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SUMMARY

Traveltimes of head waves propagating within a three-dimensional (3D) multilayered earth ar;described

by straightforward mathematical formulae. The earth model consists of a set of homogeneous and

isotropic layers bounded by plane interfaces. Each interface (including the surface) may-possess arbitrary

strike and dip. In this model, the source-to-receiver raypath of a critically refracted wave consists of a set

of straight line segments, not confined to a single plane. Algebraic derivations of the traveltime

expressions are greatly simplified by using a novel 3D form of Snell’s law of refraction. Various

generalizations of the basic traveltime equation extend its applicability to arbitrary source-receiver

recording geometries and/or mode-converted waves. Related expressions for the traveltimes of reflected

waves and one-way transmitted waves propagating in the same layered earth model are obtained as

byproducts of the analysis. The expressions contain a set of unit raypath orientation vectors that depend

implicitly on source and receiver coordinates. Hence, the equations cannot be characterized as “closed-

fonn” in the mathematical sense. However, for critically refracted waves, these vectors can be obtained

by a minimal amount of numerical raytracing. The traveltime formulae are useful for a variety of

forward modeling and inversion purposes.
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INTRODUCTION

The traveltimes of head waves propagating in layered earth models have been studied ~ytensively

since the inception of applied seismology in the 1920’s. Head wave arrival times are particularly usefil

for infernng the seismic velocities of layered subsurface media. One- and two-dimensional (1D and 2D)

multilayered earth models are commonly used for analysis and interpretation of critically refracted arrival

times. However, there is a notable paucity of papers on the subject of head wave propagation in three-

dimensional (3D) layered earth models. Chander (1977) examines a model consisting of uniform velocity

layers separated by plane interfaces with arbitrary strike and dip, and describes a method for calculating

head wave traveltimes between specified source and receiver positions on a horizontal surface. If an

array of receivers is colinear with the source, the wave arrival time curve is a straight line. Hence, if two

points on this line are established, then arrival times at all offsets can be determined simply by drawing

the connecting straight line. Chander locates the two initial points via ra~acing.

Chander’s work is purely numerical and does not provide much insight into the dependence of head

wave traveltime on the parameters that define the earth model. Moreover, it is restricted to conventional

(i.e., line profile) data acquisition geometries. Buried sources andor receivers as well as non-profile

recording geometries require a more general treatment. Diebold’s (1987) work constitutes the seminal

contribution on this topic. He also considers a 3D multilayered earth, and derives traveltime formulae for

both reflected and critically refi-acted waves. These formulae are logical extensions of more familiar

traveltime expressions appropriate for lD and 2D layered models. Thus, they offer the possibility of

extending several Imown traveltime inversion techniques to accommodate 3D planar structure.

Unfortunately, Diebold’s derivations are very ambiguous. Furthermore, his generalization to arbitiary

source-receiver geometries yields an incorrect traveltime formula. Finally, he does not present a

numerical technique for computing the traveltimes. These deficiencies are addressed in the present work.

Nevertheless, Diebold (1987) should be credited with an original contribution to traveltime analysis for

this particular class of earth models.

Richards et al. (1991), using a rather convoluted geometric argument, “redenve Diebold’s result fi-om

first principles”. However, their traveltime equation retains the difficulty of accommodating arbitrary 3D

recording situations. In particular, it yields an erroneous result when source and receiver are located on

different, non-parallel interfaces of a multilayered earth model.

This work provides a rigorous derivation of the 3D head wave traveltime for&ula. ..b algebraic,

rather than geometric, viewpoint is adopted for the analysis. Related expressions for traveltimes of

reflected waves and one-way transmitted waves propagating in the same earth model are obtained as

byproducts of the analysis. The mathematical proofs of the formulae are simplified by using a novel form
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of Snell’s law of refraction and reflection. Various generalizations of the basic traveltime equation extend

its applicability to arbitrary 3D recording geometries andlor mode-converted waves. Finally, a rapid

numerical method for computing the arrival times of critical refractions is presented, and is illustrated.“
with simulated examples from shallow refi-action exploration and vertical seismic profiling (VSP).

EARTH MODEL

Consider an earth model consisting of a set of homogeneous and isotropic layers bounded by plane

interfaces. In general, each interface may possess a 3D dipping attitude. The ifbinterface of the model is

illustrated in Figure 1. 0 is the origin of a right-handed, rectangular Cartesian coordinate system with

orthonormal basis triad ijk. The Ay plane is defined to be the horizontal plane and the depth coordinate z

increases in the downward direction. The locus r of plane interface i satisfies the equation

r.ni=di, (1)

where ni is a unit vector normal to the interface, and di is the perpendicular distance from O to the

interface. Figure 1 indicates that ni is conveniently described by two interface orientation angles:

ni = (sin@i cos8i)i + (sin~i sin(?i)j + (cos@i)k. (2)

(h(O< ~ < 7d2) is the dip angle and Q (O< Q < 2nj is the azimuth angle of the interface. If the +x and +y

axes are taken to point toward geographic north and east, respectively, then ~. + z/2 (modulo 2x) is the

interface strike angle. Although these angular coordinates are descriptive, a certain compactness in

notation is achieved by specifying ni in terms of its Cartesian components:

ni =njxi+niyj+ni.k,?. ,-

with IInill= 1. This convention is followed in the sequel.

Solving equation (1) for z as a function of x and y yields the vertical depth of interface i:

‘i (x>J“)= ‘i (0,0) -X

[?l”’[?l>

(3)

(4)
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where z{O,O)= djl~i,Zis the vertical depth of the i’”interface below the coordinate origin.

The surface (not necessarily horizontal) is interface 1, and subsequent interfaces are numbered

sequentially in the downward direction. Interface i overlies layer i. The vertical thickness of layer i is

defined to be h<xy) = zi+l(x~) – z,{x~). ThUS

.-

l?:l+’k-ahi(x,y) = hi (0>0)+ x (5)

where h,<O,O)= zi_l((),())– z,{(),())is the vertical thickness of the ir~layer beneath the coordinate origin.

Finally, the seismic wave propagation speed assigned to layer i is given by vi. This maybe either the

compressional wave speed q. or the shear wave speed fli. This flexibility allows the resulting traveltime

equations to apply either to P, S, or mode-converted waves.

R4YPATH GEOMETRY

Initially, the analysis is restricted to the case where both source and receiver are located on the surface.

Generalization to an arbitrary data acquisition geometry is straightforward and is given in a later section.

The horizontal coordinates of the point source S and point receiver R are (x~~~) and (x~~~), respectively.

