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This dissertation is concerned with the study of multigrid methods for
the solution of elliptic partial differential equations. The primary focus is on
parallel multigrid methods and the application of multigrid methods to reser-
voir simulation. Multicolor Fourier analysis is used to analyze the behavior
of standard multigrid methods for problems in one and two dimensions. The
relationship between multicolor Fourier analysis and standard Fourier analysis
is established. Multiple coarse grid methods for solving certain model prob-
lems in one and two dimensions are considered. For such methods, at each
coarse grid level we use more than one coarse grid to improve convergence. For
the application of multiple coarse grid methods to a given Dirichlet problem
it is convenient to first construct a related extended problem. For solving an
extended problem with a multiple coarse grid method, a “purification” proce-
dure can be used to obtain Moore-Penrose solutions of the singular systems

which are encountered. For solving anisotropic equations, semicoarsening and




line smoothing techniques are used with multiple coarse grid methods to im-
prove convergence. The two-level convergence factors of the multiple coarse
grid methods are estimated by using a multicolor Fourier analysis. In a special
case where each of the operators has the same stencil on each of the grid points
on one level, the exact multilevel convergence factors of the multiple coarse
grid methods can be obtained. For solving partial differential equations with
discontinuous coefficients, the interpolation and restriction operators should
include information about the coefficients of the equations. Matrix-dependent
interpolation and restriction operators based on the Schur complement can be
used in nonsymmetric cases. A semicoarsening multigrid solver with matrix-
dependent interpolation and restriction operators is used in UTCOMP, a three-
dimensional, multiphase, multicomponent, compositional reservoir simulator
developed at The University of Texas at Austin. The numerical experiments
are carried out on different computing systems. The results obtained from the
analysis and the numerical experiments indicate that the multigrid methods

are promising.
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Chapter 1

Introduction

For many problems in science and engineering one is faced with the
need to solve one or more partial differential equations. The use of discretiza-
tion methods such as finite-difference methods or finite element methods usually
leads to the need to solve one or more large systems of linear (or nonlinear)
algebraic equations. The solution of such problems by direct methods or by

conventional iterative methods can be very costly.

Multigrid methods offer the possibility of greatly improved conver-
gence, as compared to iterative methods, for some problems. However, rigor-
ous analysis of multigrid methods is available for only a very limited class of
problems. Moreover, standard multigrid methods are not suitable, in general,

for use with parallel computers.

In this dissertation we are concerned with three aspects of multi-
grid methods: a rigorous analysis of standard multigrid methods for a class
of model problems in one and two dimensions; a description and analysis of
multiple coarse grid methods which are actually multigrid methods where at
each coarse grid level more than one coarse grid is used; and a description of
some applications of multigrid methods to the solution of problems in reservoir

simulation.
In Chapter 2, we define the model problems which will be used in

later chapters. In Chapter 3, we give a brief description of some basic iterative
methods and polynomial acceleration procedures.

In Chapters 4 and 5, we describe the application of standard multigrid
methods to certain model problems in one and two dimensions. We present two




analyses of these methods: one is based on the use of standard Fourier analysis,
the other is based on the use of a two-color Fourier analysis for problems in
one dimension and on the use of a four-color Fourier analysis for problems
in two dimensions. The new multicolor Fourier analysis is especially effective
when certain smoothing iteration methods such as the red/black Gauss-Seidel
method are used. We also study the relationship between the standard Fourier
analysis and the multicolor Fourier analysis and show that they are equivalent

under a similarity transformation.

In Chapters 6 to 9, we consider multiple coarse grid methods for solv-
ing certain mode] problems in one and two dimensions. For such methods,
more than one coarse grid is used at every coarse grid level. We consider three
types of multiple coarse grid methods including multiple coarse grid multigrid
(MCGMG) methods, frequency decomposition multigrid (FDMG) methods,
and parallel multigrid (PMG) methods. For each of these methods we first
construct a related extended problem as described in Chapter 6. The multiple
coarse grid procedures which we consider can be conveniently defined and ana-
lyzed for the extended problems. A “purification” procedure is used to obtain
Moore-Penrose solutions of singular systems which are usually encountered.

Previous work on parallel multigrid methods by Frederickson and
McBryan [28] was applicable to periodic problems. Young and Vona. [73] consid-
ered parallel multigrid methods for certain non-periodic problems. However, it
was necessary to use more complicated operators than those which are involved
with the extended problems.

The convergence factors of two-level multiple coarse grid methods
are estimated by using the multicolor Fourier analysis. The effects of some
red/black smoothing schemes are also described.

For anisotropic problems, the PMG methods based on point smooth-
ing and the standard coarsening schemes are not very efficient. We consider
a new variant of the PMG methods using semicoarsening and line smoothing
techniques. We extend the convergence analysis of the multilevel PMG proce-
dure described by Frederickson and McBryan [29] to the semicoarsening PMG




procedure for anisotropic problems.

In Chapters 10 to 12 we consider the applications of standard multi-
grid methods to problems in petroleum reservoir simulation. Dendy et al.
[24] used multigrid methods to solve some model problems of the type that
arise from pressure equations in reservoir simulation. Fogwell and Brakha-
gen [27] used multigrid methods to solve the equations for incompressible, two
phase flow in a porous medium. We developed a semicoarsening multigrid
procedure which can be used to solve systems of linear equations arising from
the discretization of the governing pressure equation in UTCOMP, a three-
dimensional, multiphase, multicomponent, compositional reservoir simulator
developed at The University of Texas at Austin [12] [13]. The governing pres-
sure equation in the reservoir simulator is an anisotropic differential equation
which may have discontinuous coefficients and the matrices of the linear systems
are nonsymmetric. To obtain a fast convergence rate, we use matrix-dependent
interpolation and restriction operators constructed in a way analogous to the
Schur complement procedure in our multigrid algorithm.

The numerical results show that the multigrid methods compete very
well with other iterative methods as well as with direct methods. We examined
the performance of the multigrid code on a variety of parallel systems.




Chapter 2

Model Problems

2.1 Introduction

In this chapter, we define the model problems which will be used for
the convergence analysis of the multigrid methods discussed in later chapters.
We consider elliptic partial differential equations on the unit square (unit in-
terval in each dimension) with Dirichlet boundary conditions. The standard
3-point and 5-point finite-difference discretizations are used for the problems

in one dimension and in two dimensions respectively.

2.2 A One-Dimensional Model Problem

The 1D model problem we consider is the Poisson equation defined
on the interval (0,1) with Dirichlet boundary conditions:

dxz?

u(0) = ¢a, u(l) = ds.

(2.2.1)

{ _dzu(a:) = f(z) for z € Q= (0,1),

Let ©Q be defined as

1
% ={(@)] 5 =00, Ny b= 1}, (2.22)

where N is an integer and z; = jh. By using the standard finite difference

discretization process we obtain a set of linear equations:

xlf[—“j—l +2u; —uj]=f;, Jj=1...,N—-1, (2.2.3)

Up = ¢a, unN = ¢b,
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Figure 2.1: Grid Points for a One-Dimensional Problem: h =1/8

where u; = u(z;) and f; = f(z;). The difference equations can be written in

the matrix form as
APy =5 (2.2.4)

where the superscript of the matrix A; indicates the discretization scheme (e.g.
“3” indicates the 3-point standard finite-difference scheme).

In the case of N = 8, the grid §, is defined as in Figure 2.1 and the
corresponding discrete problem (2.2.4) is given by

- - - -

2 -1 ur | [ A+ da/h?]
-1 2 -1 Uz f2
. -1 2 -1 us fs
7 -1 2 -1 ug | = fa . (2.2.5)
-1 2 -1 us fs
-1 2 -1 Ug Je
i -1 2 || ur| | fr+ u/R?




It can be verified that the eigenvectors of Af), for the case of ,h = 1/8, are
given by |

[ sin(prh) ]
sin(2prh)
sin(3prh)
v = | sin(dprh) |, p=1,...,7 (2.2.6)
sin(5pmh)
sin(6prh)
sin(7pwh) |

N

and the corresponding eigenvalues are given by

1
V,(‘p) = ﬁ(2—2cosp1rh), p=1,...,7. (2.2.7)

2.3 A Two-Dimensional Model Problem

The 2D model problem we consider is an elliptic problem with Dirich-
let boundary conditions defined on the unit square as

2 2
_aa 'fé(::;,y) _ 0 ua(:z,y) — f(x’ y) (;1:, y) €N = (0’1)2,

u = ¢(z,y) (z,y) € 8Q

(2.3.8)

where a > 0. If a = 1, we have the Poisson problem. If a > 1 or a < 1, we

have an anisotropic problem.

As in the one dimensional case, we define an (N + 1) x (N + 1) grid
;. covering the domain §} for some integer N. We assume that a uniform step
size h = N™! is used for both axis directions. Thus we have

O = {(zj,y) | 5,k =0,...,N} (2.3.9)




Figure 2.2: Grid Points for a Two-Dimensional Problem: A = 1/4

where z; = jh and yx = kh. The 5-point difference representation of the

problem (2.3.8) can be written as

’

1
ﬁ[@ + 20)ujp — OUj_1k — QUL — Ujk-1 — Yjks1] = ik,
U0 = 45(2)_-,’, yO)’
ﬁ uij = ¢(mJ’yN)$ (2.3.10)
uok = O(Zo, Yx),

un i = ¢(ZN, Yk),
jk=1,...,N—1

.

where f;x = f(zj,yx) and u;x = u(z;,yx). The boundary values can be col-
lected into the right-hand side of the equations. The difference equations can

be written in the matrix form

Ay = b, (2.3.11)

In the case of N =4, the grid , is defined as in Figure 2.2. For the
model problem (2.3.8) with a = 1, the corresponding matrix problem (2.3.11)




is given by

4 -1 0 -1
-1 4 -1 0 -1
0 -1 4 0 O
-1 0 0 4 -1
-1 0 -1 4
-1 0 -1
-1 0
-1

[ fi + H(é11 + d1s)
fo+ ;1591512

fs+ ;;15(0513 + ¢16)
fa+ ;12'¢17
fs . (2.3.13)
fe+ ﬁl}'¢18
fr+ hl—z(¢19 + ¢22)
fs+ 7,1=z¢23
| fo+ w5 (P20 + B24) i




It can be verified that the eigenvectors of A}f’, for the case of A = 1/4,

are given by

v,(,p't’) =

sin(prh)sin(qmh)
sin(2pxh) sin(grh)
sin(3prh)sin(qrh)
sin(pwh) sin(2q7h)
sin(2pmh) sin(2g7h)
sin(3pmh)sin(2q7h)
sin(prh) sin(3g7rh)
sin(2prh)sin(3g7h)

| sin(3p7h)sin(3gmh)

9 p7q=1,273

and the corresponding eigenvalues are given by

u,(fq) -

pg=123.

(20 — 2accos prh + 2 — 2 cos grh),

(2.3.14)

(2.3.15)




Chapter 3

Iterative Methods

3.1 Introduction

In this chapter we give a brief description of some basic iterative
methods and polynomial acceleration procedures for solving large sparse ma-
trix problems arising from finite difference discretizations of elliptic partial

differential equations.

We consider the matrix problem
Au=1b (3.1.1)

where A is an N x N nonsingular matrix and b is an N x 1 column vector.

3.2 Basic Iterative Methods

Let u(® be a starting vector. A basic iterative method for solving the

linear system (3.1.1) can be written in the form

) = Gut™ 4 k (3.2.2)
where
G = I-QA,
Q (3.2.3)
k = Qb

Here @ is a nonsingular matrix which is called the splitting matriz.

10




11

There are two criteria that need to be considered in choosing the
matrix Q. First, Q) should be “close” to A in some sense. (When @ = A, the
method will converge after one step.) Second, @ should be a matrix such that
Qz = y can be “easily” solved for z for any given y, since in the iteration, the
system @z = y needs to be solved for z. For example, () can be the diagonal,
the tridiagonal, or the triangular part of A.

3.2.1 Richardson Method

The Richardson method, which is probably the simplest iterative
method, is defined by

ult) = (I — A)u™ +b. (3.2.4)
Here the identity matrix I is the splitting matrix and the iteration matrix is
G=1I-A. (3.2.5)
3.2.2 Jacobi Method
The Jacobi method is defined by
u™ = (I — D' A)u™ + D1, (3.2.6)

The splitting matrix Q is given by @ = D where D is the diagonal part of A

and the iteration matrix is given by

B=I-D"A. (3.2.7)

3.3 Acceleration of Basic Iterative Methods

In this section we consider the acceleration process for symmetrizable

basic iterative methods. An iterative method with an iteration matrix G (3.2.2)




12
is symmetrizable if I — G is similar to a symmetric positive definite (SPD)

matrix,* i.e. there exists a nonsingular (symmetrization) matrix W such that
W(I - G)YW~1is SPD.

3.3.1 Extrapolation

A symmetrizable basic iterative method itself is not necessarily con-
vergent because the eigenvalues of G can be less than —1. However, there
always exists a so-called extrapolation method based on (3.2.2) which is con-

vergent whenever the basic method is symmetrizable.

The extrapolation method with extrapolation factor 7 for any basic

iterative method is defined by

ut) = 4 (Gu™ +E)+(1- A (3.3.8)
_ G[‘Y]u(n) + k[‘)‘] (3.3-9)

where

= 1—NI=I—~Q'A
{Gh] YG+ (1 =y =1-~vQ7'4A, (3.3.10)

by = Q7'

From (3.3.10), the splitting matrix @}, for an extrapolation method
is given by Q[ = %Q where @ is the splitting matrix of the corresponding
basic iterative method. If the basic iterative method is symmetrizable, then
the optimum eztrapolation factor 7, in the sense of minimizing the spectral
radius of G}, is given by

} 2
7= 3 MG) - m(G)

(3.3.11)

*A real N x N matrix A is SPD if A is symmetric and if (v, Av) > 0 for any nonzero
vector v.
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where M(G) and M(G) are the largest and smallest eigenvalues of G respec-
tively. (See e.g. Hageman and Young [35].) From (3.3.11) and (3.3.10), the

spectral radius of the optimum extrapolation method is given by

M(G) - m(G)
Ry eI p=reis (3.3.12)

S(Gr) =
The number of iterations required to reduce the error by a factor of 0.1 can be
estimated as (see Hageman and Young [35])

K(I-G)

> (3.3.13)

n = —(log;o §(Gw)) ™" ~

where K(I — G) is the condition number of the matrix I — G.

3.3.2 Polynomial Acceleration

Let # = A~!b be the true solution to equation (3.1.1). We define
the error vector e(™ associated with the nth iterate u(™ of the basic iterative
methods (3.2.2) as

e =y g, (3.3.14)

Since

u = Gu+k,

u(") = Gu("“l).i.k, (3.3.15)

it is easy to show that
e™ = Grel®, | (3.3.16)

For a symmetrizable basic iterative method with extrapolation, the error vector

is given by

™ = Gpe®

(vG + (1 = y)I)"e®. (3.3.17)
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A natural way to generalize the extrapolation procedure (3.3.9) is to use a
different value for v in each iteration instead of a fixed value. The variable

extrapolation procedure can be written as
2 = 4 (Gu™ 4 k) + (1= o Jut™. (3.3.18)

If we let A\; and v;, 2 =1,..., N, be the eigenvalues and the eigenvectors of the

matrix G respectively and represent ¢(® in the form

N
e©® = z k;v; - (3.3.19)

=1

then from (3.3.18), the nth error of the variable extrapolation procedure can

be written as

N
e™ = Po(G)e® = 5 Pu(N)kivs (3.3.20)

1=1
where

Pu(e) = 1Bz +(1 -]

n — a(ﬂ)

M=% (3.3.21)

i l— o™’

Here af") are the zeros of P,(z) and are given by
o™ =141/4". (3.3.22)

We note that P, () is a polynomial of degree n satisfying P,(1) = 1. We denote
by P, the set of all such polynomials. We seek a polynomial P,(z) € P, such
that

1pax, [P ()] < e, |@a( )] (3.3.23)
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for any polynomial @,(z) € Pn. Such a P,(z) is usually called the optimal poly-
nomial and the corresponding ¥, 5™ are called the optimal variable extrapolation

factors.

One commonly used polynomial acceleration is the Chebyshev semi-
iterative method which is defined by

UA(n'H) = pr1[Y(Gu™ + k) + (1 — 1)) + (1 = pogr Ju®™ (3.3.24)

where
2
T = MG = m(G) (3:3.29)
M(G) - m(G)
o 53— M(G) = m(C) (3.3.26)
1 n=20
prir = § (1-2)1 n=1 (3.3.27)

Q-%Zp)* n22

It can be shown (e.g. Young [70]) that the error reduction matrix of
the Chebyshev semi-iterative method can be written in the polynomial form
(3.3.20) with the polynomial given by

ror=2 (Sm ) /= (e ) 02

where T,(z) is the Chebyshev polynomial of degree n and M(G), m(G) are the
largest and the smallest eigenvalues of the matrix G.

The polynomial defined in (3 3.28) has an optimal property in the
sense that

|Pa(z)| < |@n(z)] (3.3.29)

m(G)<z<M(G) (G)< <M(G)

for any polynomial Q,(z) € P, It can also be shown (Young, [70]) that

S(PO) = max,  |Pa(a)| =

(3.3.30)
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where S(P,.(G)) is the virtual spectral radius of P,(G) and

— ‘/ — 2
+ —-C

The number of semi-iterations required to reduce the error by a factor of 0.1

can be estimated as

, K(I-G
= —(logye IS(PA(@N = L0 (33.32)

where K(I — G) is the condition number of the matrix I — G. Here we assume
that K(I - G) > 1.

Generally the eigenvalues M(G) and m(G) are not known. In prac-
tice, estimated values are used initially and these estimated values can be

improved adaptedly during the process. (See Hageman and Young [35]).

3.4 Optimal Iterative Methods

The vectors defined in (2.2.6) and (2.3.14) are also called Fourier
modes. The integers p and ¢ represent the number of half sine waves which
constitute the Fourier modes. Figure 3.1 shows the relationship between the
eigenvalues of the extrapolation Jacobi iteration matrix and the Fourier modes
(eigenvectors of A) for the one-dimensional problem (2.2.4) with N = 64. It
illustrates that changing the value of v can affect the damping factors |),|
corresponding to the high-frequency modes ( %’— <p<N-1).

Although the polynomial acceleration process can improve the con-
vergence rate of the basic iterative methods, there is an intrinsic limitation.
The idea of a classical polynomial acceleration is to choose the P,(z) so that
all the coefficients of (™ are as small as possible. In other words, each of the
coefficients | P,();)] in (3.3.20) should be small. From (3.3.21), it follows that
in order to make |P,(A;)| small for a given ¢ one could choose P,(z) so that

there is a root a}c") near )\;. However, if ); is close to one (low frequency mode),
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Figure 3.1: Damping Factor of Extrapolation Jacobi vs. Fourier Mode

i") near A; will introduce large factors (1 — a}c") )~ for other

choosing some a
components. Therefore, to make every P,();) small, the components related
to the eigenvalues close to one cannot be damped rapidly by a polynomial

acceleration.

For the 5-point discrete Laplacian, if we use the Richardson method
with the optimal polynomial acceleration (Chebyshev acceleration), the number
of iterations is on the order of

n ~ O(/K(A) ~ O(h™). | (3.4.33)

3.5 Iterative Methods for Red/Black Systems

In this section, we give a short discussion about some iterative meth-

ods for red/black systems. These methods are often used with multigrid meth-
ods.
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Figure 3.2: Red/Black Ordering of Grid Points in 1D: A =1/8

For the linear systems arising from finite difference discretizations of
elliptic partial differential equations, the properties of the matrix A depend on
the partitioning and ordering of the unknowns in the problem defined in Section
2.2. The system {(2.2.5) corresponds to the natural ordering of §2; illustrated in
Figure 2.1, where z; follows z; if z; > ;. Here we give a brief discussion of an
alternate ordering, namely, red/black ordering. In the 2D cases, the standard
5-point discretized scheme is assumed.

In red/black ordering, every other grid point is given the same color
(i.e. all the points with an odd sequential index number are marked red and all
the points with an even sequential index number are marked black) and then
the points are partitioned by their color (e.g. the red points are counted first).

For the model problem (2.2.1) with N = 8, one red/black ordering
of the grid points is illustrated in Figure 3.2 and the corresponding 3-point
finite-difference matrix problem is given by




19

9 -1 0 0 u; [ f1+ ¢a/B?
2 -1 -1 0 U2 f2
2 0 -1 -1 Us f3
1
e 2 0 0 —1||usf|=|fat+e/h? |- (3534
-1 -1 0 0 2 Us fs
0 -1 -1 0 2 Ug fe
0 0 -1 -1 2 || ur i Iz ]
If we let
_ “ -
Us
uR = 2 and up=| ug (3.5.35)
Us
Uz
| U4

then (3.5.34) can be written in the form

Dr H | |ur| _ | bn (3.5.36)
HT DB up bB
where
2
Dr = E’EI‘" (3.5.37)
2
Dg = 72-5]3, (3.5.38)
] 0 -
1}1]-1 -1 0
H = — . 3.5.39)
R21 0 -1 -1 (
| 0 0 -1

Here we use I,, to denote the identity matrix of order n.




O red

® black

(0,0) (1,0)
Figure 3.3: Red/Black Ordering of Grid Points in 2D: A = 1/4

In the two-dimensional case with N = 4, the red/black grid points
are illustrated in Figure 3.3. For the model problem (2.3.8) with a = 1, the
corresponding 5-point finite difference matrix is given by

4 -1 -1 0 O
-1 0 -1 0
-1 -1 -1 -1
0 -1 0 -1
-1 -1
-1 -1
0 -1
0 -1 -1
0 0 -1 -1

Red/Black Gauss-Seidel (RBGS) Method
The Gauss-Seidel iteration with red/black ordering is given by

(3.5.41)

uS* = DR'HuY + Dylbg,
ug""l) = D§1HTug'+l)+D§1bB.
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One can see from (3.5.41) that all the unknowns with the same color can be up-
dated simultaneously with red/black ordering. Therefore the RBGS procedure

can be carried out very efficiently on a vector/parallel machine.
Red/Black Successive Overrelaxation (RBSOR) Method
The SOR iteration with red/black ordering is given by

{ uf™ = w(DR'Huf’ + DR'bp) + (1 — w)ufy, (3.5.42)

urt = w(DngTugH) + Dg'bg) + (1 - w)u(;).

Like the RBGS method, the SOR method with red/black ordering (RBSOR)

can be carried out with a high degree of parallelism.

In the next chapter, we will discuss another kind of acceleration tech-
nique, namely the standard multigrid technique which can substantially reduce

the components of the error corresponding to the low frequencies without am-
plifying the other components too much. The number of cycles needed for
convergence will be O(1) which is independent of h.




