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Portable parallel programming has been hampered by the lack of a single, standard, portable
application-programmer’s interface (API) for parallel I/O. Instead, the programmer must choose
from several different APIs, many of which are not portable. To alleviate this problem, we have
developed an abstract-device interface for parallel 1/0, called ADIO. ADIQ is not intended as a
new API; rather, it is a strategy for implementing other APIs in a simple, portable, and efficient
manner. ADIO facilitates the implementation of any existing or new API on any existing or
new file system. ADIO thus enables users to experiment with different APIs, a feature that,
we think, would help in the definition of a standard API. It also makes existing applications
portable across a wide range of platforms.

In this paper, we introduce the concept of ADIO. We describe the design of ADIO and its use
in implementing APIs. We have currently implemented subsets of the Intel PFS, IBM PIOFS,
and MPI-IO APIs on both the PFS and PIOFS file systems. As a result, we are able to run IBM
PIOFS applications on the Intel Paragon, Intel PFS applications on the IBM SP, and MPI-IO
applications on both systems. We report performance results obtained from two test programs
and one real production application on the SP and Paragon. These results indicate that the
performance overhead of using ADIO as an implementation strategy is negligible.
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1 Introduction

Parallel computers are being used increasingly to solve large I/O-intensive applications in a number
of different disciplines. But the lack of a standard, portable application-programmer’s interface
(APTI) for parallel I/O is a limiting factor in this regard. The Message-Passing Interface (MPI) [16]
has been very successful as a standard, portable interface for interprocess communication in parallel
programs. However, no standard API exists for parallel I/O. (In the rest of this paper, the term
API means API for parallel I/0.)

Although there is no single standard API, a number of different interfaces are supported by dif-
ferent vendors and research projects. Many commercial parallel file systems (e.g., IBM PIOFS [11]
and Intel PFS [12]) provide their own API. Also, several research parallel file systems have their
own API (e.g., PPFS [10], Galley [19], RAMA [17], Scotch [7], HFS [15], Vesta [3], and PIOUS [18]).
In addition, a number of I/O libraries with special APIs have been developed (e.g., PASSION [21],
Panda [20], Chameleon I/O [6], SOLAR [25], Jovian [1], and ChemIO?). Different APIs are used
by systems that provide support for persistent objects (e.g., Ptool [9], ELFS [13], and SHORE {2]).

A group within the Scalable I/O Initiative? is developing a low-level interface for parallel I/O [4].
This low-level interface is not intended to be used directly by application programmers, but instead
at the operating-system level by developers of libraries for compilers, run-time systems, and applica-
tions. The only real effort to standardize an interface for parallel I/O at the application-programmer
level is the MPI-IO [24] proposal that is based on MPI. However, both the parallel-I/O community
and the applications community are far from a consensus about the suitability of MPI-IO as a
standard APL

The problem of defining a standard API for parallel I/O is not an easy one—particularly
because parallel I/O is itself a relatively new field, with limited user experience with existing APIs.
To alleviate this problem, we have developed an abstract-device interface for parallel I/0, called

ADIO. Our main objectives in defining this interface are:
1. to facilitate efficient and portable implementations of parallel-1/O APIs,
2. to enable users to experiment with existing and new APIs, and
3. to make applications portable across a wide range of platforms.

We stress that ADIO is not intended to be used directly by application programmers. It is
also not a standardization effort: we do not propose ADIO as a standard APL Instead, ADIO is a
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strategy for implementing other APIs portably and efficiently.

In this paper, we introduce the concept of ADIO. We describe in detail the design of ADIO
(Section 3) and discuss its use in implementing APIs such as MPI-IO, PASSION, Panda, PFS, and
PIOFS (Section 4). We have currently implemented subsets of the MPI-IO, PFS, and PIOFS APIs
on two file systems—PFS and PIOFS. As a result, we are able to run IBM PIOFS applications
on the Intel Paragon, Intel PFS applications on the IBM SP, and MPI-IO applications on both
systems. Performance results obtained from two test programs and one production application

indicate that the overhead of using ADIO as an implementation strategy is very low (Section 3).

2 The ADIO Concept

The main goal of ADIO is to facilitate a high-performance implementation of any existing or new
API on any existing or new file-system interface, as illustrated in Figure 1. Any API (including a
file-system interface) can be implemented in a portable fashion on top of ADIO. ADIO is, in turn,
implemented in an optimized manner on each different file system separately. This approach enables
the porting of applications (that perform I/0) to a wide range of platforms without committing to
a particular APIL. For example, we have implemented subsets of the Intel PFS, IBM PIOFS, and
MPI-10 interfaces on top of ADIO and implemented ADIO on top of PFS and PIOFS. Therefore,
we are able to run Intel Paragon applications on the IBM SP, SP applications on the Paragon, and
MPI-IO applications on both systems.

