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Abstract STI

CTH is a family of codes developed at Sandia National Laboratories for use in modeling complex
multi-dimensional, multi-material problems that are characterized by large deformations and/or
strong shocks. A two-step, second-order accurate Eulerian solution algorithm is used to solve the
mass, momentum, and energy conservation equations. CTH has historically been run on systems
where the data are directly accessible to the cpu, such as workstations and vector supercomputers.
Multiple cpus can be used if all data are accessible to all cpus. This is accomplished by placing
compiler directives or subroutine calls within the source code. The CTH team has implemented
this scheme for Cray shared memory machines under the Unicos operating system. This tech-
nique 1s effective, but difficult to port to other (similar) shared memory architectures because each
vendor has a different format of directives or subroutine calls. (U)

A different model of high performance computing is one where many (>1000) cpus work on a
portion of the entire problem and communicate by passing messages that contain boundary data.
Most, if not all, codes that run effectively on parallel hardware were written with a parallel com-
puting paradigm in mind. Modifying an existing code written for serial nodes poses a significantly
different set of challenges that will be discussed. CTH, a legacy FORTRAN code, has been modi-
fied to allow for solutions on distributed memory parallel computers such as the IBM SP2, the
Intel Paragon, Cray T3D, or-a network of workstations. (U)

The message passing version of CTH will be discussed and example calculations will be pre-
sented along with performance data. Current timing studies indicate that CTH is 2-3 times faster
than equivalent C++ code written specifically for parallel hardware. CTH on the Intel Paragon
exhibits linear speed up with problems that are scaled (constant problem size per node) for the

number of parallel nodes. (U)
Introduction M ASTE A

The future of high performance computing is directed at scalable paralle]l computers where prob-
lems are solved by breaking a large domain into many small sub-domains. Sandia has been work-
ing in the development of tools (Robinson, 1992 and McGlaun, 1995) for massively parallel (MP)
computers for several years. Up to this time the emphasis has been on the development of these
tools from scratch, not in the porting of existing codes to MP machines. PCTH (Robinson, 1992)
was developed to solve the conservation equations of mass, momentum, and energy for shock
physics. In this case, the algorithms used in CTH (McGlaun, 1990) were reprogrammed using
C++ and a message passing concept for the parallelization. This effort proved to be very success-
ful in that we demonstrated effective use of MP computers. For a variety of reasons, we decided to
take the knowledge gained in the development of PCTH and port CTH to MP computers. This
paper is a description of the techniques used to port CTH to MP computers. (U)
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Assumptions and Background

We assumed that CTH would continue to be used on a variety of computing platforms. We cur-
rently support CTH on all major Unix workstations and Cray vector computers. This requirement
meant that the core functionality of CTH could not be compromised and the changes necessary to
port CTH to MP computers must co-exist with the serial code. Furthermore, we required that the
MP code give identical results regardless of number of nodes used to solve the problem. The
emphasis for MP was (and is) three-dimensional simulations, but we would port all geometry
options to MP computers. We would implement machine specific changes in a way that supported
portability in message passing interfaces. We would port all possible numerical features and phys-
ical models to MP computers that were cast as “local” to each computational cell. Local in this
sense means that the solution can be advanced one time step based on information in the (local)
computational cell or in its neighboring cells. This locality restriction affects only one model in
the current version of CTH. Given these restrictions and requirements, we initiated a program to
port CTH to MP computers. (U)

Distributed data MP computers are characterized by a number (generally large, Sandia’s Intel Par-
agon has ~1800 nodes and DOE’s ASCI Red Machine has ~9000 nodes) of discrete computa-
tional nodes consisting of memory, a commodity cpu chip, and access to an internal
communications network. One computing technique that can be employed on this machine is
referred to as single program multiple data (SPMD). It is referred to SPMD because the same exe-
cutable is running on each computational node, but each executable is working with a different
data set. Algorithms that depend on a fixed logically connected mesh are relatively simple to map
onto a SPMD machine. The technique used for CTH is similar to that used for PCTH in that the
entire problem domain is broken up into sub-domains that reside on individual computational
nodes. Communication between nodes (each containing separate regions of global mesh) are han-
dled by the use of “ghost cells” and explicit messages that CTH passes between nodes. The use of
“ghost cells” is a typical technique for applying boundary conditions in Eulerian codes. The
“ghost cells” allow for the finite-difference equations to be independent of edges and corners. For
an external boundary, the ghost cell data are based on the selected boundary condition approxima-
tion. For an internal boundary, the ghost cells contain real data that was acquired in a message
passed from a neighboring node. A simple example of mesh decomposition is displayed in
Figure 1. (U)

Figure 1: CTH Mesh Decomposition Scheme
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CTH Solution Sequence and Message Passing Process