Chapter 4

Standard Multigrid Method in 1D

4.1 Introduction

In this chapter, we give a brief introduction to the standard multigrid
method (MG), and an analysis of the convergence properties of the method us-
ing standard Fourier analysis for the one-dimensional Poisson model problem.
We also give an alternative analysis based on a two-color Fourier analysis pro-
cedure. We show that this procedure can also be used to analyze the standard
multigrid method where a red/black ordering iterative method is used as the
smoothing procedure. In later chapters, this alternative analysis will also be
used to analyze a multiple coarse grid multigrid method.

4.2 Standard Multigrid Method

The standard multigrid algorithm consists of several pre-smoothing
iterations, a coarse grid correction procedure and several post-smoothing itera-
tions. The smoothing iterations are carried out by a smoothing iterative method
which is usually a basic iterative method. The coarse grid correction procedure

can be described as follows.

Given an initial guess uﬁo) of the system
Ahuh = bh, (4.2.1)
we wish to solve the correction equation

Ah6h =T = bh - Ahugo) (4.2.2)

22




Q4 | ® |

Qon |} —e - ® !

) —eo—eo—¢—o—o—o—0o—]
1 2 3 4 5 6 7 8

(= =0) (z=1)
Figure 4.1: Multigrids in 1D: N =8
for the correction
6h = 'L_th - u}lo) (423)

where #j is the true solution of (4.2.1). If we obtain the solution 6, of (4.2.2),
the solution of the original problem (4.2.1) will be u§,°’ + &p.

Instead of attempting to solve the correction equation (4.2.2) on the
original grid, we solve it on a coarse grid. The coarse grid usually consists of
every other point of the fine grid and the distance between two adjacent points
is twice as great as on the fine grid. For the case N = 8, the coarse grids are
shown in Figure 4.1, where there are three levels of grids Qp, Q2, and Q4;.

First, we restrict the residual to the coarse grid. The simplest restric-
tion operator is an injection which is defined by

ran(z) = (Rari)(z) = ra(z), = € Qan. (4.2.4)

An alternate restriction operator is called full weighting which is defined by

ran(z) = (Rars)(2)
= =R+ @) tra(e+H), @€ O (425)
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The next step is to solve the coarse grid correction equation
Azgpban = T (4.2.6)

for 6(*), Here the coarse grid matrix Az, is created by using the standard
finite difference discretization for the original partial differential equation on
the coarse grid. The coarse grid equation (4.2.6) itself can be solved using this
procedure based on an even coarser grid.

Finally, we interpolate the correction 6**) onto the fine grid and add
the result vector to the old solution. A commonly used interpolation scheme
is linear interpolation which is defined by

ban(z) z € Qg

1 (4.2.7)
5(62},(.’27 - h) + 52},(33 + h)) T ¢ Qgh

6u(z) = (Paban)(z) = {
where we assume that 62,(0) = 0 and 82,(1) = 0.

For the model problem (2.2.4) with N = 8, the full weighting restric-
tion of the residual on the finest grid is given by

. (1) -
ri(z2)
ron{z2) . 121 rr(z3)
ron= | ra(zq) | = 1 1 21 ru(z4) | = Bare. (4.2.8)
r2n(T6) 1 21 mh(zs)
ru(zs)
| Ta(27) |
- The coarse grid matrix on Qg is given by
. 2 -1
Agp = @h7 -1 2 -1]. (4.2.9)

-1 2
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The interpolation of the correction vector éz; onto 2 can be written in the

form

én(z1) 1
on(z2) 2
én(z3)
= fu(zy) | =
On(zs)
Sn(z6)
én(z7) | | |

521:(312)
62n(z4) | = Paban. (4.2.10)

52h($6)

[
— N

— N k=

This two-level standard multigrid algorithm, for the solution of Aju; = b,
starting with an initial guess uﬁo) , is described by

Algorithm SMG(An, ul”, b,):

1. Do m, pre-smoothing iterations using the smoothing iterative method (a

basic iterative method) to obtain uj,.

2. Compute the residual r, = by — A,u}, and restrict the residual to the

coarse grid to obtain
ron = Rury. (4.2.11)
3. Solve the coarse grid system
Azpbon = T21 (4.2.12)

4. Interpolate the coarse grid correction &z, onto the fine grid and obtain

the new approximate solution

u',: = u;z + Préas. (4.2.13)
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5. Do m, post-smoothing iterations using the smoothing iterative method

to obtain and return ug).

The procedure from step 2 to step 4 corresponds to the coarse grid correction.

If we let e}f’) = u§,°) — %y, be the error before the coarse grid correction
and eg) = u{") — @, be the error after the coarse grid correction, where &, =
A; by, then from (4.2.11) to (4.2.13) we have

WO = WO pisy
ugo) + PhA;hlrgh
uglo) + PhAgthrh

u® + P AZI Ry An(—e)

el = (I - PiAZI RaAr)el)) = Chel). (4.2.15)

Here, we use C}, to denote the coarse grid correction matrix. If G is the iterative
matrix of the smoothing iterative method, the matrix of the standard two-level
multigrid method T}, can then be expressed as

T, = G™C,G™. (4.2.16)

4.3 Standard Fourier Analysis

In this section, we present the standard Fourier analysis of the two-
level standard multigrid method for the matrix problem (2.2.4). We use the
full weighting restriction defined in (4.2.5) with the corresponding matrix R}
and the linear interpolation defined in (4.2.7) with the matrix P,. Most basic
iterative methods can be used for smoothing iterations. For simplicity, we use
the damped Jacobi method with the iteration matrix

By=1- yD™1 A, (4.3.17)
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where « is the damping factor. For any of the matrices which we will consider

in the analysis, say Z, it can be shown that

Zo®) = Z@y) 4 (), (N-P) (4.3.18)
and

ZoW-7) = Py@) 4 By (N-P) (4.3.19)

for some values z{’i), zg), zgfl’), zg’;) depending on p. Therefore we can write

Z(wP, oV P = (o, o ) 2 (4.3.20)
where
(r) _(»)
Zp=| (4.3.21)
z211’ 222 .

Also, we say that the subspace E® spanned by v" and v{" ® is invariant
under Z. The matrix Z{® is called the v-transform matriz because in some
sense it can be regarded as a kind of “transform” of the matrix Z on the

-basi (») (N-p)
v-basis vectors v, and vy .

The eigenvectors of the coarse grid matrix Agp, vg’}?, are the projec-

tions of the fine grid eigenvectors v,(f ) onto the coarse grid. Thus in the case of

N = 8, we have the coarse grid eigenvectors

sin(2prh)
o) = sin(4prh) |, p=1,2,3. (4.3.22)
sin(6prh)

and the corresponding eigenvalues

1
) = (2 — 2cos 2prh). (4.3.23)

(2h)?




Without loss of generality, we assume that N is even

N —p, forp=1,...,%,wecanwrite

Ah(v,(lp),vﬁ,p’)) - (v’(lp),v}(lp'))fiip),

R0 o) = oA

Aol = oA,

P = (2, o),

B2 1) = (o0, ) B
where

- 1
A(P) -
g h? 0 24 2¢

2—2¢c 0 :l

- 1
#W-3l1+e o-1),

- 1
Ag';) = Z-}-l-i(2 — 2cos 2pwh),

. 1
=21 T,
2 e —1
. 1-~v(1-— 0
B[(,f])= (1= ¢)
0 1-9(1+¢)

with

¢, = cos prh.
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.Ifwelet p' =

(4.3.24)
(4.3.25)
(4.3.26)
(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33)

(4.3.34)
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From (4.2.15) and (4.3.24) through (4.3.33), we obtain the v-transform

matrices of the coarse grid correction operator

P = 1- PPARRPAP = 1| 17 1T (4.3.35)
l1—¢ 1+4¢
and the two level multigrid operator
TP = (BE)mCP(BE™ = [ bt ] (4.3.36)
ta1 t22
where
tn = ‘(1 — &)1 =7+ 7)™+,
te = 5(1 +e)l—7+76)™ (1 — 71— 7)™,
tn = 2= )1 -7 +76)™(1 =7~ 16)"™,
tr = %(1 + )1 =y — e, (4.3.37)
From (4.3.35) it is easy to see that the determinant of the matrix C ) is zero.
Because of (4.3.36), we also have
det(T")) = 0. (4.3.38)

Hence the eigenvalues of T\*) are 0 and trace(7{"). Therefore, the nonzero

eigenvalue of the matrix T(” ) is given by
- ()
Ap = trace (T;"). (4.3.39)

Suppose that the initial error has the expansion

N-1
e® =Y do. (4.3.40)

p=1




Then after one multigrid cycle the new error is given by

N-1
e = T1.e® = Z d;vl(lp)’

r=1

ie. for p=1,...,N/2, we have

G | 1@ L I % (4.3.42)
*N...p dN—p ta1 t22 dN—p

where the t;; are defined in (4.3.37). The value #;2 (¢21) represents the aliasing
from mode v{¥ 7 (v{?) to mode o) (NP,

When the extrapolated Jacobi method with extrapolation factor v =
2/3 is used for the smoothing iteration, from (4.3.37) we have

- -2
o { te(Miteymrams Ly (A

} . (4.3.43)

lﬁ(l+2cg )m1(1—2cg )m2 _li-_:_:g(l—kg )m1+mg
2 3 3 2 3

The trace of the matrix T3® is given by

trace (TISP)) = 1- S ( 14 2CP )m1+m2 + 1+ CP( 1- 2CP )m1+m2. (4_3_44)
2 3 2 3

For tra.ce(T,Sp )), if p is small (corresponding to the low frequency modes), then

¢y = 1, 12 is small and |2=22| < 1. Also if p is large (corresponding to the

high frequency modes),llz‘-’2 ~ 1, but 1—';5"— is small and |1L32°2| <:

The convergence factor of the two-level multigrid method is defined
as the spectral radius p(T}). Since the spectral radius of the matrix A,Ep ) is the
absolute value of its trace, we have

p(Th) = 13;2)_()! trace (T,fp)). (4.3.45)
=F—=2
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Table 4.1: Two-Level Convergence Factors g, of 1D MG-Jacobi

Y (m1, my)

(0,1) | (1,1) [ (1,2) |(1,3)
0.5 | .4997 | .2499 | .1250 | .08331
0.6 | .3997 | .1599 | .08798 | .06819
0.7 | .3984 | .2198 | .09329 | .06016
0.8 | .5981 | .4293 | .2543 | .1593
0.9 | .7979 | .6885 | .5391 | .4377
1.0 | .9977 | .9977 | .9953 | .9953

If we let m = m,; + m,, the upper bound of the convergence factor of the

two-level SMG is given by
(p)
Tw) < max 1 = Pm- 4.3.46
p(TH) < | max trace(T) = po (4:3.46)

Table 4.1 lists the two-level convergence factor p,, for different values of the
extrapolation factor 4 in the case of N = 64. As the number of smoothing
iterations m increases, less convergence improvement is obtained because the

smoothing iterations cannot reduce the low frequency modes effectively.

If we let 7 be the ratio of the work required for carrying out coarse
grid correction to the work required for carrying out one smoothing iteration,

then the optimal m should be chosen to maximize the function

—Inpn,

®,(m) = Tm

(4.3.47)

When 7 is large, the optimal m will be large, and when 7 is small, the optimal
m will be small. Table 4.2 lists the values of ®,(m) and m for = 1,2,3,4.
For the cases listed in Table 4.2, m = 2 is the best choice.




Table 4.2: @,(m) vs. m

m ®,(m) ®,(m) ®3(m) ®4(m)
1 .5493 .3662 2747 2197
2 7323 .5493 4394 .3662
3 6355 .5084 4237 3631
4 .5580 4650 .3986 .3488

4.4 Two-Color Fourier Analysis

In this section we describe a two-color Fourier procedure for analyzing
the convergence properties of the two-level standard multigrid method for prob-
lem (2.2.4). This is an alternative to the standard Fourier analysis. Although
this analysis gives the same result, it will be more effective for the analysis of

other schemes.

We consider two sets of grid points, which we refer to as red points
(Q4) and black points (Q-). Instead of carrying out the analysis in terms of
the eigenvectors v,(f) for p=1,2,...,N — 1 corresponding to the fine grid we
work in terms of vectors w§+’p ), wﬁ-’p ) where p=12,...,N/2, which are the

(»
b

projections of v;” onto Q, and Q_ respectively.

4.4.1 The Two Coarse Grids
In the one dimensional case, the fine grid 2, defined in (2.2.2) can be

partitioned into two coarse grids as red points:
Q4 ={z;|z; €y and (j = odd)}, (4.4.48)
and black points

Q_={z;|z; €y and (j = even)}. (4.4.49)
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Q% p—e & © 6—— O red
Q_ } —— ® & { @ black
QB —e—eo—o—0o—0—0—0 |
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(z =0) (z=1)

Figure 4.2: Two Coarse Grids for a One-Dimensional Problem: A =1/8

Figure 4.2 illustrates these two sets of grid points for N = 8.

The vectors w}(f’p ) and w,(:’p ) are defined by

(W), = (v®); if z; s red (.4.50)
0 if z; is black
and
(w(""))- _ 0 if z; is red (4.4.51)
B (v{P); if ; is black o

For the case of N = 8, we have

[ sin(prh) |
0
sin(3pmh)

w£+,p) = 0
sin(5prh)
0

) p=1,...,4 (4.4.52)

| sin(7p7h) |




0
sin(2prh)
0
sin(4pwh)
0
sin(6pmh)
0

. . . - N/2
For convenience of discussion, we define wg N2 t6 be the zero vector.

We notice that the black grid Q_ is the same as the coarse grid Qs
for the standard multigrid method. It is convenient to write the coarse grid
matrix in an expanded form so that it can be applied to the vectors wﬁ_’p ). For
example, the expanded coarse grid difference matrix defined in (4.2.9) can be

written as

0
2
0

Here, we use the superscript “E” to indicate the expanded matrix. Similarly,

we can write the expanded restriction matrix and the expanded interpolation
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matrix as
[0 0 ]
121 0
000
RQE)=2 121 (4.4.55)
000
0 121
L 0 0.
and
2 0 0
01
P,SE)=2(R§,E))T=-;— 020 (4.4.56)
9 101
0 020
i 10|

respectively.

4.4.2 Convergence Analysis

(—p)

,(;{"’p) and wh

For the two-color Fourier analysis we use the vectors w
corresponding to the red points (4.4.48) and the black points (4.4.49) respec-
tively as a basis for the invariant subspace E”) defined in Section 4.3. For any
matrix Z with an invariant subspace E®), we can write

Z(wi", wi™P) = (i, w7 ) 2. (4.4.57)
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where Z{P) is a 2 x 2 w-transform matriz because it can be regarded as a kind

of “transform” of the matrix T corresponding to the w basis. Therefore, for

p=1,...,-]21, we have

A ul?) = (), wl ™)AL,
R® (w09 = w{~P R0
Ao 03
PIEE)wg—m) — (w£+,p)’ wg—,p)) }5}% ,
B[‘y](wff"’), w}::z’)) — (w§l+,p)’ wg—,p))B(p)

f¥lw?

where

- 1
AP = (2~ 2cos 2prh),

2h,w 4h2
: C
-7,
and
o | 177 e
[‘Y]vw
1 1—7

Here ¢, = cos prh.

(4.4.58)
(4.4.59)
(4.4.60)
(4.4.61)

(4.4.62)

(4.4.63)

(4.4.64)

(4.4.65)

(4.4.66)

(4.4.67)
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From (4.4.58) through (4.4.67), the w-transform matrix of the coarse

grid correction operator on the subspace £ can be written as

CA';(,p) =] P}EP)(A(P) )-1R(p) A(p) [ 1 -5 (4.4.68)
it " 0 O
If we let
{ = 1-7+7%
n = l—qy—1c (4.4.69)
we have
m L] g™ ™M -
[(‘f)'w) = Z m m m m (4470)
£ —q™ M+

and the w-transform matrix of the two-level multigrid operator on the subspace

E®) can be written as

T(P) - (B(P) )mzc( (B(P) )m1 — [ tn it } (4.4.71)

238 B,
T e tar 122

o= € )(E ™) - o™ — ™)),
ha = (€ HT(E — ™) — o™ +1™)),
o= €7 = )(E ™) — (€™ — ™),
ta = (€™ — )™ - 1™) = (€™ +1™). (44.72)

Since det(é’,‘ﬂ,) = 0, we have

det(T{?) = 0. (4.4.73)
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Therefore, for each p, the nonzero eigenvalue of the matrix T(p ) is the trace of

ff’,spu), If we let the initial error be expressed in the form

N/2
e = Z(k.,,,pwff’p) + k-,,,w}f’”)), (4.4.74)
r=1

then the error e(!) after one multigrid cycle is given by

N/2
e = T, = Z(k* wit? 4k wi™), (4.4.75)

p=1

and for p=1,...,N/2, we have

Brp | 2|t Bz || Few (4.4.76)
kZ, i 122 k-p

where the %;; are defined in (4.4.72). In the case with the extrapolation factor
v = 2/3, we have

o = ()" ()" (5" - (52)7)

{( ) ) (1—32%)1112}’ | m m
(= %) L),

tn = %{( ; 2 ' (1—32%) ‘_cp_(1+32cp)m*_(1—326p)"‘1:}
{( Cp) 2m (1—32c,,) }’

fn = %{( ) 1 (1—32%) %T(1+32cp)m]+(1_32%)m1;}

{( 3c,.>mz (1 —32%)’"2} (4.4.77)

and the trace (11 + t22), as expected, is the same as the trace of the matrix
T,fp ) defined in (4.3.44). Thus we get the same result as that obtained from the

conventional Fourier analysis.
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4.5 Relation Between the v-basis and w-basis

In this section, we discuss the relationship between the v-basis corre-
sponding to the standard Fourier analysis and the w-basis used in the two-color
Fourier analysis. By comparing the definition of the v-basis (2.2.6) and of the
w-basis (4.4.50) and (4.4.51), we have the following relations:

v}f’) = w£+.p) + w},—’p) o1 N (45.78)
'U}(;N-p) - w£+.p) — wg-,p) R )

The relation between the v-basis and the w-basis (4.5.78) can be writ-

ten in the matrix form

(0 o NP} = (), w},"_‘”) H (4.5.79)
where

- || } (550
We note that

H'= %Hl. (4.5.81)

If we let Z be any matrix of order N — 1 with invariant subspaces E(®)
spanned by the eigenvectors v” and v{¥ ", and Z(® and Z() (4.3.20) be the
transform matrices associated with the v-basis and the w-basis respectively,
then we have the following result.

Lemma 4.1 Let Z() and Z® be defined as in (4.8.20) and (4.4.57) respec-
tively. Then the following relation holds:

n )
VAL §le,(,5’)Hl. (4.5.82)
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Proof: By using the relation (4.5.79), we have

2,00 ) = Z(wit?,w )
= (wit?, w20 H, (4.5.83)
- (v}(l?)’ vgN-P))%Hl Zt(”r’)]{1 ,

when p # N/2, and v,(f) and v,(lN'p) are linearly independent. Therefore, the
result follows by comparison to (4.3.20). When p = N/2, we have

oV = y(HNR), (4.5.84)
Suppose Any; is the eigenvalue of the matrix Z corresponding to v,(lN/ 2), and let
ZWN2) = ZINID) = Ay I, (4.5.85)

the relation (4.5.82) still holds.

Lemma 4.1 shows that in any case where the standard Fourier analysis
or the two-color Fourier analysis can apply, the other can also apply. Since in
a given situation, one of the two Fourier analyses may be easier, it might be
appropriate to transform an operator representation form on one basis to the
corresponding representation form on another basis. For instance, the RBGS
smoothing operator is not easy to write in the v-basis form, but is easy to write
in the w-basis form. One can write the v-basis form by using the transformation
described in Lemma 4.1. For example, the red iteration operator on the v-basis
is

Sl(z-,:'p) — % H, S’(l"i:;’z’) H,

(4.5.86)
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4.6 Red/Black Gauss-Seidel Smoothing

We now consider the use of the red/black Gauss-Seidel (RBGS) method
as the smoothing iteration method in the standard multigrid procedure. One
RBGS iteration can be regarded as consisting of two sub-iterations: a red sub-
iteration followed by a black sub-iteration. Let the red points and the black
points be defined in (4.4.48) and (4.4.49) respectively (refer to Figures 3.2 and
4.2). The red sub-iteration operator S},"') and the black sub-iteration operator
S,(,-) are defined by

(Hy, ). = 3((ua)jrr + (wn)j-1) j = odd (red),
(Spun)j = { (un); = even (black), (4.6.87)

(4.6.88)

6y, = | @) ()im) 5 = even (black)
(Si"us) { (un); J = odd (red).

for j = 1,..., N — 1. These two operators can be written in the w-transform
matrix form as

S’(;")(wl(;.',p), w’(l—tp)) - (w£+7p), wg"‘ﬂ’))g](;"ﬂp) (4.6.89)
and
where
N 0 [
S = 4.6.91
,, [ 0 (4.691)
and

o 10
5P = [ ] . (4.6.92)
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Let the set of black grid points be used as the coarse grid. If linear
interpolation of the corrections and the full weighting restriction of the residuals
are used, the two-level standard multigrid method will converge in one cycle
with one smoothing iteration on the red grid points that corresponds to the
operator S,(;H defined in (4.6.87). This is because

oo 0o | 00
SRem 4.6.93)
TR 0 1 00 (

and

1 -, | 00
0 00

60 =

(4.6.94)

where the coarse grid correction operator é’,fp ) is defined in (4.4.68).

Let us now look more closely at this procedure. If we use one red
sub-iteration for pre-smoothing, the full weighting restriction is equivalent to
an injection multiplied by % On the other hand, if we use one red sub-iteration
for post-smoothing, the linear interpolation is equivalent to a pull back injection
which is given by

52},(:1:) z € Oy

64(z) = (Pban)(z) = { 0 g (4.6.95)

To see this, we write

Rg_,p) Ah,w S"(:hp)

' 1]2 1
S I CH I

[ 1]3_ 0 0
L7 W 0 1-¢&

o]0
- k?* | o 1 — cos? prh
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and the matrix

[ 01 ] (4.6.97)

is the w-transform-space matrix of the injection restriction operator defined in
(4.2.4). For the second case, we notice that

- N [ 0 1T
S}(;{'yp)Pls"yp) - Cp cp ]

01 |]1
_ |00 (4.6.98)
0 1]]1

and the matrix

[ 0 } (4.6.99)
1 .

is the w-transform-space matrix of the pull back injection interpolation operator
defined in (4.6.95).

Based on the analysis above, it can be shown that the following 1D

standard multigrid algorithm converges in one cycle for any given initial guess
(0)
Uy

1. Do one red iteration: u} = S\Pu® + by.
2. Inject the residual multiplied by % on the black points
1
Tap = E(bh - Ahu;‘).
3. Solve the correction equation on the black coarse grid
A2pbon = ran.

4. Get the final solution by linearly interpolating the coarse grid correction
and adding the result to the old estimated solution

ug) = u;; + Ph52h,
(1)
h

where u;,’ is the true solution of the problem Aju; = by,.
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4.7 Numerical Results

In this section we present some numerical results of the standard
multigrid method for the following model equation:

{ _Fu@) 62 zen=(01),

dz?
u=1+z z € 0.

