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Abstract

Data-parallel languages such as High Performance
Fortran (HPF) present a simple execution model in
which a single thread of control performs high-level op-
erations on disiributed arrays. These languages can
greatly ease the development of parallel programs. Yet
there are large classes of applications for which a miz-
ture of task and data parallelism is most appropriale.
Such applications can be structured as collections of
data-parallel tasks that communicate by using ezplicit
message passing. Because the Message Passing Inter-
face (MPI} defines standardized, familiar mechanisms
for this communication model, we propose that HPF
tasks communicate by making calls to a coordination
library that provides an HPF binding for MPI The
semantics of a commaunication interface for sequen-
tial languages can be ambiguous when the interface is
invoked from a parallel language; we show how these
ambiguities can be resolved by describing one possible
HPF binding for MPI. We then present the design of
a library that implemenis this binding, discuss issues
that influenced our design decisions, and evaluate the
performance of a prototype HPF/MPI library using a
communications microbenchmark and application ker-
nel. Finally, we discuss how MPI features might be
incorporated into our design framework.

1. Introduction

Message-passing libraries such as the Message Pass-
ing Interface (MPI) provide programmers with a high
degree of control over the mapping of a parallel pro-
gram’s tasks to processors, and over inter-processor
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communications [5]. However, this control comes at
a high price: programmers must explicitly manage all
details relating to parallelism, such as synchronization
and data transfer. In contrast, data-parallel languages
such as High Performance Fortran (HPF) provide a
simple programming model in which all processors ex-
ecute a single, logical thread of control that performs
high-level operations on distributed arrays; many te-
dious details are managed automatically by the com-
piler [7].

1.1. Limitations of data parallelism

While data-parallel languages such as HPF can
greatly ease development of concise solutions to many
parallel programming problems, the rate of improve-
ment of speedup of many data-parallel programs dimin-
ishes sharply as more processors are used to execute a
program. This is typically due to increased communi-
cation overhead. Alternatively, one may say that par-
allel efficiency, or the ratio of speedup to processors,
decreases as the number of processors increases. Fig-
ure 1 depicts an abstract example of this phenomenon.
Classes of applications that exhibit this effect most
markedly include those that perform a number of het-
erogeneous processing steps (such as pipeline codes
and multidisciplinary simulations) and those that oper-
ate on irregularly-structured data (such as multiblock
codes).

Fortunately, many such programs can be decom-
posed into independent data-parallel tasks that can ex-
ecute in parallel on a subset of the available processors
at higher parallel efficiency than the original program
running on all processors [2, 6]. For example, suppose
the program of Figure 1 can be reformulated as a pair of
communicating data-parallel tasks that each run on %
processors with a parallel efficiency of 90% (as did the
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Figure 1. A plot of speedup versus number
of processors for an application that exhibits
diminishing parallel efficiency.

original program). When this mixed task/data-parallel
version executes on all P processors, it can maintain a
paraliel efficiency of 90%, a significant improvement
over the 60% of the purely data-parallel version.

Though this simple analysis neglects the additional
inter-task communication incurred by the task-parallel
version, in practice this overhead often is dominated
by the improvement in each task’s parallel efficiency.
Moreover, in many pipeline applications it is desirable
to optimize not the time to process a single dataset (the
pipeline lafency), but rather the number of datasets
processed per unit time (the throughput). Through-
put is bounded not by the time to complete all stages,
but rather by the processing rate of the slowest stage.
Therefore, even if communication overhead causes the
latency of a pipelined version to rise above that of a
purely data-parallel version, so that the speedup of the
pipeline at processing one dataset is actually lower, the
pipeline may still be preferable because its throughput
is higher [1].

1.2. MPI in an HPF context

Because HPF is a powerful, high-level notation for
expressing data-parallel computations, while MPI fa-
cilitates precise control over task mapping and inter-
task communication, we propose the use of an HPF
binding for MPI as a coordination layer for cou-
pling together data-parallel tasks to construct mixed
task/data-parallel programs. However, the semantics
of a standard such as MPI that is intended for sequen-
tial languages are not entirely clear when its mecha-
nisms are invoked from a parallel language. For ex-
ample, a “process” in MPI is assumed to be an inde-

Producer (task 0):
'HPF$ processors prod_procs(4)
real A(8, 8)
'HPF$ distribute A(BLOCK, *) onto prod_procs
doi=1, N
call produce_data(A)
call MPI_Send(A, 8*%8, MPI_REAL, 1, 99,
& MPI_COMM_WORLD, ierr)
end do

