depth, and

layer thickness in terms of the 2D dip angle are

n, = (~sing,)i +(cosg,)k,

z(x)= z;(0)+xtang,,

h.(x) = h,(0) + x[wi' |

COS @, COS @,

respectively. Note that n; has no y-component, and z,(x) and /1{x) are independent of the y-coordinate.
The head wave traveltime formula relevant to GRM analysis is equation (23). This is specialized to a

2D model by setting ys = yg =0, ;. = -sin¢y, and 1. = cos¢y. Equation (23) then becomes

@27)

T,(x.x,) = '{Z hi(xs)éik,: —h;(xR)q; . +|:(xk ~Xg (Pux COSQ, + Py, SIN gok):] .

Vv, COSQ,

i=1 i

Next, the 2D unit propagation vectors p; and q; are expressed in terms of raypath orientation angles as

follows:
Py =(Esing, )i+ (cosa, )k, q, =(xsin B, )i+ (cos B, )k. (28a,b)

Angles oy and Sy are polar angles measured from the +z axis (0 < @y, Sx< 7). The propagation direction

of the critically refracted raypath segment is obtained by straightforward geometric analysis:

Py = 2|(cos, )i+ (sing, K]. : (28¢c)
In the above expressions, plus signs are used for xz > x5 and negative signs are used for xz < xs.

Substituting (28a,b,c) into (27) yields the remarkably simple result




5 _— " X —X
Tk(xs,xk)zz?,(xs)msa,k (xy)cos B, +| s R]-
=]

v; Vv, COSQ;

, @)

This is a novel expression for 2D surface-to-surface head wave traveltime that forms the basis for an
alternative development of the GRM. It differs from the analogous equation given by Palmer (1980,
1981) in several important ways: (i) layers are characterized by vertical thicknesses below source and
receiver, (ii) raypath orientation angles are measured with respect to the vertical, (iii) the coefficient
multiplying the source-receiver offset distance depends only on critical refractor quantities (i.e., velocity
v and dip ¢), and (iv) the earth’s surface may be nonhorizontal. These attributes facilitate a
straightforward derivation of the GRM analysis tools (Aldridge 1992). Perhaps more importantly, GRM
inversion of refraction arrival times utilizing equation (29) yields point depth estimates of a critically
refracting horizon. Construction of the refractor depth profile then reduces to an interpolation problem.
In contrast, Palmer’s time-depth function yields a circular locus of possible refractor positions. Depth
profile calculation then involves the more complicated task of constructing an envelope to a set of circular
arcs with varying radii.

The raypath angles in equation (29) depend on the recording profile azimuth ¥, which in turn is
restricted to the two angles 0 and z However, raypath reciproéity requires that (7)) = 7 - [(0) and
Ba(7) = 7 - az(0), implying cosau(n) = -cosPx(0) and cosfu(7) = -cosax(0). Using these relations, it is
easy to demonstrate the the traveltime formula (29) satisfies source-receiver reciprocity: Ti(xsxz) =

Ti(xpxs), as expected.
RAPID TRAVELTIME COMPUTATION

In order to compute traveltimes via the above formulae, the unit propagation vectors p; and qg
overlying the refracting/reflecting interface must be determined. For the reflection problem, this set of
vectors depends on both the offset distance X and the azimuth angle ¥ of the receiver relative to the
source. However, the critical refraction problem is qualitatively different; the propagation vectors depend
only on the azimuth ¥, This particular feature can be exploited to yield a rapid computational procedure
for head wave traveltimes. :

~ Since the propagétion vectors depend on the recording azimuth, they should be written as py( ) and
qx( P), although explicit dependence on ¥is often suppressed for notational convenience. The functional

form of this dependence is not known. However, with a minimal amount ofraytracing, it is possible to

20




numerically generate the function ¥{pa,qax) over the full range of possible recording azimuths (27
radians). Inversion of this function then yields the propagation vectors for a prescribed value of the

source-receiver azimuth angle. This technique is discussed in general terms in the following subsection.

Algorithm Description

The computational algorithm is based on the close relationship between a critically reflected and
critically refracted raypath. For a given source-receiver azimuth angle, both raypath types possess the
same unit propagation vectors px( ) and qu(#) for i < k. Consider the following six-step calculation

procedure, with reference to the critically refracted/reflected raypath segments depicted in Figure 5:

1) Select a point P on the critically refracting interface. Since the location of P is arbitrary, it is
convenient to position it beneath the coordinate origin O.