ADIO also allows us to experiment with new APIs and new low-level file-system interfaces.
Once a new API is implemented on top of ADIO, it becomes available on all file systems on which
ADIO has been implemented. Similarly, once ADIO is implemented on top of a new file-system
interface, all APIs implemented on top of ADIO become available on the new file system.

The ADIO approach was motivated by the lack of consensus, within both the parallel-I/O com-
munity and the applications community, on any one standard API. Therefore, instead of mandating
a particular API, we provide the framework for implementing any or all of them in a simple, effi-
cient, and portable manner. This approach promotes the widespread use of existing and proposed
APIs. The resulting knowledge and experience gained by API developers and users should help in
determining the features desirable in a standard API. We believe that such implementation and
experimentation are necessary before users and I/O researchers can converge toward a standard
APL

A similar abstract-device approach for communication has been used very successfully in the

MPICH implementation of MPI [8].
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Figure 1: The ADIO concept

3 ADIO Design

ADIO is designed so that it can exploit the high-performance features of any file system, and any
API can be expressed in terms of ADIO. We designed ADIO by first studying the interface and
functionality provided by different parallel file systems and high-level libraries and then deciding
how the functionality could be supported at the ADIO level portably and efficiently.

For portability and high performance, ADIO uses MPI wherever possible. Therefore, ADIO
routines have MPI datatypes and communicators as arguments. We describe the ADIO interface

in the following subsections.
3.1 Open and Close
Open:

ADIO_File ADIO_Open(MPI_Comm comm, char *filename, void *file_system, int access_mode,
ADIO_Offset disp, MPI_Datatype etype, MPI_Datatype filetype, int iomode,

ADIO_Hints *hints, int perm, int *error_code)

All opens are considered to be collective operations. The communicator comm specifies the

participating processes. A process can open a file independently by using MPI_COMM_SELF as the




communicator. The file_system parameter indicates the type of file system used, which in turn
indicates the actual functions to use for I/0. The access.mode parameter specifies the file access
mode, which can be ADIO_CREATE, ADIO_RDONLY, ADIO_WRONLY, ADIO_RDWR, ADIC DELETE_ ON_CLQOSE,
ADIO_EXCLUSIVE, or ADIO_ATOMIC. These modes may be combined by using the bitwise exclusive-
or operator. The ADIO_EXCLUSIVE mode indicates that only the processes involved in this open
call access the file; the ADIO implementation may use this information to perform client-side
caching. The ADIO_ATOMIC mode indicates that the file system is required to guarantee atomicity
of read/write dperations. If this mode is not used, the file system need not provide a.tomicitj and,
therefore, may be able to improve performance. The disp, etype, and filetype parameters are
provided for supporting displacements, etypes, and filetypes as defined in MPI-IO [24]. The iomode
parameter is provided for supporting the I/O modes of Intel PFS [12]. The ADIO Hints structure
may be used to pass hints to the ADIO implementation for potential performance improvement.
Examples of hints include file-layout specification, prefetching/caching information, file-access style,
data-partitioning pattern, and information required for use on heterogeneous systems. Hints are
purely optional; the calling program need not provide any hints, in which case ADIO uses default
values. Similarly, the ADIO implementation is not obligated to use the specified hints. The perm
parameter specifies the access permissions for the file. The success or failure of the open operation
is returned in error_code. The ADIO_Open routine returns a file descriptor that must be used to

perform all subsequent operations on the opened file.
Close:
void ADIO_Close(ADIO_File fd, int *error_cocde)
The close operation is also collective. The processes that opened the file, indicated by the
communicator in the file descriptor, must close it.

3.2 Contiguous Reads and Writes

void ADIO_ReadContig(ADIO_File fd, void *buf, int len, int file_ptr_type,

ADIO_Offset offset, ADIO_Status *status, int *error_code)

void ADIO_WriteContig(ADIO_File fd, void *buf, int len, int file_ptr_type,
ADIO_Offset offset, ADIO_Status *status, int *error_code)

ADIO provides separate routines for contiguous and strided accesses. The contiguous read/write

routines are used when data to be read or written is contiguous in both memory and file. ADI0O ReadContig

4




and ADIO WriteContig are independent and blocking versions of the contiguous read and write calls
(independent means that a process may call the routine independent of other processes; blocking
means that the resources specified in the call, such as buffers, may be reused after the routine
returns). Nonblocking and collective versions of the contiguous read/write calls are described in
Sections 3.4 and 3.5, respectively.