Consumer (task 1):
'HPF$ processors cons_procs(2)
real B(8, 8)
'HPF$ distribute B(*, BLOCK) onto cons_procs
doi=1, N
call MPI_Recv(A, 8+8, MPI_REAL, 0, 99,
% MPI_COMM_WORLD, status,
& ierr)
call consume_data(B)
end do

Figure 2. Producer-consumer example writ-
ten using HPF/MPI.

pendent thread of control executing on a single proces-
sor. This is ambiguous when applied to the execution
model of HPF, where one logical thread of control is
replicated across many physical processors. Similarly,
data structures in MPI are assumed to reside within
a single address space, yet a fundamental premise of
HPF is that arrays can be distributed across multiple
address spaces.

Our definition of an HPF binding for MPI attempts
to resolve these difficulties. In an HPF/MPI program,
each task constitutes an independent HPF program in
which one logical thread of control operates on arrays
distributed across a statically-defined set of processors.
At the same time, each task is also one logical process
in an MPI computation. Therefore, tasks may com-
municate and synchronize with one another by calling
standard MPI routines for point-to-point transfer and
collective operations. The combination of the seman-
tics of our binding and the implicit nature of paral-
lelism in HPF yields the following helpful consequence:
when reading an HPF/MPI program one may ignore
the HPF directives and treat the remainder as a par-
allel Fortran 90 program containing explicit message-
passing calls.

We use a very simple producer-consumer example
to illustrate the usage of the HPF binding for MPI;
Figure 2 shows the source code for the example. The
producer task calls the function produce_data, which
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Figure 3. Movement of distributed data from
producer to consumer.

performs a series of data-parallel operations on the ar-
ray A using four processors. Then the producer calls
MPI Send to transmit the contents of A to the consumer,
in a message with a tag value of 99. The consumer
receives this data into an array B, using MPI_Recv. Fi-
nally, the consumer processes the data in parallel on
its two processors by calling consume_data.

What distinguishes this example from an ordinary
sequential MPI program is that each of the two logical
MPI processes is an HPF task executing on several pro-
cessors. Hence the source array being transferred via
MPI calls is actually distributed across the processors
of task 0, and the message destination is distributed
across those of task 1. Figure 3 depicts the complex
pattern of data movement from source to destination
required to perform this transfer. Yet from the pro-
grammer’s perspective, one invokes just a single trans-
fer operation; all the complexity is encapsulated in the
HPF/MPI library.

The example of Figure 2 does not show how the two
tasks were connected together in a pipeline. This can
be achieved in two ways: ’

1. During execution, tasks may invoke the inquiry
function MPI_Comm.rank to determine their iden-
tity, and perform conditional processing based on
the returned value. (This is similar to the opera-
tion of SPMD programs.)

2. The startup mechanism of an HPF/MPI imple-
mentation must permit definition of the size of
each task. If the startup mechanism also lets
the user specify different programs to be executed
by different tasks, then a collection of separately-
compiled executables may be combined into a sin-
gle HPF/MPI computation. (Many implementa-
tions of sequential MPI permit this.)

In the next section, we present the design of a li-
brary that implements a subset binding of MPI, based
on the ideas just presented. In Section 3, we evaluate
the performance of a prototype HPF/MPI library, and
determine the sources of overheads that affect its per-
formance. Section 4 contains a discussion of promising
techniques for extending our library to include addi-
tional MPI features. Finally, in Section 5 we compare
our techniques for introducing task parallelism into
data-parallel languages with other approaches, state
our conclusions regarding the effectiveness of our ap-
proach, and suggest directions for future work.

2. An Implementation Strategy

We have designed and implemented a subset of an
HPF binding for MPI that provides the communication
operations described above. Because the implementa-
tion of all of MPI is a daunting task, we have restricted
our efforts to a small subset so that we can focus on
analyzing and understanding design and performance
issues. Our HPF/MPI implementation operates with
the commercial HPF compiler pghpf, developed by the
Portland Group, Inc. [9]

The design of our HPF/MPI library was guided from
the outset by several underlying assumptions and ob-
Jectives, including the following:

e The primary target platforms on which we would
run HPF/MPI applications would be distributed-
memory multicomputers.

o We wished to maintain a high degree of portability
across hardware and software platforms, including
across different HPF compilation systems.

e The library should achieve good performance for
communication patterns typical of the sorts of
mixed task/data-parallel applications we wished
to support.

e When users express optimization hints through
MPI facilities (such as the fact that a particular
communication pattern is repeated many times),
HPF/MPI should be able to exploit these oppor-
tunities.