Their vertical coordinates are easily obtained from equation (4): z~= z](x~,y~)and z~= Z1(x~~~).

In order to facilitate derivation of the traveltime, the total head wave raypath is divided into three

major portions: downgoing, critically refracted, and upgoing paths. In Figure 2, these correspond to

raypath segments SP, PQ, and QR, respectively. The propagation time along each portion is calculated,

and then all three are summed to obtain the surface-to-surface head wave traveltime.

Within each layer,

propagation direction

the unit vector pik:

the raypath is a straight line segment. On the downward portion of the raypath, the

within layer i of a wave critically refacted at subsurface interface k is described by

(6a)Pi~= ~ik,xi+ Pik.Jj + Pik,zk.

Similarly, the upward propagation direction within layeri of the wave critically refracted fi-ominterface k

is specified by another unit vector qik:

qik = qik,xi + qik,yj + gik.zk. (6b)
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The complete head wave raypath is described by the set of unit vectors pi~and qi~(i = 1,2,.. .,k-l ) together

with a critically refracted propagation direction pk~= qk&.

At interface i in the overburden, the wave is refracted in accordance with Snell’s law. 1%~situation

for the downgoing wave as it encounters the i’hinterface from above is depicted in the upper portion of

Figure 3. The plane of this diagram is the plme of incidence defined by the incident propagation

direction pi.l,~ and the interface normal ni. Snells’ law of refraction consists of the following two

conditions:

(1)

(2)

the unit propagation vector of the transmitted ray (pik)is contained in the plane of incidence,

sin~ /vi.l = sin v /vi, where p and v are positive acute angles measured from the interface normal to the
incident and transmitted propagation directions pi.{,&and pik,respectively.

Both conditions are contained in the single vector equation

‘j x pj-l<~ ni ‘pi&
=

vi_, vi “
(7)

The vector formed by the cross products points out of the plane of the diagram in Figure 3. In component

form, equation (7) is

1
‘(ni,ypi-l.k,: - ‘i,zpi-l.k.y ) = +(ni,ypik,z – 12j,=pik,y) ,
vi_, I

1
‘(~Zi.:pi-l,k,x – ‘i..rpi-l.k.z ) = ~ (ni,zpik.x – ‘Zi,.rpik,z ) ~
vi_, i

‘(ni,xpik.y - ‘i,ypik,x) .‘(ni,.rpi-l,k,} - ‘i,ypi-l,k.x) = v
vi_, 1

Similarly, when the upgoing wave encounters interface i from below, Snell’s law in form

(8a)

(8b)

(8c)

‘i xqi-1.k ni ‘qik
= 7

Vi_] vi
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holds (see bottom of Figure 3). In this case, angles ,u and v exceed 7d2 radians. The component form of

the vector expression (9) is analogous to equations (8a,b,c).

The 3D statement of Snell’s law of refraction given by the above expressions is quite different from

the form typically used in raytracing applications (e.g., Sorrells et al. 1971; Shah 1973; Chander 1977).

However, it can be demonstrated that these expressions are equivalent to the raytracing formulae. The

value of the current formulation is that it leads to a substantial simplification in the mathematical proof of

the traveltime equations.

TRAVELTIME DERIVATION

Downgoing Traveltime

An expression for the traveltime increment of the downgoing wave as it traverses layer i is derived

first. Let the position vectors ri and ri~l denote the intersection points of the downgoing ray with

interfaces i and i+l, respectively. Then, ri.l = ri + li pi~where li is the length of the (straight line) raypath

segment within layer i. Solving for Ii gives /i = pik . (ri+I – ri). The traveltime increment is obtained by

dividing this path length segment by the layer veloci~ v:

~ _ Ii pi~ .,
=i—— -(xi+, - xi) + *(Yi+l - Yi) + I$L(zi+, - 2,).

vi vi i 1

The vertical (z) coordinates of the intersection points can be expressed in terms of the horizontal (x andy)

coordinates by using the equation for a dipping plane interface. Equation (4) gives

Zi+,

[

– Zi = hi (0,0) + xi ~
n.r,z ‘Yi[+-xi+kl-yi+

where h{O,O)= zi+l(0,0) – z,(O,O)is used. Substituting this result into the equation for tiand grouping

terms yields the required expression for the traveltime increment:
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r “1+~[7’i”’’pi’~-ni+’’pik’‘i(O,O)Pi~,z + “+* ‘7i+l,zPik,x– ‘i+l,xPik .
t, =

vi ni+l.,- L

xi.—
ni..-

Vi J ‘Zi+l,z 1- Vi

‘i,zpik,x ‘ni,xpik,z 1[Yi ‘i,zpik,y – ‘i,ypik.z——

ni.,-Vi vi

J
.“

The total downgoing traveltime is obtained by summing all of the layer traveltime increments ti for

,-,...,1-1. ThUSj=l?

‘-’ ‘j(”>o)pi~,: k-1

Tdown= z +x
j=] vi ‘=1

k-l

-E
i=l

[
Xi+, ?Zi+],xpi~,x‘nj+l,xpi~,=

1
+ Yi+l

vi j ‘i+l.z

xi

ni,

?li+],zpik,~ ‘ni+l,ypik,z

vi

‘i,zpik.x – ‘li,xpik,z

“1 [

+~
‘i,: Pik,y – 71i,ypik.z

vi ni. vi,- 11

The sum involving xi.l andyi.l is now re-indexed and combined with the other sum, yielding

‘-1hi(“?o)pik,~+

[

‘k (izk,:pk-l,k,x – ~zk,xpk-,,k,,) + ~k (nk,zpk-,,k,y – ~zk,ypk-l,k,:)
Tdown= ~

izl vi vk–1nk,Z 1

[

‘1 (nl.:plk,x – nL.tPM,,) + Y] (%,zplk,y – %,yPlk,, )
—

vlnl, 1
‘-’ xi

{[

‘i,zpi-l,k.x — ‘i.xpi-l.k,z 1[‘i,zpik,x — ‘i,xpik,z
+~— —

i=2 ni.z vi_, vi 1}

}

‘-’ Yid ‘i,y Pi-l,k ,Z – ‘i,zpi-l,k,y

1[

‘i,ypik,z – ‘i.zpik,y
—— —

ni=2 i.~ Vi_, vi I
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At interfaces 2,3,..., k-l in the overburden, Snell’s law of refraction must apply. Equations (8a,b) then

imply that all terms in the summations involving ~i and yi vanish! The downgoing traveltime from (xl~1)

= (x~~~)to (x~@ = (xP/P) reduces to . .