In the case of ADIO ReadContig, buf is the address of the buffer in memory into which len
contiguous bytes of data must be read from the file. The location in the file from which to read can
be specified either in terms of an explicit offset from the start of the file or from the current location
of the file pointer. ADIO supports individual file pointers for each process; shared file pointers are
not directly supported because of performance reasons. Shared file pointers can be emulated on
top of ADIO if necessary. The file ptr_type parameter indicates whether the routine should use
explicit offset or individual file pointer. If file_ptr_type specifies the use of explicit offset, the
offset itself is provided in the offset parameter. Offsets are 64 bits long. The offset parameter
is ignored when file_ptr_type specifies the use of individual file pointer. The file pointer can be
moved by using the ADI0 SeekIndividual function described in Section 3.6. The status parameter

returns information about the operation, such as the amount of data actually read or written.

3.3 Strided Reads and Writes

void ADIO_ReadStrided(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADID.Status *status,

int *error_code)

void ADIO_WriteStrided(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Status *status,

int *error_code)

Parallel applications often need to read or write data that is located in a noncontiguous fashion
in files and even in memory. ADIO provides routines for specifying strided accesses with a single call.
Strided access patterns can be represented in many ways; we chose to use MPI derived datatypes
because they are very general and have been standardized as part of MPI. ADIO.ReadStrided
and ADIO WriteStrided are independent and blocking versions of the strided read and write calls.
Nonblocking and collective versions are described in Sections 3.4 and 3.5, respectively.

In the case of ADID _ReadStrided, buf is the address of the buffer in memory into which count
items of type datatype (an MPI derived datatype) must be read from the file. The starting location




in the file may be specified by using explicit offset or individual file pointer. The stride in the file
is indicated by the filetype (an MPI derived datatype) specified when the file was opened.

Note that ADIO ReadContig and ADIO WriteContig are special cases of ADIO_ReadStrided
and ADIOWriteStrided. We consider contiguous operations separately because they are directly

supported by all file systems and, therefore, may be implemented efficiently.

3.4 Nonblocking Reads and Writes

void ADIO_IreadContig(ADIO.File fd, void *buf, int len, int file_ptr_type,

ADIO_Dffset offset, ADIO_Request *request, int *error_code)

void ADIO_IwriteContig(ADIO_File fd, void *buf, int len, int file_ptr_type,

ADIO_Dffset offset, ADIO_Request *request, int *error_code)

void ADIO_IreadStrided(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Request request,

int *error_code)

void ADIO_IwriteStrided(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Request request,

int *error_code)

ADIO provides nonblocking versions of all read/write calls. A nonblocking routine may return
before the read/write operation completes. Therefore, the resources specified in the call (such as
buffers) may not be reused before testing for completion of the operation. Nonblocking routines
return a request object that is used to test for completion of the operation. The ADIO routines

for testing the completion of a nonblocking operation are described in Section 3.7.

3.5 Collective Reads and Writes

void ADIO_ReadContigColl(ADIO_File fd, void xbuf, int len, int file_ptr_type,
ADIO_Offset offset, ADIO_Status *status, int *error_code)

void ADIO_WriteContigColl(ADIO_File fd, void *buf, int len, int file_ptr_type,
ADIO_Offset offset, ADIDO_Status *status, int *error_code)




void ADIO_ReadStridedColl(ADIO_File fd, void xbuf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Status *status,

int *error_code)

void ADIO_WriteStridedColl(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Status *status, -

int *error_code)

void ADIO_IreadContigColl(ADIO_File fd, void *buf, int len, int file_ptr_type,

ADIO_Offset offset, ADIO_ReQuest *request, int *error_code)

void ADIO_IwriteContigColl(ADIO_File £d, void »buf, int len, int file_ptr_type,
ADIO_Offset offset, ADIO_Request *request, int *error_code)

void ADIO_IreadStridedColl(ADIO_File fd, void *buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Request request,

int *error_code)

void ADIO_IwriteStridedColl(ADIO_File fd, void #buf, int count, MPI_Datatype datatype,
int file_ptr_type, ADIO_Offset offset, ADIO_Request request,

int *error_code)

Several studies have shown that, in many cases, the I/O performancé of parallel programs can
be improved greatly by using collective I/O [5, 22, 14]. To enable the use of collective I/O, ADIO
provides collective versions of all read/write routines. A collective routine must be called by all
processes in the group that opened the file. However, a collective routine does not necessarily imply

a barrier synchronization.

