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ABSTRACT

The neutron velocity spectrum resulting from interaction of a high-energy
neutron source with a spatially infinite, heavy gaseous moderator is obtained by
solution of the Wilkins equation for the case of 1/v absorption cross section plus
a single sharp resonance. The resonance is assumed to be narrow enough so
that variations in the flux through the resonance are small with respect to the
average flux in the resonance, yet broad with respect to the average energy loss

per collision.

The resonance escape probability and the effective resonance integral are
defined and calculated. It is shown that the effect of the thermal motion of the
moderator on the effective resonance integral can be expressed, in first order,
as a correction to the mean logarithmic energy loss per collision. This
correction, which can be described as the contribution of energy transfer from
moderator to neutron, is the same as the one proposed by Cohen, and increases
the resonance integral by ten percent even for resonance energies as high as
20kT.
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I. NEUTRON SPECTRUM FOR A MIXED MODERATOR

The neutron spectrum in an infinite heavy moderator in the presence of an
absorption cross section with a pure inverse velocity dependence has been the
1,2,3,4

subject of much discussion. Both Wilkins1 and Hu.rwitz2 have shown that

the problem can be reduced to the solution of the following differential equation:
" 2 1
xN (x) + (2x - 1)N (x) + (4x - A)N(x) = 0 LETR(R)

In this expression, x is proportional to the velocity of the neutron, i.e.,
X = Bv; Bis given by BZ = 1/2kT, where T is the moderator temperature and
the mass of the neutron is unity. N(x) is the number of neutrons per unit volume
having a velocity between x and x + dx, and A is the absorption parameter, i.e.,
A =2mx O'a(X)/ crs, where m is the moderator atomic mass in units of neutron
mass. Since it is assumed that O'a(x) = 0’0/x and since O’S is constant,

A=2mo/o.
oitva

Wilkins arrived at (1) by a consideration of the process of diffusion of a
neutron gas into a heavy Maxwellian moderator gas under the assumptions that
neutron-neutron collisions are vanishingly infrequent, neutron-moderator colli-
sions alter the neutron spectrum only, and a steady state distribution of neu-
trons exists. Under these assumptions, the space-and-time-independent

source-free form of the Boltzman transport equation becomes
@ 1 1 1
G_(viev)NWav' = [y(v) + V(v)] N(v), ..@2)
le) S

where G(vlov) is the scattering rate per neutron from velocity v' to velocity v,

y(v) is the absorption rate per neutron at velocity v, and

®
V(v) =j; GS(V-OV’ )dv'



For a mixture of heavy gases, (2) may be rewritten as

®
f Z G_.(vvIN(v )av' = N(v) Z [Vi(v) + yi(v)], .. (3)
o i 1

in which the various symbols are defined as before but apply to the ith compo-

nent in the mixture.

Analogously to the way in which (1) is derived from (2), the following

differential equation is obtained from (3):

XN (x) + (2x%- 1)N (x) + (4x - A)N(x) = 0, . (4)

where

4xZniO’ai(x) 4)(Zni0'ai(x) 4"za
- 1 1

A = —
Z 2 n,0,/m, Z €im%; €2,

1 1

’ i LD)

n, is the density of atoms of the ith kind, and fi is their mean logarithmic
energy loss per c_ollision. From (5) it is evident that if the crai(x) are each of
the form croi/x, A is a constant and thus (4) is exactly of the form (1). & Hence
the problem of determining the neutron spectrum in a mixture of 1/v-absorbing

Maxwellian gases is reduced to that of a single gas having a A = A.

*If those components of the mixture having absorption cross sections proportional to 1/v are vastly predomi-
nant in relative number, A is essentially constant, even if there are components which are non—1/v.



Il. NEUTRON DENSITY SPECTRUM IN A 1/V ABSORBER WITH A SINGLE SHARP
ABSORPTION RESONANCE

This problem is conveniently treated by considering the absorption maxi-
mum to be a negative source. The problem is thereby altered to the determina-

tion of the neutron spectrum in a two-source system.

