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i Statistical Algorithms for a CTBT Discrimination Framework

Summary

Seismic discrimination is the process of identifying a candidate seismic event as an earthquake
or explosion using information from seismic waveform features (seismic discriminants). In

.the CTBT setting, low energy seismic activity must be detected and identified. A defensible
CTBT discrimination decision requires an understanding of false-negative (declaring an event
to be an earthquake given it is an explosion) and false-positive (declaring an event to be
an explosion given it is an earthquake) rates. These rates are derived from a statistical
discrimination framework. A

A discrimination framework can be as simple as a single statistical algorithm or it can
be a mathematical construct that integrates many different types of statistical algorithms
and CTBT technologies (e.g., seismic, hydroacoustic, infrasound and radionuclide). In either
case, the result is the identification of an event and the numerical assessment of the accuracy
of an identification, that is, false-negative and false-positive rates.

In Anderson et al. (1996), eight statistical discrimination algorithms are evaluated rel-
ative to their ability to give results that effectively contribute to a decision process and
to be interpretable with physical (seismic) theory. These algorithms can be discrimination
frameworks individually or components of a larger framework. The eight algorithms are
linear discrimination (LDA), quadratic discrimination (QDA), variably regularized discrimi-
nation (VRDA), flexible discrimination (FDA), logistic discrimination, K-th nearest neighbor
(KNN), kernel discrimination, and classification and regression trees (CART).

In this report, the performance (accuracy in identifying the source of seismic activity) of
these eight algorithms, as applied to regional seismic data, is documented. The discriminants
were constructed with an automated approach—phases and energy measurements involved
no human analyst interaction. A preliminary velocity model was used to identify phases.
Seven seismic stations, at both quiet and noisy locations, were used in the study. The
ground-truth data used in this study has some of the characteristics that might initially
typify training data in future regions of interest under a CTBT. Based on the findings in -
Anderson et al. (1996) and this analysis: :

e CART is an appropriate algorithm for an automated CTBT setting. CART has many
attractive features, such as interpretability, sequential decision rules, the ability to
integrate discrete and continuous measurements into a decision, and the ability to
manage missing values.

Our analysis supports the assertion that with these eight algorithms, false-negative rates
can be as high as 20-25% in poorly characterized regions. It is likely that ground-truth data,
similar to the data used in this report, will not be available in future regions of interest.
In this case, other approaches need to be initially adopted in order to characterize false-
negative and false-positive rates. A thoughtful, technical effort, directed at characterizing
the probability structure of discriminants for explosions, is critical to the CTBT ratification
and monitoring effort.
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1

Introduction

In this report, the performance (accuracy in identifying the source of seismic activity) of eight

statistical discrimination algorithms, as appliéd to regional seismic data, is documented.
The algorithms are linear discrimination (LDA), quadratic discrimination (QDA), variably
regularized discrimination (VRDA), flexible discrimination (FDA), logistic discrimination,

K-th nearest neighbor (KNN), kernel discrimination, and classification and regression trees
(CART). A detailed description of these algorithms can be found in McLachlan (1992).

LDA assumes that the discriminants from both natural and man-made sources are
multivariate normal with equal covariance. The LDA rule assigns a candidate event to
the source whose mean is closest to the candidate event, using a Mahalanobis distance

measure.

FDA is a generalization of LDA. FDA reformulates LDA as a least squares linear

regression problem and then substitutes non-parametric regression techniques in place

~ of the least squares approach.

QDA assumes the discriminants from natural and man-made sources are both multi-
variate normal with possibly unequal covariance. The QDA decision rule is composed

of the Mahalanobis distance between a candidate event and each source mean.

VRDA generalizes LDA and QDA by forming a covariance, for each source, that is the
weighted average between LDA and QDA type covariances. Here, the weights change
from source to source and are determined from the training data.

Logistic discrimination models the probability that an event is an earthquake or ex-
plosion as a function of seismic discriminants. Logistic discrimination can be viewed
as tossing an earthquake/explosion coin where the probability of explosion depends on
observed seismic discriminants. '

Kernel discrimination uses non-parametric models of the probability structure of source

discriminants to form a likelihood ratio decision rule.