¢ It should be possible to build upon the subset li-
brary to extend it into a full implementation of al
of the MPI standard.

These guiding principles carry with them a number
of important consequences for our design. For exam-
ple, the characteristics of our intended target platforms
imply that to achieve high transfer bandwidth for large



arrays, during communication we should try to utilize
the high connectivity of the target’s network by per-
forming multiple transfers in parallel. As a result, we
have developed a design based on a parallel strategy
(described below).

Furthermore, as a result of our desire for portability,
we chose a sequential implementation of MPI as the un-
derlying communication substrate, because it is avail-
able on many multicomputers and utilized by many
HPF compilers. We note, however, that HPF/MPI
can be layered atop other communication substrates.
In Section 4, we discuss how functionality beyond that
provided by MPI could aid in extending our subset li-
brary.

Many of the applications we wish to support re-
quire low latency for certain communications which
are repeated frequently [1]. MPI includes the func-
tions MPI Send_init and MPI Recv_init for defining
persistent requests for sends and receives; persistent
requests allow an implementation to recognize and op-
timize such repeated operations. Therefore we selected
persistent requests as the first MPI optimization facil-
ity to add to our library. The difficulty of incorporating
this feature into the library also served as a measure
of the modularity of our design: the more modular the
design, the easier it will be to extend HPF/MPI to
support the entire MPI standard.

2.1. Details of the implementation

When an HPF task invokes an HPF/MPI communi-
cation function, the library takes a number of actions to
effect the data transfer. Here we examine the sequence
of steps taken by the producer (task 0) in Figure 2 as it
calls MPI_Send to transfer distributed source array A to
destination array B in task 1. The steps are as follows:

1. Distribution inquiry: Standard Fortran 90 and
HPF intrinsic inquiry functions are called to cre-
ate an array descriptor for A that specifies its size
and distribution.

2. HPF extrinsic call: A C language data transmis-
sion routine mpi_send_c is invoked. Because the
routine is not written in HPF, it must be invoked
in local mode: for the duration of the call, each
processor in task 0 has a separate thread of con-
trol (SPMD-style execution) rather than the single
thread of control implied by HPF.

3. Array descriptor exchange: Processors in task 0
join in a collective operation with those of task 1.
This operation has the effect of broadcasting the
array descriptor of A to all processors in task 1, and

that of B to all processors in task 0. {We exploit
the fact that each descriptor is initially present
on all processors of one task by implementing this
operation using a set of point-to-point transfers;
this 1s typically more efficient than a broadcast.)

4. Communications scheduling: Using the array de-
scriptors for A and B, each processor of task 0 com-
putes a communications schedule, that is, the sets
of elements of its local portion of A that must be
sent to each processor of task 1. The schedule is
computed by algorithms based on the FALLS rep-
resentation of Ramaswamy and Banerjee [8].

5. Transfer buffer packing: The elements to be sent
to a single processor of task 1 are packed (gath-
ered) into a single contiguous transfer buffer.

6. Data transmission: The contents of the transfer
buffer prepared in Step 5 are transmitted to the
receiving process using point-to-point operations
of the underlying communication substrate.

Note that Steps 5 and 6 are performed by a sending
processor once for each receiving processor that re-
quires array elements from the sender.

In the case of a task receiving data using MPI_Recv
(such as the consumer task of Figure 2), the sequence of
steps is essentially the same through the end of Step 4.
In Step 5, each processor receives data from a sending
processor into a transfer buffer, using the sequential
version of MPI_Recv. Finally, in Step 6 the contents
of the transfer buffer are unpacked (scattered) to their
final locations in the destination array. As in the case
of a sending task, Steps b and 6 are repeated once for
every sending process from which elements must be re-
ceived. The iteration ordering for each receiver over its
set of senders is chosen to match the iteration ordering
for senders over their receivers, so that the send and
receive operations comprising a data transfer match
correctly.

When a task creates a persistent request for a send
or receive using MPI_Send init or MPI Recv_init, its
processors execute Steps 1 through 4 of the sequence
presented above, and the resultant communications
schedule is cached in an MPI_Request object. When the
request is subsequently executed using MPI_Start, this
communications schedule is used to perform Steps 5
and 6. Therefore the delay incurred by descriptor ex-
change and the processing overhead of communications
scheduling can be amortized over many operations.