Consider a source, S(D’ which introduces neutrons of infinite velocity into

a Maxwellian moderator with 1/v absorption. There results a neutron spectrum
N(D(x) which satisfies Equation (1). Furthermore, consider another source of

strength S(Dbut of such a kind that it introduces neutrons of velocity X, into the

same moderator. In general there results a neutron spectrum which for x<x,
is designated by Nl(x), and for X2X is designated by NZ(X)' If now, into the
same moderator is introduced at the same time a source, S(D’ of neutrons of

infinite velocity and a source, S then the total neu-

v of neutrons of velocity X1,

tron spectrum N(x) is given by the sum of the two preceding distributions:

N(x) NCO(X) + (sl/soo)Nl(x) x <x

N(x) Nw(x) + (SI/S(D)N

Z(X) X2X

The functions Nco(x), Nl(x), and N2 (x) are to be obtained by solution of (1),

which holds for any source-free region, with appropriate boundary conditions.

2
It has been demonstrated that a first integral of (1) may be written as

Ao'sf 1 1 O’S€ 2 1 1 1
2 N(x )dx = > x =-1)N(x) +-Z—xN (x) + C . Mt ()

The quantity on the left is just the neutron absorption rate between whatever
limits one cares to place on the integral. Furthermore, N(D(X) is known to

behave asymptotically as follows:1

N(D(X) ~ xZ x—=0
2 . (8)
Nco(x) ~ C/x X— 00



At steady state, one has

Acrsf ©
i) N, (x)dx = Sq :

and from (7) and (8),

Czo_g o .-.(9)
s

Also, if one writes

—ZA—./;XNm(x)dx = 2 » DN () +%—xN'w(x) ,

2
for which x-3ex is an integrating factor, there follows3

y X ,mu
2 -x | 4 e

N (x) =x"e —+ A} —1 N_(t)dtdu . ...(10)

a2t S,

This latter may be used as the basis of an iterative method3 to determine

Nm(x) as a series in ascending powers of A which, because (10), after reversing
order of integration, is a Volterra-type integral equation, is convergent for all
values of x and A. It is to be observed that SCO (and therefore C) has been

chosen so that the Maxwellian portion of the solution is normalized.

If neutrons are introduced at some velocity X, instead of at infinite velocity,
and furthermore are introduced at the rate SCD neutrons per second, then (1)
must be solved in two ranges of x values, since it is valid only in a source-free
region. Included in the first region, are all values of x between zero and X
1 The first

solution has been called Nl(x) and the second Nz(x); these solutions are still to

and in the second region, those values greater than or equal to x

be determined.
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It is convenient to find first another solution of (1), No(x), arising from a
source of strength SO neutrons per second introducing neutrons of velocity x = 0.
Since No(x) is a solution of (1), (7) is satisfied by No(x). Its asymptotic

behavior is given by Wilkins as

2 -x2
No(x) ~ X e as x— .
Hence
A = 2 1
1
—2—‘[ No(x)dx = [(x -l)No(x) + 2xNO(x)] o e S
From (11), one obtains
2 2 f®
d ex ex A
oot No(x) et No(x)dx
x x -
and
" W , p@O
_ 2 -x el
No(x) =x"e a+ A 3 No(t)dt du . .+ o+ 112)
x 4 Ju

It is shown (Appendix A) that if one chooses a = 4/«/;T , then So is so normal-
ized that S0 = S(D: O’SC §/2. Hence a source equal in strength to S, but from

which neutrons are introduced at velocity x = 0, yields a distribution No(x)

© , pO
2 -x2 4 el
No(x) =x"e —+A Tsan (t)dtdu | . ... (13)
o
m x u u

given by



Nl(x) and NZ(X) can be related to No(x) and N(D(X)’ by exploiting the follow-
ing properties of Nl(x) and NZ(X):
1) Both are solutions to Wilkins' equation in a given region.
2) Because of the thermal motion of the moderator, collisions resulting
in increased neutron energy as well as decreased neutron energy

occur; hence Nl(x) and NZ(X) are continuous across x = x. and

1
Nl(xl) = NZ(XI)'

X (e8]
A& o,
3) —-4— NI(X)dX + NZ(X)dX = Sw
(o] Xl

It is easily verified (Appendix B) that the three foregoing conditions are satis-
fied by