Tdo,,.n= ~ ‘i(o’:)pi”z +
jcl i

‘P (??k.:pk-l.k,x – ‘k.xpk_l,k,z ) + ~P(nk,z~k-l,k,y - ‘k,y%],k.z) 1
‘k-lnk,z

[

‘S(n I.:~lk,x – ‘],Xk) + h(%:plk,y – ‘l,y~lk,z )
—.

Vl%z 1

1

(lo)

Upgoing Traveltime

The traveltime along the upward propagating portion of the total raypath is derived by similar

techniques. Snell’s law in form (9) is used at each interface in the overburden. The result is

[

– ~zk,,gk-,,k,,)+ ~Q (nk.;qk-,,k,y – %.yqk-l.k,z)
q = -~ ‘i(o’o)qik’z - ‘Q “’k’’qk-’’k’x

i=l vi vk-lnk.z 1

[
‘R (nl.:~lk,x – ‘I,xqlk,: ) + Y~ (nl,:%k,y – ‘1.yqlk,z )

•!- 1. (11)

L

Equations (10) and (11) give one-way

homogeneous and isotropic layers with

V,n, ,.- J

transmission times of a wave propagating through a stack of

plane interfaces. Mode conversions are allowed at the layer

boundaries. Hence, these expressions (and their generalizations to equations(19) and (20) below) could

be used for s~dying propagation times of seismic waves through layered crustal structure to or from

remote (teleseismic) sites.

Critically Refracted Traveltime

The final traveltime increment needed for the derivation corresponds to the critically refracted segment

of the total raypath. Let position vectors rp and rQ refer to the intersection points of the downgoing and

upgoing portions of the raypath with interface k, respectively. The critically refracted segment is a
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straight line connecting these two points (and thus lying entirely within the plane of interface k). Then

rQ= rp + lkp~kand hence /k= p~ - (rQ - rP). The propagation time along this path length is

tk=~=-%xo-xp)+ p”’”V(YQ -Y,)+ Y(ZQ-Zp) .
‘k ‘k -

Since points P and Q reside on the same plane interface, equation (4) gives

20 – Zp = z&,yQ)-zk(xp7yp) ‘–(XQ -XP)[:I-(YQ-Y
The expression for the critically refracted traveltime increment then reduces to

[

(X. – ‘j=’)(nk,=~kk,.- ‘k,xP/&,,)+ (YQ –&)(72&,,pkk,y– ‘Zk,,%k,,)
T,,,, = t, = -

‘k nk,z 1 (12)

Total Traveltime

The total surface-to-surface traveltime of the wave critically refracted on interface k is obtained by

adding the traveltime contributions of the downgoing, critically refracted, and upgoing raypath portions:

Tto~.[= Td.~.+ T.r[l+ Tup-Summing equations (10), (1 1), and (12) yields

[
~s(%,z P1k,x– ?zl,x~lk,z ) ~ Ys (%,zplk,y - %.yP1k.z)]—

+F(XP, YP,XQ,J’Q).

The quantity F depends on the horizontal coordinates of the two points of critical refraction, and is given

by
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XP

[

1
F(xp, Yp>xQ>yJ=~ ‘(~zk,zpk-l,k,.x - ‘lk,,,pk-,,k,. ) – $(%,.PM,, – ‘k,xpti.z)

‘k_].Z 1

.“

[

YP 1—— - ?Zk,zpk-l,k,y) - :(nk,yh,z - ‘k,:h,y)‘O1@k-l,k,z

‘k,z ‘k-] 1

[

‘Q 1—— ‘(Tzk,zqk-,,k,x - ‘Zk,xqk-,,k,z ) - :(nk.,pkk,.. – ‘k.xpkk,z)
ffk. ‘k_,.- 1

[

+YQ 1
— ‘(nk.yqk-l,k,z

1
‘i~k,:%,k,y)-:(nk.ypkk,,-nk,zpkk,y) -

71k,z ‘k-~

Since the wave is critically refracted at interface k, the propagation directions p~ and qk&are identical.

~en, requiring Snells's law[equations (8a,b)] to besatisfied atpointsP and Qresultsin F=O. The final

formula for surface-to-surface head wave traveltime thus becomes

‘-’ hi (O,o)(pjk,z —qik,z +

[

) ‘R (n,,z~lk,x - ‘1..rqlk.z) + h(%.:%k, y ‘%,yq]k,z)
‘k(xs>YS?xR7YR )=x

i=l vi vlnl ~ 1

[

‘S(nl,zplk,x – ‘I,xplk,:) + Ys (nl,:plk,y – ‘I,yplk,r )
— 1 (13)

Vl%,z

This completes the derivation. Although equation (13) conveys an impression that head wave traveltime

depends explicitly on the source and receiver position coordinates, it should be emphasized that the.

raypath vectors pikand qjk also depend on the recording geometry. Hence, there is implicit dependence

on (x~~s) and (XR,yR)as well. This issue is discussed more filly in the section regarding numerical

computation of traveltimes.
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Variants of the Basic Formula

Obviously, if the source or receiver is located at the coordinate ongin, then thetraveltime fo~ula (13)

simplifies considerably. Another simplification arises with a horizontal surface (nl~ = n~fl= O,nl= = 1);

expression (13) reduces to

‘k(xS>YS>xRYYR
[ 1

~= ~ ‘j(”>o)(pjk,z ‘qik,z) + (xl?~lk,. ‘YRqlk,y) - (xS~lk,.t ‘~.$~lk,y) . ~14)

i=l vi VI

This is equivalent to the surface-to-surface traveltime formulae given by Diebold (1987) and Richards et

al. (1991).

Conventionally, seismic refraction traveltime is expressed as a function of the source-receiver offset

distance. The current equation is easily converted to this form by speci$ing the receiver position in terms

of an offset distance X (X > O)and an azimuth angle Y (O< Y< 2z) relative to the source. The receiver

coordinates are given by

XR=x~ +XCOSY, YR ‘Ys ‘xsin Y.

Substituting these expressions into equation (13) yields

‘-] hi(o,o)(pi~.z– qik.z )
Tk(xs,Y&V=~

i=] vi

[

‘21,.(hc,x – %k,x) – ‘l,xh.z – ~lk,z)1[‘I,Z(h,y–qlk,y ) – ‘I,y (~lk,z – !/1/(,, )
– x~ – Ys

vlnl,= vl n, ,2

[
Cos Y(%,z%k,x– %,.4M,: )+Sln w%z91k,y–%,Y4M,,

+-x
q

1. v,n, z 1
(15)

Note that X is the horizontal distance between source and receive~ the actual distance maybe larger since

it is measured within the plane of interface 1. It is straightfonvard to demonstrate that the true source-
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receiver distance is L = X~l + tan 2 +1COS2(Y – i?,) , where & and 81are the dip and azimuth angles of

the surface.