CTH is a family of several codes that work together to solve shock physics problems. For the pur-
poses of this paper only two of the codes need to be considered, CTHGEN and CTH. CTHGEN
reads the user input and builds a time-zero representation of the problem specifications. CTH
reads additional user input and the time-zero data from CTHGEN and initiates the time integra-
tion process. Very little of this process changes for MP computers. The copy of CTHGEN that
runs on node O reads the user input and broadcasts it to all other nodes. Given the total number of
nodes requested by the user and the total problem size, CTHGEN decides how to map the prob-
lem space onto the nodes. The algorithm it uses to build the sub-domains is to equalize the amount
of work on each node (equal number of cells per node) and to keep each sub-domain as close to
cubic as possible. The requirement for cubic sub-domains is for two reasons, minimize the surface
to volume ratio and to make the message data volume as equal as possible. Once the problem has
been mapped onto the available nodes, the individual copies of CTHGEN insert material in the
respective sub-domains, define material properties, and complete the time-zero representation of
the problem specifications (“building the database” is the typical nomenclature). CTH starts in
much the same way, the copy of CTH that runs on node O reads the user input and broadcasts it to
all other nodes. Once the broadcast is complete, each node reads its individual database file. At
this point, the time integration starts. (U)

The solution sequence for CTH has not been changed for MP computing. Essentially every time
the ghost cell values have been changed, CTH must exchange these new values with neighboring
nodes before the updated values are used in the solution sequence. The overall solution sequence
of CTH is a Lagrangian step followed by a remap and then a database modification step where
materials may be discarded or velocity transformations applied. The Lagrangian step consists of
several tasks. The first is where the artificial viscosity is defined, during this task messages are
exchanged with neighbors to calculate the correct boundary values. Once the artificial viscosity
and pressure are defined, CTH calculates the new cell velocities. The new cell velocities are
exchanged with neighboring nodes. The new cell velocities are used to update the stress deviators
at this time and then the new stress deviators are exchanged with neighboring nodes. The new
stress deviator information leads to new energy terms from the PdV work. After the energy is
updated, the Lagrangian step is effectively complete. Special models like the multi-phase reactive
flow package perform tasks to prepare for the remap step. At the end of the Lagrangian step, all
ghost cell values are exchanged for the last (fourth) time. (U)

CTH uses a second order accurate advection scheme. This scheme, based on work by van Leer
(1977), determines a linear slope across each “donor” cell. To calculate this slope, data from three
cells are required, the donor cell, the cell upstream, and the cell downstream. A given node
“knows” the values in the ghost cell, the first real cell, and the next cell near a nodal boundary. If
the flow is “outward” (from the last real cell into the ghost cell) the code has enough information
to calculate the slope across the donor cell (the last real cell). However, if flow is from the ghost
cell into the first real cell, the code does not have information about the “upstream” cell (the cell
beyond the ghost cell). But, if a node shares this boundary, the inflow for this node is exactly the
same as the “outflow” for the adjacent node. So we have developed a new set of subroutines which
calculate “outflow” values for each node boundary. These values are collected and passed to the
adjacent nodes. If a node calculates an “inflow” value and finds that another node shares that
boundary, the value from the message is used rather than the incorrectly calculated value. By




using the second order accurate “outflow” value from the adjacent node we are able to duplicate
results from single-node simulations with MP simulations. (U)

Several exchanges must be completed during the Eulerian (or remap) step. Each time ghost cell
values are modified, data must be exchanged with neighboring nodes. The first task in the Eule-
rian driver converts volume fraction values to volumes, new ghost cell data must be exchanged
with neighbor nodes. CTH uses an operator split scheme for the remap step. Each time the remap
is completed in a particular direction, the ghost cell values must be exchanged with neighboring
nodes. During this step momenta and updated mass values must also be exchanged because CTH
uses the half index shifted momentum advection scheme of Benson (1991). This method requires
correct velocities at the node mesh boundaries. Since velocities on the edges of isolated material
cells are also modified during the remap step, these corrected velocities must also be exchanged.
Finally, after all remap steps have been completed, the volumes are converted back to volume
fractions and the Eulerian energy balance is accomplished. This step calls the equation of state for
each material yielding new cell pressures, temperatures, and sound speeds. One of the last steps in
the remap is to calculate the minimum time step, this is first done for each node and then a global
minimum is done to determine the time step for the next computational cycle. This is the last time
that significantly sized messages are exchanged. (U)