3.6 Seek

ADIQ_Offset ADIO_SeekIndividual (ADIO_File fd, ADIO_Offset offset, int whence,

int *error_code)

This function can be used to change the position of the individual file pointer. The file pointer
is set according to the value supplied for whence, which could be ADIO_SEEK_SET, ADIO_SEEK_CUR,




or ADIO_SEEK._END. If whence is ADIO_SEEK.SET, the file pointer is set to offset bytes from the
start of the file. If whence is ADIO_SEEK_CUR, the file pointer is set to offset bytes after its current
location. If whence is ADIO_SEEK_END, the file pointer is set to offset bytes after the end of the
file.

3.7 Test and Wait

It is necessary to test the completion of nonblocking operations before any of the resources specified
in the nonblocking routine can be reused. ADIO provides two kinds of routines for this purpose: a
quick test for completion that requires no further action (ADI0O xxxxDone) and a test-and-complete

(ADI0 xxxxIcomplete). Separate routines exist for read and write operations.

int ADIO_ReadDone(ADIO_Request request)

int ADIO_WriteDone(ADIO_Request request)

These routines check the request handle to determine whether the operation is complete and

requires no further action. They return true if complete, and false otherwise.

int ADIO_ReadIcomplete(ADIO_Request request, ADIO_Status *status, int *error_code)

int ADIO_WriteIcomplete(ADIO_Request request, ADIO_Status *status, int *error_code)

If a request is not complete, the above routines can be used. These routines call the I/O device

and perform some additional processing.

3.8 Miscellaneous

ADIO also provides routines for purposes such as deleting files, resizing files, flushing the cache,

and initializing and terminating ADIO.

void ADIO_Delete(char *filename, int *error_code)
void ADIO_Resize(ADIO_File fd, ADIO_Offset size, int *error_code)

void ADIO_Flush(ADIO_File fd, int *error_code)




void ADIO_Init(int *argc, char ***argv, int *error_code)

void ADIO_End(int *error_code)

4 Implementation

Two aspects are involved in implementing ADIO: implementing an API on top of ADIO and
implementing ADIO on top of a file-system interface. The implementation may be done by using
macros to eliminate the overhead of function calls (if it is not essential to check the correctness of

function arguments).

4.1 Implementing an API on Top of ADIO

Here we explain how some of the different APIs can be implemented by using ADIO routines. In

particular, we explain how the main features of the API map to some feature of ADIO.

4.1.1 MPI-IO

MPI-IO [24] maps quite naturally to ADIO because both MPI-IO and ADIO use MPI to a large
extent. In addition, a number of features were included in ADIO specifically for being able to
implement MPI-10; these include displacement, etype, filetype, the ability to use explicit offsets as

well as file pointers, and file delete-on-close.

4.1.2 PASSION and Panda

PASSION [21] and Panda [20] are libraries that support input/output of distributed multidimen-
sional arrays. I/0 of this type involves collective access to (potentially) strided data. ADIO sup-
ports both collective I/0 and strided accesses; therefore, PASSION and Panda can be implemented

by using the ADIO routines for collective and strided accesses.

4.1.3 IBM PIOFS

PIOFS [11] is the parallel file system on the IBM SP-2. In addition to a Unix-like read/write
interface, PIOFS also supports logical partitioning of files. A processor can independently specify a
logical view of the data in a file, called a subfile, and then read/write that subfile with a single call.
It is straightforward to implement the Unix-like interface of PIOFS on top of ADIO. The logical




file views of PIOFS can be mapped to appropriate MPI derived datatypes and accessed by using
the strided read/write calls of ADIO.

4.1.4 Intel PFS

PFS [12] is the parallel file system on the Intel Pa.ragon. In addition to a Unix-like read/write
interface, PFS also supports several file-pointer modes that specify the semantics of concurrent
file access. The Unix-like interface and the M_UNIX and M_ASYNC modes are straightforward to
implement on top of ADIO. M_LOG mode can be implemented by emulating shared file pointers
on top of ADIO. M_SYNC, M_RECORD, and M_GLOBAL modes can be implemented by using collective

operations.