No xl)
Nl(x) =_—4— 5 _XZ‘ Nw(x)
ﬁxle 1
and ... (14)
N (x
- o 1
N, (x) = 2No(x)

An absorption resonance at X introduces into (6) a negative source, whose

strength S, is given by

S, = - xN(x)O'a(x)dx : ... (15)

X - €

Thus if 2¢€ is small enough so that there is not much variation in xN(x), yet
large enough so that the absorption resonance is wide with respect to the
scattering kernel Gs(v'—.v) in (2), the limit of applicability of the Wilkins'

equation, there results

6



1
s1 el XIN(XI) O'a(x)dx = -xlN(xl)e'a ’ ...(16)
X -€
and from (6),
xlN(xl)/é‘a
N(Xl) = NCD(XI) -TNI(XI)

Thus, from (9), (14), and (16), Equation (6) becomes for the case of a resonance

1
N(x) = 1 +DN(D(X) x<xy
s LT )
N _(x,)/N _(x,)
1 1
N(x) = N(D(X) - (1D+ 1/D° No(x) xel >
where
% 2
VoA
D=3 ocho(Xl)Nco(xl) ’
1= <8
x1+e
A
g = o (x)dx
a a
& €

Figure 1 presents curves for a typical mixture, in which N(x) has been com-

puted at two temperatures. Superimposed upon the plots of N(x) is a curve of

N(D(X) for the same /A but without a resonance.

*Although No(x) and Ny(x) were developed for heavy gases, Nelkin® has shown that even for a Debye solid,
the neutron spectrum is only slightly different from No(x).
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Figure 1. Neutron Velocity Spectrum in a Heavy Moderator With
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I1l. RESONANCE ESCAPE PROBABILITY AND EFFECTIVE RESONANCE INTEGRAL

Figure 1 indicates that the presence of an absorption resonance not only
reduces the neutron spectrum generally for energies below the resonance energy,
but also introduces a distortion in the neighborhood of the resonance. The
extension of the distortion above the resonance is attributed to the loss in the
resonance region of neutrons which normally would have been scattered up into
the region of the distortion from the low side of the resonance, since it is seen
from (17) that the correction to NCD(X) above the resonance approaches zero in

ZIES ; . : -
the same manner as x e ~ , i.e., the moderator distribution.

The definition of the resonance escape probability is complicated by the
presence of the distortion above the resonance. The probability that a neutron
escapes the resonance is the ratio of the number of neutrons which escape to the

number which would have ''escaped'' had there been no resonance present.

Thus,
Acrsf *3
5 Jo Nx)dx
p(xy,A) = Ko € rx, s {38)
s
4 _/; Nm(x)dx
. |
1 #D
The effective resonance integral Ieff(xl’A) is deﬁned6 as
1 - P(x,,A)
- L
LgglxpB) = o & Plx,,0)
A x2
e cra«/T_Te 1 (19)
I c(x ) = N (x,)N_{(x,)
off>" 3’ ZCxl - 1. rl
9



Therefore Ieff(xl’ A) may be written as
Ieff(xl’A) - E(XI’A)Ires(Xl)’

where E(XI,A), the enhancement factor, is given by

x2
e !

E(xl,A) == N (% INg) ... (20)
and
x1+€
I (%)) =2 o-a(x)c—l-:{i . .21
xl-e

E(xl,A) has been evaluated for various X and A and curves are given in
Figure 2. The enhancement factor may be studied for large X by use of the

asymptotic series for No(x) and Na)(x) given by Wilkins:

2 2 3 4 2
No(x)zixze-x 1+2.%+AZ+A +34A+A+12A e I
Vr 8x 48x 384x
2 3
N(x)zil__A___,_A +16_A+76A+”
= x” i 8x” 48x°> ’
whence
o~ 2 A 1
X 2x b'e

For smallA, E(Xl’ /) is different from unity by 10% for x2 = 20. Since
E(xl, /) is a measure of the effect that the slowing-down tail of the

Wilkins distribution has on the resonance escape probability, it is

10
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seen that the effect is noticeable when the resonance occurs at energies as high
as 20kT. At sufficiently high temperatures, the absorption resonance of reac-
tor materials might well fall within this range. The 0.8 ev resonance of
samarium, for example, is within this 10% error range when the moderator
temperature is = 300°C. To a first approximation, therefore, we may write

xl+€ O‘a(x) .
o—f(l _Z/XZ)T ’ ... (23)
-€ 8

P(xl,A) = exp | -

=4

The effect of thermal motion of the moderator on the resonance escape probabi-
lity may be looked upon as a correction to the mean logarithmic energy loss per

collision and, in first order, is the same as the one proposed by Cohen.