Equation (15) is an extension of the common “slope and intercept” head wave traveltime “}orrda to

3D multilayered earth models. For the particular case of a model consisting of only two layers and a

horizontal surface, it can be shown that (15) reduces to a simple closed-form expression derived by

AMridge (1989). This serves as an important check on the validity of the general formula. The proof

entails some cumbersome algebra, and thus is not reproduced here; mathematical details are contained in

Aldndge (1992).

GENERALIZATIONS OF THE TRAVELTIME FORMULA

Heretofore, both the source and the receiver have been restricted to the surface. More versatile

formulae are needed to model data acquisition geometries with buried sources and/or receivers. These

situations arise in surface-to-borehole, borehole-to-surface, and borehole-to-borehole seismic

experiments, as well as with placement of sources and/or receivers in underground mines, tunnels, on the

seabed, etc.

Source and Receiver on Separate Interfaces

Let the source S be located on thej’~ interface with

summing the layer traveltime increments ti, i =j,j+l,...,

<j< k. The downgoing traveltime is obtained by

,k-1. Equation (1O)retains its form except that the

index 1 is replaced byj throughout. Similarly, if the receiver R is located on the Z’hinterface (1 s 1< k),

then the upgoing traveltime is given by equation (11) with the index 1 replaced by /. The critically

refracted traveltime increment is still given by (12). Summing these three components of the total

traveltime gives

‘-1hi(O>O)Pi&,z_ ‘-’ hi (O,O)gi~,z
‘k (XS ~~S , ‘S,XR YYR Y Rz )=~

vi z
i=j i=! vi

[

‘R (nl,z qlk.x – %,xqlk,z) + YR (n/,:%k,y – ‘I,yq/k,: )
-f-

vl~l,z

—

‘S (nj,zpjk,x – ‘j,.. pjk,z ) + YS (nj.zpjk,y – ‘j,ypjk,z ) I> (16)

L vjn j,, J
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where the vertical coordinates of source and receiver are zs = z,{xs~s) and z~= ~(~~~R). This is the proper

expression for head wave traveltime when source and receiver are located on different interfaces of the

model. It differs significantly Ilom the analogous formula published by Diebold (1987) and Richards et
:

al. (1991). Their expression is actually a special case of the general equation (16); in particular, it is valid

only if both the source and receiver interfaces are horizontal (nj.r = nj~ = nlJ = nlJ = O,nj== nt== 1). The

difference between these two formulae is clearly revealed by examining an earth model for which head

wave traveltime can be derived by independent techniques. The analysis demonstrates that (16) reduces

to the known traveltime solution in this situation, whereas Diebold’s equation (21) yields an erroneous

result (Aldridge 1992, Appendix C).

Arbitrary Source and Receiver Locations

A further generalization is obtained by allowing source and receiver to be located within designated

layers. Assume that the source is located in Iayerj at a vertical depth d~below the immediately overlying

interface (the j’h). Similarly, let the receiver be located within layer 1 at a depth dR beneath interface 1.

These incremental source and receiver depths must satisfy O < d~ < lz,{x~,yJ and O < d~ < ll<x~,y~),

respectively. The previously developed techniques can be used to derive the head wave traveltime for

this situation. Traveltirne increments induced by the source layerj on the downward path and the receiver

layer Zon the upward path must be treated separately, because the wave does not propagate across the full

thickness of each layer. The result of the analysis is

Tk (XS>YS>ZS,XRJYR >ZR
)= ~ ‘i(o>o)~ik.z _ ‘Spjk,: _~ ‘i(”~o)~ik.z + ‘Rq,k.z

f=j vi Vj i=l vi VI

[
‘R (% qlk.x – ‘bqlk.z) + YR (nl,z%k,.y – ‘I,y!hk,z)

+ .1
L VPI,Z

-[ _

‘s (nj,z ~ jk,.x - n j,x~jk,z ) + YS (nj.:.pjk,y – ‘j,ypjk,: )1>vjnj J
(17)

where source and receiver depths are now zs = z,<xs~s) + ds and ZR = ZI(XRJR) + dR. Note that the prior

expression (16) is recovered in the limit as ds + O and dR+ O,as expected. Moreover, it is possible to
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demonstrate that (17) reduces to the proper form when source and/or receiver approach the basal

interfaces of their respective layers, that is ds + hJ<XSJS)and/or dR~ h~XR,yR)(Aldridge 1992).

An additional benefit accrues from separating the downward and upward sums in the, traveltime

formule: asymmetric wave propagation paths can be treated. An asymmetric raypath is defined as one

where the mode of downgoing wave propagation in the irhlayer differs from the mode of upgoing wave

propagation across the same layer. Strictly, different symbols should be used to designate the wave

speeds within layer i in the downward and upward sums (e.g., v: and v; for the velocities of the

downgoing and upgoingwaves, respectively). However, this complication is avoided for the time being

in order to maintain no~tiona} simplicity. The velocity vi appearing in each sum is simply interpreted as

the propagation speed of the desired mode (P or S) across layer i. Equation (17) then constitutes a general

formula for point-to-point traveltimes of head waves propagating in a 3D layered earth model.

Arbitrary Reference Points for Layer Thickness

Individual layer thicknesses enter the traveltime expressions evaluated at the coordinate origin O. An

alternate form of the traveltime equation is characterized by layer thicknesses specified below the source

and receiver. This vanant is particularly suitable for the time term, delay time, and reciprocal time

inversion methods. Hence, the previous derivation is now modified to incorporate layer thicknesses

prescribed at arbitra~ reference locations; these points can then be specialized to the source and receiver

positions. The resulting traveltime expression forms the point of departure for a 3D extension of the

aforementioned inversion techniques.

The depth of the i’hinterface, referred to an arbitrary location A with horizontal coordinates (x~~~) is

‘i(x>J’’) =zi(x~>Y~)-(x-xA)[%l-(y-’A)[:l-(18)

Consider the downgoing raypath first. The previous expression for the traveltime increment ti induced

by wave propagation across the i’hlayer is modified to

~. _ Pik,x
1 [(– — xi+, – xA)–(xi –X4)]+= [(Yi+l ‘YA)-(Yi -Y.)]+ @qzi+, - Zi).

vi vi vi

13



The vertical (z) coordinates of the ray intersection points are expressed in terms of the corresponding

horizontal coordinates via equation (18):

zi+, ‘zj=hj(x~j y~)+(xi–x,~)[tl+(’i-’)[%l-(
where h,{xA~A) = Zi+l(XA,~A) - Z<X.JA) is the vertical thickness of layer i below reference point xl.