2) Choose a critically refracted propagation direction py through point P. The orientation of this vector
within the plane of interface & is defined by an angle y measured from an arbitrary reference line.

3) Forward raytrace from P along the set of upward unit propagation vectors qy (i = k-1,k-2,...,2,1) to
establish the position of a receiving point R on the surface. The departing vector gy is oriented at
the critical angle i, = sin(v.i/vy) relative to the interface normal, and is contained in the plane
defined by py and n;. The appropriate 3D form of Snell’s law is applied at all interfaces intervening
between the refractor and the surface.

4) Reverse raytrace from P along the set of downward unit propagation vectors py (i = k-1,k-2,...,2,1) to
establish the position of a source point S on the surface. The incidence angle of the arriving vector
Pi1.x (in the plane defined by py and ny) also equals the critical angle. A 3D “backward propagating”
form of Snell’s law is applied at all refracting interfaces.

5) Calculate the azimuth angle ¥of R with respect to S.

6) Increment angle y by a small amount and repeat steps 1) through 5). Stop after % has been
incremented by a total of zradians.

This procedure numerically defines a function ¥'= f{x) over an interval [y, Xot7]. It is not necessary to
perform raytracing to determine the azimuth angle for y € [xo+z Yo+274]. Rather, values are easily
generated from the syinrnetry relation ¥ = f{y-n) + = This symmetry condition arises from raypath

reciprocity: reversing the direction of the critically refracted propagation vector py merely interchanges

the positions of the source and receiver on the surface.
If the propagation vector px makes one complete rotation on the critically refracting interface (i.e.,y
increments by Zﬁfadians), points R and S make one complete closed circuit on the surface (i.e., ¥ also

increments by 27). This functional dependence is designated ¥ = g(x). This inverse function y = g'(#)
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can then be used to determine the appropriate value of y, for a specified source-receiver azimuth angle.
Finally, unit propagation vectors py and qu corresponding to this value of y are regenerated via points 3)
and 4) above.

Note that the function ¥ = g(x) needs to be calculated only once for a given critical refractor in an
earth model.  All recording azimuths contained in the data acquisition geometry are treated by this same
function.

Rapid raytracing through a set of homogeneous and isotropic layers is readily abhieved using the

formulae in Shah (1973); mathematical details are described more fully in Aldridge (1992).

MODELING EXAMPLES

The two examples presented in this section illustrate the utility, as well as some of the limitations, of
the head wave traveltime formulae for forward modeling applications. The recording geometry for the
first example is the common reversed profile; all sources and receivers are located on a horizontal surface.

The second example considers a typical offset VSP geometry (surface source and downhole receivers).

Profile Geometry

Equation (15) expresses head wave traveltime in terms of the horizontal offset distance between a

surface source and a surface receiver. It is‘ written in condensed form as
T (x5, y5, X, W) = m, (P)X + b, (x5,y5,'F), (30)

where the definitions of the slope m( ¥) and intercept by(xs,ys, ¥) are obvious. This expression is a 3D

extension of the slope/intercept formulae that are commonly used to describe head wave traveltimes.

Equation (30) is evaluated for a shallow three-layer model defined by the parameters

6 =0, 6, =0, 2,(0,0)=0m, v, =1000 m/s,
¢, =8°, 4, =0, z,(0,0)=5m, v, =1800m/s,
$, =5, 8, =60°, z,(0,0)=12m, v, =3200m/s.

Figure 6 displays simulated head wave arrival times observed on a set of four reversed refraction profiles.

Direct wave traveltimes are also included in each panel. Shots are located at each end of the recording
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spreads and the maximum source-receiver offset distance is 50 m. The profile pairs are all centered at the
coordinate origin and are oriented in the N-S, NE-SW, E-W, and SE-NW geographic directions.