A significant additional feature that needs to be addressed is the use of Lagrangian or tracer data
points. The code records data at tracer locations as the simulation progresses. The points can
either move with the bulk flow field or be fixed in space. Each tracer point is initially placed in the
mesh based on the user supplied coordinates. If the tracer coordinates are in the interior of the vol-
ume of space “owned” by a particular node, these coordinates are recorded by that node and a flag
is set in the tracer data storage. This tracer’s coordinates in all other nodes will be recorded as
(1.0e20, 1.0e20, 1.0e20), the upper right hand coordinate of the universe. Further, the location flag
will be set to indicate non-ownership by that node. This allows a quick check on whether or not a
particular tracer is active in a given node. At the end of each cycle, the tracer positions (coordi-
nates) are updated by the nodes “owning” the tracers. Messages are then exchanged between near-
est neighbor nodes. After all six messages have been exchanged, all 27 nodes surrounding the
actual position of the tracer know the true coordinates. These coordinates are then compared with
the limiting coordinates for each node. If the tracer has migrated to a new node, the new coordi-
nates are set in the tracer array and the tracer flag is reset to indicate ownership. The tracer coordi-
nates for all other nodes will be set to (1.0e20, 1.0e20, 1.0e20). There is no need to propagate the
coordinates to nodes beyond nearest neighbors since the time step controls prevent any tracer
moving more than one cell width in any given time step. (U)

For a three-dimensional calculation, 24 of what we characterize as large messages are passed dur-
ing the Lagrangian step, 48 large messages are also passed during the Eulerian step. A large mes-
sage contains all cell variables on the face adjoining two nodes. For Sandia’s Intel Paragon,

available node memory limits each node to sub-domains of ~24>. Typical problems consist of 40-
80 variables per cell, therefore large messages are on the order of 200-400 kbytes. Several small
messages are also passed during the solution sequence. These messages are typically passed dur-
ing the calculation of global sum and minimization processes. (U)

CTH MP Scaling Results

The serial version of CTH has been modified to allow for single program multiple data computing




on parallel computers. To date, CTH has been tested on networks of workstations using the PVM
library, an IBM SP2 using the MPI Library, the Intel Paragon running both SUNMOS (a Sandia/
UNM developed Operating System) and OSF using the native message passing library (known as
NX), PVM, and MPI, and a small scale (60 nodes) prototype of the ACSI Red machine (also
known as the Intel TeraFlop) using NX. The most extensive testing has been done on the Paragon
and the results displayed for this paper are from the Paragon but should be typical for all of the
machines described above. (U)

There are two ways of measuring performance on parallel computers, the first is to take a fixed
problem size and monitor the run time as a function of the number of compute nodes, the second
is to keep the problem size per node fixed and monitor the run time as a function of compute
nodes. The first method has a natural limit in that as the work per node decreases, an asymptotic
limit will be reached when the minimum number of cells per node (for CTH it is 27 for three-
dimensional geometries) occurs. It is a useful measure in that it gives information about start-to-
completion time speed up for a fixed simulation. Table 1 displays data taken from the Paragon for
a two material single point initiation problem run in two-dimensional cylindrical geometry. MP
computers suffer from a start-up penalty as the input is broadcast and initialization files are read.
The data in Table 1 has this start-up time removed for the calculation of the grind time. Hydro-
codes have used a performance metric known as grind time for a number of years, where grind
time is defined as the amount of cpu time necessary to complete all calculations on a single cell
for a single time step. For three-dimensional simulations, high-end serial workstations and single-
cpu vector supercomputers have grind times on the order of 100 ts/zone-cycle. From the data in

Table 1: CTH Fixed Problem Size Performance on MP Computers

Nodes CPL(TS'{ime (u(s}/;i(l)lgggrﬁe) Cell per Node

4 1690 92.1 45,000
8 877 47.2 22,500

16 - 482 26.2 11,250

32 263 14.4 5,625

64 150 8.4 2,812

128 86 4.6 1,406

256 52 2.6 703

512 32 1.7 351

Table 1 it can be clearly seen that an asymptote is being reached as the work per node decreases
and the run times are dominated by the message passing. The second method for measuring per-
formance is critical to proving a scalable decrease in grind time for large numbers of nodes. For
this test, the total problem size increases at the same rate as the increase in the number of nodes.
Table 2 displays data taken from the Paragon for a three material explosively formed projectile




problem run in three-dimensional rectangular geometry. Several points need to be noted from an

Table 2: CTH Scaled Problem Size Performance on MP Computers

Nodes CPIgS}‘ime (u(s:;rzi:geﬁ;rfle) Cell per Node
2 4127 319 27648
4 4639 179 27648
8 5287 102 27648
16 5193 50.2 27648