KNN discrimination assigns a candidate event to the source with the largest number

of points in the nearest k¥ points around the candidate event.

CART is a non-parametric method that seeks to partition a training sample of seismic
discriminants into regions, each with a homogeneous event source. The end product
of a classification tree is a collection of if-then questions (a decision tree) that can be

applied to measured seismic discriminants.

Pacific. Northwest National Laboratory ' PNNL-11337
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A CTBT discrimination framework/algorithm is evaluated with three general criteria:

1. Does the framework/algorithm give results that effectively contribute to a decision
process? '

2. Can the framework/algorithm be interpreted with physical (seismic) theory?

3. Can the framework/algorithm accurately identify the source of seismic activity?

In Anderson et al. (1996), the eight statistical discrimination algorithms listed previously

were evaluated relative to items 1 and 2. Germane to items 1 and 2, some of the more

relevant criteria are:

Discrete & continuous data (discriminants) allowed — Polarity of first motion is dis-
crete and my — M, is continuous. The framework/algorithm should be applicable to
both types of measurements.

Missing data handled directly — In a CTBT setting, it is very probable that not all seis-
mic measurements will be seen by each monitoring station. The framework/algorithm

should be able to adapt to this scenario.

Easily Understood Algorithm — The framework/algorithm should be sophisticated
but lucid. It should be easy to integrate into the CTBT monitoring environment and
should not have an excessively complicated structure.

Easily interpretable results — The framework/algorithm should give an easily inter-
pretable identification of an unknown event, that is, false-negative (declaring an event
to be an earthquake given it is an explosion) and false-positive {declaring an event to
be anexplosion given it is an earthquake) rates, and a class membership score.

Works well with small group sizes — In many regional CTBT settings few ground-
truth measurements may be available for explosions. The framework/algorithm should

accommodate solutions to this problem.

Few assumptions — A framework/algorithm with a large number of assumptions is
usually less applicable. Assumptions may compensate for the lack of ground-truth
data. Assumptions can also be potential complications or points of disagreement in a

ratification and monitoring setting.

Sequential decision rules — The framework /algorithm should require the computation
of measurements only when necessary for a decision.

PNNL-11337 Pacific Northwest National Laboratory
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Table 1: Discrimination Algorithm Comparison
O

< = =
o SEES95EZS
Selected Issues/Criteria RSO > =2 X oM O
Allows Both Discrete & Continuous Data | N N N Y 'Y
Missing Data Handled Directly N NNNNNNY
Easily Understood Algorithm Y N Y Y Y
Easily Interpretable Results Y YYY Y Y YY
Works Well with Small Group Sizes Y N Y N N NN
Few Assumptions ‘ N NNY YYYY
Sequential Decision Rules N NNNNNNY
I Accommodates Multi-Modal Sources I N N N Y Y Y Y
Automatic Parameter Selection Y Y Y N N N N
Y means yes and N means no. ’ "
A blank entry indicates one of the following:
1) A middle answer between Y and N is appropriate.
2) Either Y or N is appropriate, depending on setting or parameters.
- 3) A definitive answer is unavailable. '

‘o Accommodates multi-modal sources — The framework /algorithm should have the abil-
ity to accurately differentiate between sources characterized by seismic measurement
data with two or more modes (that is, data with two or more local distribution peaks

or density maxima).

o Parameters are automatically selected — The framework/algorithm should have the
ability to automatically estimate or select the values of the model parameters used by

the framework.

A concise summary, in terms of these criteria, is presented in Table 1. All of these criteria are
strengths. In the table, “Y” means yes, indicating that the algorithm possesses the strength.
A blank indicates that either a definitive answer is unavailable, or an answer depends on
the application. As seen in Table 1, no single algorithm is ideal for every criterion — There
is often a trade-off between the criteria. One example of such a trade-off can be seen by
comparing the entries in Table 1 for the criteria of Few Assumptions and Works Well with
Small Group Sizes. '

Among the many seismic and statistical concerns involved with monitoring a CTBT is
the construction of a discrimination framework. The capability or accuracy of the framework
must be understood and characterized with a concerted technical effort. In this report, the
accuracy (item 3) of eight statistical discrimination algorithms is evaluated. A description

Pacific Northwest National Laboratory PNNL-11337 .