(4.7.100)

We use the linear interpolation of correction and the full weighting restric-
tion of the residual in the algorithm. The damped Jacobi method is used for

smoothing.

Table 4.3 shows the convergence factors using the two-level scheme
where v is the extrapolation factor of the damped Jacobi method, and m;
and mg are the number of pre-smoothing and post-smoothing iterations re-
spectively. The grid size we used is 64. The convergence factors listed are the
average convergence factors of 3 multigrid cycles measured by

( "’"(3)”2)-% . (4.7.101)

lr @]

Table 4.4 shows the convergence factors for the same case with six
levels. In the case of more than two levels, the coarse grid problem (4.2.12)
is solved by using a similar coarse grid correction procedure based on an even
coarser grid (€241). In general, this process can be recursively carried out down
to the coarsest grid on which the problem is solved directly. Figure 4.3 shows
the schedule for the three-level multigrid method. Because of the shape of the
diagram, the multigrid algorithm described here is called the V-cycle.

Comparing these two tables to Table 4.1, one sees that the two-level
numerical convergence factors are bounded from above by the estimated up-
per bounds and the multilevel numerical convergence factors are close to the
corresponding two-level ones.

One of the nice properties of multigrid methods is that the conver-
gence factor is independent of the problem size. Figure 4.4 shows that the
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2h

4h

Figure 4.3: Schedule of Grids for Three-Level V-Cycle MG Method

Table 4.3: Numerical Convergence Factors of Two-Level 1D SMG-Jacobi

Y (m1, my)
(6,1) (1,1) (1,2) (1,3)

0.50 03043 | 01527 | 0082 | 00534 |
060 | 02455 | 0004 | 00550 | 00410 |
070 | 0382 | 0209 | 0088 | 00405 |
0.80 | 05805 | 04107 | 02434 | 0.468 |
090 | 07758 | 0.6626 | 05261 04212 |
100 | 09711 | 09603 | 09550 | 09543 |
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Table 4.4: Numerical Convergence Factors of Six-Level 1D SMG-Jacobi

y (ma, ma) II
(0,1) wy | @2 (1,3) |
0.50 0.4011 0.2334 0.1394 0.1079
0.60 0.2920 0.1869 0.1095 0.0901 ||
0.70 0.3324 0.2724 0.1130 0.0877
0.80 0.5266 0.4370 0.2152 0.1758
0.90 0.7390 0.5708 0.4869 0.4351
1.00 0.9661 0.9603 0.9082 0.9536

convergence factor has only a minor change when the number of points N
varies from 32 to 512. In these runs we use ¥ = 0.6 and m; = m,; = 1.

In our experiments, we found that the solution of the system on the
coarsest grid does not need to be exact to obtain fast convergence. The conver-
gence factor of a multigrid method will not degenerate as long as the accuracy
of the solution on the coarsest grid is within a certain limit, say 10 times smaller
than the average convergence factor. Figure 4.5 shows the residual reduction
history for using solutions with different accuracy on the coarsest grid. In the
plot, n is the number of smoothing iterations on the coarsest grid. If the num-
ber of iterations is more than 8, the result is the same as that using the exact
solution on the coarsest grid.
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Figure 4.4: Residual Reduction History for Different Problem Sizes (1D)
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Figure 4.5: Residual Reduction for Different Coarsest Solution Accuracy (1D)




Chapter 5

Standard Multigrid Method in 2D

5.1 Introduction

In this chapter, we describe the two dimensional standard multigrid
method, and extend the convergence analysis of the standard multigrid method
to the 2D model problem (2.3.11). We again provide both the regular Fourier
analysis and the multi-color Fourier analysis.

5.2 Definition of the SMG Algorithm in 2D

The standard multigrid method in 2D is a direct extension of the
standard multigrid method in 1D described in the previous chapter. If we let
z; = jh and yx = kh with h = 1/N, the fine grid on the area (0,1)? is defined
by

Q= {(-Tj,yk) Ij,k: 1:--"N_1}- (5.2.1)
The fine grid ©; contains four subsets which are defined by

Qe+ = {(ziy) | (zj,yx) € U and (4, k) = (odd, odd)},

Q_y = {(zjyu)| (zj,yx) € Qs and (j, k) = (even, odd)},
a Q- = {(zj,9:) | (z5,9%) € D and (5, k) = (odd, even)},
Q- = {(z5,y%) | (zj,yx) € O and (j, k) = (even, even)}.

(5.2.2)

One of these subsets (usually £2__) is used as the coarse grid §2;; for the coarse
grid correction in the SMG.

49
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The full weighting restriction operator R; in 2D is defined by

ra(z,y) = (Rars)(z,y)
76(2ri(z — h,y) + dra(z,y) + 2ra(z + b, y)
ro(z — by + h) +2ra(z,y+ A) + (e + A,y +h)  (5.2.3)
ra(z — b,y — h) + 2ri(z,y — B) + ra(z + A,y — h))
(z,y) € Qan.

+ +

The bilinear interpolation operator P; is defined by

6;,(37,3]) = (Ph62h)($9y)

b2n(z,y) (z,y) € Q-
%(&h(z — h,y) + Ean(z + h,y)) et oy
= -2-(62;,(z,y — k) + ban(z,y + h)) (z,y) € Q-4

1
Z(5zh($ —h,y — h)+ bzp(z — b,y + h)

+éan(z + b,y — h) + ban(z + A,y + 1)) (z,y) € Qyps.

The coarse grid matrix A,y is created by using the standard finite-
difference discretization of the original partial differential equation on the coarse
grid. It is easy to verify that the eigenvectors of the matrix A, are given by
vg’}’f) for p,g=1,...,5% —1 where

(v&MN; ;. = sin(pr2jh)sin(qr2kh) . k=1,... -"-;’— —-1 (5.2.5)
The corresponding eigenvalues »{*? are given by
1
V,(fq) = -’;5(20 — 2a cos(pn2h) + 2 — 2 cos(gn2h)). (5.2.6)

We assume the damped Jacobi method is used as the smoothing it-
erative method and the corresponding matrix is given by

By=1I-

An. (5.2.7)

~
21+ a)




51

5.3 Standard Fourier Analysis

In the 2D case, for any of the matrices which we will consider in the

analysis, say Z, it can be shown that

Z'v,(f’q) - z§’;*"’v,(,’"") + zg’;"’)v,(f"” + z{ﬁ'”vﬁp'q‘) + z{i"’)v,(f”q’),
Zvl(zp"Q) = zg,q)vgp,q) + zgz;,q)v}(‘p’,q) + zgg,q)v’(‘m’) + zéﬂ’q)v}f’"q'),
(5:4) (0). (P0) | (00) (#0) | (0d) () | (pd). (") (5.3.8)
thpﬂ _ zsxirq vhp,q + zaqu vhp g + 2331 vh 'y + 2341 vh s ,
Zv,(f"q') = zs;{,q)vgp,q) + zﬁ’;"')v,(f”q) + zgg,q)vl(f,q') + zgﬁ"’)v,(f"q')

for some values z{7? depending on (p,q) wherep’ = N—pand ¢ = N—q. We

ij
can also write (5.3.8) in matrix form as

ZE®9) = ESP,Q) Z‘SNI) (5.3.9)
where
E,(,”"’) — (v,(f’Q), v,(f’""), v}f'q’), v,(f"q')) (5.3.10)

and the v-transform matrix is

zg,q) z%;,q) zg,q) z{z;.q)
Z(IM) _ zg'{’Q) zg.q) zgg,q) zgﬂ"')
zg.q) z:(;;,q) zg.q) z:(;;,q)

(5.3.11)

(pe) _(pa) _(ps9) _(p9)
| 241 242 243 244 ]

Also, we say that the subspace

E®9) = span(v{?, g ha) olP ), v},p "q')) (5.3.12)

is invariant under Z. In some sense the matrix Z{% can be regarded as a kind
of “transform” of the matrix Z. Note that the rank of the matrix E{®9) is 2
when one of indices p and g, but not both, is N/2, and is 1 when both p and ¢
are N/2.
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For problem (2.3.11), the matrices used in the standard 2D multigrid
algorithm can be written in the forms

AREPD = EPD AP, (5.3.13)
RLEP = IR (5.3.14)
Agio$® = o3 A5, (5.3.15)
Pio{y? = Ep9 pr9), (5.3.16)

B,E®9 = El) B‘(Yz’vg) (5.3.17)

where

- 4
ARD = —

h2

(5.3.19)

(5.3.20)
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Table 5.1: Two-Level Convergence Factors of 2D MG-Jacobi

5 m=1 m =2 m=3 m=4

0.50 0.7496 0.5619 0.4212 0.3158
0.60 0.6995 0.4893 0.3423 0.2395

I 0.70 0.6494 0.4218 0.2740 0.1780
0.80 0.5993 0.3593 0.2154 0.1365
0.90 0.7989 0.6383 0.5100 0.4075
1.00 0.9988 0.9977 0.9965 0.9953

Here cg = cos(prh/2), cg = cos(qmh/2), sp = sin(prh/2), and sg = sin(gmh/2).

From (4.2.15), the v-transform matrix of the coarse grid correction

operator can be computed by
Gl = 1—- BE(AGID T RED ALY, (5.3.23)

The v-transform matrix of the two-level multigrid operator with m; Jacobi
pre-iterations and m, Jacobi post-iterations is given by

i) = (B O By, (5324

Therefore, the convergence factor of the two-level 2D standard multi-
grid method with the damped Jacobi method as the smoothing iterations can
be computed by

p(T™™)) = max p(TEe™ ™)) = p,, (5.3.25)

1<p.9<¥ '

where m = m; + m,. Table 5.1 lists the two-level convergence factor p,, in the
case of h = 1/64 with different values of 4.
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5.4 Four-Color Fourier Analysis

The 2D w-basis vectors are defined by

(w(syP,Q))‘k _ { (vl(zp,q))j,k if(z,-,yk) €N,
h s =

0 otherwise
N
D,e¢= 17 ceey _2—
jk=1,...,N-1
s=4+, =+, +—, — — (5.4.26)

where the v-basis v”" are defined in (2.3.14). Here, (p,q) is the vector index,
s is the coarse grid index, and (jk) is the vector element index.

The subspaces E®? defined in (5.3.12) can also be represented in
terms of

E®e) — span(w£++,p,q),w£—+.p,q), w£+—,p.q), wﬁ——,p,q))' (5.4.27)
If we let
E.(.?'Q) - (w§l++'p"'), w£-+,p,q), w}f"”"'), w},“”"")) - (5.4.28)
P=1,..., 9

For any matrix Z with an invariant subspace E{9, we can write
ZE®9 = EPa) 70 (5.4.29)

where fo’q) is a 4 x 4 matrix which can be regarded as a w-transform matrix

of Z.
For each of the operators used in the 2D SMG algorithm, we have

ALE®9 = E@9) A}:::) (5.4.30)

RLEPD = =9 plpa) (5.4.31)
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o) = o i) 432
Pow® = E@) p&a) (5.4.33)
B,E®9 = E@9 plra) (5.4.34)

where

[ 1+ —ac, —C 0
. - 1 0 -
Ap = 2| TG 1T “ |, (5.4.35)
YR g 0 l4a —ag
| 0 -¢ —ag l+ta |
Ao _ 1 1 (5.4.36)
hw =3 | %% G O ’ o
Ao o L2y (5.4.37)
2haw = p2\T7p T % o
&G
. c
BrI=| ™ |, (5.4.38)
[
1 -

and

N h? .
B — IV A(ea) 4.
i =1 5 1y Ahw (5439
The w-transform matrix of the coarse grid correction operator is given
by

CPD = I — PEO(AZD)-1 Rira) AP) (5.4.40)
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The w-transform matrix of the two-level multigrid operator with m; Jacobi

pre-iterations and m, Jacobi post-iterations is given by
T}Sp&q,ml,mz) = B‘(ng))mx ol B,(f,’j’))’"“ (5.4.41)
Therefore the convergence factor can be calculated by

T ) = max, p(T7™") = pm (5.4.42)

ISPoQS‘g‘

The numerical calculation of p(T,fm"m’)) has verified that the convergence fac-
tors calculated by the four-color Fourier analysis are the same as those calcu-
lated by the standard Fourier analysis.

5.4.1 Relationship Between the v-Basis and w-Basis

Since the w-basis defined in (5.4.26) is constructed from the v-basis
defined in (2.3.14), there is a linear transform relationship between these two
sets of bases. By comparing the definitions of the two bases, we have

v,(f'q) - w£++,p,q) + w£-+,p.q) + w£+—,p.q) + wi——.m)’
v,(,pl’Q) = w£++,p,q) _ wf:'"”"q) + w£+-,pm) - w,(,“””q),
v'(lp,q’) - w£++.p,q) + w£—+.p.q) - w£+-,p,q) - wﬁ“-""q), (5.4.43)
vl(lp’.q') - w£++.p,q) _ wl(z—+.p,9) _ w§l+—,p,q) + wﬁ——,pvq).

pe=1,...,%a

where p' = N —p and ¢’ = N — g. Since the wavenumber p’ (or ¢') is larger
than %, the corresponding p’ (or ¢') modes are referred as the high-frequency
modes in the z-direction (or the y-direction). Equation (5.4.43) can be written
in the matrix form

(v'(lPﬂ), vl(lp 19), vﬁpvq )’ v)(;p I )) —_

(w£++.p,q)’ w£‘+vPvQ)’ w;;'--'p'q)) wg——’p’q))Hg (54’44)
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where
(11 1 1]
1 -1 1 -1
H, = (5.4.45)
1 1 -1 -1
1 -1 -1 1 |
It can be directly verified that the inverse of H; is given by
a1
H' = 7H,. (5.4.46)

If we let Z be a matrix of order (VN — 1)? with the invariant subspaces
E®9) defined in (5.4.27), and Z{9 and Z{p9) be transform-space matrices
associated with the v-basis and the w-basis respectively, then we have the

following lemma.

Lemma 5.1 Let ZP9) and Z(P9 be defined as in (5.9.9) and (5.4.29). Then
the following relation holds: .

. 1. . '
ZPa) = Zﬂgzg’q)ﬂz. (5.4.47)

Proof: From (5.4.44), we have

Z(v’(lp,q), v,(,pl'Q), v’(‘z’,q’), v’(lp'.q’))
_ Z(w£++:pvQ)’ w’(z-+1p,9)’ w};"_’pﬂ), wg"ﬁ’ﬂ))Hz (5 4 48)
=( w§t++,p,q), wg—+m,q), w£+—,p.q), 'wg_-.'p’Q) ) Zi(up,q) H, 4.

! ’ ! ! 1 ~
— (vgp,q), ‘v,(f ,q), 'v,(f’q ), ,U’(lp q ))4—H2 ZP9 H,

The result follows by comparing this to (5.3.9).




We remark that if Z{P9 has the form

(0 b ¢ d]
. b d
N R (5.4.49)
c d ab
 d ¢ b a]
the corresponding matrix Z&p'q) is given by
at+b+c+d 0 0 0
v 0 0 at+b—c—d 0
0 0 0 a—b—c+d

5.5 Numerical Results

The problem we used in our numerical experiments with the 2D stan-
dard multigrid method is given by

_Ou(e,y)  Su(z,y) _

O0z? O0y?
u=1+zy (z,y) € 00

642 (z,y) € Q= (0,1)?, (5.5.51)

We use 2D linear interpolation of correction and full weighting restriction of
the residual in the algorithm. Avga.in‘, the damped Jacobi method is used for
smoothing.

Tables 5.2 and 5.3 list the convergence factors of the two-level multi-
grid algorithm and the multilevel multigrid algorithm respectively. The grid
size we used is 64 x 64. The convergence factors are obtained by averaging the
convergence factors in 3 multigrid cycles.

The two-level numerical convergence factors of the two-dimensional
multigrid method, as in the one-dimensional case, are bounded from above by
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Table 5.2: Numerical Convergence Factors of Two-Level 2D SMG-Jacobi

¥ (m1,my)

(0,1) (1,1) (1,2) (1,3)
0.50 0.6643 0.4621 0.3209 0.2088
0.60 0.6061 0.3346 0.2595 0.1788
0.70 0.5511 0.3384 0.1793 0.1194
0.80 0.3984 0.2911 0.1691 0.1371
0.90 0.4584 0.1956 0.1134 0.0827
1.00 0.3185 0.2173 0.1335 0.1196

Table 5.3: Numerical Convergence Factors of Six-Level 2D SMG-Jacobi

v (M1, ma)
(0,1) (1,1 (1,2) (1,3)
0.50 0.7702 0.6296 0.4390 0.3237
0.60 0.7189 0.4918 0.3332 0.2494
0.70 0.6671 0.4957 0.2987 0.2150
0.80 0.5303 0.3561 0.2346 0.1827
0.90 0.5599 0.3845 0.2119 0.1631
1.00 0.4227 0.2580 0.1863 0.1525
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Figure 5.1: Residual Reduction History for Different Problem Sizes (2D)
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the estimated upper bounds presented in Table 5.1 and the multilevel numerical

convergence factors are close to the corresponding two-level ones.

Figure 5.1 illustrates the residual reduction factors of the multigrid
method with different grid sizes. It confirms that the convergence factor of
multigrid methods is independent of the size of problems. In these runs we
used ¥ = 0.6 and m; = m, = 1. The problem sizes are from 8 x 8 to 128 x 128.
The system on the coarsest grid does not have to be solved exactly. In practice,
the system on the coarsest grid can be solved approximately by performing a
few smoothing iterations. Figure 5.2 shows that the difference between the
convergence factors when the system on the coarsest grid is solved to different
accuracy. Here n is the number of smoothing iterations performed on the

coarsest grid. In this case two smoothing iterations are enough.




Chapter 6

The Construction of Extended
Systems

6.1 Introduction

In the next two chapters, we will discuss multigrid methods involving
the use of more than one coarse grid for the 1D problem (2.2.1) and for the
2D problem (2.3.8). Since such kinds of methods can be more conveniently
applied to periodic systems, we will first consider periodically extended systems

corresponding to the problems (2.2.1) and (2.3.8).

6.2 A Sample Problem in 1D

We consider the numerical solution of the model problem with the

Dirichlet boundary condition defined by

dz? (6.2.1)

{ _M = f(z) forz € Q=(0,1),
u(0) = ¢a, u(l) = és.

This problem was considered in Chapter 2.

63
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Figure 6.1: The Original Grid with 2 = 1/4

For a grid with grid size h = 1/4 (see Figure 6.1), the standard 3-point

finite-difference equation system is given by

f U = ¢, = b
—ug+2u; —u; = hify = b

J —uy+2u; —uz = hf, = b (6.2.2)
—uy+2uz—uy = h%fs = b;
| U4 = ¢ = b,

where f; = f(z;).

We now consider the “modified system” given by

' o = 0 = b
—fo+20 —fi, = R fitds = b
{ —f1+ 28— i3 = h%f, = by (6.2.3)
—l; + 203 — %y = Rfs+¢ = b
| = 0 = b,

Evidently, if u, given by

[ 4.
Uy
U= ug (6.2.4)
us

b
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Figure 6.2: The Periodically Extended Grid and the Vector b

satisfies (6.2.2), then 4, given by

(0 ]

Uy
s (6.2.5)

>4
I

X

0

L. -

satisfies (6.2.3).

6.3 The Periodically Extended System in 1D

We now replace the modified system (6.2.3) by a “periodically ex-
tended system” involving the entire real line. We construct a vector b on the
entire real line by first extending b asymmetrically from the interval [0, 1] to the
interval [—1,1] and then extending it periodically with period 2 to the entire
real line as shown in Figure 6.2.

We now define the periodically extended system by requiring that
satisfy the following conditions:

1. At every grid point z; = jh (including j = 0,+1,+2,...) we have

—lij_l + 22:1']' - 'lij.'.l = 3,- (6.36)




i 0 —fig —lz — O
- —@ & & L 4 *——©
T Ty T3 T2 T Zo

(z=-1) (z=0)

Figure 6.3: A Solution of the Periodically Extended System

where @; = (z;);

. @ is periodic with period 2, i.e.

Ujpon = U; (6.3.7)

for j =0,%1,£2,.. ;

. The sum of the values of {ti;} over any period of length 2, excluding one
of the end points, vanishes.

Let @* given by

- -

be the solution of the modified system (6.2.3). We claim that % is a solution
of the periodically extended system where i is obtained from @* by extending
#* asymmetrically to the interval [~1,1] and then extending the asymmetric

vector periodically, with period 2, to the entire real line as shown in Figure 6.3.




67

Suppose now that # is any other solution of the periodically extended

system and let

%, (6.3.9)

en
Sn

W=

Evidently, ¥ is periodic and the sum of the {;} taken over any period of
length 2, excluding one of the end points vanish. Moreover

_&J.‘i—l + 2&31 - &)j+1 =0, .7 =0,%1,%2,... (6.310)

where ; = w(z;) for all j. The solution of (6.3.10) can be obtained by
rewriting (6.3.10) in the form

W41 = 20; — Wj-1, J=0,+£1,%2,... (6.3.11)

Thus, we have

’&32 = 2'&)1 - ’&;)o

= 2(t; — Wo) + Wo, (6.3.12)
1.?)3 = 213.'12 - '&'}1

= 2(2(& — o) + o) —

= 3(’3)1 - ?.-l;Jg) + ‘l?)o (6.3.13)

and so on. In general, we have
'I.‘.l;)n = n(ﬁ)l - 'l})o) -+ ’l?)o. (63.14)

By periodicity, @; — o = 0. Also since the sum of the {’[23,} over a period must

vanish it follows that w, = 0. Hence % = 0 and

. (6.3.15)

(S]]
2

Therefore, the periodically extended system has a unique solution % . More-

over, from % we can obtain the solution of the modified system.
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6.4 The Extended System in 1D

We will now show that one can derive a finite-number of equations
from the periodically extended system such that the solution of the periodically
extended system, the solution of the modified system and thus the solution of

the original system can be obtained.

To derive the extended system, we first consider the equations of the
periodically extended system corresponding to the points z_4,z_3,...,24. We

~ obtain the system

;

—6_5 + 21:1,_4 - ’l:,:l,_3 = 7)..4 =0
~tig 4 2ig—tiy = b

S (6.4.16)
~Uj-1+ 2u,- —Ujyy = bj = —2, —-1, ,3

{ g + 20tq — iis = ~4 =0

We then use the periodicity to replace tis by #_3, t_5 by tis and g by 4 and

we obtain

'S ~ -~ ~ =
-—U3 + 2’(1,4 ~U_3 = b-4
—'&4 + 2'&,_3 - ﬁ..z = b..3
J ) . . (6.4.17)
—tj_1 42U -ty = b j=-2,-1,...,3
| —u3 + 244 — U3 = 04

Since 5.4 = 54. We then discard the first equation since it is the same as the
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last equation and obtain the conditions

]
3
1

2 -1 0 0 0 0 -1][3d. b_s
-1 2 -1 0 0 0 o0 O s b_q
0 -1 2 -1 0 0 0 O fiy b_y
0 -1 2 -1 0 o0 O 5 b
0 i S (6.4.18)
0 0 0 -1 2 -1 0 0 o by
0 0 0 0 -1 2 -1 0 fig bs
0 0 0 0 0 -1 2 -1 i3 b3
| -1 0 0 0 0 0 -1 2 || 4 | [ b |
or
AB)(E) = p(B), (6.4.19)

In addition, since Z;*:_;, {1_7' = 0 for the periodically extended problem we have

4
> uf? =0 (6.4.20)

j=-3

We refer to the system defined by (6.4.19) and (6.4.20) as the eztended system.