32 5152 249 27648
64 5119 124 27648
128 5222 6.3 27648
256 5503 33 27648
512 5307 1.3 27648
1024 - 0.57 13824

examination of Table 2. After the initial start-up time is overcome, the cpu time to complete the
simulation is relatively constant. Furthermore, the start-up time is dominated by IO from parallel
disks and across the inter-node network which depends heavily on the instantaneous machine
loading. The internal grind time calculations do not include the start-up times and are a more
accurate indication of performance. All simulations were run as interactive jobs and some varia-
tion is to be expected due to varying system loads. From 8 thru 256 nodes, the grind time
decreases by a factor of 31.2 as the number of nodes increases by a factor 32 indicating a linear
scaling of performance. Due to constraints in node memory on Sandia’s Paragon, the number of
cells per node was decreased to half of the previous simulations for the 1024 node problem. Other
tests on the entire machine (~1800 nodes) typically give grind times of 300 to 600 nanoseconds.
Comparative tests with PCTH and CTH on identical problems show that CTH is 3 to 5 times
faster than PCTH. We attributed the bulk of this speed up to be due to the superior performance
(that is, maturity) of Fortran versus C++ compilers. (U)

Conclusions

We have successfully integrated message passing functions into the serial version of CTH. We
drew upon the knowledge gained through the development of PCTH to implement these changes
in CTH and believe that it would have been extremely difficult to modify CTH for message pass-
ing without the trail-blazing work of Robinson (1992). We have shown scaled speed-up on the
Intel Paragon through 1800 nodes and also demonstrated the ability to maintain serial and parallel
code constructs in the same source code. If we extrapolate the Paragon performance to the ASCI
Red machine, we expect grind times to be below 10 nanoseconds per zone-cycle. (U)
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INTRODUCTION

Computational Physics Research and Development Department

Utilize the enormous performance capabilities of massively
parallel (MP) computers and maintain current modeling

features in our widely used shock physics analysis package
CTH

Challenge

Integrate message passing constructs into a legacy code
with minimal disruption of serial structure and modeling
capabilities

Solution

Build on the knowledge gained in the development of PCTH
for MP computers by generalizing the boundary conditions
in CTH to handle inter-node communications
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CTH OVERVIEW
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Capabilities N T
Shock Waves Proj @oM_H@Hm%o —
Multi- and Mixed-Phase Materials .

Elastic-Viscoplastic Solids, Fracture,
Explosives, 1,2, & 3D Geometries

Runs on

Intel Paragon, IBM SP2, Serial
Workstations, Workstation Networks, and
Vector Supercomputers

.
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DOMAIN DECOMPOSITION
TECHNIQUE

Computational Physics Research and Development Department

* Single _uqo..QSS Multiple Data (SPMD) programing paradim
* Single executable runs on all computational nodes

 [Each node operates on a sub-section of the global problem
domain

* Explicit messages are passed between neighboring nodes to
exchange necessary information between ghost cells

Domain
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SUB-DOMAIN CONSTRUCTION
TECHNIQUE

Computational Physics Research and Development Department

* Assume a homogeneous node structure

* Techniques could be extended to use nodal memory as a
weighting factor

e Constraints
e Equalize work per node
* Minimize surface area to volume ratio for individual nodes

* Results in cubic (or nearly cubic) sub-domains
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CTH DATA FLOW

Computational Physics Research and Development Department

« CTHGEN - reads user input and writes node specific databases
(restart file) |

e CTH - reads user input and node specific databases, integrates
conservation equation in time and writes check point files,
visualization and history data

CTHGEN restart files - node specific
ASCII output file - node.0 only
history file - node.0 only
rscth.0 rscth.n visualization files - node specific

visualization images generated off
- line on serial workstations

CTH

e

visualization history
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MESSAGE PASSING
CONSTRUCTION

Computational Physics Research and Development Department

* For MP-CTH we have emphasized passing fewer large messages
rather than many small messages

Blocking message passing techniques for NX on Paragon

Non-blocking message passing techniques for MPl and PVM on
other computing platforms

e Blocking versus non-blocking message passing has been
compared on the Paragon with no noticeable differences in
performance

* Lagrangian step requires 24 large messages/computational cycle

Eulerian step requires 48 _m_.mm messages/computational cycle

* Several small messages are also passed each computational cycle

A large message consists of the largest face between nodes times
the number of cell variables, typically 200-400 mbytes of data
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CTH MP PERFORMANCE
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CTH MP PERFORMANCE
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CTH MP PERFORMANCE
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SAMPLE SIMULATION
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EXPERIMENTAL DATA
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CONCLUSIONS
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» We have successfully integrated message passing functions into
the serial version of CTH

* We have re-used key algorithms from PCTH to minimize the effort
to build MP-CTH

» Scaled speed-up has been demonstrated on Sandia’s Intel Paragon
for 1-1800 computational nodes

* MP-CTH is between 3-5 times faster than PCTH, primarily due to
maturity of compilers, Fortran versus C++

» Paragon grind times of 300-600 nanoseconds/zone-cycle have been
seen on real problems of Bc_ﬁ__u_m materials and advanced material
models

* Extrapolated grind times for the ASCI Red machine should be
below 10 nanoseconds/zone-cycle

* CTH on MP computers is how cm.:m used for all large production
simulations at Sandia
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