4 Statistical Algorithms for a CTBT Discrimination Framework

of the seismic data used in this evaluation is presented in Section 2. Section 3 compafes
the different discrimination algofithms. Section 4 discusses the importance of characterizing
the probability structure of discriminants from nuclear explosions. Summary comments are
presented in Section 5. -

2 Data Description

The ground-truth data used in this study have some of the characteristics that might initially
typify training data in future regions of interest under a CTBT. The discriminants were cal-
culated with an automated approach—phases and energy measurements involved no human
analyst interaction. A preliminary velocity model was used to identify phases. Seven seismic
stations, at both quiet and noisy locations, were used in the study. These stations had the
most complete data and most of the time windows contained at least some discernible signal.
The station locations are: Albuquerque, NM (ANMO); Columbia, CA (CMB); Goldstone,
CA (GSQC); Isadora, CA (ISA); Pasadena, CA {PAS); Pinyon Flats, CA (PFO); and Tucson,
AZ (TUC). Station-to-event distance varied from 200 to 800 km. The data set was built from
events occurring during the period 1990 to 1995 at the Nevada Test Site (NTS) located in
southern Nevada. The seismic data were gathered from the IRIS Data Management Center
located at the University of Washington. These data consisted 80 earthquakes, 20 explosions
and 2 cavity collapses for a total of 102 events. Event magnitudes ranged from 2.8 to 5.6.

The Seismic Analysis Code (SAC) developed at Lawrence Livermore National Laboratory
was used to make the phase and noise measurements for the events. Earthquake locations
and origin times from the National Earthquake Information Center (NEIC) were used. A
preliminary velocity model was uniformly applied to.all events to pick the phase arrival times
that were used to make the energy measurements of signal and noise. No refinements to the
arrival times were made on an event-by-event basis. Velocities of 6.1 and 3.6 km/sec were
used to predict the arrival times of the P, and L, phases, respectively. The locations used
had depth and epicentral errors in the range from 10 to 20 km, relative to precise local array
locations. A total of nine band-pass filters were used on each waveform: 0.5-1, 1-2, 2-4, 4-6,
6-8, 4-8, 1-3, 3-6, and 3-9 Hz. For each bandpass filter, several RMS energy measurements
were made: '

(a). a measurement of noise, + 15 seconds around the origin time (used for noise removal
processing and to create signal-to-noise ratios).

(b). measurements of the first 10 seconds after model estimated arrival times for the P,
and L, waves (used to create signal-to-noise ratios).

PNNL-11337 Pacific Northwest National Laboratory
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(c). measurements of P; and L, phases.

P, was not included in this work, because the time window for P, is short and therefore
dependent on precise location information, not typically available in a new region of interest.
Clean energy measurements were created by extracting the noise from measured signals

in items (b) and (c) using the formula:

cleaned energy signal = \/ (measured signal)® — (noise)®. (1)

In order to create signal-to-noise ratios (SNR) specifically for each of the P, and L, measure-
ments, the cleaned signals in item (b) were divided by the noise in item (a). The SNRs were
" inputs to the creation of weights applied at the time of averaging. Initially, four different
candidate data sets were created. Each candidate data set contained station-averaged phase
ratio discriminants. Two methods of averaging were investigated: arithmetic and geometric.
Additionally, averages were constructed with and without weights. Optimal discrimination
was obtained by using the logarithm of a weighted geometric average. Specifically, the phase