Substituting this expression into the equation for the traveltime increment ti gives

‘i(xA zYA )Pik,zti=
vi

+ H(xi+,- ‘,4) ‘li+,,:pikx - ‘Zj+,.xpik,.

ni+, = vi l+(yi;::A)[ni+’”:pik’x~ni+l”;pik”l

r(’i – ‘A ) ‘i., pik,., – ‘Zi,.tpik,z 1_ (Yi – YA ) l_ni.zPi~,Y– ni,yPi~,z1—
ni = L vi I.L ?li =

The traveltime increments tiare now summed over al

vi J

layers in the overburden (assumed here to include

all layers from the surface (i = 1) down to the critical refractor). Applying Snell’s law at each plane

interface results in

[
(XP ‘xA)(nk-pk+x ‘nk,.pk-l,k,z) + (YP ‘Y,4)(nIc,:pk-l,&y ‘nk,.vpk-l,k..

+
q

1 ‘k_] ‘k,,

—

(’S– ‘,4 )(nl,:plk,x – ‘I,xplk.: ) + (Ys – YA )(%,ZPILy – %,yP1k,z)

v)%

1

(19)

J
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A similar analysis yields the upgoing traveltime. Layer thicknesses are now referred to a diflerent

arbitrary position B with horizontal coordinates (x~,y~):

s

‘-’ ‘i (XL9Y~B)qjk,z
T“, = -~

i=] vi

-[
(XQ – ‘B )(nk,,qk.],k,x – ‘k,,rqk-,,k,,) + (YQ – yB )(nk,z!h-l,k,y – ‘k,y~k-l,k,z )

1

[
(XR-%)(%,=9,,..–%,X4M,,)+(YR–YENW& – ‘I,yqlk,: )

+

L VI%?

As indicated previously, equations(19) and (20) can be exploited to study one-way transmission times of

waves propagating through layered media. Finally, the critically refi-acted traveltime increment is given

by a simple alteration to the previous equation (12):

[( k–XB ) – (Xp – XA ) nk., PM,.r
Tcrit= ‘Q

– ‘lk,.. pkk.z )

[( k+YQ ‘YB) –(YP‘YA) nL:PM,}. ‘nk,ypkk.z)

‘k ‘Zk,z

[

(XA – ‘B)(~zk,/kk.– ‘k,.pk.k. ) + (y. – y~)(nk,zpkk,y – ‘k,y~kk,.z)
—

‘knk,z 1- (21)

The total head wave traveltime is obtained in the usual manner by summing the contributions along all

three raypath portions. Adding expressions (19), (20), and (21) yields
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[

(XR– ‘B )(nl,z%k,x ‘n],.t%k,z)+(YR %)(%.z!hc,y –W&.=)
+

Vl%z 1
[
(Xs– ~A)(%,zPlk,x ‘%,x%.,)+(.h ‘YA)(%,ZP]k,y ‘%,y~lk,. )]

—

L V,nl ... -1

[

(XB–XA)(nk,=PM,x– nk,.TPK, ) + (YB – YA x%zPkk,y – nk,yPkk,, )
+

vknk.z 1

+F(xp –xA, yp –YA,.XQ ‘XB>YQ–YB)>

,

(22)

where the function F has been previously defined. Once again, applying Snell’s law at the critically

refracting horizon demonstrates that F vanishes. Note that the above expression reduces to the previous

equation (13) if the reference points A and B are both situated at the coordinate origin O. Furthermore, it

is common (but not mandatory) practice to select points A and B to coincide with the source S and

receiver R, respectively. With these substitutions, the above expression simplifies dramatically to

[

(XR – XS )(nk.=pM,x 1-n~,.p~,,)+(YR–YS)(72k,:pkk.y - ~zk,ypkk,z) . (23)
+

vknk.~

This is the desired result. Since vertical layer thicknesses beneath source and receiver enter the

expression, equation (23) forms the logical point of departure for extending the time-term, delay time, and

reciprocal time inversion approaches to 3D layered models.
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Reflection Traveltime

The previous analysis has concenh-ated on waves that are critically refracted at the I/h subsurface

horizon. However, it is straightfonvard to demonstrate that the traveltime formulae also apply to waves

that are reflected from interface k of the model. Snell’s law of reflection for this situation is illustrated in

Figure 4 and is compactly expressed as

(24)

Note that equation (24) allows for a possible mode conversion upon reflection, i.e., vdk.lis not necessarily

equal to V“k-l.

For a wave reflected at interface k, points P and Q are coincident; there is no intervening critically

refracted raypath segment. The total traveltime is obtained simply by adding the downgoing and upgoing

components. Hence, setting (xQ,yo)= (xP/P) and summing equations (1O)and (11) yields

‘-’ ‘Zj(“>o)~j~,, _ ‘-’ ‘j (“,o)~i~,:
Tdo,rn-t Tup= ~ zi=j v; i=l v;

[

‘R (%!?lk,x – n,,.. q,k,,) + YR (%,,%k,> – %,Y9J
+

v: nf,z 1

-[

‘S (71j.zpjk.x 1–nj,.rpjk,z)+YS (nj,zPj~,~ – ‘zj,~pj~.:~ + G(XP, ~p),

V; nj ,:
(25)

where the quantity G(xP,yP)depends on the horizontal coordinates of the reflection point and is given by

[
‘(ni,zpk-l,k,x

G(XP t yP ) = $ v;-~ —‘Zk,xpk-l,k,z )-+ (nk,zqk-l,k..x – ‘k,z~k-l,k.z )
‘k-l.:

[

+Yf 1
— ‘(nk,zpk-l.k.Y

d – ‘k,ypk+k,z) – &(nk,zqk-l,k,y – ‘k,yqk-l,k.:)

‘k,z ‘k-1
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Distinct downgoing and upgoing layer velocities are incorporated into the above expressions in order to

emphasize the possibility of asymmetric mode-converted raypaths. Also, source and receiver are

assumed to be located on different interfaces. The component form of Snell’s law of reflection implies

that G vanishes. Equation (25) is then identical in form to the previous traveltime expression (16) that

was derived for head waves!