The straight line arrival time curves plotted in each panel convey an impression of a 2D earth model.
The full three-dimensionality of the subsurface is only appreciated by comparing traveltime curves
recorded along several separate azimuths. Slopes and intercepts of the refraction arrival lineschange as
the profile direction is reoriented. Thus, the crossover distances shift as well. Note that reciprocal times
(the shot-to-shot traveltimes) for forward and reverse arrivals in all panels agree, as expected. Refraction
traveltime curves are extended to zero offset distance, even though head waves do not exist in the
precritical offset zones. -Since the traveltime computation method does not locate the critical offset
distance, equation (30) is evaluated over the full offset range covered by the receiver array. Iftraveltime
analysis is concemned solely with first arrivals, then thesé calculated nonphysical traveltimes do not pose
any problems, because they.r are always associated with later arrivals. However, precritical offset arrivals

do have interpretive significance (Ackermann et al. 1986) and thus their inclusion in the current algorithm

may be useful for some studies.’

Note that the intercept time in equation (30) depends on the recording azimuth angle ¥ (through the
prbpagation vectors py and qy) in addition to the source coordinates (x5, ys). This unusual feature appears
to be peculiar to 3D multilayered earth models. Intercept time is obviously independent of profile
azimuth for all 1D earth models. For 2D earth models (recorded normal to strike), the identity of

~ Intercept times observed on split spread profiles is an interpretive rule (Johnson 1976; Merrick et al.
1978; Ackermann ef al. 1986; Briickl 1987). Finally, in the case of the simplest 3D model consisting of a
single layer overlying a halfspace, the intercept time is also independent of profile azimuth (Aldridge
1989). Dependence on the azimuth angle ¥ only arises when multiple layers in three dimensions are

analyzed. However, raypath reciprocity requires that the propagation direction vectors satisfy
P (¥ +7) = ~q, (), qu (¥ +7)=-p, (¥).

Inserting these results into the expression for the intercept time yields

bk(xs,ys,‘f—l-fr) =b,(x5,y5,Y).

Hence, the 2D interpretive rule also holds for the class of 3D models examined here (uniform velocity
layers bounded by plane interfaces). However, it is not true that intercept times recorded on al/ line

profiles emanating from the same shotpoint are identical. For earth models with small dips (< 10°) this
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variation in intercept time with profile azimuth appears to be minute. In the current example, 5;(0,0, %)

varies by only 0.03% as the azimuth ¥increases from 0° to 360°.

VSP Geometry

The final example examines head wave traveltimes recorded in a simulated VSP experiment. The
computation procedure described in the previous section is readily generalized to a situation where source
and receiver are located on different interfaces of the model. An azimuth angle function ¥'= g(%) can be
calculated for a hypothetical source located on interface j and and hypothetical receiver located on
interface /. In an offset VSP survey, the source is located on the surface (j = 1) and a borehole geophone
is lowered continuously down the well. Equation (17) is used to calculate the traveltimes.

This example considers a four-layer model defined by the parameters

4, =0, 6, =0, 2,(0,0)=0m, v, =1800m/s,
6, =3, 0,=90",  z,(0,0)=50m, v, =2500m/s,
b, =4, 6,=270°, z,00)=120m, v, =3200m/s,
4, =0, 6, =0°, 2,(0,0)=155m, v, =3900m/s.

The model is strictly 2D; the strike directions of the two non-horizontal interfaces are north-south.
However, since sources are deployed at various azimuths around the well, the 3D formulae are needed to
compute accurate arrival times. Figure 7 displays head wave traveltime curves as a function of geophone
depth within a borehole positioned at the coordinate origin. The maximum geophone depth is 160 m,
which places the deepest receiver in layer 4. Surface sources are offset from the well by 500 m to the
south, west, and east in separate panels. [For this 2D model, a source offset 500 m to the north generates
traveltimes identical to those for the south source]. The arrival time of a given head wavedecreases aé
the geophone is lowered in the well, because the receiver approaches the critically refracting horizon
more closely. "As the geophone passes through an interface, the slope of the traveltime curve changes.
An arrival time curve thus consists of straight line segments joined end-to-end, as predicted by equation
(17). Each curve terminates at the depth of the critical refractor in the well; the associated head wave is
not observable below this level. Note that the critically refracted waves depicted in Figure 7 are not
necessarily initial arrivals. Other waves neglected in the modeling procedure (e.g., direct and/or reflected

waves) may actually arrive first over certain ranges of receiver depth.
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CONCLUSION

The traveltime formulae derived in this study are useful for a variety of forward modeling applications
involving head waves propagating in 3D multilayered earth models. Obviously, construction of
traveltime curves for a trial earth model can assist in the interpretation of field recorded data. The
equations also provide means for evaluating the importance of 3D effects on head wave traveltimes in
various seiémological contexts. For example, Merrick et al. (1978) investigate the hidden layer
phenomenon using a 2D layered earth model. Hunter & Pullan (1990), using a 1D model, compare the
sensitivities of vertical and horizontal receiver arrays for discriminating layer velocities. Many
investigators are concerned about the possibility that head waves might constitute first arrivals in
crosswell traveltime tomography experiments. All of these studies can benefit from a full 3D analysis.