ratio. discriminants were formed with

phase ratio discriminant = L i:wi log (Pg i) (2)
Wi Ly,

where i indicates station, w; = log(SNR P,,)/log(SNR L,,), and W = 3, w;. Here,
SNR P, is the SNR using the cleaned signal in item (b) for P, and the noise in item (a);
SNR L,, is the SNR using the cleaned signal in item (b) for L, and the noise in item (a).
Phase ratio discriminants were created for each of the frequency bands. Only events with
P, and L, log(SNR) greater than 1.0 were included in the average. Box plots of log(SNR)
and log(SNR) given log(SNR) > 1.0 for the P, phase are given in Figure 1. The number of
events (n) used to construct each box plot is given (note that none of the stations recorded
all 102 events). This figure illustrates the impact that the log(SNR) > 1.0 constraint has
on these data. The final data set consisted of phase ratio discriminants, at frequency bands
0.5-1, 1-2, 2-4, 4-6, 6-8, 4-8, 1-3, 3-6, and 3-9 Hz, for 71 earthquakes and 19 explosions.

A subset of these phase ratio discriminants was identified and used in the analysis. In
general, as the number of discriminants used in an algorithm increases, discriminative abil-
ity also increases. However, after a certain point, adding more discriminants can actually
degrade performance. If several discriminants are strongly correlated, then including all of
them in the comstruction of a discrimination algorithm will tend to fit random noise rather
than seismic structure. This property is analogous to over fitting a linear regression model.
The subset of phase ratio discriminants was identified in two different ways:

Pacific Northwest National Laboratory PNNL-11337
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Figure 1: Box plots of log(SNR) and log(SNR) given log(SNR) > 1.0 for the P, phase. The
value of n is the number of events used to construct the box plot.
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e Stepwise regression for all frequency bands with the addition of dummy noise variables.
o All-possible-subsets method for all frequency bands for subsets of sizes 2, 3, 4, and 5.

The Stepwise procedure in SAS was used with the added dummy noise variables (SAS,
1989). The idea was to create noise variables and add them to the list of potential variables
(see Miller (1990)). When the stepwise procedure selected a noise variable as a discriminant,
the phase ratio discriminants identified in the previous step were chosen as the optimal
discriminants. In the second variable selection method, all possible pairs, three-tuples four-
tuples and five-tuples, were also created; the corresponding linear discrimination models were
fit; and the model with the best cross-validated overall error rate (percent correct decision)

“was selected. The all-possible subsets-method, while computationally more challenging, is
preferred over the stepwise procedure. Both methods were examined as in some cases the
all-possible-subset method would not be feasible. These two variable selection techniques,
however, yielded the same three-phase ratio discriminants at 0.5-1, 2-4, and 4-6 Hz frequen-
cies as important variables for this data set. To summarize, the data set used to evaluate
the discrimination algorithms consisted of 71 earthquakes and 19 explosions with phase ratio
discriminants constructed at band widths of 0.5-1, 2-4, and 4-6 Hz.

3 Comparison of Discrimination Algorithms

The eight algorithms used in this analysis were chosen to represent a reasonable range of
the numerous algorithms available in the statistics community. The data set was partitioned
into 10 training data sets and 10 prediction data sets. Each training set comprised 90% of
the original data set and each prediction data set made up the remaining 10%. Each of
the eight algorithms were applied to each of the 10 training data sets. The rates used to
assess performance were combined over the 10 prediction data sets. Figure 2 summarizes the
performance of the eight algorithms. Table 2 gives estimates of the false-negative and false-
positive rates for this analysis. While the false-negative rate for CART is 32%, we note that
the full modeling features (non-orthogonal cuts, see Breiman et al. (1984)) of CART were
not available for this analysis. Using all of the features available to the CART method would
greatly improve the false-negative error rate. The decision boundaries for each algorithm
were constructed with equal source prior probabilities. Error costs were not incorporated
into the construction of decision boundaries. In terms of the overall error rate in Figure
2, all of the eight algorithms appear to perform about the same. In terms of the false-
negative and false-positive rates in Table 2, some algorithms perform better than others.
For example, CART and Logistic perform best in terms of a false-positive rate. However,
the kernel algorithm performs best in terms of a false-negative rate. The impact of these