SPECIALIZATION TO TWO DIMENSIONS

Specializing the above traveltime formulae to two spatial dimensions provides useful checks on the

correctness of the derivations. These 2D equations underpin several head wave inversion techniques in

current use. In the 2D layered earth model, all of they-components of the interface normal vectors vanish

(equivalently, all interface azimuth angles are restricted to Q = O or @= z). Additionally, “tie recording

profile must be oriented perpendicular to the strike directions of the subsurface horizons. Hence, the

azimuth Y = O or Y= z as well. If this second condition is not satisfied, the unit wave propagation

vectors pi~and qi~are not confined to the xz plane, and a full 3D treatment is necessary.

Since many previous investigators have assumed a horizontal surface, equation (14) is used as the

point of departure for the analysis. Setting ys = y~ = Ogives

‘-1 hi (O,O)(~i~,, – 4ik.z ) +
~k(xs,x,) = ~

j=l vi

‘R qlk,x – ‘Splk,x 1,
VI

,. (26)

This expression is compatible with analogous equations developed by Diebold & Stoffa (1981) and

Diebold (1987). If the source is located at the coordinate origin, then (26) is also consistent with earlier

2D head wave traveltime formulae published by Dooley (1952), Adachi (1954), Ocola (1972), and

Johnson (1976). All of these investigators prescribe vertical layer thicknesses, either beneath the origin or

the shotpoint. In contrast, Ewing et al. (1939) and Mota (1954) measure thiclmess normal to the basal

interface bounding a layer. Hence, their traveltime equations, although designed to treat an equivalent

situation, differ in mathematical detail.

Specializing the traveltime variant (23) above to 2D yields a new and advantageous expression on

which the generalized reciprocal method (GRM) of refi-action analysis can be based. The GRM is a

technique for delineating a subsurface horizon from head wave arrivals recorded by inline forward and

reverse profiles (Palmer 1980, 1981).

In the 3D earth model, interface dip is characterized by a positive angle @i(O < @i< xd2). For

subsequent analysis of the 2D refraction problem, it is convenient to reparametenze the model in terms of

18



interface dip angles that may be positive or negative. Hence, let the symbol pi refer to an interface dip in

a 2D earth model. pt is an acute angle (O < IPil < 7d2) measured with respect to the +x axis; it is

considered positive (negative) if the angle opens in the clockwise (counterclockwise) sense. This angle is

related to the 3D interface orientation angles via ~ = (-cos~)fi, where the azimuth Q.is restricted to the

two values Oor n. Then, familiar 2D expressions for the interface unit normal vector, interface depth, and

layer thickness in terms of the 2D dip angle are

ni =(–sinpi)i +(cospi)k,

Zi(x)=zi(o) +xtanpi,

respectively. Note that ni has no y-component, and .z,{x)and h,(x) are independent of they-coordinate. ~

The head wave travehime formula relevant to GRM analysis is equation (23). This is specialized to a

2D model by setting y~ =y~ = O,nl-. = -sin ~., and ilk== cos~.. Equation (23) then becomes

‘-’ hi (XS)Pi~,:
x

– ‘j (XR)qjk.~ +

[

(x. - X, )(PM,., cos p, + P,k.z sin q~ )
Tk(x~, xR)=

1
(27)

jzl vi Vk Cos(pk

Next, the 2D unit propagation vectors pi~and qil are expressed in terms of raypath orientation angles as

follows:

pi~ = (+sinczi~)i + (cosai~ )k, qik = (*sin flik )i + (cos~ik )k .

hgles aikand flikare polar angles measured from the +Z axis (O< (Zik,flik< z). The propagation

of the critically refracted raypath segment is obtained by straightforward geometric Walysis:

PM= f[(cosqk)i + (sin pk)k].

(28a,b)

direction

(28c)

In the above expressions, plus sibgnsare used for x~ > x~ and negative signs are used for x~ < x~.

Substituting (28a,b,c) into (27) yields the remarkably simple result
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(x )Cos pi,‘-’ h.(x~)cOSaik – hi R
TJX.,XR)=Z ‘

j=l vi

x~ – XR
+

VkCos (ok
.. (29)

This is a novel expression for 2D surface-to-surface head wave traveltime that forms the basis for an

alternative development of the GRM. It differs from the analogous equation given by Palmer (1980,

1981) in several important ways: (i) layers are characterized by vertical thicknesses below source and

receiver, (ii) raypath orientation angles are measured with respect to the vertical, (iii) the coefficient

multiplying the source-receiver offset distance depends only on critical refractor quantities (i.e., velocity

vk and dip ~.), and (iv) the earth’s surface may be nonhorizontal. These attributes facilitate a

straightforward derivation of the GRM analysis tools (Aldndge 1992). Perhaps more importantly, GRM

inversion of refi-action arrival times utilizing equation (29) yields point deptlz estimates of a critically

refracting horizon. Construction of the refi-actor depth profile then reduces to an interpolation problem.

In contrast, Palmer’s time-depth function yields a circular locus of possible refractor positions. Depth

profile calculation then involves the more complicated task of constructing an envelope to a set of circular

arcs with varying radii.

The raypath angles in equation (29) depend on the recording profile azimuth Y, which in turn is

restricted to the two angles O and Z. However, raypath reciprocity requires that ai~(~) = z - ~ik(o) and

~ik(z) = Z- ~ik(o), implying COSC4(7Z) = -cos~~(0) and cos~ik(~) = ‘cos~,k(o). Using these relations, it is

easy to demonstrate the the traveltime formula (29) satisfies source-receiver reciprocity: T~(x@R)=

T~(x~,xJ,as expected.

RAPID TIL4VELTIME COMPUTATION

In order to compute traveltimes via the above formulae, the unit propagation vectors pi~ and qik

overlying the refracting/reflecting interface must be determined. For the reflection problem, this set of

vectors depends on both the offset distance X and the azimuth angle Y of the receiver relative to the

source. However, the critical refraction problem is qualitatively different; the propagation vectors depend

only on the azimuth Y. This particular feature can be exploited to yield a rapid computational procedure

for head wave traveltimes.

Since the propagation vectors depend on the recording azimuth, they should be written as pi~(Y) and

qjk(Y), although explicit dependence on Yis often suppressed for notational convenience. The functional

form of this dependence is not known. However, with a minimal amount ofraytracing, it is possible to
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numerically generate the function ~piLjqiJ over the fill range of possible recording azimuths (27r

radians). Inversion of this function then yields the propagation vectors for a prescribed value of the

source-receiver azimuth angle. This technique is discussed in general terms in the following subsection.