2.2. Properties of the implementation

To obtain the best performance, it is important that
transfers between different senders and receivers pro-
ceed in parallel. This implies that two senders should
not try to send to the same receiver at the same time.
As transfers are performed iteratively by each sender,
the parallelization of transfers depends on the iteration
ordering of each sender over its set of receivers, which
is selected by the FALLS-based algorithms. Transfers
generally proceed in parallel if both of the following
conditions are met:

1. There are at least as many receivers as senders.
This condition depends on the sizes of the sending
and receiving tasks.

2. All senders possess the same set of receivers. This
condition holds _for most common redistributions.

Because there is no synchronization between senders as
they iterate over receivers, it is possible for one sender
to overtake another, with the result that both send
to the same receiver at the same time. The receiver
then becomes a hotspot, and parallelism is reduced.
However, if each transfer is of roughly the same size
(as is the case for many common redistributions), this
is unlikely to occur.

As noted above, portability across platforms and
HPF compilation systems was one of our major goals.
To this end, we defined a simple link-level interface
which we believe permits our library to work with the
run-time system of any HPF compiler that uses MPI
as its communication substrate. The key to portability
is that the interface does not require access to the HPF
system’s internal data structures. When we tested this
interface with pghpf, only minimal modifications to the
source code of pghpf’s run-time system were necessary.

High-quality implementations of HPF may store the
local portion of a distributed array in a non-contiguous
format denoted by an internal run-time array descrip-
tor: this permits optimization of compiler-synthesized
communication (e.g. by padding arrays with “ghost el-
ements” ), and efficient operation on array subsections.
To avoid dependence on pghpt’s array descriptor for-
mat, we explicitly declare HPF/MPI communication
routines to be ezirinsics, or routines not written in
HPF. This declaration causes array arguments to be
copied into a contiguous temporary array before enter-
ing the extrinsic, and copied back from the temporary
upon return. The temporary array possesses the prop-
erty of sequence association currently required by the
HPF/MPI library. As a result, the library remains

Point-to-point Receiver

Transfer

Sender

Figure 4. Communication operations per-
formed for the centralized strategy. Ovals
are tasks, small circles are individual proces-
sors.

portable across HPF compilation systems. Unfortu-
nately, this portability comes at a cost in performance;
see Section 3.

2.3. An alternative strategy

The parallel strategy presented above involves all
processors in simultaneous transfers of sections of the
array. This reduces transfer time for large arrays at
the expense of requiring all array descriptors to be
distributed to all processors, which can increase total
transfer time for small arrays. Therefore, for trans-
fers of small arrays, or when executing on networks
with low connectivity where parallel transfers are not
appropriate, we have developed an alternative design
based on a centralized strategy. This design does not
require global distribution of descriptors and does not
attempt parallel transfers. This scheme is depicted in
Figure 4; it operates as follows:

1. The entire array is gathered at a single sending
processor using a sequential MPI collective opera-
tion.

2. The entire array is transmitted to a single receiv-
ing processor using sequential MPI functions.

3. The array is scattered to all receivers using a se-
quential MPI collective operation.

3. Performance Results

In this section we evaluate the performance of an
implementation of a subset of the HPF binding of MPI
that relies on the parallel strategy. We use a standard
synthetic benchmark to identify sources of overhead in




the implementation and to investigate the effectiveness
of the optimization for persistent operations. We sug-
gest techniques for reducing the overheads revealed by
these measurements. Then, we compare the execution
times of pure HPF and HPF/MPI versions of a 2D FFT
application kernel, to judge the utility of HPF/MPI for
accelerating real data-parallel programs.

All experiments were performed on Argonne’s IBM
SP system, which consists of 128 Power 1 processors
linked by an SP2 interconnection network. The un-
derlying sequential MPI library was MPICH {4]. All
HPF programs were compiled with pghpf, using what
we determined to be the most effective optimization
switches.

3.1. Communication performance .

To evaluate the performance of our library at trans-
ferring distributed arrays between tasks, we use a data-
parallel variant of the standard “ping-pong” communi-
cation benchmark. This program consists of two tasks
with equal numbers of processors that alternately send
and receive 2D arrays of a fixed size a large number
of times. The arrays are distributed (BLOCK, *) on
the sending side and (*, BLOCK) on the receiving side.
Hence a worst-case redistribution is performed during
each transfer, as each sending processor must commu-
nicate with all receivers.