4.2 Implementing ADIO on Top of a File-System Interface

Here we explain how ADIO can be implemented on top of the PFS and PIOFS interfaces.

4.2.1 ADIO on PFS

Some ADIO functions, such as blocking and nonblocking versions of contiguous reads and writes,
can be implemented by directly using their PFS counterparts. However, for functions not directly
supported by PFS, the ADIO implementation must perform the task of expressing the ADIO
functions in terms of available PFS calls. For example, strided requests can either be translated
into several contiguous requests separated by seeks or can be implemented by using optimizations
such as data sieving [21]. Collective operations can be implemented by using optimizations such as
two-phase I/0 [5, 22].

4.2.2 ADIO on PIOFS

As in the case of PFS, blocking and nonblocking versions of contiguous reads and writes can be
implemented by directly using their PIOFS counterparts. Strided accesses can be implemented, in
some casés, by using the logical views supported by PIOFS. In other cases, it may be necessary to
implement strided accesses either in terms of several contiguous accesses or by using data sieving.
Since PIOFS does not directly support collective I/0, the ADIO implementation can use two-phase

I/0 for improving performance.
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Figure 2: Current status of implementation

4.3 Current Status of Implementation

At present, we have implemented subsets of the MPI-IQ, PFS, and PIOFS interfaces on top of
ADIO, and we have implemented ADIO on top of PFS and PIOFS, as illustrated in Figure 2.
This implementation has enabled us to run PFS applications on PIOFS, PIOFS applications on
PFS, and MPI-IO applications on both PFS and PIOFS. We discuss the performance of these
implementations in Section 5.

The ADIO implementation is an ongoing effort, and we intend to add other APIs and file

systems to the above list.

5 Performance

To study the performance overhead of ADIO, we used two test programs and one real production
parallel application. We ran these codes on the SP and Paragon, with and without ADIO. As
shown below, we found the overhead due to ADIO to be negligible.

5.1 Test Programs

In the first program (called Program I), each process accesses its own independent file. Each process
writes 1 Mbyte of data to its local file and reads it back, and this writing and reading procedure
is performed ten times. We wrote three different versions of this program: for PFS, PIOFS, and
MPI-IO.

The second program (called Program II) is similar to Program I except that all processes access

a common file. The data from different processes is stored in the file in order of process rank. Each
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Table 1: I/O time on the SP for the test programs. The timings shown are for three cases of the
programs: PIOFS version run directly, PIOFS version run through ADIO (PIOFS -> ADIO ->

PIOFS), and MPI-IO version run through ADIO (MPI-IO -> ADIO -> PIOFS).

Direct PIOFS | PIOFS through ADIO | MPI-IO through ADIO
Program | time (sec.) | time (sec.) ovhd. time (sec.) ovhd.
I 7.42 7.44 0.27% 7.44 0.27%
II 8.44 8.69 2.96% 8.67 2.72%

process writes 1 Mbyte of data to a common file é.nd reads it back, and this writing and reading
procedure is performed ten times. We also wrote three different versions of this program: for PFS,
PIOFS, and MPI-10.

To determine the ADIO overhead, we ran three cases of each program on the SP and Paragon.

The three cases run on the SP were as follows:
1. The PIOFS version run directly on PIOFS.

2. The PIOFS version run through ADIO on PIOFS (PIOFS —> ADIO -> PIOFS). This case
shows the overhead due to ADIO.

3. The MPI-IO version run through ADIO on PIOFS (MPI-IO -> ADIO -> PIOFS). This case
shows the overhead of using the MPI-IO interface along with ADIO.

Table 1 shows the I/O time on the SP for all three cases of the two test programs. Clearly, the
overhead of using ADIO was negligible.

The three cases run on the Paragon were:

1. The PFS version run directly on PFS.

2. The PFS version run through ADIO on PFS (PFS -> ADIO -> PFS).

3. The MPI-IO version run through ADIO on PFS (MPI-IO -> ADIO -> PFS).

Table 2 shows the I/O time on the Paragon for all three cases of the two test programs. The
overhead of using ADIO was negligible on the Paragon as well. For both test programs, the overhead
of using MPI-IO through ADIO was slightly lower than that of PFS through ADIO, possibly because
the MPI-IO versions had fewer I/O function calls than the PFS versions. The MPI-IO versions did

not use any seek functions. Instead, they used MPI0_Read and MPIO Write functions that use an
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Table 2: I/0O time on the Paragon for the test programs. The timings shown are for three cases of
the programs: PFS version run directly, PFS version run through ADIO (PFS -> ADIO -> PFS),
and MPI-IO version run through ADIO (MPI-IO -> ADIO -> PFS).