It is easy to show that any N x N matrix of the form of A(¥) has rank
N —1 and has as its null space the one-dimensional subspace spanned by the
vector

z=(1,1,...,1)T. (6.4.21)




Moreover, the vector

-

satisfies (6.4.18). Hence the general solution of (6.4.18) is

u® = (B + az. (6.4.23)

If one requires that the sum of the components of u(¥) vanish, then o must
vanish, since the sum of the components of (u())* vanishes.

We remark that the process of replacing a vector w by a vector w’ =
w 4 az such that the sum of the components of w' vanishes is referred to as
purification. Thus if w is a vector of order N and if w’ is given by

N
w=w-— (% > w;)z, (6.4.24)

Jj=1

then w' is the purification vector of w and we let

v’ = P(w)
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Suppose now that we want to solve an N x N system of the form

[ 2 1 0 - 0 -1|[w [ 5,
1 2 —1 - 0 0 || w b,
=] (6.4.26)
10 0 -1 2 [|wv]| |[bn]
or
Aw=b (6.4.27)

where the sum of the components of  do not necessarily vanish. Since the sums
of the rows of A vanish, the system is inconsistent. However, the following

procedure can be used to obtain an approximate solution

1. Purify b to obtain & = P(b). Thus

b;:b,-—-a, ij=L2,...,N (6.4.28)
where
Ly
a=—> b; 6.4.29
Nj:.-] 7 ( )

2. Find a solution, , of the consistent system Aw = V',

3. Purify @ to obtain @/'P(w). Thus

f=t; -8, j=12,...,N (6.4.30)

1 & '
B= 2 w5 (6.4.31)
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It can be shown (see Appendix A), that the approximate solution of (6.4.26)
obtained in this way is the same as the “Moore-Penrose solution” of (6.4.26).
In general the Moore-Penrose solution of a linear system Au = b minimizes
||b— Aul| and [ju]|.

In later chapters we will need to solve linear systems of the form

(6.4.26) which may not be consistent.
From the discussion above, the procedure for solving the difference

equation system

(6.4.32)

—ujq +2u; — uj = h*f(z;), Ji=1,...,N-1
U = g5, UN = Oy,

where h = 1/N, u; = u(z;), o = 0 and zx = 1, can be described as follows.

1. Construct the modified system

{ g 20— =by, j=1,...,N—1 (6433

’&0 = 0, '&N = 0,
where
Z1 = h2f($1) + ¢a2a

b; = h*f(z;) ji=2,...,N-2 (6.4.34)
bvo1 = k2 f(znoa) + ¢
2. Construct the periodically extended system
e Extend b to get i;
® —2:1_,'_1 + 2'5,_,' - ‘lij+1 = z,-;
e iiis periodic;

e sum of {u;} over a period vanishes.
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3. Construct the extended system

e use periodicity to get equations for z1-n,Z2-nN,...,TN;

e sum of {ugE)} vanishes.
4. Find a solution @& of the extended system.
5. Purify 4(E) to get (a(®))".
6. Obtain the solution u* of the modified system by letting

(w);=@®); j=1,.. ,N-1 (6.4.35)

-3

. The solution of (6.4.32) is the vector 4* with two end values ¢, and ¢.

6.5 The Construction of an Extended System
in 2D

The discussion in the one-dimensional case can be extended to a two
dimensional case. We consider the following anisotropic problem in two dimen-

sions:

_Pue,y) _ Pulzy) _

32 57— @) (23 €2=(0,1),

(6.5.36)

u = ¢(z,y) (2,) € 60
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where the constant coefficient > 0. The 5-point finite-difference representa-

tion of the above problem can be written in the form

' Lifujx]) = (2 + 20)ujp — atj_i1k — QUj41k — Ujk—1 — Ujk+1
= R f(zj, yx) = bk,

uj0 = ¢(z;,30) = bjo,

uin = ¢(zj, yn) = bjn,

o,k = H(To, Yk) = o,

unx = $(zn, yx) = b g,

5 k=1,...,N=1

\

The modified system corresponding to (6.5.37) is given by

4

La[@;x] = b,

ujvo = b'ro = 09

N = biv =0, (6.5.38)

fiox = box =0,
iing =bng =0,
jk=1,...,N—1

bik = R2f(z;,yx) jk=2,N—2
by = R2f(21,yx) + ¢(2o, Yr) k=2,N-2
by-1p = R2f(zn-1,9%) + d(zn,0k) k=2,N -2
b = K f(zj, 1) + ¢(z5, v0) j=2,N-2
Bin-1 = h2f(25,9n-1) + $(esun) J=2,N -2
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and

( bi1 = B2 f(z1,11) + ¢(zo, 41) + (21, %0)

by-11 = B2 f(zN-1,31) + (2N, ¥1) + $(TN-1,%0) (6.5.40)
bin-1 = B2 f(z1,yn-1) + B(zo, yn-1) + $(1,YN)

| dv-1,8-1 = B2 f(aN-1,YN-1) + B(ZN, yN-1) + $(TN-1,YN)

As in the one dimensional case, we construct a vector i on the entire
plane by first extending b asymmetrically in both the z- and y-directions from
the area [0,1]% to the area [~1,1]? and then extending it periodically with
period 2 in both directions to the entire plane. The 2D periodically extended

system is defined by requiring that & satisfy
1. At every grid point (z;,yx) (including j, k = 0,+1,+2,...)
Lu[tt;] = bj (6.5.41)
2. @ is periodic with period 2 in both directions;

3. The sum of {#;:} over any period of 2 in both direction, excluding the

points on any one of the end edges in both directions.

It can be shown, as in the one-dimensional case, that the solution of the 2D
periodically extended system is unique. Moreover, the solution of the 2D modi-
fied problem can be obtained from the solution of the 2D periodically extended

system.

We now consider the following extended system in 2D:

Liu) =85 jk=1-N,...,N

B =4} k=1-N,...,N
! gt =u®, E=1-N,...,N (6.5.42)
E .
u$By = ulf) =1-N,...,N
(B) (E) N

uj,N+1 =uj,l'-N ]=1"'N,...,




(%) (QgE) )

Figure 6.4: The Original Grid and the Extended Grid in 2D with A = 1/4

where

’

-~

b jk=1,...,N—1

—b_;x j=1-N,...,-L; k=1,...,N-1

b+ j=1,...,N=-1k=1-N,...,-1 (6.5.43)
—b_jx j=1-N,...,-1; k=1-N,...,-1

0 j,k=0,N

\

ABE®) — y(B) (6.5.44)

This system is defined on the extended grid in the area [—1,1]2. Figure 6.4
illustrates the extended grid QF in the case of h = 1/4. It can be shown that
any 2N x 2N matrix of the form A®) has rank 2N — 1 and that its null space
is spanned by the vector z defined in (6.4.21). Therefore, we can use the same
purification procedure in solving the 2D extended system.




Chapter 7

Multiple Coarse Grid Methods in 1D

7.1 Introduction

In this chapter we discuss a class of multigrid methods where, unlike
the standard multigrid method, more than one coarse grid is used at each
coarse grid level. In our discussion we will refer to this class of methods as
multiple coarse grid (MCG) methods. We are concerned with three classes
of such methods, namely, multiple coarse grid multigrid methods (MCGMG),
frequency decomposition multigrid methods (FDMG) and parallel multigrid
methods (PMG). We will use these methods to solve the extended system
(6.4.19). For convenience of description, we divide the extended system (6.4.19)

by h? to obtain an equivalent system which is referred to as

Apup = by. (7.1.1)

7.2 MCGMG Methods in 1D
7.2.1 The Two-Level MCGMG Algorithm in 1D
Let z; = jh with A =1/N and

Qh={x5|j=l—N,...,N}. (7.2.2)

be a grid on the interval (—1,1], where N = 2* for some positive integer .
We construct two coarse grids in such a way that all the even-numbered grid
points belong to one coarse grid and all the odd-numbered grid points belong
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Figure 7.1: Two-Level Grids in 1D with A =1/4

to another. Then, we have

Q. = {z;|z; € U and (j = even)}, (7.2.3)
Q = {:cj | z; € Q4 and (7= odd)}. (7.2.4)

Figure 7.1 illustrates the grids on two levels, h and 2h for the case N = 4.
For problem (7.1.1) a two-level MCGMG algorithm is given in Fig-

ure 7.2. For the following analysis, we assume that the full weighting restriction
of residuals and linear interpolation of corrections are used. The full weighting

restriction is defined by

i(ra(z — )+ 2rp(z) +ra(z + k) z€Qy

() ) (z) = 2.
(B ra)() {0 ccO. (7.2.8)

0 $€Q+

(7.2.9)
ira(z —h)+2ru(z) + ra(z + 1)) z €.

(R ra)(z) = {

and the linear interpolation is defined by

San(z) z€e,

1(6an(z — h) + 6an(z +h)) z € (7.2.10)

(PPéan)(z) = {
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Algorithm: MCGMGID2L(Ax, u'", bs)

. Do m; pre-smoothing iterations using the smoothing iterative method
(e.g. damped Jacobi method) to obtain uj,.

. Compute the residual r, = by, — Anuj,, restrict the residual onto the coarse
grids and perform purification defined in (6.4.24) if necessary to obtain

i) = PR, 20), ) = PR, 253)) (7.2.5)
where zé',t) and zz(,',:) are the eigenvectors in the null spaces of Ag‘,’;) and
Ag;) respectively.

. Solve the coarse grid systems
ARSD =D, AR =) (7.26)
to obtain the purified solutions 5&';) and 6§;).

. Interpolate 6§’,’;) and 65;) onto the fine grid to obtain the new approximate
solution

! 1 TIENT
up = uj + §(P;£+)5z(>t) + P65)) (7.2.7)

. Do m; post-smoothing iterations using the smoothing iterative method
and purify the result, if needed, to obtain ug).

Figure 7.2: The 1D Two-Level MCGMG Algorithm
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2(6an(z — k) + ban(z + ) z €0y

. e (7.2.11)

(P 6am)(z) = {

The coarse grid difference operators are defined by the 3-point difference for-

mula, e.g.
(ADEEN@) = ()26 () — &) (z — 2k) — 6 (a + 2h)]

e, (7.2.12)
(A6 (@) = (2R)7*[265)(z) — 65 (z — 2h) — 65 (= + 2h)]

z €N (7.2.13)

In general, the restriction of a purified vector on the fine grid may not
be a purified vector on coarse grids. However, we have the following lemma.

Lemma 7.1 Let b, be a purified vector on the fine grid. If the number of fine
grid points is 2N for some positive integer N, then the full weighting restriction
of by, on a coarse grid, say ba, is also a purified vector. In fact the element
sum of by, s one half of the element sum of by,.

Proof: It can be directly verified by using the restriction operator definition.
In fact, each of the elements of b, contributes half of its value to b,

On the other hand, we have

Lemma 7.2 Let ug, be a purified vector on a coarse grid. If the number of
fine grid points is 2N for some integer N, then the linear interpolation of usp
on the fine grid is also a purified vector uy.

Proof: It can be directly verified that the sum of the elements in uy is the

same as the sum of the elements of us;.

Therefore, the purification in step 2 of the MCGMGI1D2L algorithm
defined in Figure 7.2 is not needed if the full weighting restriction of residuals
is used. Moreover, if the Jacobi method is used for smoothing iterations, then

the purification in step 6 is also not needed.
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7.2.2 Two-Level Convergence Analysis

Let v®), p = 1— N,..., N, be the Fourier modes (v-basis vectors)
defined by

(v®); = exp(—iprjk), j=1-N,...,N (7.2.14)
The two-color Fourier modes (w-basis vectors) are defined by

. -N
w}f P) _ %(v,(zp) +v£? ))

(7.2.15)
- -N
w}(l P) _ %('Ul(zp) _ v,(‘p ))

where p =1— N/2,...,N/2. Note that vﬁp—N) = 'v,(f’+N). In the case of N =4,

we have

- - -

[ exp(—i3pmh) 0
0 exp(—:2prh)
exp(—tprmh) 0
wit? = 0 , wi? = ! (7.2.16)
exp(ipmh) 0
0 exp(i2prh)
exp(i3pmh) 0
i 0 ] i exp(zdprh) ]

for p=-1,0,1,2.

We are interested in the combined effect of the two coarse grids on the
coarse grid correction of the MCGMG algorithm (step 2 to step 6 in Figure 7.2).
We denote 4, = A,’:bh the purified solution of Ayup = bs. Let €}, = uj — @, be
the error before the coarse grid correction and e} = u} — @), be the error after
the coarse grid correction. We note that both e}, and e} are in the range of A,.
From (7.2.5) to (7.2.7) we have

= - BIED - POe




82

e — 5 (P A B Auch + POAG) B Anch)
= Che}, ' (7.2.17)

where

Ch = I——(P"')(A‘*))*R(*)A + POAY RO 4,). (7.2.18)

Here the Moore-Penrose inverses (A$$))t and (A$))! mean that the two coarse
grid systems are solved exactly for the purified solutions 5§h and 6(;) respec-

tively.
We now show that after one MCGMG cycle, the new error vector has

no imaginary component. The initial error eio) = uﬁo) — 4y can be expressed by

a linear combination of the Fourier modes

N N2
3 dyv? = 3 (kyw® + Lw®™) (7.2.19)
p=1-N p=1-N/2

where the coefficients d,, k, and I, can be complex values. Since each compo-

nent in v(-") is the complex conjugate of the corresponding component in v(” )

( ) is real if and only if

dy=d_, (7.2.20)

where d_, is the complex conjugate of d_,. After one multigrid cycle, the error

e(l) = ugl) Uy 1s given by

N N/2
e’(zl) - Z d;v}(lp) _ Z (k;’w;lp’”'l' I;’w,(‘p’_)). (7_2_21)
p=1-N p=1-N/2

If we let T}, be the operator of the two-level MCGMG method and let
T(p ) be the v-transform matrix which is defined by

Th(v,(lp), v,(f-N)) = (v,(f),v,(f_N))T,Ef:,) (7.2.22)
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then (7.2.29) can be written in the form

G| T b | (7.2.23)
;-N ’ dP—N

It 7% = 757 ). which is the case in our analysis, we also have

. , \ d- d
N T | = il B I L (7.2.24)
dy_n dp-nN dN-p N-p

From (7.2.24) one sees that after one MCGMG iteration the error is still real.
In the two-color Fourier analysis, we use the w-basis given by (7.2.15). From
(4.5.79), we have

el e
l, dp-nN dn-p lp

If the w-transform matrices T(p ) of T}, are given by
Th(wg-i-.p), wg—.p)) = (w£+,p)’ wl(l—.p))jw}gl (7.2.26)

and T(” ) = T-P) which is the case in our analysis, we also have

haw
d_, k*
=P =7 (7.2.27)
dN—p l:p

Blogm| b
s I,

Ideally, one would like to have

dy = Apdp. (7.2.28)

This is true, for example, for the Jacobi method itself. However, in general,
because of aliasing in the coarse grid correction process, for a normal standard
multigrid cycle, we have

d; = Apdp + ptp-Ndp-n,

P

(7.2.29)

L 3

p-N = Hpdp+ Ap_NEN_p.
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If pp—n = 0 and p, = 0 there would be no aliasing. We will show that this is

the case for the MCGMG algorithm.

Forp=1- %, ceny % the w-transform matrices of the difference op-

erator, the interpolation operators, the restriction operators, the coarse grid

difference operators and the damped Jacobi operator are given by

Ah(w£+,p)’w£—,p)) - (w,(f’p),w,(,-'p)) Aﬁ’,’,’,,,

R;j)(w,(;"’p), ,w;l-,p)) — w£+,p)R§:-j),

Rg_)(wg+;p)’ w}(;—yp)) = wg",p)Rg,—u”p),

APt = witP AL,
ARwi? = wim P AR,

P,f+)w;(,+'P) - (w£+,p)’ w,(z—,p))f;’fhp)

’w ?

P}f—)w£-1p) = (w'(“l',p), w}(;‘sp))p’f,-u;p),

By(wgd'vp), w}(l—'P)) = (w;;‘”p), wg-vp))A(P)

YW

where
-
Aim 2| 1 -~
haow = K2 N
~ 1
R;:J”:E 1 cp]?
aAf_ 1T
Rg,u',p)=§_cp 1]
4 (= 1
Ag,':;) = Aﬁh,’,’? = —(2 — 2cos 2prh),

4h?

(7.2.30)

(7.2.31)

(7.2.32)

(7.2.33)

(7.2.34)

(7.2.35)

(7.2.36)

(7.2.37)

(7.2.38)
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Bt = 1 , (7.2.39)
=1 % -
Jor 2 I (7.2.40)
’ 1
and
" hZ .
BY), = -’—12—/1&
_ 1= e | (7.2.41)
Y6 1=7

The w-transform matrix of the coarse grid correction operator Cj, can

be written in the form

C(p) 2( (+,p)( A(+,p)) -1 R(+,p) A(P)
PP R AD)

-1
A (+,P) el (+'p)
P I — % [ P}E"’t?) P}S—'p) ] A2h,w ) 0 }?h,w) o\gpt)v
S o ARD| | R

Because of the purification process, the coarse grid correction has no effect on
the modes w{"® and w{™®. Therefore, CA',(&, = I. From (7.2.36) to (7.2.40),

we have

(+.P)( A(+,p))-1 R(+,p) A(P)

1 4h?

1
B %}2——2cos2p7rh§[1 cp};ﬁ

L.

A
|10
& 0]

(7.2.43)
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and

BLP(AGI T RD AR,

% 4h? l[ 1]_1_ 2 =2
T |1 | 2=2cos2pra2 | @ K| _2c, 2 (7.2.44)
|0

0 1]

Substituting (7.2.43) and (7.2.44) into (7.2.42), we obtain

cw _ ;L1 0] _1|0¢
how 2 210
e 0 0 1

1l -5

(7.2.45)

1
2
By using Lemma 4.1, the corresponding v-transform matrix is given by

) 1. .
oo = SHCEH,

2
_ gy l1te 1+ | 1| 146 —(+c)
ll-¢ 1= | 4| -(1-¢) 1-¢
1- 0
=1 @ . (7.2.46)
2] 0 1+4¢

From (7.2.46) one sees that there is no aliasing in the combined coarse
grid correction because the aliasing on even and odd grid points is of opposite
sign and therefore cancels.

An upper bound on the two-level convergence factor of the MCGMG
algorithm is given by

p(Ti) = BM™CiBM™
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Table 7.1: Two-Level Convergence Factors of 1D MCGMG-Jacobi

Y (m1,m)
(0,1) (1,1) (1,2) (1,3)
0.50 0.2455 0.1480 0.1054 0.0819
0.6 .2083 1235 .08781 .06819
0.7 .3990 .1593 .07533 .05851
0.8 .5987 3587 .2149 1287
0.9 .7985 6380 5097 4072
1.0 .9982 9971 .9959 9948
= max p((BE)™CRL(BII™) (7.2.47)

N N
1-5<p<%

Table 7.1 lists the two-level convergence factor p(T}) using the Jacobi
smoothing iteration with the extrapolation factor 4 in the case of N = 64. The
w-transform matrix of the Jacobi operator is defined in (4.4.67). Comparing
the convergence factors of the standard multigrid method in Table 4.1, one sees
that the convergence rate of the MCGMG method will generally be faster than
the corresponding standard multigrid method for each multigrid cycle. This
is because the coarse grid correction process of the MCGMG does not have
aliasing errors. Hence, each pair of components in the error of the problem
will be damped effectively by the coarse grid correction and by the smoothing
iterations without affecting each other. On massively parallel machines the
improved convergence rate is attained at no extra computational cost because
the coarse grid correction on all coarse grids on each level can be carried out

simultaneously.
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' Qs p—o —e |
-3 1
Q4 | hd ——]
4h -1 3
Q_ | *— » }
+ % 5
Q__ | ® o
| ! 0 4
[, |—e— - —e— ° |
2% | -3 -1 1 3
Q. | ® —® - °
\ -2 0 2 4
h{ Q@ }|—eo—e—o—0—0—0—0—0
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(z =-1) (z=0) (z=1)

Figure 7.3: Coarse Grids for an Extended Fine Grid: N =4

7.2.3 The Multilevel MCGMG Algorithm in 1D

The 2h coarse grids can be divided into even coarser grids in a similar
way. Figure 7.3 illustrates all the grids on three levels, k, 2h and 4h for the
case N = 4. Figure 7.4 shows the corresponding hierarchical relations among
these grids.

A multilevel MCGMG algorithm is similar to the two-level version ex-
cept the coarse grid problems in step 3 are solved by using the MCGMG1D2L
algorithm recursively. For a better understanding of the multilevel MCGMG
algorithm, we list a three-level MCGMG algorithm in the following. For con-
venience of representation, we use the symbol v instead of é to represent the
solutions and b to represent the right-hand side vectors on all levels. The solu-
tions on coarse grids should be thought of as corrections to the solution of the

fine grid.
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Figure 7.4: Hierarchical Relations Among Grids: N =4

Algorithm: MCGMGID3L(A,, v, b,)

1. Do m, smoothing iterations on Ajuy = b, with initial guess v;.

2. Compute
53 = PR ra, 253, (7.2.48)
b5 = PR rn, 247). (7.2.49)

3. Do m; smoothing iterations on

Ay = i) (7.2.50)
A =), (7.2.51)

with initial guesses vgz) =0and v{;) = 0.

4. Compute
8 = PR, 20, (7.2.52)
857 = PR, 207, (7.2.53)
oG = PRGI), 5Y), (7.2.54)

857 = P(RG e, 267)). (7.2.55)




b}

A(++) (++) — bf,{*)
A(+ ) (+-) b,(,;"’)

b

Aﬁf’u.‘;,;” = ;"

9

ATl =07,

. Correct

(+) (+) + ( P(++) (++) (+ ) (+ ))

Ugp™ & v2h

o) e o) 4 ( PEPLE 4 P,

. Do m;, smoothing iterations on
Agugy) = b7,
Agugy) = by

with initial guesses viy

necessary.

. Correct

1 =) (-
Vp & U + §(P£+)‘US;) + P,S )‘Dgh))

(7.2.56)
(7.2.57)
(7.2.58)
(7.2.59)

(7.2.60)

(7.2.61)

(7.2.62)
(7.2.63)

) and v§;’ respectively and purify the results if

(7.2.64)

. Do m, smoothing iterations on Apup = b, with initial guess v and purify

the results if necessary.