The performance achieved by HPF/MPI depends in
part on the performance of the underlying sequential
MPI implementation. There is a simple, widely-used
mode] that accurately characterizes the behavior of
point-to-point transfer operations by many message-
passing libraries running on multicomputers. This
model assumes that for a message N bytes long, the
time T to transfer the message between two proces-
sors is governed by the equation

Tn =ts+ N xty

where t, is the communication startup time, or latency,
and t; is the time to transfer one byte of the message
(inversely related to the bandwidth). For the MPICH
layer used in our experiments, we measured a latency
ts of 87.9 usec and a per-byte cost ¢ of 0.0326 usec,
which corresponds to a bandwidth of 30.7 Mbytes/sec.

Figure 5 shows the time measured using the ping-
pong benchmark for one-way non-persistent and persis-
tent transfers of small and large messages, with varying
numbers of processors P per task. In general, for short
messages we find that transfer time increases with in-
creasing P, while transfer time decreases as P rises
for large messages. In terms of the above model, for
small non-persistent transfers, £; is 85.3 x P + 1290

psec; for persistent transfers, t, is 60.0 x P 4 827 psec.
Both are roughly proportional to the latency of the
sequential MPI substrate. (These values were deter-
mined using a least-squares fit.) For large messages,
the per-byte cost is 0.081 psec, which yields a peak
bandwidth of 12.4 Mbytes/sec. The persistent opti-
mization decreases transfer time by 26-32% for small
messages, depending on P, while for large messages it
has negligible effect.

By examining the time spent in each of the six pro-
cessing steps of our design, we can often identify the
sources of overheads that contribute to the transfer
time. Such a breakdown of the total time is repre-
sented by the shaded regions within each vertical bar
of Figure 5. The time for each step appearing here is
the maximum among all processors (the variance across
processors was low). Since we are interested in the end-
to-end time to transfer data from a sender to a receiver,
the times for corresponding steps for sending and re-
ceiving messages have been summed together.

From this breakdown, we find that distribution in--
quiry (Step 1) has a small, fixed cost, never more than
10% of the total. The time to compute a communica-
tion schedule (Step 4) also has a modest cost, though
it rises with P. This is because the FALLS-based al-
gorithms require time proportional to the larger of the
number of senders or receivers. For small messages,
descriptor exchange (Step 4) requires about 500 psec,
which is 15-30% of the total (depending on P). For
large messages, a long time is spent in this step (up
to 20 millisec, or 22%). This phenomenon is not due
to a message-size-dependent cost for exchanging de-
scriptors, but rather because of synchronization delays
resulting from a load imbalance: after a sender com-
pletes transmission of a message, it immediately ini-
tiates a receive, and waits at the descriptor exchange
step—a synchronization point—while the receiver fin-
ishes receiving and unpacking data messages. All three
of these steps are skipped when persistent communica-
tions are performed; however, for large messages most
of the time spent in descriptor exchange shifts to data
transmission (Step 6), which is the other point of syn-
chronization during a transfer.

The cost of the HPF extrinsic call (Step 2} includes
both a fixed overhead of about 200 psec (mostly sub-
routine call overhead) and a per-byte cost for argument
copying, as noted in the previous section. As a result,
this step takes 10-20% of the total time. Presumably
much of this overhead would disappear if our library
were able to operate directly on pghpt’s internal rep-
resentation of arrays, so that it would not need to be
invoked using the HPF extrinsic mechanism.

Buffer packing and unpacking (Step 5) includes a
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Figure 5. One-way message transfer times for small (4 kilobyte) and large (1 megabyte) messages,
using non-persistent and persistent operations. The time spent in different processing steps is
denoted by the shaded regions within each vertical bar.

per-byte cost that causes this step to consume about
20% of the total time for large messages. The process-
ing in this step is a kind of scatter-gather operation.
Because data is always copied to an intermediate buffer
before being transferred to its final location, we will re-
fer to this operation as an indirect scatter-gather. The
user-defined datatype facilities of MPI make it possi-
ble to specify a direci scatter-gather, in which data
can be transferred directly between the network inter-
face and non-contiguous locations within a program’s
data structures, without buffering. However, not all
MPI implementations can actually perform this direct
transfer. Therefore, in principle it should be possible
for HPF/MPI to specify a direct scatter-gather in this
step, which could result in a large reduction in over-
head on some platforms. However, for many redistri-
butions the complexity of the required MPI datatypes
is quite high. (The creation of these datatypes is even
more complex if one performs the direct scatter-gather
on the HPF run-time system’s non-contiguous inter-
nal representation of arrays.) Hence modifying the
library to perform a direct scatter-gather on general
distributions would require extensive enhancements to
the FALLS-based scheduling algorithms, though there
are common, simpler redistributions that are easier to

handle.