12
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APPENDIX A

THE NORMALIZATION OF Nq(X)

If Wilkins' Equation (1) is solved for a source at infinity, S(D’

source at zero, So’ there result two solutions No(x) and Nco(x) which are

linearly independent of each other. From (10) and (12), there results

x u
2
2 -x2 A et
X e 20 + e Na)(t) dtdu
o U Jo

N(D(x) =
and
@ » @
2 --x2 el
No(x) =X e a_ + A 3 No(t)dtdu .
x u u

where N(D(x) and No(x) are subject to the normalization conditions

Aosffm
) Nplxax = 5,

and

Aa’sffw
r s No(x)dx =S0

S _has been chosen such that a__ =

(09) 00) ﬁ
:O-sg

2

, whence (9) becomes

S c(d),

@

where C(4) is a known function of A.4

and for a

. (A1)

. (A2)

13



Since No(x) and NCD(X) are linearly independent solutions of (1), the

Wronskian of (1), W(x) = WQxe"X , is given by

2 1 1
W(x) = woxe‘x = N_(x)Ng (x) - NN (x) . ... (A4)

From (Al) it is apparent that

2
N ) rom me s w5 1 . ... (A5)
o o
Hence for large x and from (8), one can write
_XZ 2
W(x) = W _xe ~ 2a C(A)xe™ ,
o o
and consequently
w, = ZaoC(A) . ...(A6)
On the other hand, from (Al),
2 -x2
N(D(x)~a®xe x<<1

Hence for small x,

!
2 2 2
-X ~ 2 -x J 2 -X
W(x) = W _xe == No(x)[awx e } -N,(x) [awx e :, ’

Z
whence an integration, using the integrating factor (xz'e-x )-2, leads to

wo 2 -x2 e~ ' !
NO(X)z-——xe ,3dx + C

a(D %

14



and

WO
lim NO(X) - NO(O) = 2a
X—=0 (19)

Hence from (A6), we have

a
N _(0) ==2C(A)
(o] aa)

Thus if S_is so chosen that a_ = = —4—-, then
(o) o T

%0

N (0) = C(d)

It remains to investigate the relationship between So and

and (7), one obtains

00}
Ao & af
S = N (x)dx =
o 4 o o)
o X
and from (A5) and (A7),

T

So =— C(d)

S(D'

... (A7)

From (A2)

1
lim x°N_(x) ++ lim xN_ (x) + N_{0)
o ./ S 0 o) o

...(A8)

If (A8) is compared with (A3), it is seen that a source So equal in magnitude to

SCD results in a normalization of No(x) such that a =

sngo'sC(A), then a = an = 41/ .

Furthermore, if S0
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APPENDIX B

THE RELATIONSHIP OF Nj(x) AND N2(x) TO Ng(x) AND N x)

It has been shown that the relationship (14) is valid if it satisfies the three
conditions on page 6. That condition 1) is satisfied is apparent since No(x)
and Na)(x) are both solutions to Wilkins' equation. Condition 2) is also obvious-

ly satisfied. Substitution of (14) into condition 3) yields, with the aid of (7),
(8), and (12):

a. & : '
%0 g ey N (e INpy) = N (e )N (%)) |- . JABD
4(4/ /m)x e |

Since No(x) and l\{D(x) are linearly independent solutions of (7), the bracketed

quantity is the Wronskian of (1), whence from Appendix A, one has

a &W

S = -—2—
D 4a/p/fm)

and from (A6) and the normalized value of a,

Usf A
S®= > C(8), ...(B2)

which is just the expression for S(D obtained from (9). Hence (A2) is valid and

condition 3), page 6, is satisfied by (14).
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