Algorithm Description

The computational algorithm is based on the close relationship between a critically reflected and

critically refracted raypath. For a given source-receiver azimuth angle, both raypath types possess the

same unit propagation vectors pi~(V and qiA(Y) for i < k. Consider the following six-step calculation

procedure, with reference to the critically refracted/reflected raypath segments depicted in Figure 5:

1)

2)

3

4)

5)

6)

Select a point P on the critically refracting interface. Since the location of P is arbitrary, it is
convenient to position it beneath the coordinate origin 0.

Choose a critically refracted propagation direction p~ through point P. The orientation of this vector
within the plane of interface k is defined by an angle ~ measured from an arbitrary reference line.

Forward raytrace from P along the set of upward unit propagation vectors qi~(i = k-l ,k-2,.. .,2,1) to
establish the position of a receiving point R on the surface. The departing vector qk.1,~is oriented at
the critical angle i~ = sin-’(vJ:-*/~k)relative to the interface normal, and is contained in the plane
defined by p~kand nk. The appropriate 3D form of Snell’s law is applied at all interfaces intervening
between the refractor and the surface.

Reverse raytrace from P along the set of downward unit propagation vectors pik(i = k-l ,k-2,.. .,2, 1) to
establish the position of a source point S on the surface. The incidence angle of the arriving vector
Pk.l,k (in the plane defined by pkkand n~) also equals the critical angle. A 3D “backward propagating”
form of Snell’s law is applied at all refracting interfaces.

Calculate the azimuth angle Yof R with respect to .S.

Increment angle x by a small amount and repeat steps 1) through 5). Stop after x has been
incremented by a total of m-adians.

This procedure numerically defines a fuction Y=flx) over an interval [xO,XO+~. It is not necessary to

perform raytracing to determine the azimuth angle for x ~ [XO+Z,XO+2Z].Rather, values are easily

generated from the symmetry relation Y= fix-z-) + z This symmetry condition arises from raypath

reciprocity: reversing the direction of the critically refracted propagation vector pMmerely interchanges

the positions of the source and receiver on the surface.

If the propagation vector pM makes one complete rotation on the critically refi-acting interface (i.e., x

increments by 27rradians), points R and S make one complete closed circuit on the stiace (i.e., Y also

increments by 27$ This functional dependence is designated Y= g(%). This inverse fiction x = g-*(!P)
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can then be used to determine the appropriate value of x for a specified source-receiver azimuth angle.

Finally, unit propagation vectors pi~and qi~corresponding to this value of~ are regenerated via points 3)

and 4) above. . .

Note that the function Y= g(%) needs to be calculated only once for a given critical refi-actor in an

earth model. All recording azimuths contained in the data acquisition geometry are treated by this same

fim.ction.

Rapid raytracing through a set of homogeneous and isotropic layers is readily achieved using the

formulae in Shah (1973); mathematical details are described more filly in Aldridge (1992).

MODELING EXAMPLES

The two examples presented in this section illustrate the utility, as well as some of the limitations, of

the head wave traveltirne formulae for forward modeling applications. The recording geometry for the

first example is the common reversed profile; all sources and receivers are located on a horizontal surface.

The second example considers a typical offset VSP geometry (surface source and downhole receivers).

Profile Geometry

Equation (15) expresses head wave traveltime in terms of the horizontal offset distance between a

surface source and a surface receiver. It is written in condensed form as

Tk(x~,y~,x, Y)=m~(y)x +~k(xs>Ys>y)> (30)

where the definitions of the slope mk(Y) and intercept bi(x~~~,~ are obvious. This expression is a 3D

extension of the slope/intercept formulae that are commonly used to describe head wave traveltimes.

Equation (30) is evaluated for a shallow three-layer model defined by the parameters
.

+,=0”, i3, =0°, z, (0,0) = Om, v, =looom/s,

4,=8°, “02= 0°, Zz(0,0) = 5 m, V2 =1800 m/s,

@3=5”, $, = 60”, zj(0,0)=12m, V3 = 3200 I_dS .

Figure 6 displays simulated head wave arrival times observed on a set of four reversed refraction profiles.

Direct wave traveltimes are also included in each panel. Shots are located at each end of the recording
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spreads and the maximum source-receiver offset distance is 50 m. The profile pairs are all centered at the

coordinate origin and are oriented in the N-S, NE-SW, E-W, and SE-NW geographic directions.

The straight line arrival time curves plotted in each panel convey an impression of a 2D earth model.

The fill three-dimensionality of the subsurface is only appreciated by comparing traveltime curves

recorded along several separate azimuths. Slopes and intercepts of the refraction arrival lines change as

the profile direction is reoriented. Thus, the crossover distances shift as well. Note that reciprocal times

(the shot-to-shot traveltimes) for forward and reverse arrivals in all panels agree, as expected. Refraction

traveltime curves are extended to zero offset distance, even though head waves do not exist in the

precntical offset zones. Since the traveltime computation method does not locate the critical offset

distance, equation (30) is evaluated over the full offset range covered by the receiver array. If traveltime

analysis is concerned solely with first arrivals, then these calculated nonphysical traveltimes do not pose

any problems, because they are always associated with later arrivals. However, precritical offset arrivals

do have interpretive significance (Ackermann et al. 1986) and thus their inclusion in the current algorithm

may be useful for some studies. -

Note that the intercept time in equation (30) depends on the recording azimuth angle Y (through the -

propagation vectors pi~and qi~)in addition to the source coordinates (xs,ys). This unusual feature appears

to be peculiar to 3D multilayered earth models. Intercept time is obviously independent of profile

azimuth for all lD earth models. For 2D earth models (recorded normal to strike), the identity of

intercept times observed on split spread profiles is an interpretive rule (Johnson 1976; Merrick et al.

1978; Ackermann et al. 1986; Briicld 1987). Finally, in the case of the simplest 3D model consisting of a

single layer overlying a halfspace, the intercept time is also independent of profile azimuth (Aldridge

1989). Dependence on the azimuth angle Y only arises when multiple layers in three dimensions are

analyzed. However, raypath reciprocity requires that the propagation direction vectors satis@

qik (y ‘m) = ‘pik(Y) .

Inserting these results into the expression for the intercept time yields

~k(~s>Ys>y+~)=~k(xs,Ys>y)

Hence, the 2D interpretive rule also holds for the class of 3D models examined here (uniform velocity

layers bounded by plane interfaces). However, it is not true that intercept times recorded on all line

profiles emanating from the same shotpoint are identical. For earth models with small dips (< 10°) this
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variation in intercept time with profile azimuth appears to be minute. In the current example, b~(O,O,fl

vanes by only 0.03°/0as the azimuth Yincreases from 0° to 360°.