The time spent performing data transmission
(Step 6) varies in a predictable manner with N and
P. For small messages, the time is roughly propor-
tional to P; this is to be expected, as each processor
must send and receive P messages. The constant of
proportionality is about the same as the value of ¢,
for the underlying sequential MPI library. For large
messages, the time is proportional to the amount of
data per processor (hence inversely related to P). The
achieved bandwidth per processor ranges from 16 to 26
Mbytes/sec, always at least half that of the underlying
MPI substrate. The bandwidth generally drops with
increasing P. We suspect that this decrease in band-
width is due to the domination of startup overhead
as the amount of data per processor drops, as well as
synchronization delays, but further investigation is re-
quired.

3.2. Application performance

Synthetic communication microbenchmarks such as
the ping-pong program are an inadequate means of
gauging the effectiveness of a parallel programming
system for speeding up real programs, because the
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Varying dataset sizes are shown.

dynamic computation and communication behavior
of real programs is often different from that of mi-
crobenchmarks. Therefore, we have measured the per-
formance of HPF/MPI using a number of application
kernel benchmarks, such as pipeline codes and a multi-
block code. Here we compare the performance of a
pure HPF (data-parallel) and an HPF/MPI (mixed
task/data-parallel) version of a two-dimensional fast
Fourier transform (2D FFT) kernel.

The structure of the HPF /MPI version of 2D FFT is
a pipeline containing two tasks of equal size, with one
performing a (sequential) 1D FFT on each row of a
matrix, then passing the matrix to a second task that
performs a 1D FFT on each column. Therefore the
matrix is distributed (BLOCK, *) in the first task, and
(*, BLOCK) in the second, and a worst-case redistribu-
tion between tasks is required. (The structure is quite
similar to that of the producer-consumer example in
Figure 2, with routine produce data performing row-
wise FFTs, and consume data column-wise ones.) In
the pure HPF version, there is just one matrix which is
distributed (BLOCK, #*) across all processors and trans-
posed between the two phases of 1D FFTs.

Figure 6 shows the time required by the two versions
of the program to perform a 2D FFT on a single N x N
matrix, for varying values of N and P. The time rep-
resents an average per dataset when a large number of
datasets are processed in a single run; hence taking the
reciprocals of these times yields the throughput. The
performance of the HPF/MPI version is generally bet-
ter. In particular, for a fixed matrix size, HPF/MPI
provides an increasing improvement in speedup as P
increases; for fixed P, the relative improvement in
speedup of the HPF/MPI version decreases as N in-
creases.

The performance difference between the pure HPF
and HPF /MPI versions is due to higher communication
overhead in the HPF version. During the matrix trans-
pose stage of the HPF program, a message of length
N?/P? is exchanged between each pair of processors,
so each processor sends and receives P—1 messages. In
contrast, each processor of the HPF/MPI version must
send or receive P/2 messages of length 4N2/P2. For
smaller NV or larger P, message startup costs dominate
total communication time, causing the HPF version
with its larger number of messages to run more slowly.

On the largest matrix size plotted (128 x 128),
HPF /MPI provides an improvement of up to 30% over
pure HPF. While these results are promising, we be-
lieve they could be improved significantly if the over-
heads we have identified were reduced through further
performance tuning. Another approach is to incorpo-
rate additional MPI features that let library users tune
communication performance. We discuss some of these
features in the next section.

4. Extending the HPF/MPI Subset

The subset MPI binding presented above includes
only a small portion of the functionality of the MPI
standard—just non-blocking, standard mode point-to-
point communications, persistent operations, and a
few simple inquiry functions such as MPI_Comm_rank.
Clearly HPF/MPUD’s utility to programmers would be
enhanced by the addition of other MPI functionality.
Here we briefly consider techniques for extending the
prototype design of Section 2 to incorporate features
that we feel are most likely to ease development or
improve performance of typical task/data-parallel ap-
plications.
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Figure 7. A collective operation involving
three tasks and no distributed arguments,
with task 1 the root. The return value is
received only by the root task.

4.1. Collective operations

Unlike point-to-point operations, in which there is
precisely one sender and one receiver, collective oper-
ations permit groups of arbitrary size to communicate
using a single operation. In addition, collective oper-
ations encapsulate patterns of communication and co-
operative computation such as broadcast and reduc-

tion that occur frequently in parallel applications—

including HPF/MPI programs.