Pacific Northwest National Laboratory » PN ND11337
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CART KNN
: Identified as Identified as
Ex | Eq - EBx Eq
Ex{ 13 6 Ex| 16 3
True Source ' True Source
Eq| 4 67 Eq| 8 63
Overall Error Rate = 11.1% - Overall Error Rate = 12.2% .
Logistic LDA
: Identified as Identified as
Ex Eq Ex Eq
Ex| 14 5 Ex| 17 ” 2
True Source True Source
Eq| 4 67 Eq| 8 63
Overall Error Rate = 10% . Overall Error Rate = 11.1%
QDA FDA
Identified as Identified as
Ex Eq Ex Eq
Ex| 15 4 Ex| 15 l 4
True Source _ True Source
Eq| 9 62 Eq| 7 l 64
Overall Error Rate = 14.4% Qverall Error Rate = 12.2%
Kernel VRDA
Identified as Identified as
Ex Eq Ex Eq
Ex| 18 1 Ex| 15 “ 4
True Source ' = True Source '
Eq| 11 [ 60 - Eql 8 u 63

Overall Error Rate = 13.3%

Figure 2: Summary Tables (Confusion Matrices) and Overall Error Rates.
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Algorithm Pf(false-negative) Pr(false-positive)
CART 2% e
Logistic 26% 6%

FDA 21% 10%
'VRDA ' 21% . - 11%

QDA 21% O 13%

KNN 16% 11%

LDA 1% 11%
Kernel 5% 15%

Table 2: Estimated False-Negative and False-Positive Rates.

two errors on a decision can be integrated into an algorithm by adopting a decision theory
approach to discrimination. This approach integrates prior probabilities and error costs into

a discrimination decision.

4 Probability Structure of Discriminants from Nuclear

Explosions

The CTBT ratification process, as well as implementation of a CTBT monitoring system, -

will generate vigorous discussion of the probabilities of
e declaring an event to be an earthquake, given it is an explosion (false-negative)
o declaring an event to be an explosion, given it is an earthquake (false-positive). .

For example, evidence to support the accuracy of a monitoring system will be prerequisite
to the imposition of an on-site inspection directed at a CTBT signatory. The capability
- to identify low energy seismic activity is assessed with these probabilities. Both of these
probabilities are essential components in calculating the probability that

Pacific Northwest National Laboratory R PNNL-11337




10 , Statistical Algorithms for a CTBT Discrimination Framework

e an event is an explosion given it is declared to be an earthquake
e an event is an earthquake given it is declared to be an earthquake.

If an event is an explosion and is declared to be an earthquake, then a serious error has
been made. If an event is an earthquake and is declared to be an earthquake, then a correct
and cost effective decision has been made. Discussions and efforts to resolve these and other
analogous probabilities are critical to the successful implementation of a CTBT.

In general, discrimination involves two basic activities. Seismic discriminants that evi-
dentially identify the source of a seismic event are selected, and secondly, these discriminants
are integrated into an appropriate statistical discrimination framework. These activities can-
not be completed without some characterization of the multivariate probability structure of
the discriminants for each seismic source, that is, earthquakes and explosions. _

Because the availability of data from nuclear explosions is limited to a small number
of regions in the world, the CTBT research community has discussed constructing discrim-
ination strategies independent of any ground-truth explosion data. An outlier approach
proposed by Gra.y et al. (1996) is based on the general idea of characterizing the regional
seismic data from naturally occurring events and mining activities, and then declaring as
suspicious those future events that are not statistically similar to this population. This ap-
proach precludes any estimate of the false-negative error rate. Adopting any algorithm or
framework to monitor low energy seismic activity is tenuous without an understanding of the -
associated false-negative error rate. Without some type of characterization of the regional
seismic properties of nuclear explosions, it is not possible to quantify the false-negative error.
The outlier approach only provides an estimate of the probability of incorrectly calling an
earthquake an outlier. .