Direct PFS | PFS through ADIO | MPI-IO through ADIO
Program | time (sec.) | time (sec.) | ovhd. | time (sec.) ovhd.
I 14.03 14.43 2.85% 14.41 2.78%
I 12.19 12.38 1.56% 12.31 0.98%

offset to indicate the location in the file for reading/writing. The PFS versions, however, used seek

calls in addition to the read and write calls.

5.2 Production Application

The application we used is a parallel production code developed at the University of Chicago
to study the nonlinear evolution of Jeans instability in self-gravitating gaseous clouds, a process
considered to be the basic mechanism for the formation of stars and galaxies. Details about the
application and its I/O characteristics can be found in [23].

The application uses several three-dimensional arrays that are distributed in a (block,block,block)
fashion. The algorithm is iterative and, every few iterations, several arrays are written to files for
three purposes: data analysis, checkpointing (restart), and visualization. The storage order of data
in files is required to be the same as it would be if the program were run on a single processor.
The application uses two-phase I/O for reading and writing distributed arrays, with I/O routines
optimized separately for PFS and PIOFS [23]. I/0 is performed by all processors in parallel.

We ran three cases of the application on the SP and Paragon. The three cases on the SP were

as follows:
1. The PIOFS version run directly.
2. The PIOFS version run through ADIO on PIOFS (PIOFS -> ADIO -> PIOFS).
3. The Intel PFS version run through ADIO on PIOFS (PFS -> ADIO -> PIOFS).
The 3 cases on the Paragon were as follows:
1. The PFS version run directly.

2. The PFS version run through ADIO on PFS (PFS -> ADIO -> PFS).
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Table 3: I/O time on the SP for the production application. The timings shown are for three
cases of the application: PIOFS version run directly, PIOFS version run through ADIO (PIOFS
—> ADIO -> PIOFS), and the Intel PFS version run through ADIO (PFS -> ADIO -> PIOFS).

Direct PIOFS | PIOFS through ADIO | PFS through ADIO
time (sec.) | time (sec.) | ovhd. | time (sec.)| ovhd.
11.22 11.47 2.23% 11.68 4.10%

Table 4: I/O time on the Paragon for the production application. The timings shown are for three
cases of the application: PFS version run directly, PFS version run through ADIO (PFS —> ADIO
-> PFS), and the IBM PIOFS version run through ADIO (PIOFS -> ADIO -> PFS).

Direct PFS | PFS through ADIO | PIOFS through ADIO ||
time (sec.) | time (sec.) | ovhd. | time (sec.) | ovhd.
22.28 22.78 2.24% 22.92 2.87% ||

3. The IBM PIOFS version run through ADIO on PFS (PIOFS -> ADIO —> PFS).

We could not run an MPI-IO version because the application has not yet been ported to MPI-IO.

On both machines, we ran the application on 16 processors using a mesh size of 128 x 128 x 128.
The application started by reading a restart file and ran for ten iterations, dumping arrays every
five iterations. A total of 50 Mbytes of data was read at the start, and around 100 Mbytes of data
was written every five iterations. The sizes of individual read/write operations were as follows:
there was one small read of 24 bytes and several large reads of 512 Kbytes; there were a few small
writes of 24 bytes and several large writes of 128 Kbytes and 512 Kbytes.

Tables 3 and 4 show the I/O time taken by the application on the SP and Paragon, respectively.
The overhead due to ADIO was very small on both systems. In addition, ADIO allowed us to run
the SP version of the application on the Paragon and the Paragon version on the SP, both with

very low overhead.

6 Summary and Future Work

We have described the ADIO concept for implementing portable parallel-I/O interfaces. We have
explained the design of ADIO and its use in implementing several APIs. Our performance studies

indicate that the ADIO approach enables portable implementations with very low overhead.
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We believe that ADIO has tremendous potential in solving many of the problems faced by
application programmers regarding lack of portability and lack of a standard API for parallel I/0.
Therefore, we view the work described in this paper as only the beginning of a large project. We
are actively expanding our implementation to include other APIs and file systems. We intend to
distribute our code freely together with the MPICH implementation of MPI [8].

We are currently collaborating with several vendors to refine the ADIO interface to the most
appropriate one for all systems. Therefore, the ADIO interface defined in this paper may change
as our implementations and studies reveal the need for providing additional/different functionality
at the ADIO level.
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