The complexity of performing a collective operation
in HPF /MPI depends critically upon whether any of its
arguments are distributed. First, we note that because
barriers do not involve any transfer of user data, an
HPF/MPI version may be obtained trivially through
a call to the sequential version of MPI_Barrier by all
processors that are members of tasks participating in
the barrier. .

The next case to consider is that in which the collec-
tive call transfers data, but none of its arguments are
distributed arrays. Then one may rely on the following
simple technique, llustrated by Figure 7:

1. One distinguished processor from each participat-
ing task joins in a call to the sequential version of
the operation, passing its local copy of the argu-
ments.

2. Within each participating task that is to receive
the return value from the operation, the distin-
guished processor broadcasts the return value to
all of the task’s other processors. For example,
for MPI Reduce there is a broadcast within just
the root task, while for MPI_Allreduce there is a
broadcast within all participating tasks.

This approach is efficient for most cases and scales well.

The last case occurs when any of a collective call’s
arguments are distributed arrays. Such calls could be
implemented as a composition of point-to-point calls
using standard techniques such as combining trees,
with HPF/MPI calls replacing sequential ones, where
needed, to handle distributed arguments. But this sim-
ple approach misses many opportunities for optimiza-
tion, because the cost of transferring a distributed ar-
ray between two tasks varies greatly depending on the
data distributions within each task.

As asimple illustration of the problem, suppose that
Figure 7 instead depicts a single call to MPI_Reduce
that performs a pointwise vector addition of three dis-
tributed vectors Vp, Vi, and Vs, with V; owned by
task i. Suppose further that V5 and V5 share the same
distribution, V;’s is different, and it is expensive to
convert between the two distributions. A naive im-
plementation based on standard combining tree tech-
niques might transfer V; and V5 to task 1, so that task 1
must participate in two expensive redistributions. In
many cases it will be more efficient to:

1. Transmit V> to task 0 (a best-case transfer involv-
ing no redistribution).

2. Compute the sum of V; and V> within task 0.

3. Transmit the partial sum to task 1, which com-
putes the final sum.

This approach requires just one expensive redistribu-
tion.

Much more complex examples may arise in prac-
tice, as the number of ways of performing the operation
grows exponentially with the number of participating
tasks. To be useful, a general algorithm for selecting an
efficient mapping and ordering of processing steps for
a collective operation must not consume an inordinate
amount of processing time or perform a large amount
of communication. Development of such an algorithm
appears to us to be a fundamentally hard problem.

4.2. Non-blocking communications

MPI provides many facilities for optimizing point-
to-point communications. As many task/data-parallel
applications depend heavily on the performance of
inter-task array transfers, it is worthwhile to consider
techniques for incorporating analogs of these facilities
into HPF/MPI. We have already discussed the imple-
mentation of an HPF/MPI version of one such facility,
namely persistent operations. We now examine non-
blocking communications, which allow a sender or re-
ceiver to continue processing after a send or receive




operation has been posted, or initiated. This feature
provides two major benefits:

1. It makes possible the overlap of computation and
communication.

2. Tt makes it easier for a receiver to specify a receive
buffer in advance of the arrival of the message,
which reduces buffer copying in some instances.

For the purposes of this discussion, we will assume that
the non-blocking operations of the underlying sequen-
tial MPI implementation can provide these benefits; in
practice, not all can. Given this assumption, for trans-
fers of large arrays a non-blocking variant of the design
presented in Section 2 can also provide these benefits if
the data transmission step is implemented using non-
blocking sequential MPI calls.

At first sight, extension of the design to provide
non-blocking operations appears problematic, because
there is synchronization between sending and receiving
tasks during descriptor exchange. Modifying this step
to use the non-blocking operations of the underlying
sequential MPI library removes this synchronization,
but exposes a more fundamental problem: each side
can only compute a communication schedule (Step 4)
after it has received the other’s descriptor. Similarly, a
receiver can only perform the unpacking of Step 6 after
the data to be unpacked has arrived in Step 5.

In general, what is needed to permit maximum over-
lap between HPF/MPI library processing and appli-
cation processing is some form of message-driven ez-
ecution: the ability for some computation specified
by HPF/MPI to occur upon arrival of certain mes-
sages [10]. When a message with an array descriptor
arrives (Step 3), communication schedule computation
should begin (Step 4}, and when a data message arrives
at a receiver (Step 5), it should be unpacked (Step 6).
Unfortunately, within the current MPI standard the
only means by which this can occur is if the applica-
tion itself polls for message arrival (e.g. using MPI Wait
or MPI_Test), which is cumbersome for the program-
mer. Proposed support for message-driven execution
in MPI-2 might alleviate this problem.