#

VSP Geometry

The final example examines head wave traveltimes recorded in a simulated VSP experiment. The

computation procedure described in the previous section is readily generalized to a situation where source

and receiver are located on different interfaces of the model. An azimuth angle function Y= g(x) can be

calculated for a hypothetical source located on interface j and and hypothetical receiver located on

interface L In an offset VSP survey, the source is located on the surface (j= 1) and a borehole geophone

is lowered continuously down the well. Equation (17) is used to calculate the traveltimes.

This example considers a four-layer model defined by the parameters

$,=0”, 91=i”, z, (0,0)= Om, v, = 1800”m/s,

45,=3”, e, = 90°, Z, (0,0)=50 m, .v, = 2500 m/s ,

43=4”, 63 = 270°, z~(0,0) = 120 m, V~= 3200 lllh,

#4=o”, e,=o~, z,(0,0)=155m, V4= 3900 I-n/s .

The model is strictly 2D; the strike directions of the two non-horizontal interfaces are north-south.

However, since sources are deployed at various azimuths around the well, the 3D formulae are needed to

compute accurate arrival times. Figure 7 displays head wave traveltime curves as a function of geophone

depth within a borehole positioned at the coordinate origin. The maximum geophone depth is 160 m,

which places the deepest receiver in layer 4. Surface sources are offset from the well by 500 m to the

south, west, and east in separate panels. [For this 2D model, a source offset 500 m to the north generates

traveltimes identical to those for the south source]. The arrival time of a given head wave decreases as

the geophone is lowered in the well, because the receiver approaches the critically refracting horizon

more closely. As the geophone passes through an interface, the slope of the traveltime curve changes.

An arrival time curve thus consists of straight line segments joined end-to-end, as predicted by equation

(17). Each curve terminates at the depth of the critical refractor in the well; the associated head wave is

not observable below this level. Note that the critically refracted waves depicted in Figure 7 are not

necessarily initial arrivals. Other waves neglected in the modeling procedure (e.g., direct and/or reflected

waves) may actually arrive first over certain ranges of receiver depth.
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CONCLUSION

The traveltime formulae derived in this study are useful for a variety of forward modeling applications

involving head waves propagating in 3D multilayered earth models. Obviously, construction of

traveltime curves for a trial earth model can assist in the interpretation of field recorded data. The

equations also provide means for evaluating the importance of 3D effects on head wave traveltimes in

various seismological contexts. For example, Merrick et al. (1978) investigate the hidden layer

phenomenon using a 2D layered earth model. Hunter & Pullan (1990), using a lD model, compare the

sensitivities of vertical and horizontal receiver arrays for discriminating layer velocities. Many

investigators are concerned about the possibility that head waves might constitute first arrivals in

crosswell traveltime tomography experiments. All of these studies can benefit horn a full 3D analysis.

Several straightforward extensions of the results described herein can enhance the utility of the

formulae for forward modeling purposes. Inclusion of multiple reflections within the overburden of the

critically refracting horizon does not pose any special problems (note “that multiple raypath se=ments

along the critical horizon are no? allowed see Cerver$ & Ravindra 1971, page 210). Also, well known

tools of asymptotic ray theory can be applied to calculate the amplitude and waveform of head wave

particle displacement in this 3D situation. Care must be exercised in treating shear wave propagation,

because SV and SH modes are not globally decoupled in 3D. Richards et al. (1991) examine some of

these phenomena and propose a particular computing procedure.

A more substantial improvement on the current work entails assigning anisotropic material properties

to each layer of the model. The appropriate 3D anisotropic form of Snell’s law of refraction must be

applied at each plane interface. Frederiksen & Bostock (1998) have recently undertaken this

investigation, in the context of upward propagation of incident plane waves through layered continental

crust.

Finally, since head wave traveltime can be expressed by a simple mathematical formula, inverse

methods designed to recover the eanth model parameters from measured data are facilitated. Aldridge

(1992) and Aldridge & Oldenburg (1999) describe an inversion procedure that exploits the rapid forward

modeling capability developed here. Other head wave traveltime inversion schemes are probably

possible. In particular, the “slope and intercept” equation (30) may allow the extension of the 2D methods

of Dooley (1952), Adachi (1954), and Johnson (1976) to 3D models.
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LIST OF FIGURE CAPTIONS

Figure 1. Orientation of the $’ interface of a multilayered earth model. Angles ~iand ~ describe the dip
I and azimuth of an interface located a distance dj from the coordinate origin. ni is a unit vector’normal to
I the plane interface. The interface separates media with seismic wavespeeds vi.l (above) and vi (below).

Figure 2. Schematic representation of the raypath of a wave critically refi-acted on interface k of a
multilayered earth model. Sand R denote a surface source and receiver, respectively. P and Q denote the
two points of critical refraction. Layers are characterized by seismic wavespeeds vi, i=l ,2,.. .,k. In the 3D
situation, the raypath is not confined to a single plane.

Figure 3. Noncritical refraction of the raypath at interface i in the overburden. Top: downgoing raypath.
Bottom: upgoing raypath. The unit vector ni is normal to the interface, and angles P and v describe
orientations of incident and transmitted unit raypath vectors relative to this normal, respectively.

Figure 4. Reflection of a raypath at interface k of the earth model. The unit vector n~ is normal to the
interface, and angles p and v describe orientations of incident and reflected unit raypath vectors relative
to this normal, respectively. If a mode conversion occurs, then the downgoing velocity vd~.ldiffers from
the upgoing velocity vu~.l.

Figure 5. Schematic 3D representation of a raypath critically reflectectkefracted at point F’on interface k.
S and R denote a surface source and receiver, respectively. Angle x is measured from an arbitrary
reference line on plane interface k, and angle !Pis the source-receiver azimuth. Downgoing and upgoing
unit raypath vectors are depicted.

Figure 6. Direct and head wave arrival times recorded by a set of four reversed profiles over a shallow
three-layer earth model. From top to bottom, profiles are oriented in a N-S, NE-SW, E-W, and SE-NW
direction, respectively. All profiles are centered at the coordinate origin. In the top panel, curves labeled
1, 2, and 3 refer to arrivals from interfaces 1 (the surface), 2, and 3, respectively. The sequence of curves
is the same for the remaining three panels.

-

Figure 7. Head wave arrival times recorded in a VSP configuration. From top ‘to bottom, a surface
source is offset horizontally from the well by 500 m to the south, west, and east, respectively. Each panel
is labeled with the source-to-receiver azimuth angle Y. Curves labeled 2, 3, and 4 refer to critical
refractions from interfaces 2, 3, and 4, respectively.
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