Here we used the purification notation P(v, z) defined in (6.4.24). In the case

of N = 4, there can be three levels.
grid systems are given by

On the second level, the two 2h coarse

(v2h)-1

(‘Uzh)l

[ (‘Uzh)-a ]

| (van)s |
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[ (b2n)-3 ] (b(+))- ]
(bat)-1 (®5)o

- = = bH) (7.2.65)
(ba)s (b5
| (a)s ] | @52 ]
and
(2 -1 0 —1]] (v2n) -2 ]
-1 2 -1 0
AGG) = (vzs)
2210 -1 2 -1 (van)2
] -1 0 -1 2 (‘02},)4 i
[ (bZh)—2 - (b2h -1 ]
s
_ | @amdo f_f (B o = b{;) (7.2.66)
(b21)2 N
| Baw)e || )2
Here we use vg;, and by, to represent the fine grid vectors which consist of the

coarse grid vectors vgh), vgh) and bg',';), b(,, respectively.

On the third level, the four 4A coarse grid systems are given by
1 2 =2 (van)-3
A(++)v(++)
4 (4h)2 -2 2 (’04),)1

bah)-3 550
} [((b::)l ]= [E‘“’; ]zbﬁ#)’ (280

AGE) o __ 1 12 =21} (van)
TR 2o 2 || (e

= [ (b4h)—1 } [ (b " )0 ] = bi‘l‘;—)s (7268)

(ban)s @5
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(=), — _1 2 =2 ]| (van)-2
A 4h (4h)2 { -2 2 } [ (’U4h)2 }
_ (b4h)—2 ( -+)) = b(-+) 7.2.69
- [G]- |- 20

()= L [ 2 —2 || (vao
Ay 4h (4h)? [_2 2 ] [ (van)e }

= [ (b‘”‘)°} [ (E ™o ] =57, (7.2.70)

(ban)s 0%

Here each of the fine grid vectors v4, and by, consists of four corresponding 4h
coarse grid vectors. On the third level, the grid points on a coarse grid are not
always distributed symmetrically about zero. The systems (7.2.67) and (7.2.68)
may not be consistent in general. However, as we showed in Lemma 7.1, for
the full weighting of residuals, purification of the right hand sides is not needed
as long as the number of grid points can be divided by 2.

7.2.4 Numerical Results

The problem we used for the numerical experiments of a MCG method
is the Poisson equation defined in (4.7.100). In solving the extended problem,
we use the MCGMG algorithm with linear interpolation of corrections and
full weighting restriction of residuals. The damped Jacobi method is used for
smoothing.

In our experiments, the grid size is chosen to be A = 1/64. Tables 7.2
and 7.3 list the convergence factors of the two-level algorithm and the multilevel
scheme algorithm respectively. In this case, we use a six-level scheme which is
the maximum number of levels allowed (2% = 64). v is the extrapolation factor
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Table 7.2: Numerical Convergence Factors of Two-Level 1D MCGMG-J

v (m1,my) “
0y | &Ly | 1 |

0.5 181 | .07 | 0827

0.6 149 .0913 0672

0.7 192 0822 0642

0.8 294 163 0011 |

0.9 400 297 143

1.0 506 AT 448

of the damped Jacobi method, m; and mg are the number of pre-smoothing
and post-smoothing iterations respectively. The convergence factors are the
average values of 5 multigrid cycles.

From these two tables, one sees that the numerical 6-level cdnvergence
factors are close to the numerical 2-level convergence factors which are bounded
by the theoretical upper bounds given in Table 7.1.

To see that the convergence factors of the MCGMG algorithm are
independent of the problem size, we used the MCGMG algorithm to solve
problem (4.7.100) with different grid sizes. Figure 7.5 plots the convergence
histories of the runs with grid sizes N = 16,64,256, and 512. The maximum
number of levels were used (i.e. 4, 6, 8 and 9 levels respectively). The other
parameters are m = 1 and ¥ = 0.6. The figure shows that the convergence
factors are almost constant for problem sizes N = 64,256, and 512. Also the

convergence factors remain the same at each cycle.




Table 7.3: Numerical Convergence Factors of Six-Level 1D MCGMG-J

y (1, m2) I
(0,1) (1,1) (1,2) |
0.5 273 169 129
0.6 210 145 116
0.7 195 132 110
0.8 .206 .164 122
0.9 401 208 226
1.0 507 472 449

Normalized Residual

1 L

2 3
Number of MG cycles

Figure 7.5: Convergence Histories for Different Problem Sizes
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7.3 FDMG Methods in 1D
7.3.1 The Two-Level FDMG Algorithm in 1D

We now consider a multigrid method for solving the extended problem
(7.1.1), which is similar to the “robust” multigrid method of Hackbusch [34] and
which we refer to as the frequency decomposition multigrid method (FDMG
method).

The procedure of the FDMG method is the same as the procedure of
the MCGMG method defined in Section 7.2.1 except that some of the opera-
tors are defined in a different way. In the FDMG method one uses different
interpolation operators and different restriction operators on the different grids

at each level. The restriction operators are defined by

1
= —h)+2 h Q
(BPr)(z) = 4 2@~ R +2ma(z) + e+ b)) o€y (7.3.71)
z €
0 z€
(RO () = { 1 * (7.3.72)
Z(-—-rh(z —h)+2rp(z) —ra(z + k) z€ Q-
and the interpolation operators are defined by
dan(z z€f
(P{P6)(z) = f"( ) ¥ (7.3.73)
5(62;,(.1: - h) + 62h($ + h)) z €N
- ~1(an(z — ) + & h €N
(PO60)(2) = 18z —h) + 8z +h)) 2 €0y (7.3.74)
52};(21) zeN_
The coarse grid difference operators are defined by
A = P AR, (7.3.75)

AR = PO ARD. (7.3.76)




In the case of problem (2.2.4) with N = 4, for example, we have

O O O O O N O O
O O O = O - O O
QO O N O O O O
O = O =0 O o O
S N O OO0 O O
O = OO OO O

1 4 . L]
O O O O O O O W
O O O O O = O =

[

o o0 oMM O O O
! |

o o | ), @ o @

o o N O o o o o

N O O O O O O O

|
[y

The interpolation matrices P,$+), and P,f_) are the transposes of the correspond-
ing restriction matrices R;f) , and Rg_) respectively multiplied by a factor of 2.
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The coarse grid matrices can be written in the form

[ 2 0 -1 0 0 -1 0

0 0 0 0 0 0 0

10 2 0-10 00
ap=__1 0000 000 (7.3.79)

(2R)? 0 -1 0 0 -1 0

0 0 06 0 0 0

10 0 -10 2 0

0 0 00 0 0 0

(0 0 00 00O O]

01003 00 0 3

0000000 O
A1 |03 0100300 (7.3.50)

(2020 0 0 0 0 0 0 O

0 0030100 3

00 00O0GO0U OO

(030003010

It should be noted that the matrix A$}) is consistent with the differential equa-
tion (2.2.1) while the matrix Ag',;) is not. In some sense, the correction obtained
from grid €24 is more important than that obtained from grid Q_ in this case.
As in the MCGMG algorithm, if the coarse grid problems are solved using the
same FDMG method recursively, one gets a multilevel version of the FDMG
algorithm.

7.3.2 Two-Level Convergence Analysis

We first consider the coarse grid correction operator. It is easy to
verify that the w-transform matrices of the the operators Rff), R;f) ) P,f"') ,




P,f'), Ag’,’;), Ag") have the following forms:

R [1 c,,]

R

e

B (7.3.82)

(7.3.85)

(7.3.86)




99

The w-transform matrix of the coarse grid correction operator can then be

calculated by
-1
ét(qul = J— 1l —g A2 1-¢ 111 o
' ¢ 1 1432 | 2| ¢ 1
2|1- 0 (7.3.87)
Bl 0 1+c¢

p -2¢, 1+4¢

The eigenvalues of this matrix are given by

2(1 — ¢2)
) lcp(l______p 3.88
A |5 Tia (7.3.88)

To study the eigenvalues of C ,(,’,’3,, we first discuss the function

z™(1 —z)

T (7.3.89)

fm(z) =
For the function f,,(z) we have the following lemma.

Lemma 7.8 For any positive integer m, the function fn.(z) given by (7.3.89)
has a unique mazimum point in the interval (0,1).

Proof: By (7.3.89) we have

Ofm(z) —3ma?+(2m—4)z+m
oz (1+ 3z)?

™1 (7.3.90)

The roots of the equation

—3mz’+ (2m—-4)z+m=0 (7.3.91)




r

_m—2i%ﬂm—%ﬁ+% (1.3.92)

3m
The larger root satisfies
m—2+2{/(m-13)2+2
3m
m—2-1:;:z(m—-15) =1_%20

Z3

m—2+2/(m-1)2+3

Im
m—2+2m—1++3 3—-v3
=1~ <1
3Im 3m

The other root

m—2-2/(m-1)242

3Im

Iy =

m—2+2(m—1) m+1<

3Im 3m

0 (7.3.95)

The conclusion follows from the negative coefficient of the second order term
in 2%3)-. Here we used the relations

Vatb<a+vh

for any two positive numbers a and b.

Table 7.4 lists the maximum values of function (7.3.89) with the cor-
responding position z for m =1 to 4.

By substituting ¢2 with z in (7.3.88), we can compute the spectral
radius of the combination operator of the coarse grid corrections of the two-level

1D FDMGQG algorithm:

P(Chw) = nax, |A] £ max v/ fi(z) (7.3.96)
<r<¥

= 0<z<1

Thus we have the following result.
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Table 7.4: Maximum Values of Function fn(z) = ﬂl:&;’l

S z=c fm(z)=p
1 0.3333333 0.1111111
2 0.5773502 0.0515668
3 0.6990558 0.0331937
4 0.7675918 0.0244283

Theorem 7.1 The convergence factor of the two-level 1D FDMG algorithm

without any smoothing iterations for the model problem (2.2.4) does not exceed
1

5.

This convergence factor is consistent with the result obtained by Tu-
minaro [64]. Figure 7.6 illustrates the relation between the convergence factor
|A\p| and the frequency mode index p. It shows that the coarse grid correc-
tion operator of the FDMG method eliminates effectively three modes in the
error: the highest, the lowest and the middle frequency modes. The largest

convergence factor is % and this corresponds to the modes with p =~ % and
PR N
~ 0

7.3.3 Effect of Smoothing

Now we consider the FDMG algorithm with smoothing iterations. We
examine three basic iterative methods defined in Chapter 2, the Jacobi method,
the RB-GS method and the RB-SOR method.

Smoothing by the Red/Black Gauss-Seidel (RBGS) Method

We are interested in investigating the behavior of the FDMG algo-
rithm with RBGS smoothing iterations. First we consider the case with one

red sub-iteration before the coarse grid correction. From (7.3.87) and (4.6.91),




1
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No-Relaxation ~-- <
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o
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Fourier Mode Index

Figure 7.6: Two-Level Convergence Factors of 1D FDMG
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we have
é}(LP) g£+,p) — S —2¢ 1+¢ 0 o
* 1+3¢2 | 1-32 2, ||0 1
(0 1-¢
= 2 % 1. (7.3.97)
143 [ 0 3¢(1-¢2)
The spectral radius of Ch,wS,(f) is given by
3c3(1 — ) 1, 1
(+)y < S\ ") g2 = <. 3
PChu$) < max, e =33) =3 (7.3.98)

This shows that the red sub-iteration does not improve the convergence factor of
the FDMG with the restriction and interpolation operators defined in (7.3.71)
and (7.3.73). We now consider the use of one black sub-iteration before the
coarse grid correction. From (7.3.87) and (4.6.92), we have

cRgen _ G | T% 4 || 10
' 1+3c;2>_1—3c§ 2c, ¢ 0
% | "ell-g) O} (7.3.99)
1+3c2 |1 - 0
The spectral radius of Ch,wS,(l—) is given by
E(l1-¢2) 1, 1
CrawSi) < 2P = f(3) =3 3.
A5 < max HZ = (5) = 5 (7.3.100)

The black sub-iteration improves the convergence factor bound from 1/3 to
1/9. We now examine the FDMG algorithm with both red and black smoothing
sub-iterations. If we perform one red sub-iteration first followed by one black
sub-iteration, from (7.3.87), (4.6.91) and (4.6.92), the w-transform matrix of
the FDMG operator is given by

0 ¢

01

-2, 1+

él(:al Sn}(;—m) 5‘v,£+.p) - Cp
1-3c 2

T 143

1 0
¢ 0
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0 —c3(1-c)
0 —c(1-c)

Cp

Taa . (7.3.101)

By comparing to (7.3.99) and considering (7.3.100), we know that the spectral
radius of Ch,wS,(:)S,(f) is %. If we use the black sub-iteration first, then we have

cWgngen - S | T2 146110 6 )1 10
v 1+3¢ | 1-3¢ 2 0 1{|c 0
[ (1-c2) 0
= 2 a(l-c) 0 (7.3.102)
1+3¢, | 3c2(1—¢c2) ©

It is obvious that the spectral radius of C;,,,US,(;*)S,(:) and Ch oS ,(l_)S',(f) are the

same.

If m > 0 steps of RBGS iteration are used, the spectral radius
C’h,w(S,(f)S,(:))m can also be calculated. From (4.6.92) and (4.6.91), we have

(Sr’(‘-i-.P)S'}(l—»P))m = ( 0 S 10
\ 0 1 ¢ 0
L B A (7.3.103)
| & 0 a&m=1 0

From (7.3.102) and (7.3.103) we have the spectral radius of Ch,w(5£+)5£_))m:

: c™(1-c?)
Cho(SHgymy P P
P(Chw(SyS47)™) s S 7
< Dax fm(2), m > 0. (7.3.104)

Similarly it can be shown that p(Chw(S5"SS™)™) has the same expression as
(7.3.104). Thus we have the following resuit.

Theorem 7.2 The two-level convergence factor of the 1D FDMG algorithm
with m RBGS iterations as the smoothing iteration is bounded by (7.3.104).
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Specifically we have

PCro(SEPSE) < 5
p(Crn(SEVSEN)?) < 0.0515667 (7.3.105)

Smoothing by the Jacobi Method

Since the coarse grid correction in the FDMG algorithm works partic-
ularly well on the modes with p close to 1, N/2, and N, the smoothing iteration
should be chosen to damp the other modes (e.g. p = 2¥). We consider the use
of m steps of simple Jacobi iteration. From (4.4.70) with v = 1, we have

0 o if m is odd
0 m C;‘ O
(B@y™ @l =0 ] (7.3.106)
Cp 0 c™ 0
P if m is even
0 c;‘

From (7.3.87), the w-transform matrix of the 1D FDMG operator
with m Jacobi iterations can be written in the following forms. For m odd we

have
C‘v{?&(é&;))m _ Cp —2CP 1+ c: 0 c;n
' 143 | 1-3¢ 25 || 0
m+1 1 2 -2 ]
= % TG e | (7.3.107)
143 | 2¢, 1-32 |

The eigenvalues of this matrix are complex numbers:

c™t1(1 - 2 -(1-
_ %l -g)x2y—(1 - g)g] (7.3.108)

i 1+ 3¢




The moduli of these two eigenvalues are the same and are given by

62m+2(1 —_ c2)
= | 2P 7.3.109

When m is even, we have

[ -2¢, 1+¢

Ap)  H(P)ym
Ch,w(Bh ) 1+3 1—363 2Cp

¢t -2¢, 1+4¢

P

7.3.110

It is easy to verify that the eigenvalues of this matrix are given by

2m+2(1 — ¢2)
= e N S 1y 3.111
Ap i\l 32 (7.3.111)

In general, we have

2m+2(1 — c2)
1+3c

p(CrwBr) max \J

1<p<¥

= o?f’xgl foms1(z) m > 0. (7.3.112)

Thus we have the following result.

Theorem 7.3 The two-level convergence factors of the 1D FDMG algorithm
with m Jacobi relazations are bounded by the values specified in (7.8.112).

Specifically from Table 7.4, the convergence factors of FDMG with one or two
Jacobi relaxations are respectively

p(ChwBi) < 0.227083
p(Chw(Bn)?) < 0.1821913. (7.3.113)

Smoothing by the Red/Black SOR Method (RBSOR)
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In this section, we are concerned with using the red/black SOR method
(RBSOR) as the smoothing method in the FDMG algorithm. Like the RBGS
method, the RBSOR procedure defined in (3.5.42) can also be partitioned into
two sub-iterations defined by

(L), = { (%((;th)m + (un)j-1) + (1 — w)(un); j = odd, (7.3.114)
un); = even,

(L}‘_)uh).’ - { ?"((;‘h)]i-l + (uh)j"l) + (1 - w)(uh).'l j: = e:;zn’ (7.3.115)
uR); = oad.

for j = 1,...,N — 1. Here the odd-numbered points are red and the even-
numbered points are black. The corresponding w-transform matrices are given
by

. 1-—

Flpw) [ 0“’ wlc” (7.3.116)
and

. 1 0

LEPe) = e, 1—w } (7.3.117)

From (7.3.87) and (7.3.117), the w-transform matrix of the FDMG with one
black SOR sub-iteration can be written in the form
CPfrw) = “% 1+

[ 10
143 [ 1-32 26, ||we 1-w

o | w-2g+we 1-w)1+e)

. (7.3.118)

143 | 1+ @2w-3)2 201-w)g




Table 7.5: Convergence Factors of 1D FDMG SOR vs. w

I we let

R b
C,(:,Z,L(-’p"") = (a(p,w) (P,“’)) _ (7.3.119)

c(p,w) d(p,w)
then the spectral radius of this matrix is
la(p, w) + d(p,w)| + VA

2
(la(p,w) + d(p,w)[? + |A])2
2

ifA>0

p(CE) L=2e)y = (7.3.120)

if A <LO.

where A = (a(p,w) — d(p,w))? + 4b(p,w)c(p,w). We are looking for a w* such
that

(—w) : ()
p(ChwLlt™7) omin, p(Chwl™)

3 A (P) T (—,p,W)
(in, llslzzx% p(Cy,L ) (7.3.121)

We solve this optimization problem numerically. The relationship
among the spectrum of p(éﬁfz,ﬁ("""")), the mode index p and the iteration
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“B-SOR% ===
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Convergence Factors
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0.1
0.05
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Iteration Parameter w
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Fourier Mode Index p 60

Figure 7.7: Two-Level Convergence Factors of 1D FDMG with B-SOR
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parameter w is plotted in Figure 7.7. Table 7.5 lists the two-level convergence
factors of 1D FDMG with one black SOR sub-iteration (p) vs. the corresponding
iteration parameter w. Like the RBGS, the red sub-iteration has little effect
on the performance of the 1D FDMG algorithm.

74 PMG Methods in 1D
7.4.1 The Two-Level PMG Algorithm in 1D

In this section we consider a class of parallel multigrid algorithms
(PMG) for solving the extended problem (7.1.1). In the MCGMG method
one averages the two coarse grid corrections. This is equivalent to what one
would get by using a single grid at each level but with different scale or grid
spacing h; = 2~'. The combined restriction and interpolation operators can be
regarded as smoothing operators on the single grid. In fact, one could consider
more general operators with the PMG methods.

The two-level PMG algorithm for the solution of the extended matrix
problem Aju; = b, starting with an initial guess u{o), is described in Figure 7.8.
As in the MCGMG algorithm, the coarse level problem in step 4 can be solved
by transfering to an even coarser level. This process can be repeated down to
the coarsest level where the problem is solved directly. If more than two levels
are involved, one has a multilevel PMG algorithm.

To show that the MCGMG method with averaging is equivalent to a
PMG method in the two-level case, it is enough to show that the combination
of the restriction operators, the combination of the interpolation operators
and the combination of the coarse grid difference operators in the MCGMG
method are equivalent to the corresponding operators in the PMG method.
This is because that the two coarse grid problems in the MCGMG method are
solved independently.

For solving the 1D extended system (7.1.1) using the PMG method,
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Two-Level Algorithm PMG(A4;, uf,o), br):

. Carry out m; pre smoothing interations to get uj.

. Compute the residual: rp = by, — Apuj,.

3. Carry out one restriction-like smoothing operation, possibly

full weighting:

ran(z) = (Bara)(z) = 3(ra(z — k) + 2ra(z) + ra(z + R)),

or injection ron(z) = (Rurs)(z) = ra(z)

and then purify ry; if needed.

. Solve the correction equation for the 2k scale

Aznbon = Tan

. Carry out one interpolation-like smootlﬁng operation, possibly
linear:

(61)(z) = (Pubar)(z) = 3[b2n(z — k) + 2624(z) + b2a(z + B)),
or injection: (6,)(z) = (Puban)(z) = (621)(z)

and update the solution u} = u}, + 6,

. Carry out m, post smoothing iterations and purify the result,

if needed, to obtain the new solution ug).

Figure 7.8: The PMG Algorithm




the coarse level difference matrix Az is defined by

(A2nuan)(z) = == [2ugn(z) — usn(z — 2k) —ugp(z + 2R)] z € U (7.4.122)

(2h)"’

which can be written in the form

(Ag}t)uzh)(x) = ﬁ[ztﬂh(x) - 'U,gh(l‘ -_ 2h) - U2h(.'c + 2h)] z € Q+ (74123)

and
(AS; 2h uzh)( )= (2h)2 [2ugn(z) — usn(z — 2h) — uan(z + 2h)] z € Q- (7.4.124)

From (7.2.12), (7.2.13), (7.4.123) and (7.4.124), one sees that the coarse grid
difference operator of the PMG method is the same as the combination of the
two coarse grid difference operators of the MCGMG method.

Similarly, the full weighting operator R} of the PMG method defined
in Figure 7.8 is the combination of of the two restriction operators R;ﬁ') and
Rf,-) of the MCGMG method defined in (7.2.8) and (7.2.9). The linear inter-
polation operator P, of the PMG method is the combination of the two coarse
grid interpolation operators P(+) and P ) of the MCGMG method defined
in (7.2.10) and (7.2.11), multiplied by 0.5. As in the MCGMG methods, the
purification of the residual is not needed if the full weighting operator is used
for the restriction-like smoothing. The system on the coarse level can also be
solved by using the two-level PMG algorithm on the coarse level in which case
one has a three-level PMG algorithm. If this process is carried out recursively,
one gets a multilevel PMG algorithm.

Although the PMG method we discussed here seems to be similar
to the MCGMG method, they are two different classes of methods in general.
For instance, with the MCGMG methods one could use different operators
on different coarse grids on a given level, while with the PMG methods one
would normally use the same operator on different coarse grids on a given level.
On the other hand, in the PMG methods, the coarse level operators can use
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any neighboring grid points; while in the MCGMG methods the coarse grid
operators can only use the grid points of the corresponding finer grids. For
example, in the MCGMG methods the restriction of residuals on the 4h grids
one only uses points at the related 2k grids, while in the PMG methods one
could use any points on the 2k level.