Finally, the provision of non-blocking receive oper-
ations in HPF/MPI may increase the library’s buffer
space requirements. Depending on the mechanism for
message-driven execution, on each processor there may
need to be one transfer buffer per remote processor
from which data messages are to be received. This is
because data messages could arrive at any time and
initiate their own upacking into the destination array;
hence, each message must be stored in a separate buffer
to prevent corruption of one message’s data by another.
We address this difficulty below.

4.3. Control over system buffering

The design appearing in Section 2 provided just
standard mode communications, in which the user
leaves decisions about buffering and synchronization
between sender and receiver up to the MPI imple-
mentation. The MPI standard includes other sending
modes that provide more control over system policies,
allowing the user to reduce buffer copy overhead or
guarantee sufficient buffer space. '

HPF/MPI can provide similar control over its re-
source management policies. Here we consider buffered
mode, in which the user supplies the library with mem-
ory for buffering outgoing messages. This permits the
library to complete send operations without blocking,
using buffer space as necessary. The amount of space
required for a message of a given size may be deter-
mined using the routine MPI Pack_size. Our design for
HPF/MPI requires a transfer buffer for packing mes-
sages; the underlying sequential version of MPI must
also be supplied with a buffer if messages are sent us-
ing this mode. Therefore, one scheme for incorporating
buffered mode sends into HPF/MPI works as follows:

¢ The HPF/MPI version of MPI_Pack_size returns
a size twice that returned by the underlying se-
quential MPIL.

o When the user supplies a buffer to the HPF/MPI
library by calling MPI Buffer_attach, half is used
by HPF /MPI for packing messages, and the other
half is supplied to the underlying sequential MPI.

To meet increased buffering requirements resulting
from non-blocking receive operations, HPF/MPI could
also use part of any user-supplied buffer space for trans-
fer buffers for incoming data messages.

5. Conclusions

By utilizing a mixture of both task and data par-
allelism in parallel applications, one may extend the
range of problems that can be solved efficiently beyond
what is possible with pure data-parallel programming
languages alone. We have proposed an approach for in-
troducing task parallelism into data-parallel languages
such as High Performance Fortran that makes use of
a coordination library for coupling data-parallel tasks.
In our case, the coordination library is a subset binding
of the Message Passing Interface.

To our knowledge, this coordination library-based
approach for constructing mixed task/data-parallel
programs is unique. However, many other techniques




have been used to introduce task parallelism into data-~
parallel languages. These other techniques fall into
two major categories: compiler-based approaches and
language-based approaches. Approaches based on com-
pilers rely on sophisticated source code analyses and
programmer-supplied directives to extract implicit task
parallelism from programs [6]. In language-based ap-
proaches, language extensions permit programmers to
explicitly specify the division of a computation into
tasks, the mapping of tasks to processors, and commu-
nication between tasks [2]. Further comparison with
other approaches appears in {3].

We have presented a design for the subset binding of
MPI. Our evaluation of the performance of a prototype
HPF/MPI library is encouraging: compared to a pure
data-parallel HPF code for the 2D FFT, a task-parallel
- HPF/MPI version achieves superior performance under
many parameters of execution which are of interest.
However, a detailed analysis of the behavior of our li-
brary during execution of a communication-intensive
microbenchmark reveals that its performance would
benefit from a tighter binding with the run-time system
of the HPF compiler used in our experiments, and from
algorithmic extensions that would permit the library to
exploit direct scatter-gather capabilities of the under-
lying sequential MPI substrate. An alternative is to in-
corporate additional MPI performance-tuning features
into the library; we have suggested design techniques
for several of these.

There are many promising directions for future
work. Two have already been discussed: modifica~
tions to the existing prototype library to enhance per-
formance, and extension of the current subset bind-
ing with additional MPI features that ease application
development (such as collective operations) and appli-
cation tuning (such as non-blocking communications).
In addition, to evaluate more thoroughly the value of
our techniques, we wish to construct more ambitious
task/data-parallel applications than the kernels we
have written up to this point. Finally, HPF/MPI pro-
vides just an explicit message-passing mechanism for
inter-task interaction, yet there are many other useful
mechanisms, such as single-sided operations (message-
driven execution)} and client-server protocols. We wish
to investigate the issues involved in extending our li-
brary to incorporate some of these other mechanisms.
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