Several straightforward extensions of the results described herein can enhance the utility of the
formulae for forward modeling purposes. Inclusion of multiple reflections within the overburden of the
critically refracting horizon does not pose any special problems (note that multiple raypath segmenté
along the critical horizon are not allowed; see Cerveny & Ravindra 1971, page 210). Also, well known
tools of asymptotic ray theory can be applied to calculate the amplitude and waveform of head wave
particle displacement in this 3D situation. Care must be exercised in treating shear wave propagation,
because SV and SH modes are not globally decoupled in 3D. Richards ef al. (1991) examine some of
these phenomena and propose a particular computing procedure. |

A more substantial improvement on the current work entails assigning anisotropic material properties
to each layer of the model. The appropriate 3D anisotropic form of Snell’s law of refraction must be
applied at each plane interface. Frederiksen & Bostock (1998) have recently undertaken this
investigation, in the context of upward propagation of incident plane waves through layered continental
crust.

Finally, since head wave traveltime can be expressed by a simple mathematical formula, inverse
methods designed to recover the earth model parameters from measured data are facilitated. Aldridge
{1992) and Aldridge & Oldenburg (1999) describe an inversion procedure that exploits the rapid forward
modeling capability developed here. Other head wave traveltime inversion schemes are probably
possible. In particular, the “slope and intercept” equation (30) may allow the extension of the 2D methods
of Dooley (1952), Adachi (1954), and Johnson (1976) to 3D models.
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LIST OF FIGURE CAPTIONS

Figure 1. Orientation of the i interface of a multilayered earth model. Angles ¢4 and & describe the dip
and azimuth of an interface located a distance d; from the coordinate origin. n; is a unit vector normal to
the plane interface. The interface separates media with seismic wavespeeds v;.; (above) and v; (below).

Figure 2. Schematic representation of the raypath of a wave critically refracted on interface k of a
multilayered earth model. S and R denote a surface source and receiver, respectively. P and Q denote the
two points of critical refraction. Layers are characterized by seismic wavespeeds v;, i=1,2,....k. Inthe 3D
situation, the raypath is not confined to a single plane.

Figure 3. Noncritical refraction of the raypath at interface i in the overburden. Top: downgoing raypath.

Bottom: upgoing raypath. The unit vector n; is normal to the interface, and angles # and v describe
orientations of incident and transmitted unit raypath vectors relative to this normal, respectively.

Figure 4. Reflection of a raypath at interface & of the earth model. The unit vector n, is normal to the

interface, and angles p and v describe orientations of incident and reflected unit raypath vectors relative

to this normal, respectively. If a mode conversion occurs, then the downgoing velocity V.1 differs from
the upgoing velocity v¥;.,.

Figure 5. Schematic 3D representation of a raypath critically reflected/refracted at point P on interface k.
S and R denote a surface source and receiver, respectively. Angle y is measured from an arbitrary

reference line on plane interface %, and angle ¥is the source-receiver azimuth. Downgoing and upgoing
unit raypath vectors are depicted.

Figure 6. Direct and head wave arrival times recorded by a set of four reversed profiles over a shallow
three-layer earth model. From top to bottom, profiles are oriented ina N-S, NE-SW, E-W, and SE-NW
direction, respectively. All profiles are centered at the coordinate origin. In the top panel, curves labeled

1, 2, and 3 refer to arrivals from interfaces 1 (the surface), 2, and 3, resgectively. The sequence of curves

1s the same for the remaining three panels.

Figure 7. Head wave arrival times recorded in a VSP configuration. From top to bottom, a surface
source is offset horizontally from the well by 500 m to the south, west, and east, respectively. Each panel

is labeled with the source-to-receiver azimuth angle ¥. Curves labeled 2, 3, and 4 refer to critical
refractions from interfaces 2, 3, and 4, respectively.
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