7.4.2 Two-Level Convergence Analysis

The w-transform matrices corresponding to the operators AS;), Azh ,
P,E"') and P,E-) are given by

A+2)

Agy = 4}22(2 2cos 2prh),

A("v?) —_—

Agnl = 4h2(2 2cos 2prh), (7.4.125)

B = 1]

&

PP = cl” (7.4.126)
For full weighting restriction operators Rsf) and Rg_), we have

B = [1 o)

RGP = 2{0, 1] (7.4.127)

The Af,’,’,),, is defined in (4.4.63). For the coarse grid correction operator
C). we have

Cia = 1-RRL(AD)TRLAD,

A(+P) p(+:p)
S [ o p(-,p)] Anw 0 B e
haw 0 /ig;,p) R;,_’p) h,w
1 1- \7'| 1 1 -
= I- N (—2"1) * 32 | (7.4128)
o 1 h ¢ 1 |PP| - 1
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Comparing (7.4.128) to (7.2.42), one sees, that in this case, the PMG method
is equivalent to the MCGMG method. If the trivial injection is used instead of
the full weighting operator R}, we have

CI(;’,:)u = P(P) ) ( A(P)) A(P)
1 ¢ c 2| 1 —¢
= J—= ” -1 7.4.129
2[%1 g IO
=0

This means that for the 1D model problem (7.1.1), the coarse grid correction
of the two-level PMG method is exact. This two-level convergence result can
be extended to the multilevel case.

Theorem 7.4 The multilevel PMG method with the injection restriction of
residuals and the linear interpolation of corrections is ezact for the 1D model
problem (7.1.1), if the solution on the coarsest level is exact.

Proof: By induction, the result follows (7.4.129).




Chapter 8

Multiple Coarse Grid Multigrid
Methods in 2D

8.1 Introduction

In this chapter, we extend the discussion of the multiple coarse grid
methods (MCG) to two-dimensional cases. The three classes of MCG methods
described in the previous chapter, namely MCGMG methods, PMG methods
and FDMG methods, are considered here for the two-dimensional extended
system (6.5.41). Again, for convenience, we will divide (6.5.41) by A% to get an

equivalent system

Ahuh = bh. (8.1.1)

8.2 MCGMG Methods in 2D
8.2.1 The Two-Level MCGMG Algorithm in 2D
If we let z; = jh and y; = kh with A = 1/N, the fine grid on the area
(—1,1]? is defined by
O = {(zj,y) | j,k=1-N,...,N}. (8.2.2)

On this fine grid, the four coarse grids can be defined by (5.2.2) which are
illustrated in Figure 8.1 in the case of N = 4.

A two-level MCGMG algorithm in 2D is a straightforward extension
of the corresponding two-level MCGMG algorithm in 1D defined in Figure 7.2.
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Figure 8.1: Coarse Grid Points for a 2D Problem with h = 1/4
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Algorithm: MCGMG2D2L( A, v, by)

. Do m, pre-smoothing iterations using the smoothing iterative method
(e.g. damped Jacobi method) to obtain uj.

. Compute the residual r, = b, — Apu}, restrict the residual onto each
of the four coarse grids and perform purification defined in (6.4.24) if

necessary to obtain
. 7'(71) — P(R(s)r zgh)) s=4+,—+,+—,—, (8.2.3)

where z( ) is the eigenvector in the null space of A

. Solve the coarse grid systems
A(’)ﬁ(h = rg;l), s=4+,—+,+—, —, (8.2.4)

for 52;;(’) .

. Purify 5; and interpolate the purified corrections 5%}; onto the fine grid
to obtain the new approximate solution

&9 =PEF, D), s =++,- + +-,——, (8.2.5)
uh = uh + - Z (3)6;;). (8.2-6)

. Do m, post-smoothing iterations using the smoothing iterative method
to obtain and return ug).

Figure 8.2: The 2D Two-Level MCGMG Algorithm
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For a problem Ajuj, = b, with a given initial guess u}f’), a two-level MCGMG
algorithm in 2D is given in Figure 8.2.

A specific version of the MCGMG algorithm is determined by the
selection of operators R( % P(’) and A§73 In the following analysis, we assume
that the full weighting restriction of residuals defined in (5.2.3) and a simple
injection mapping of corrections éx(z,y) = éan(x,y) are used. This choice of
the restriction operators and the interpolation operators is equivalent to that
using the injection restriction operators and the linear interpolation operators
with an averaging factor of 1/4. The coarse grid difference operators are defined

by the 5-point difference formula on the corresponding coarse grids

(ARE)(2,9) = (Qh) (2 +20)85) (=, ) ~ o833z — 2h,9)

~adyi)(z + 2h,y) = 8332,y — 2h) — 83)(z,y + 20)]
(z,y) € Qs (8.2.7)
8 = ++’ _+’ +"", -
For smoothing iteration, we use the Jacobi method or the SOR method in
red/black ordering.

As in the one dimensional case, if the coarse grid linear systems them-
selves (8.2.4) are solved using the two-level MCGMG algorithm

8% = MCGMG2D(AY), 0,7y, (8.2.8)

one gets a three-level two-dimensional MCGMG algorithm. This process can
be done recursively and one gets a multilevel 2D MCGMG algorithm.

8.2.2 Two-Level Convergence Analysis

For p,g = 1 - N,...,N, let v(»® be the two dimensional Fourier
modes (v-basis vectors) defined by

(vi")ix = exp(imh(pj +qk)), j,k=1=N,...,N. (8.2.9)
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The four-color Fourier modes (the w-basis vectors) w{*”?, corresponding to

the four coarse grids s = ++,—+,+—, ——, are defined by

(p$9) s
(s:0,9) ()i if(z5,u0) €
w ik = 8.2.10
(o™i { 0 otherwise ( )
j,k=1—-N,...,N
(8.2.11)

for pg=1-N/2,...,N/2.

We first consider the coarse grid correction operator Cj. As in the
discussion of the 1D case, the coarse grid correction operator can be written in
the form (referring to (7.2.18))

Ch=1-3_ POANIRY A, (8.2.12)

We note that there is no factor 1/4 before the combination of the coarse grid
corrections because the simple injection mapping of corrections is used. For
p,g =1—-N/f2,...,N/2 and (p,q) # (0,0), the w-transform matrices of the
operators on the basis

E‘(:),q) - (w§1++,p.q)’w}(l-+.p,q)’ w§‘+_"""),w£°_”’"')) (8.2.13)

are given by

A}.E,(f’q) = E‘(gw)Ag’g), (8.2.14)
RO E®D = 20 flera) (8.2.15)
Ag;;)wg"pﬂ) = wﬁ’vpfq)ja;;;zf)’ (8.2-16)

P’Sa) wgim»q) = Er) P}S;g"‘l)’ (8.2.17)
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where s = ++,—+,+—, ——. The w-transform matrix of the coarse grid cor-
rection operator can be written in the form

C',‘,f’,"‘,’) = I-%,P (s,p.q)( A(s,p.q)) -1 Rgs,;x;,q) A;m)

. (8.2.18)
= I-PED(ARD) T RIDAYYD
where for the selected operators we have
F e bpa) ] . ;
RS; P4) 1 6 ¢ 6
Rlra) _ R;;:’ o) _lt e 1 aq g (8.2.19)
haow T A (+—p, - N o
RE™ | 4 e g 1 o
LB ) e @ 6 1)
[ Ag-}l;hp,q) ]
W
n A(—+'pYQ)
A£‘,’;§,’, i A(+-p0)
A2h,w
i Ag;’—wmﬂ) ]
1
= ml+a—ag -, (8.2.20)
i)'f,p;;?) - [ P}g:ﬂ"‘:}’ﬂ) P}E:ﬂ"'vp'Q) p'f:'”-vp'Q) ﬁ}s;’_spﬂ) ] — I (8.2.21)

where ¢, and ¢, are cos prh and cos g7k respectively. A(p ) is given in (5.4.35).

The w-transform matrix of the coarse grid correction operator can then be
calculated using (8.2.18) to (8.2.21) and (5.4.35):
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é(poQ) = I_
how l+ta—acd—ci4| ¢, ce, 1 o
[ &C 6 & 1]
[ 1+a —ac, —C 0 |
2| —acp 14+a 0 —Cq
h? —¢q 0 l4+a —ag
| 0 —-c; —ac l+a ]
[ om ons O]
(om0 (8.2.22)
23 0 m 72
| 0 73 72 m
where
h = %a
= cp(1—cy)
N = “m (8.2.23)

__acg(1-c3)
2(a+1-aci—c2) r

73

From (8.2.2), (5.4.49) and (5.4.50), the corresponding v-transform matrix is

[+ 12+ 73 0 0 0
cird = 0 T s 0 0 (8.2.24)
' 0 0 7 +n2—173 0
] 0 0 0 m=—12—93 ]

Here we see that the aliasing errors caused by each of the coarse grids are

eliminated.
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We now consider the two-level multigrid operator given by
T, = Gy ChGy? (8.2.25)

where G}, is the smoothing operator. If we let G,‘},’*” be the w-transform matrix
of the smoothing iteration operator, the two-level convergence factor of the

MCGMG algorithm can be calculated by

— A(Pv?)
P = | max o oD
= max__ p[(GEDmCEGED ™). (8.2:26)

1 -N/ZSPonSle

Suppose the damped Jacobi method is used for smoothing iterations.
The damped Jacobi operator is defined by

vh?

=l siva

Ap (8.2.27)

and the corresponding w-transform matrix is given by

o Rz .
Brpo) — 7 It ja)
v 31+ a)

From (5.4.35), we have

K i el

, C(m) (m)  p(m)  +(m)

(B&Pahym = | 2 1 4 3

7w (m) p(m) pm) o (m)

3 4 1 2

(m) s(m)  (m) (m)
| $4 3 2 1

where

(l(m) = %[(”(P,q))m + (ﬂ(P—N,q))m + (”(qu-N))m + (”(P-N,Q'-N))m],
Cz(vm) - % [(u(p,q))m —( ”(p—N,q))m +( u(p.q—N))m - (”(P-N,q-N))m],

(:gm) — % [( ﬂ(p,q))m + ( ”(p—N,q))m _ ( ll(”’q'N))"‘ — ( p(P—N,Q-N))m],
‘ Cim) — _}[(”(p,q))m _ (u(p-Nﬂ))m — (”(P'q-N))m + (F(P-N,q—N))m]
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and

“(Pﬂ) —_ 1 - + 7a:p++ cq (8.2.31)

If we let m = m; + mg, it can be verified by calculation that

(B CRD(BEm™ = CLI(BEo

v
[ K':(lm) K’gm) ngm) ngm) h
K ™) el o)
= (m)  (m)  (m) (m) ' (8.2.32)
’csm Ky Ky K2
BRG]
where
( m
)= ™ 4 o™ + ma$™,
(m) - (m) (m) (m)
: 7267 +7hC +773C (8.2.39)

=1n3 C + 771 C(m),
{ k™ = alt™ + naS™ + ™.

The convergence factor of the two-level MCGMG algorithm with Ja-
cobi smoothing iterations can be then calculated by

— (m) (p.g)ym
p(Th) 1— N/2<p,q,<N/2 [ (B-y,w ) ] (8234)
Table 8.1 lists values of p(7}). Here the number of smoothing it-
erations m = 1 and the number of grid points N = 64. It shows that at
extrapolation factor ¥ = 0.66, p(T1) reaches a minimum of 0.319.

Table 8.2 shows the relationship between the convergence factor and
the coefficient a. One sees the deterioration of the convergence in anisotropic

cases. We will discuss this issue in the next chapter.

In the case of using the Red/Black SOR iterative method defined
in (3.5.42) for smoothing, the w-transform matrices corresponding to the red
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Table 8.1: Convergence Factors of MCGMG-Jacobi vs. 4 (a = 1)

g P

! 0.50 0.4763

0.60 0.3771

0.65 0.3276

0.66 0.3190

0.67 0.3390

0.70 0.3989
I 0.75 0.4988 I
l 1.00 0.9982

Table 8.2: Convergence Factor of MCGMG-Jacobi vs. o (7. = 0.66)

p |

«
0.00001 or 100000 |  0.998623
0.00010 or 10000, 0.998414
0.00100 or 1000.0 0.996334
0.01000 or 100,00 0.980861
0.10000 or 10.000 0.863659
1 0.319042
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sub-iteration (the first formula in (3.5.42)) and to the black sub-iteration (the
second formula in (3.5.42)) are given by

(1-w & & O
0 1 0 0

Sewa) = (8.2.35)
0 01 0

0 & & 1-w ]

and
(1 0 0 0]
gora_ | G2 1m0 G (8.2.36)
& 0 1-w &
0 0 0 1 |
respectively, where
_ wac,
&2=7 . (8.2.37)
and
_ weg
=7 Ta (8.2.38)

If the black unknowns are updated first followed by the red ones, we have

& (1w (1-w) b ]

son = geagoen o | & 1m0 0B oo
63 0 l—-w 62
| 66 (1-w)es (1 wia & |
Otherwise, we have
l-w & & 0
§lroa) = §bra) §rpa) — (I-wa & && (1-w)s (8.2.40)
0 63 52 l-w
| (1-w)s L& & (1-w)le |




126

where
LLi=1-w+E 46 (8.2.41)

From (8.2.2), (8.2.39) and (8.2.40), one obtains the w-transform ma-
trix of the two-level MCGMG algorithm using SOR smoothing with red/black

or black/red ordering

] Br 12 73 B ]
Tlsrub;prQ) = é}sﬂf)gg’hpﬂ) — ﬂ2 71 74 ﬂ3 (8.2.42)
Bs 14 m B :
| Bs 13 72 B
and
[ B! B2 Ba Ya ]
Trea) = GEDgGran - | 72 P Pa (8.2.43)
3 Bs B T2
| Y4 B3 B2

where

(

B = mé+ 026+l

B2 = mé+ b + 03265

Bz = més+n2els + 13l

< Ba = méaéa+mba+nb (8.2.44)
1 = (1-w)(m+n2ée + n3és)

2 = (1-w)(mé+n)

13 = (1-w)(més+ns)

Y = (1 —w)(n26s+n3é2)

\

and 7y, 7, and 73 are defined in (8.2.23). Therefore we have the following

lemmma.




Table 8.3: Convergence Factor of MCGMG-SOR vs. w (o = 1)

w P
0.50 0.4795
0.70 0.2828
0.90 0.0900
0.92 0.0712
0.94 0.0795
1.00 0.1240
1.20 0.2788
1.50 0.5288

Lemma 8.1 The matrices T,E;f,’p’q) (8.2.42) and T0P9) (8.2.43) have the same

eigenvalue set.

Proof: It is easy to see that there is a permutation relation between the
matrices T,S:f,’p ) and T,S?,:p ), This means that the matrix T,S,’b"’ ) is similar to

w
the matrix T,Sb;’p 9),

We notice that the nonzero eigenvalues of the matrix T,s:z’p 9 when

w = 1, can be written as
A= p £ B (8.2.45)

In the case of N = 64, we use a numeric_a.l procedure to compute the convergence
factor defined by

— #(br,p.q)
P = ymax_ o pTh")e (8.2.46)

Table 8.3 lists the convergence factors of the MCGMG with the SOR
smoothing iteration with red/black ordering for different values of w. The con-
vergence factor is about 0.0712, when w is 0.92. Table 8.4 lists the convergence
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Table 8.4: Convergence Factor of MCGMG-SOR vs. a (w, = 0.92)

a p
0.001 0.9942
0.010 0.9644
0.100 0.7492
1.000 0.0712
10.00 0.7492
100.0 0.9644
1000. 0.9942

factors in anisotropic cases. Here again, the performance of the algorithm

deteriorates in the cases where a # 1.

8.2.3 Numerical Results

We used the multilevel 2D MCGMG algorithm corresponding to the
two-level algorithm defined in Figure 8.2 to solve the extended system of the
test problem (5.5.51). In the algorithm we used linear interpolation of correc-
tions, full weighting restriction of residuals and the damped Jacobi smoothing

iterations.

Table 8.5 shows the convergence factors of the MCGMG algorithm
for the case with the grid size N = 64. We use a six-level scheme which
is the maximum number of levels allowed (26 = 64) in this case; (26 = 64)
in this case. 4 are the extrapolation factors of the damped Jacobi method,
m, and m, are the number of pre-smoothing and post-smoothing iterations
respectively. The convergence factors are the average values of 5 multigrid
cycles. Comparing to the theoretical results in Table 8.1, one sees that the
numerical convergence factors are below the theoretical upper bounds. From




Table 8.5: Numerical Convergence Factors of 6-level 2D MCGMG-J

v (m1,ma)

(0,1) (1,1) (1,2)
0.5 244 141 114
0.6 .190 125 102
0.7 154 .116 .093
0.8 .146 .108 .085
0.9 .188 129 .094
1.0 241 .206 .186

Table 5.3, one also sees that the MCGMG methods converges much faster than -
the correponding standard multigrid methods.

8.3 FDMG Methods in 2D
8.3.1 The Two-Level FDMG Algorithm in 2D

As in the 1D cases, the procedure of the 2D FDMG algorithm is
the same as that of the 2D MCGMG algorithm defined in Figure 8.2. In the
FDMG algorithm, different restriction and interplolation operators are used
on different coarse grids. The restriction operators, corresponding to the four
coarse grids 2,4, fo,.), QS_E_’? and Q.(f,_) respectively, are defined by

ran(z,9) = (R{Pr)(z,y)
= i(ra(z—h,y+h) +2ru(z,y + R) + ra(c + b,y + k)
+ 2rp(z — h,y) +4ru(z,y) + 2ri(z + b, y) (8.3.47)
+ ra(z—h,y—h)+2rp(z,y — k) + ra(z + h,y — h))

($,y) € Q++'




ran(z,9) = (ROm)(,9)
L—ru(z — b,y + k) + 2ra(z,y + h) — ra(z + h,y + R)
2ry(z — h,y) + 4ra(z,y) — 2ra(z + R, y) (8.3.48)
ro(z — h,y — k) + 2rp(z,y — h) —ra(z + R,y — R))
(z,y) € Q_4.

ran(z,y) = (B7m)(9)
Y~ru(z — h,y + k) — 2ra(z,y + k) = ri(z + h,y + )
2rn(z — h,y) + 4ra(z,y) + 2ra(z + R, y) (8.3.49)
ro(z — h,y — ) — 2rp(z,y — k) — ri(z + b,y — R))
(z,y) € Q4.

ran(e,y) = (B Om)(,9)
rn(z = hyy + h) = 2rp(z,y + R) +ra(z + R,y + 1)
2rp(z — h,y) + 4ra(z,y) — 2ra(z + R, y) (8.3.50)
r(z — h,y — h) = 2rp(z,y — h) + ra(z + h,y — k)
(z,y) € Q__.

The four corresponding interpolation operators are defined by

6h(xa y) = (Pi£++)62h)(m, y)

4

ban(z,y) : (2,y) € Qs

_21_(52,,(3,,- — h,y) + (e + b, y)) (2,9) € Qs (8.3.51)

1
'2"(5211(37,?/ - h) + 52[;(37, y+ h)) ((C, y) € Q+—

1
7(8n(z — B,y — B) + &an(z — b,y + B)

+62h($ +h,y— h) + 52};(1? +h,y+ h)) (m’ y) €N__.
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8n(z,y) = (P 6)(2,y)

4

ban(z, y) (z,y) € Q-4
-1
— —h ) h, ,y) € Q
12 (82n(z — R, y) + ban(z + 1, y)) (z,y) € Q44 (8.3.52)
= La(z.y— )+ e,y + ) (@,9) € O
T (Em(e = by =)+ bar(z = by +B)
k +6n(z + hyy—h)+ baun(z+ R,y + k) (z,y) € Qpe.
8n(z,y) = (P ém) (2, )
ban(z,y) (z,y) € Qy-
1
—(é. —h,y)+ ban(z+ A, z,y) € Q__
?_(1 2h(Z — hyy) + San( ‘y)) (z,9) (8.3.59)
=\ 5 6an(z,y— k) +bm(z,y + 1)) (2,9) € Qs
-1
T(tszh(x —h,y— h) + 52h($ —h,y+ h)
{ +62h(37 + h,y - h) + 52h($ + hay + h)) (.’12, y) € Q—+'
8u(z,y) = (P 8m)(z, )
52h($’y) (xay) €0
-1
—(ban(z — h,y) + bap(z + A, z,y) € Q4
—21( 24 ( y) + 6an( y)) (z,9) + (8.3.54)
= 4 —é—(&?h(w’y - h) + 62’1(1"’?/ + h)) (a:,y) € Q—+
) _
Z(&zh(iv -_ h, Yy — h) + 62);(.77 - h, Y + h)
i +ban(x + by — h) + ban(z + A,y + b)) (z,y) € Dyq.

If the operators are written in matrix form, it can be shown that

P’Es) _ (R;:))T s=4+,—+,+—,——. (8355)
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The operators of the coarse grid systems are constructed by

A = ROAPY  s= 44—t -~ (8.3.56)

This completes the description of the 2D FDMG algorithm.

If more than two levels are involved, each 2k coarse grid can be can-
sidered a fine grid for the 4k level and thus has four 4h coarse grids related to
it. The 2h restriction operators can then be defined similarly with k replaced

by 2h.

8.3.2 Two-Level Convergence Analysis

For simplicity, we use the index numbers 1,2,3, and 4 to represent
++, —+, +—, and —— respectively. The w-transform matrices of the restriction
operators Rg’), P,E’) and Ag‘? can be written in the forms of (8.2.19), (8.2.21),
and (5.4.35) respectively. Thus for the restriction operator we have

R0 R ]
poo _ | BV | B
v | e | T A
LB LR
(1 6 o o)
DA S T (8.3.57)
—Cqg —CpCy 1 Cp
| & —¢  —¢ 1]

where ¢, = cos prh and ¢, = cos gmrh. The w-transform matrix of the interpo-

lation operator is given by

P}Sﬁ;@) - [ P}E,I.Lp'q) 13}5,2:,4) péi;p,q) 13;5:},?’” ] = ( R}(‘:g)):r

(8.3.58)




133

The w-transform matrix of the coarse grid operator is given by

ay

A9 = (8.3.59)

2haw = .

where

~ _ ape) _ p(1pag) 4(p.9) H(Lpsg)
- A2h,w - Rh,w Ah,w Ph,w

an
= 2(1l+a+(1l-a)d+(a=1);
~(1 + a)cicd)
o = A0 = REOAGIPED
= Z(1l+a+(1+3a)d +(a—1)
B 1) (8.3.60)
Gz = A(&pa) R(3,z>,q) A(zm) P(3.p,q)
= 2Ql+a+(1-a)+(3+a);
+(3a — 1)cic?
G4 = A(%zm) R(4,z>,q) A(m) P(4,p,9)

= F(1+a+(14+3a)c+(3+a)?
+3(1 + a)cic?).

The w-transform matrix of the coarse grid correction operator is then given by

C(m) I—- P(r.a)( A§’,’;‘L’, -1 R(p,q) A(M) (8.3.61)

We can make a similarity transformation by multiplying P(p ) to the right side
of the CA’,(I”'j) and (P,Sf:f))'l to the left side, and we have

C(P’q) (P(pvq))—lc(pyq) (P)Q) — I — (Ag%z)—lkgfﬁ)ﬁg}::g)ﬁ}sﬁ;q)' (8.3.62)
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If we let

A(p,q) R(p,q) A(p.q) p(p,q)

(8.3.63)

then from (8.3.59), the matrix Ag’,’;ﬂ is the main diagonal part of the matrix

ﬁ;f: ,’Z). Therefore we have the following lemma.