A simple graphical example illustrates the problem involved when no information is
used to characterize nuclear explosions for a region. Figure 3 shows four scenarios. In the
first, Figure 3(a), only earthquakes are characterized and a decision boundary is set that
allows 5% of earthquakes to be called explosions. Because explosions are not characterized
in any way in Figure 3(a), no indication is given of the error rate in labeling explosions
as earthquakes.  Figures 3(b), 3(c), and 3(d) indicate three (out of an infinite number)
possible arrangements based on different explosion characteristics. In Figure 3(b) a 1% error
rate of labeling explosions as earthquakes is obtained while retaining a 5% error rate in
labeling earthquakes as explosions. For Figure 3(c), the error rate of labeling expiosions as
earthquakes is 5%, and for Figure 3(d), the rate is 25%. The false-negative rates in Table 2
are comparable to Figure 3(d). This simple illustration points out that an outlier approach is
not able to quantify the chances of labeling an explosion as an earthquake, unless information

concerning explosions is available. Figure 3 uses a simple one-sided decision boundary on

PNNL-11337 _ Pacific Northwest National Laboratory |
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only one normally distributed measurement or feature. However, the same idea holds for two-
sided decision boundaries, higher dimensional problems, and non-normal (including mixture) -
distributions. . _

Several approaches can be adopted to characterize nuclear explosions in regions of inter-

est. Some of these strategies are:

1. Develop seismic theory that will permit transportation of nuclear explosion data from
existing weapon test sites to future regions of interest.

o

Use data from regional simulations of nuclear explbsions. :

3. Design and conduct chemical calibration explosions.

4. Use data from chémical explosions of opportunity, such as mining explosioné.
5. Base regional nuclear explésibn characterization on ‘expert opinion.

6. Use any combination of these strategies.

The characterization of the probability structure of explosions and earthquakes-is critical
research for CTBT discrimination. Without this research,

¢ optimal discriminants cannot be identified for regions of interest
¢ an optimal discrimination framework cannot be constructed for regions of interest
¢ performance capabilities of a regional discrimination framework cannot be assessed.

A thoughtful, technical effort to characterize nuclear explosions must be undertaken in
support of the CTBT. The outlier approach to discrimination, while éxpedient, appears to
cloud a discussion of the issues demonstrated in this section. The CTBT research community
should seek the best possible resolution of the probabilities of

e declaring an event to be an earthquake given it is an explosion

e declaring an event to be an explosion given it is an earthquake.

Pacific Northwest National Laboratory PNNL-11337




12 Statistical Algorithms for a CTBT Discrimination Framework
Edrthquake Explosj Edrthquake
M
(a) Decision boundary giving 5% error (b) Earthquake distribution and decision
rate of calling an earthquake an explo- boundary of Figure 3(a) (giving 5% error
ston. Only earthquake distribution infor- rate of calling an earthquake an explo-
mation is used. The error rate of calling sion) and explosion distribution giving a
an explosion an earthquake is not avail- 1% error rate of calling an explosion an
able. earthquake.
(¢) Earthquake distribution and decision {d) Earthquake distribution and decision
boundary of Figure 3(a) (giving 5% error boundary of Figure 3(a) (giving 5% error
rate of calling an earthquake an explo- rate of calling an earthquake an explo-
sion) and explosion distribution giving a sion) and explosion distribution giving a
5% error rate-of calling an explosion an 25% error rate of calling an explosion an
earthquake. earthquake.
Figure 3: Error Rates for Earthquake and Various Explosion Populations.
PNNL-11337
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5 Conclusions

The analysis in this report, in combination with the conclusions from Anderson et al. (1996),

indicate:

e CART is an appropriate algorithm for an automated CTBT setting. CART has many
attractive features, such as interpretability, sequential decision rules, the ability to
integrate discrete and continuous measurements into a decision, and the ability to

manage missing values.

e All of the algorithms in this report can provide corroborative evidence to support a
decision. These algorithms can be integrated into a seismic analyst tool box or a

discrimination framework.

e Many techﬁologies will contribute to a decision on the disposition of a seismic event.
The discrimination algorithms in this report can contribute, across all monitoring tech-

nologies, to the CTBT discrimination problem.

e In this analysis, overall error rates are near 10%. Further, this analysis supports the
assertion that false-negative rates can be as high as 20-25% in poorly characterized

regions.

e A thoughtful, technical effort directed at characterizing the probability structure of
discriminants for explosions is critical to the CTBT ratification and monitoring effort.

Pacific Northwest National Laboratory : IP NNL-11337
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