Lemma 8.2 The coarse grid correction of the FDMG algorithm is equivalent
to a block Jacobi iteration applied to the matriz A = RpALP.

Proof: From (8.3.62), we know that C'(p 49) js similar to applying a Jacobi
iteration to Ag"’ ;3). Since all subspaces E(P"I) are the invariant subspace w.r.t.
Ch, the conclusion follows.

g

If matrix is a diagonal matrix, the coarse grid correction is

exact. In order to obtain the spectral number of C,Spj), we rewrite (8.3.61) in
the form
C(p,q) = I — Diag( Aﬁp,q))—l Agp,q)
&1'11 0 0 0 ] 0 —dy2 —di3 —ayy
0 @ 0 0 [[—Gn 0 —&s —a
= o n BT (8.3.64)
0 0 a§3 O —&31 —&32 0 —&34
| 0 0 0 &z || —Ga —Gsp —dsm O
- o o )
0 _a21a111 —a31a111 0
| —amaz 0 0  —@may
—dmdzl 0 0 —dynaz
|0 —dmag; —dgdgy 0 |
where &;; = R(J'p ’Q)A(p ’q)P(k’p 9 for 5,k =1,2,3,4. The spectral radius of the

matrix C, (',’,f) is given by

p( C(pﬁ))

|b+ VIE— 4ot
3

(8.3.65)




Table 8.6: Convergence Factor of FDMG Without Smoothing vs.

h P
% 0.329036
1‘16 0.332694
-335 0.333326
é 0.333247
T%‘é 0.333313
where
1 1
b=&§1(~ R >+&§1(- — + — )>0 (8.3.66)
aiaz2 G22G44 a11033 433044
and
=2 _ ~23\2
o= ) (8.3.67)

11822033044
The convergence factor of the coarse grid correction of the FDMG is bounded

by

p(Ch) < max _p(CED). (8.3.68)
I_T_Prqg_z—

Table 8.6 gives the upper bound of the convergence factor (p) for
different mesh sizes (k). Table 8.7 shows that this bound remains valid in
anisotropic cases. The convergence factor as a function of the Fourier modes
is plotted in Figure 8.3.

We first consider using the damped Jacobi method for smoothing

iterations. The w-transform matrix of the two level FDMG operator is given

by

T}Sz;q) - C‘,ﬁ{’;ﬁ’) B@9 (8.3.69)
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Table 8.7: Convergence Factor of FDMG Without Smoothing vs. a

a P
104 0.333326
10-3 0.333326
10-2 ‘ 0.333326
107! 0.333326

10° 0.333326
10*? 0.333326
10%2 0.333326
10%3 0.333326
10+ 0.333326

Abs (lambda)

0.3
0.25
0.2
0.15
0.1
0.05

Fourier mode gq

Fourier mode p 30

Figure 8.3: Convergence Factor of FDMG with no Smoothing vs. Fourier Mode
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where C(p 9 is given in (8.3.61) and B(""’) is given by

(b by by O
b 0
BEA) =1— ,,D—(”) AFD = b & bs (8.3.70)
by 0 b b,
| 0 b3 by b |
where
bl = 1—7’
b, = A‘,"‘lc_"’_szp, (8.3.71)
cos b,
b3 = ’)’1+a.

From (5.4.42) and (8.3.69), the two-level convergence factor can be
calculated. Table 8.8 lists the convergence factors with the different values of
~. Table 8.9 lists the convergence factors with different values of anisotropy
parameter a. Figure 8.4 illustrates the convergence factor vs. the Fourier

modes with the optimal v for the Poisson equation (a = 1).

We now consider using the red/black SOR method for smoothing
iterations. The w-transform matrix of the two-level operator is given by

T(M) C(M) S(rbipa) (8.3.72)

where C(p ) js defined in (8.3.61) and S(*#9) is defined in (8.2.39).

Table 8.10 lists the convergence factors of the two-level FDMG vs. w.
Table 8.11 lists the convergence factors vs. the anisotropic parameter a. The
optimal value of w (to make p(T},) minimum) is around 1.2. The distribution

of the convergence factor of the two-level FDMG algorithm on the Fourier
mode domain is shown in Figure 8.5. With the grid size 64 x 64, the two-grid
convergence rate of the FDMG with one RB-SOR iteration as a smoother is
about 0.1126 at a = 1.
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Table 8.8: Convergence Factors for FDMG-Jacobi vs. v (a = 1)

7 p
0.50 0.2741
0.70 0.2481
1.00 0.2047
1.20 0.1716
1.23 0.1666
1.30 0.1910
1.50 0.2713

Table 8.9: Convergence Factor of FDMG-Jacobi vs. a (y. = 1.23)

[« p
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N

N
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0.4, N,

; N NN

0.1F \ \\\\\\\\ \'.s&‘\\
0.05 A\

NN \\
K 5
\‘.‘

T

Fourier mode p 30

Figure 8.4: Convergence Factor of FDMG-Jacobi vs. Fourier Mode

Table 8.10: Convergence Factor of FDMG-SOR vs. w (a =1)

w B )
0.50 0.2670
0.70 0.2336
0.90 0.1940
1.00 0.1704
1.10 0.1437
1.20 0.1130
1.21 0.1126
I 1.30 0.1308
I 1.50 01772
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Table 8.11: Convergence Factor of FDMG-SOR vs. a (w. = 1.21)

o p
0.0001 0.1410
0.0010 0.1431
0.0100 0.2867
0.1000 0.2884
1.0000 0.1126
10.000 0.2884
100.00 0.2867
1000.0 0.1431
10000. 0.1410

RN

0.1

) ,,,;és‘é‘\\\"\‘;i\\\\\*\{\\
L
““\\‘\“\\\\\‘\: \

Fourier mode p 30

Figure 8.5: Convergence Factor of FDMG-SOR vs. Fourier Mode
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Comparing the convergence factors of FDMG method with and with-
out smoothing, one sees that both the Jacobi iteration and the SOR iteration
provide much improvement for the convergence rate in some value ranges of o
but have little effect in others.

8.4 PMG Methods in 2D
8.4.1 The Two-Level PMG Algorithm in 2D

A two-dimensional PMG algorithm is a straighforward extension of
the one-dimensional PMG algorithm defined in Figure 7.8. The only difference
is that all the operators in a two dimensional PMG method are defined on
a single two-dimensional grid. Therefore, the 1D PMG algorithm defined in
Figure 7.8 can also represent a 2D PMG algorithm with the operators Ry, P,
and Aj, replaced by corresponding 2D operators.

For the following analysis, we assume that the restriction-like smooth-
ing operator is defined by

1
(Rrér)(z,y) = E(ﬁh(z —h,y+h)+26u(z,y+ h)+ bp(z+ h,y+h)

+26h(z - h9 y) + 46h($, y) + 26};(37 + h, y)
f*'&h(z - h,y - h) + 25};(1’,3{ - h) + 6h($ + h7y - h))
(z,9) € (8.4.73)

and the interpolation-like smoothing operator is defined by

(Pub2n)(2,y) = b2n(z,y). (8.4.74)

For problem (8.1.1), coarse level finite-difference operator A, is defined by
(8.2.7) but on the same grid ;. We will use the 2D Jacobi method defined in
(8.2.27) for smoothing iterations.

8.4.2 Two-Level Convergence Analysis

All the operators in the PMG algorithm we selected are defined on
a single grid. Each of these operators, when being applied to a Fourier mode,
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will reduce to a scalar function multiplied by the Fourier mode. Therefore,
the standard Fourier analysis of the PMG methods becomes particularly con-

venient.

We denote by A, 4(K) the scalar function of the operator K associated
with the Fourier mode v,(,p'q) (8.2.9). It can be shown that

Aoo(Ar) =207 % (a+1—ac, — ¢) (8.4.75)

/\p,q(Azh) = 2(2h)"2(a + 1-—- QacCzp — ng)
h*a+1-ac —cl) (8.4.76)

1
Apa(Br) = Z(l + 6+ ¢ + 6y) (8.4.77)

where ¢, = cosprh. Since the operator R, is the identity operator, the two-
level coarse grid correction operator can be written in the form

C, = I — R Al A, (8.4.78)
and we have

Aa(Ci) =1 — /\p,q(Rh)%a. (8.4.79)

Here A}, denotes the Moore-Penrose inverse of Az;. We note that Ao o(Ch) is
not defined. However, A, 4(C1) can be treated as a function g, (a,d) of a = ¢,
and b = ¢,. Since Fourier mode v,(,o’o) has been removed from the purified
solutions, one can redefine Ao o(Chr) by

AQ’Q(C},) = lim AC;, (a, b) (8480)

a—1

b—-1
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For the Jacobi iteration operator (8.2.27) we have

Ava(By) = T 919 T 2 Apia(An). (8-4-81)
Since the two-level PMG operator is given by
Ty = (B,)™Ch (8.4.82)

where m = m; + mg, the two-level convergence factor of the PMG algorithm

is bounded by

p(Th) = l_N<pq<NIAp,q(B‘Y)’\P:Q(Ch)I

dpa(An)
o PT(B) (L = Do P TETES) (8.4.83)

By numerical calculation, the convergence factors p(T3) of the 2D PMG method
are the same as those listed in Tables 7.1 and 7.2. This is because the con-
figuration of our two-level PMG algorithm is equivalent to the corresponding
two-level MCGMG algorithm.

8.4.3 Multilevel Convergence Analysis

We now consider the multilevel PMG algorithm in 2D. We recall that
the two-level PMG operator on level L is given by

TL = SLCL
= Sp(I - RLAL_,AL), (8.4.84)

where Sp is a smoothing operator. In the multilevel PMG algorithm, the
system on level L — 1 is solved by applying the multilevel PMG algorithm on
level L—1. Let M and My _, be operators corresponding to a multilevel PMG
cycle on levels L and L — 1 respectively. On level L — 1, if the system

AL—luL-—l = bL_.1 (8.4.85)
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is solved by applying one multilevel PMG cycle with the initial guess ug)ll =0,

then we have

ugll"“'ﬁL—l = egll
= ML-legll

= ML—1(U§?11 —Ug-1)

= —Mp_iiip
= —Mp_,Al_,br_,. (8.4.86)

In other words, applying one multilevel PMG cycle is equivalent to using
(I — My_,A}_,) to approximate Al_,. Here we assume (8.4.85) is consistent.
Therefore, replacing A}_, by (I — Mz_,A}_,) in (8.4.84) we have

My = Sp(I — Rp(I — Mp_y)AL_,AL). (8.4.87)

If we assume that all the operators in (8.4.87) are commutative, then
we have the following recursive relations:

My = Sp(J-Ry(I-Mp_,)A}_ AL
= Sp(I—-RpAL_ AL(I — Mp_,))
= Sp(I- RLA}_JAL)+ SLRiAL LA My,
= Tp+(Sp—T)Mp_, (8.4.88)

In general, we have
M =T+ (51— T))M,_,. (8.4.89)

In the case of A = 2L, there are at most L -+ 1 levels. Suppose we
use L +1 levels in the PMG algorithm. We denote by A;u; = b; a linear system
on level ! with grid spacing or scale iy =2, 1 =0,..., L.

For the class of model problems considered, the use of the Moore-

Penrose solution is equivalent to defining

Doo( M) =1 (8.4.90)
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(see Frederickson and McBryan [31]). Here Ago(M;) is the scalar function of
the operator M; associated with the Fourier mode v,(zo’o) defined in (8.2.9). Thus

we have
Lemma 8.3 Let
p(M)) = max _|Aqo(M)l

1-N<pa<N

For any 1 € {1,..., L}, the multilevel PMG operator M; satisfies

p(Mi—1) < p(M,)

Proof: First, we show that
A2p2g(Mi) = Ap,g(Mi-1).

We note that

cos(2prh) = cos(pw2h),
cos(2gmh) = cos(qn2h).

For I = 2 we have, from (8.4.89),

A2p20(M1) = A2p29(T1) + [A2p,24(51) — Azp,20(T1)] A2p,24(Mo)
Since

A2p2¢(Mo) = doo(Mp) =1

the relation (8.4.96) reduces to

A2p,2¢(M1) = A2p,24(81) = Apg(S0) = Ap,q(Mo)

(8.4.91)

(8.4.92)

(8.4.93)

(8.4.94)
(8.4.95)

(8.4.96)

(8.4.97)

(8.4.98)




Now assume that relation (8.4.93) holds for M;_;. Then we have

)‘2P,2q(M1) = ’\2p,2q(Tl) + [’\217'29(51) - ’\2p,2q(Tl)]’\2p,2q(Ml-1)
)‘p,q(Tl—l) + {’\p,q(Sl-l) - ’\p,q(ﬂ—l)]’\p,q(Ml-2)
/\p,q(Mz_l). (8.4.99)

Thus, we have

g (Mic1)] = |Aap 2o (M) < p(M). (8.4.100)

for p,g=1—N,...,N and therefore, relation (8.4.92) is proved.

We now give an upper bound of the convergence factor of the multi-
level PMG algorithm.

Theorem 8.1 Let

max [Apa(TL)I
1-N<p,a<N 1 — |Ap,g(SL) — Apo(TL)|

(8.4.101)

o1 =

p(M) = max  [Aoo(Mi)| < o (8.4.102)

holds on level 1, then we have

p(ML) < 0. (8.4.103)

Proof: The proof is based on the fact that (8.4.101) is valid for all the levels.
In fact, since
Apa(Tie1) = Agp20(Th), (8.4.104)
Ap,a(Si-1) A2p,2(51), (8.4.105)




147

we have
_ l/\p,q(TL)l
a1 = I-J\I}I_IS%?;SN 1-— IAp,q(SL) - AP»Q(TL)I
> [Ap,a(T1)] (8.4.106)

= 1-NGasN 1= Phpg(8) = Apa (DI
Now assume that p(M;_;) < o, holds. For level [ we have

Poa(MD)l = [Apa(T1) + (Apa(St — Ap,o(T2)) Ao, (Mi-1)]|
< Pa(T) + [Apo(Si) = XH(Ti) p(Mi-1)
< (1= q(S1) = Apa(TD) )01 + [Ap,g(S1) = Apg(Ti)|on
01. (8.4.107)

A sharper upper bound on the convergence factor of the multilevel
PMG algorithms can be obtained by using information on more than two levels.
Let

’\p,q(Fl) = )‘p,q(sl) - Ap.q(Tl)- (8-4-108)

We define

{
)‘;(:,I:l)(Fl) = ’\p,q(Fl))‘p.q(Fl—l) ce ’\p,q(FI—V) = H ’\p,q(Ei) (8-4-109)

I=l-v
and

’\S:;H)(ﬂ) = ’\p,q(Tl) + ’\p,q(Fl)’\p,q(Tl-l) + ’\p,q(Fl)’\p.q(Fl-1)’\p,q(TI—2)
+...+ ’\p,q(F})’\p,q(Fl—l) e ’\p,q(Fl—uH)/\p,q(-ﬂ—V)

= (1) + 2 A F)rpo(Ti-5) (8.4.110)

J=1

We now have the following theorem.

Theorem 8.2 Let

A
o, = max -—l——’l’-"((TL—)‘ (8.4.111)
1-N<pg<N ] I/\pfg(FL)]
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where v > 1. If
p(M) Lo, (8.4.112)
holds on one of the levels, then we have

p(ML) <o, (8.4.113)

Proof: Suppose that p(M;_;) < 0,. For level I we have

Poa(M)| = PENT) + A (EAD(Mi2,)]
PEAT) + PEED (AL (Mi-)

<
< (1= AYE)o, + XD (EF)lo,
= o0, (8.4.114)

Here we use the property that the inequality (8.4.111) is valid for any ! =
v,...,L. From Lemma 8.3 and repeatedly applying the result of the proof to
level ! + v and so on, we obtain that p(ML) < o,.

Theorem 8.1 is a special case of Theorem 8.2 with v = 1. When v > 1,
the upper convergence bound o, will be sharper than ;. The assumption
p(M;_;) < o, is not a major restriction, since an PMG algorithm usually
works more effectively on a coarse level than on a fine level.

Table 8.12 lists the upper bound of the multilevel convergence factors
o, defined in (8.4.111) for the model problem (2.3.8) with a = 1. The val-
ues are obtained by using grid size N = 64, and performing one Jacobi post
smoothing iteration and no pre-smoothing. The result shows that the multi-
level convergence bounds o, are very close to the two-level convergence bound

p. In other words, the two-level convergence bound is a good estimate for the

multilevel convergence bound.
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Table 8.12: Multilevel Convergence Factors for PMG-Jacobi vs. v (a = 1)

v

51

o2

O3

04

Os

.50

4992

.4980

4977

4924

4798

4762

.60

4536

4524

4519

4455

4193

3771

.70

4156

4145

4137

4064

.3990

.3989

.80

.5989

.5989

.5989

.5989

.5989

.5987

.90

.7989

.7989

.7988

.7988

7988

.7985

1.00

.9988

.9988

.9988

.9988

.9986

9982




Chapter 9

Semicoarsening and Line Smoothing

9.1 Introduction

The convergence rate of the standard multigrid methods usually de-

teriorates for the problem

2 2
_aa t;(;;, y) _ 0 ua(yxz, y) — f(a;,y) (z,y) eN= (0’ 1)2,

u= ¢($,y) (zay) € 99

(9.1.1)

where the coefficient a > 0. If @ > 1 or a < 1, we will refer to such problems

as anisotropic problems.

Two techniques, namely block-wise smoothing and semicoarsening,
are commonly used to restore the éfﬁciency of the standard multigrid methods.
In this chapter we consider applying these two techniques to the parallel multi-
grid methods (PMG) and give multilevel convergence analysis of the resulting
algorithm.

9.2 Convergence of SMG in an Anisotropic
Case

Let
Ahu =b (922)

be the linear equation system defined in (2.3.10) which corresponds to the 5-
point difference representation of (9.1.1) on a two-dimensional grid 2, with

150
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Qru Qun

N/2

QL1 Qur

—p
0 N/2 N

Figure 9.1: Four Subsets of the Fourier Modes

grid spacing A = 1/N. An initial error vector can be represented by a linear
combination of (N — 1)? Fourier modes v(%), where p and g represent the
number of waves in the z- and y-directions respectively. We can divide the set
of the Fourier modes into four subsets Qry, Qgy, QL and QgL as illustrated
in Figure 9.1. Here the subscripts L and H indicate that the modes in the
subset belong to low and high frequency respectively. For instance, a mode in
Qry has low frequency in the z-direction and high frequency in the y-direction.

In the standard multigrid method, the standard coarsening scheme
(i.e. the coarsening process being carried out in two directions) is used. The
Fourier modes in subset §27;, can be reduced by the coarse grid correction effi-
ciently and the Fourier modes in the other subsets are supposed to be damped
by the smoothing iteration operator. In an isotropic case (a = 1), a point-wise
smoothing scheme (e.g. the damped Jacobi method) works well. However,
in an anisotropic case, most point-wise smoothing operators are generally un-
able to efficiently damp the Fourier modes in Q7 when o << 1 or in Qry
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when « >> 1. This difficulty also exists when a PMG method is used for an

anisotropic problem.

9.3 Line Jacobi Method

For the grid point (z;,yx), the 5-point discrete anisotropic operator
A}, defined in (2.3.10) can be written in the form

QUi g — Ujr fp — Uj Uk — Uj k-1 — Ujk+1
Jyk 3 lvk J+1,k + Js Js J + . (9'3'3)

h? h?

(Ahu)j,k =

The damped z-line Jacobi method for the problem Apu = b, is defined by

{2055 — vim1k — vivrk) + 205k — Wi — Wik )} = bigs (9.3.4)
U™t = gy + (1 — y)u™.

From (3.2.3), the matrix for the damped z-line Jacobi method is given by
B =1 —~4Q) 4, (9.3.5)

where the splitting matrix Q(®) is given by

1 ..
(QPu);, = 7z [6(2uj ke — wjmg b — Ui ,0) + 2ujk] - (9.3.6)
v

The eigenvalues of the matrix B,(f) are given by

&l—c)+1—¢
a(l—c)+1

v(BE)Pa) =1 — 4 (9.3.7)
where ¢, = cosprrh, and ¢; = cosgqrh,. Choosing an appropriate value of 7,
e.g. 7 = 2/3, the absolute values of the eigenvalues v(B{”))®%) are less than
1/3 in the subsets Qry and Qg for any value of a.

Similarly, it can be shown that the absolute values of the eigenvalues
of the y-line Jacobi method are small in the subsets Qg7 and Qgxgy. In the
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case of @ << 1, where a multigrid algorithm loses efficiency in 2y, one uses
the z-line Jacobi smoothing iteration; while in the case of & >> 1, where
a multigrid algorithm loses efficiency in €z, one uses the y-line smoothing
iteration. If one uses both z-line and y-line Jacobi smoothing together in the

standard multigrid method, one can damp all the Fourier modes efficiently.

9.4 Semicoarsening Scheme

In the standard coarsening scheme, the coarse grids are constructed
by coarsening the fine grid in all axis directions (e.g. the z- and y-directions in
2D). In the semicoarsening scheme, however, the coarse grids are constructed

by coarsening the fine grid only in one direction.

We assume that the coarsening process is carried out in the y-direction.
We use the subsript ! to represent the level of the grids (I = 1 denotes the coars-
est level and ! = L denotes the finest level). On grid ; the grid spacing the
y-direction (the coarsening direction) is k; = 2/~Lh and the grid spacing in the
z-direction is h. The grid €, is given by

Y ={(z,%)]|i=1,...,N-1; k=1,...,2"IN -1} (9.4.8)

where z; = jh and yx = kh;. For the model problem (2.3.8) with A = Az = 1/8,
the coarse grid €17, is shown in Figure 9.2.

Since no coarsening is carried out in the z-direction, the modes with
high-frequency waves in the z-direction can be represented on the coarse grids.
The coarse grid correction procedure can damp the modes in Qg7 as well as
Q11 (see Figure 9.1). Therefore, the smoothing iteration procedure only needs
to damp the modes in Qgyy and Qry. In a general case, the semicoarsening
scheme can be used with the line smoothing iteration. For example, we can

use the y-direction coarsening with the z-line smoothing iteration.
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() QL)
Figure 9.2: 2D Semicoarsening Coarse Grids: h = 1/8

9.5 Semicoarsening SMG
For the model problem (2.3.8), the difference equations on the grid

Q,; are given by

(Alu')(xv y) = hl—2((2 + 201)”1(‘7:’ y) - alul(x - h) y)
—a;u;(z + h, y) - ul(a:, Y- hl) - ul(-T, y+ hl))

(9.5.9)
= bl(*'”) y),
(z,y) € Y
where
ap = h—?a =4l-q (9.5.10)
1= 72 = . 5.

The value o; is the anisotropic coefficient on level [ which is four times as large
as a;41. Therefore, a strong coupling in the y-direction on the fine level weakens

on coarse levels.

The standard multigrid method using the semicoarsening scheme can

be described as follows.
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Algorithm SCSMG(A;, b, u;):

. Carry out m; pre-smoothing iterations using the damped z-line Jacobi

iterative method to obtain uj.
. Compute the residual r; = b — Aju;.
. Restrict the residual to the coarse grid to obtain

1
rl—l(msy) = Z(rl(myy + hl) + 2r1(w, ?/) + rl(x’y - hl))
(.’L‘,y) S Q]-l (9511)

. Solve the correction equation on the coarse grid

Als1biy =1 ' (9.5.12)
for §;_;. In the case of more than two levels

bi-1 =.SCSMG(A1..1,n_1,0), (9.5.13)

and at the coarsest grid, solve the problem directly.

. Interpolate the coarse grid correction é;—; onto the fine grid

61—- (.'L‘, ?/) z,y) € QI—-
S(z,y) =4 1. (2:9) € s (9.5.14)
3(0ma(z,y = B + bima(2,y + ) (2,9) € U/ Uy
and
W =l + 6. (9.5.15)

. Carry out m; post-smoothing iterations using the damped z-line Jacobi

iterative method and return the new solution.
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The 2D standard multigrid method using the semicoarsening scheme
is analogous to a 1D standard multigrid method in the sense that both restric-
tion of residuals and prolongation of corrections are performed in one direction.

Now we give a brief two-level convergence analysis for this algorithm.
Since the coarsening process is carried out only in the y-direction, we consider
eigenvectors v”? and v "7 defined in (2.3.14) as a pair of aliasing vectors.
If we let

EspsQ) - (v’(zp'q)’ v'(lp’N-q)) (9.5.16)

and apply the operators on it, for p = 1,...,N —1 and ¢ = 1,...,N/2, we

have

ALEPD = EP9 AP (9.5.17)
RLEPD = oI RS, (9.5.18)
Ao = vV AR, (9.5.19)
Pl = EP0pes), (9.5.20)
B,E(®9) = E{P9) Blra) (9.5.21)
where
APD) = 7?5 { dl=e)+1-c 0 (9.5.22)
0 a(l—¢)+1+¢,
AP = % [ l+e ¢—1 ] : (9.5.23)

o 1
Ag? = =2l —6) + (1 -c)), (9.5.24)
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Table 9.1: Two-Level Convergence Factors for SCSMG

)
!L 05 |06 |07 |08
0.00001 | 0.00001 | 0.0017 | 0.0035 | 0.0050
0.0001 |0.0001 |0.0145 | 0.0291 | 0.0437
0.001 | 0.0010 |0.0623 | 0.1253 | 0.1883
0.01 | 0.009 |0.0883 |0.1817 | 0.2751
0.1 | 0.0714 |0.0883 | 0.1821 | 0.2766
1 0.1999 | 0.1600 | 0.1820 | 0.2767
10 0.2439 | 0.1951 | 0.1791 | 0.2744
100 | 0.2494 | 0.1995 | 0.1611 | 0.2547
1000 | 0.2499 |0.1999 | 0.1500 | 0.1000
ﬂ:mm)o 0.2500 | 0.2000 | 0.1500 | 0.1000
| 200000 { 0.2500 | 0.2000 | 0.1500 | 0.1000
pea - 1 [ tta | (9.5.25)
=1 |
- ﬁ%ﬁ}g’. (9.5.26)

Here ¢, = cos(prh) and ¢, = cos(grh). The v-transform matrix of the coarse
grid correction operator can be computed by

(9.5.27)

O =1 - BED(AGIN T RED ALY,
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The two-level convergence factor is given by

p(T)=  max  p(CEOBEY). (9.5.28)
1<p<N-1
1<¢< ¥

The numerical values of the two-level convergence factors of the SCSMG method
for different values of the coefficient o and the extrapolation factor v are listed
in Table 9.1. It shows that the SMG method using the semicoarsening scheme
together with line smoothing iterations works well in cases when « is either

very small or very large.

9.6 Semicoarsening PMG Algorithm

We now consider applying semicoarsening and line smoothing tech-
niques to the PMG methods. Since the coarsening process is only carried out
in one direction, the system only needs to be extended in that direction. For
the model problem (2.3.8) with 2 = 1/8, the extended grid and the original
grid are shown in Figure 9.3.

The procedure of the semicoarsening PMG method (SCPMG) is de-
scribed in Figure 9.4. Comparing to Figure 7.8 one sees that the restriction-like
smoothing and the interpolation-like smoothing of the semicoarsening PMG
methods is analogous to those used in 1D PMG methods. In the following
analysis we assume that the full weighting operator is used for restriction-like
smoothing and the trivial injection is used for interpolation-like smoothing.

The difference operator on level [ is given by
(Ara)(z,y) = h*((2+20)u(z,y) — cru(e — h,y)
—oqu(z + b, y) — wlz,y — ki) — wi(z,y + b))
= b(z,y),
(z,y) €
where o is defined in (9.5.10).

(9.6.29)
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(24) (%)

Figure 9.3: 2D Semicoarsening Extended Grids: A =1/8
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Algorithm SCPMG (A4, ul”, bs):

1. Carry out m; pre-smoothing interations to get uj,.

. Compute the residual: r; = by, — Apu}.
. Carry out one restriction-like smoothing operation, possibly
full weighting:
ron(z,y) = (Bara)(z,¥)

= H(ra(z,y — k) +2ri(2,y) + rulz, ¥ + B)),
or injection rox(z,y) = (Rarn)(z,y) = ru(z,y)
. Solve the correction equation for the 2k scale

Aznbop = 121

In the case of more than two levels, this can be done by using
the procedures:
ban. = PMG(Az1,0,721).
At the coarsest level, the problem is solved directly.
. Carry out one interpolation-like smoothing operation, possibly
linear:
(6n)(z,y) = (Puéan)(z,y)

= 3l62n(z,y — h) + 26:4(z,y) + Smn(z,y + B)),
or injection: (8,)(x,y) = (Prban)(z,y) = (62n)(z, y)
and update the solution uj = uj), + &
. Carry out m, post-smoothing iterations to get the new solution

ull.

Figure 9.4: The SCPMG Algorithm
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9.6.1 Two-Level Convergence Analysis

If the damped z-line Jacobi iterative method is used for smoothing
iteration, the matrices of all the operators used in the SCPMG algorithm have

the same eigenvector set defined by

('v,(f”))j,k = sin(pnjh) exp(igmkh),
k=1-N,...,N
forp=1,...,N—1and ¢g=1-N,...,N. In this case the standard Fourier

analysis on the two-level SCPMG algorithm is very simple because the v-
transform matrix of any of the operators degrades to a single eigenvalue.

For the eigenvector v,(f ) the corresponding eigenvalue of the differ-

ence operator A; is given by

2 2
Afm) = 7 [aa(l =) + 1 — )] (9.6.31)

where ¢, = cos prh and ¢, = cosqmh; = cos 2¥~'grh. From (9.6.31), one sees
that Afp ) is always positive and therefore, the systems on each of the levels is

nonsingular. At level ! — 1, we have
- 2
APD = 7 (1 — &) +1 = cqy]
ic1
1 2
= 2a(1 — ) +1 -] (9.6.32)

where we use the relation ¢,,_, = 2¢Z — 1. The corresponding eigenvalue of the

restriction-like operator R; is given by

« 1+e¢

RO = 2, (9.6.33)
The corresponding eigenvalue of the damped z-line Jacobi iteration matrix is
given by

- c

BP9 = — @ (9.6.34)

+
T Y a(l=g)
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Table 9.2: Two-Level Convergence Factors for SCPMG-LJ

v

«a 0.5 0.6 0.7 0.8
0.00001 | 0.00001 | 0.0034 | 0.0067 | 0.0050
0.0001 | 0.0001 | 0.0291 | 0.0583 | 0.0101
0.001 0.0010 | 0.1250 { 0.2510 | 0.0875
0.01 0.0098 | 0.1771 | 0.3640 | 0.3770

0.1 0.0832 | 0.1771 | 0.3649 | 0.5509
1 0.3331 | 0.1999 | 0.3646 | 0.5539
10 0.4759 | 0.3712 | 0.3588 | 0.5494

100 0.4972 | 0.3968 | 0.3227 | 0.5101
1000 0.4995 | 0.3995 | 0.2995 | 0.1995
10000 | 0.4887 | 0.3997 | 0.2998 | 0.1998
100000 | 0.4997 | 0.3997 | 0.2998 | 0.1999
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From (9.6.31), (9.6.32) and (9.6.33) and noticing that the interpolation-
like smoothing is the trivial injection, the corresponding eigenvalue of the coarse
grid correction matrix Cy,; is given by

C‘véﬁ,q) = f-— Rgp,q)( Agvil))—l AI(P.Q)
(1 _ cp) +1-cq
(1 - CP) +1- Cg‘
al(l - CP)(]‘ — cqz) ) (9.6.35)
200(1 —¢p) + 1 — cgl
Therefore, from (9.6.34) and (9.6.35), the eigenvalue of the matrix of the two-
level SCPMG operator with m damped line Jacobi smoothing iteration is given
by

1291
1- (1 + ch)za

T,(p'q)(m) — ( Bl(pq))mc‘-g;q)

Ca " _a(l-)1-cy)
= - . (9.6.36
! 7+71+az(1—cp) 2(1 — ) +1 =22 ( )

The convergence factor of the two-level SCPMG algorithm can then
be calculated by
p(TL)(m) = max  p(T{P)(m)). (9.6.37)

1<pe<N-1

Table 9.2 lists the convergence factors of the two-level SCPMG with
damped line Jacobi smoothing iteration (SCPMG-LJ) with different values of
the extrapolation factor 4 for problem (2.3.8) with different values of a. The
result is obtained numerically with the grid size N = 64.

9.6.2 Modified Line Jacobi Method

Using the line Jacobi smoothing iteration the convergence speed of the

standard multigrid method cannot be improved very much by using the PMG

method. However, a modified Jacobi method can improve the performance
of the PMG in an anisotropic case [64] [66]. Now we show that the modified
Jacobi method can also improve the performance of the SCPMG.
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Table 9.3: Two-Level Convergence Factors for SCPMG-MLJ

v
o 0.8 0.9 |10 1.1

0.00001 | 0.0037 | 0.0017 | 0.00001 | 0.0017
0.0001 | 0.0293 | 0.0147 | 0.0001 | 0.0145
0.001 | 0.1265 | 0.0634 | 0.0010 | 0.0627
0.01 0.1893 | 0.0949 | 0.0095 | 0.0938

0.1 0.1991 | 0.0998 | 0.0649 | 0.0988
1 0.2000 | 0.1401 | 0.1110 | 0.0996
10 0.2000 | 0.1400 | 0.1109 | 0.0999

100 0.2000 | 0.1391 | 0.1110 | 0.0999
1000 0.2000 | 0.1398 | 0.1104 | 0.0999
10000 | 0.1999 { 0.1004 | 0.0350 | 0.0999
100000 | 0.1999 { 0.0999 { 0.0042 | 0.0999
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The modified damped z-line Jacobi method for the problem Aju = ¥
is defined by

wr{ea(2vik — vioak — visrk) + (doip — 2ufy — wfioy — W)} = bk, (9.6.38)
™t = qu 4+ (1 - y)u”.

The eigenvalues of the corresponding iterative operator are given by

. 1—c¢

B =1y gy 9.6.39
Table 9.3 gives the convergence factors of the two-level SCPMG with the mod-
ified line Jacobi smoothing iteration (SCPMG-MLJ). The case is the same as
that used in creating Table 9.2. We note that a good choice of the extrapolation

factor v is around 1.1 in this case.

9.6.3 Red/Black Line SOR Method

We now consider using the red/black line SOR method for smoothing
iteration. One red/black line SOR iteration can be considered as two sub-
iterations, the black sub-iteration and the red sub-iteration which are defined
respectively by

4 n+% n . .

Uy ° = ujk, if k£ is odd,
+

) 2+ 2‘1)"?1: 0‘(";-11: :+12k)

= w(¥fiy1 + ufkos + A%bi)
+(1 —w)(2 + 2a)u}y — a(uf_y; +uliy,), if kis even

(9.6.40)

\

and

( (2 + 2a)ujf? a(u?fllk +ul
= “’("jkfx + u?:-l + h bjx)
+(1 —w)(2+ 2a)u;k —o(ultZ + ":fk), if k is odd,

1
n+1 _ ., ntz
[ Y =Uuy %, if k is even.

(9.6.41)
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We will use S,(—) to represent the black sub-iteration operator and SIH) to

represent the red sub-iteration operator.

It will be easier to perform the two-color Fourier convergence anal-
ysis for the SCPMG with a red/black ordering smoothing iteration. In the
semicoarsening scheme, the fine grid is divided into two coarse grids and the

corresponding w-basis vectors are given by

(w0 = { (PN;x  if(c;,m) €Q

0 otherwise
Lkp=1...,N—-1
N
q=1,---,3
s=+4, —

where v are defined in (8.2.9), and Q2 and Q_ are defined by

{ Q= {(=m)| (k=o0dd)},
O = {(zj,w)| (k = even)}.

If we let

E‘(”p,q) = (w;f”’”),wg—'p’q)),

(9.6.42)

(9.6.43)

(9.6.44)

the w-transform matrices of the operators Ay and Az_; defined in (9.6.29), P
defined in (9.5.14), S}:” defined in (9.6.41) and S}l_) defined in (9.6.40) can be

written in the form

jig”q) - 2_ a(l - Cp) + 1 —Cq ’
h? —cq a(l—¢)+1

. 1 10
Ag'31)=ﬁ(2a(l—cp)+1—c§)|:0 1],

(9.6.45)

(9.6.46)
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. 1
ppo =10 (9.6.47)
21¢ 1
S = 1o , (9.6.48)
| 7 l1-w i
germe o [ 179 T (9.6.49)
0 1
where
= Y 9.6.50

So the representation of the whole red/black line SOR operator is given by

(9.6.51)

A A Al l1—w + 2 1l—w
S‘g’ﬂ) _— S§,+’p'Q)S}, 1P9Q) — [ n ( )7’ } .

n l—-w

From (9.6.45), (9.6.46) and (9.6.47), the w-transform matrix of the coarse grid

correction operator is given by
C‘-}Ip,q) =]~ Agm) pI(Jp,q)( Ag’fl))-l - [ £ —ct } (9.6.52)

where

__ al-g)
(= 20(1 —¢,) +1— cg' (9.6.53)

The w-transform matrix of the two-level SCPMG-SOR operator is
given by

i1 ta2

. A N tiy 1
Tl(,p’q) = S}Jp,q)cip.q) — [ 1 2 ] (9.6.54)
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where
tn = &(1—w)(1—cn+n°), (9.6.55)
tiz = £((1—w)(n—c)—em?), (9.6.56)
tn = &(n—(1-w)g), (9.6.57)
tre = &1 —w—cem). (9.6.58)

Here 7 is defined in (9.6.50) and £ is defined in (9.6.53). The eigenvalues of the
matrix T{"? are given by

1
A= ‘2‘(t11 +132) \/(tu — t32)? + 4t12tn). (9.6.59)

Hence the convergence factors of the two-level SCPMG-SOR algorithm can be
calculated by

o(TL) = max p(T{P9), (9.6.60)
1<p<N-1
N
1<¢< 5

Table 9.4 lists two-level convergence factors of the SCPMG with the
red/black line SOR smoothing iteration for problem (2.3.8) with different values
of a. The result is obtained by numerical procedure with the grid size N = 64.

The iteration parameter w is 0.89.

9.7 Multilevel Convergence Analysis

The multilevel convergence analysis of the SCPMG methods can be
carried out in a similar way to the analysis of the PMG methods discussed in
Chapter 8. Let M; be the multilevel SCPMG operator on level ! defined by

M; = Si(I — Ri(I — Mi_1) AT A) (9.7.61)
forl=1,...,N and

Mo = S. | (9.7.62)
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Table 9.4: Two-Level Convergence Factor of SCPMG-SOR w = 0.89

ﬂ o p(To)
0.00001 0.000197
0.0001 0.001706
0.001 0.007008
0.01 0.008256
0.1 0.025835
1 0.043987
10 0.087332
100 0.107490
1000 0.109689
10000 0.109911
I 100000 0.109933
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All the operators in (8.4.87) corresponding to the SCPMG algorithm are com-
mutative, it can be shown that M; and M;_, have the recursive relation (8.4.89).

The following theorem gives an upper bound on the convergence factor
of the multilevel SCPMG algorithm.

Theorem 9.1 Let

[Apa(Te(e))]
0y = su max - 9.7.63
TR L TS @@ O
1-N<g<N
If
p(M;) = sup max |Ap,e(Mi(a))] < o1 (9.7.64)
a>0 1 SP < N-—1
1-N<g¢<N
holds on level 1, then we have
p(Mp) <oy (9.7.65)

Proof: The proof is based on the fact that (9.7.63) is valid for { = 1,...,L. In
fact, because

Apg(Ti-1(@)) = Ap2e(Ti(a)) (9.7.66)

Ava(Sic1(@)) = Apze(Si(a)), (9.7.67)
we have

o1 = sup max l/\p,q(TL(O‘))l

>0 1 cpan—1 17 Pea(52(a)) = Xpo(Tr(e))]
1-N<g¢<N

Su max l’\p,q (T:(a)) I
o | <peN_1 L= PralSi(@) = dpo(Ti@)] (9.7.68)

v

1-N<¢<N
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Table 9.5: Multilevel Convergence Factors for SCPMG-MLJ

a 0.8 0.9 1.0 1.1

0.00001 | 0.0203 | 0.0181 | 0.0163 | 0.0148
0.0001 | 0.1349 | 0.1218 | 0.1109 | 0.1019
0.001 0.2381 | 0.2174 | 0.2000 | 0.1851
0.01 0.2381 | 0.2173 | 0.1999 | 0.1851

0.1 0.2379 | 0.2169 | 0.1995 | 0.1847
1 0.2380 | 0.2174 | 0.2000 | 0.1851
10 0.2375 | 0.2166 | 0.1991 | 0.1841

100 0.2370 | 0.2143 | 0.1951 | 0.1788
1000 0.2245 | 0.1828 | 0.1492 | 0.1219
10000 | 0.2000 | 0.1017 | 0.0465 | 0.0999
“ 100000 | 0.1999 0.0296 0.0042 | 0.0999

Now assume that p(M;_;) < o, holds. For level ! we have

Poa(Mi(@))] = [Apg(Ti(e)) + (Apa(Si(@)) = Ap,o(T2(@))) Ap o (Mi-1())|
S Poa(Ti@))] + 1Apa(Si@)) = Apg(Ti(e)) | p(Mi-1)
< (1= Ape(Si@)) = Apa(Ti(@))])or
HApa(Si(@)) = Apo(Tie)) oy
0. (9.7.69)

Table 9.5 gives the multilevel convergence factors of the SCPMG method with
the modified line Jacobi smoothing iteration (SCPMG-MLJ). The case is the

same as that used in creating Table 9.2. We note that a good choice of the

extrapolation factor « is around 1.1 in this case.




Chapter 10

Matrix-Dependent Interpolation and
Restriction

10.1 Introduction

The coeflicients of many differential equations of real problems (e.g.
petroleum reservoir simulations) are discontinuous. They might have jumps
of several magnitudes across some inner boundaries. In these cases, the linear
interpolation and full weighting restriction operators are not accurate and the
multigrid methods will show a slow convergence rate. To overcome this diffi-
culty, the interpolation and restriction operators should include some informa-
tion about the coefficients. In this chapter we discuss several matrix-dependent

interpolation and restriction operators.

10.2 Discontinuous Diffusion Coefficients
We are concerned with solving the differential equation

8 ou 8 (50u
— W= @2 =
32 32 aya 3 +ou=f (z,y)€Q, (102.1)

u = ¢(z,y) - (z,y) €09

on a bounded region Q in R?. The coefficients o) are positive and o is nonneg-
ative. oy, 0 and f are allowed to be discontinuous across internal boundaries
in 2.

The finite difference representation of problem (10.2.1) can be derived
by the integral approximation approach (see e.g. Young and Gregory [71] or

172
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Varga [65]):

ﬁu,,k + a§ Izu.1+1 E+ af k)uJ—l k+ a§ k) Ujks1 T+ aﬁfzuj,k-l = h2fiks

Ujo = ¢(z;, o),

un = ¢(z5,yn), (10.2.2)
Uk = d’(mo’yk)a

UNE = ¢($N, yk),

| Jok=1,...,N—-1

where
( o = a(l_)_ xt aﬁ)% xt agz,z 1+ a;? at h2ajx,
(w) (1)
J-- k?
(e) (1
{ ’ a]+% %) (10.2-3)
() _ _o®
Gjk =~ p-1>
) _ _,®
\ aJ’k = Jvk+2

The corresponding matrix format can be represented by
Ahuh = bh. (10.2.4)

In the case of al®) having jumps at some places in the domain, Vu
will also have jumps at these places. The approximation accuracy of linear
interpolation depends on the continuity of Vu, and only smooth functions can
be accurately interpolated onto the fine grid by linear interpolation. Therefore,
a multigrid algorithm with a linear interpolation operator does not provide the
usual fast convergence rate.

Noticing that the product of ¥ and Vu are continuous, a natural
way to overcome this difficulty is to construct an interpolation operator in such

a way that the continuity of oY Vu is reserved. Obviously, the interpolation

operator must include some information about a!¥). For linear system (10.2.2),
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this is equivalent to using the matrix A;. In the remainder of this chapter,
we will discuss the construction of the matrix-dependent interpolation and
restriction operators in standard coarsening cases as well as in semicoarsening

Cases.

10.3 Standard Coarsening Cases
10.3.1 Matrix-Dependent Interpolation

For convenience, we represent Aj in the difference stencil form at

point (z;,yx) as

oy o) o
aﬁ) aﬁ as_’ez (10.3.5)
A o) o
where
a;:;v) - ag;:") = ag.:':) = ag;:) =0 (10.3.6)

and the other five elements are defined in (10.2.3). For the near boundary grid
points, the corresponding undefined elements are set to zero. Since we treat
each grid point. in the same way, the subscript 7,k is often dropped if there
is no ambiguity. We generally consider the 9-point difference formula cases,
so that the discussion can be applied to the matrix problem arising from the
9-point discretization scheme.

Let the fine grid be divided into four subsets Q44, Q_4, Q4_, and
2__ defined in (5.2.2) and let subset §2__ be used as the coarse grid ;.

The interpolation operator P is constructed in such a way that after
the coarse grid correction, the elements of the new residual vector will not get
larger on the points which do not belong to the coarse grid ;. This can be
achieved by requiring

(ApPréan)(z,y) = 0 (z,y) € Qo1 (10.3.7)
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If we let
[ AV) = gww) 4 g(w) 4 glow)
AB) = gne) 4 gl0) 4 glee),
AR) = glne) 4 g(0) 4 glnw)
< AB) = a(,e)::(,) :a(aw), (10.3.8)
A©C) = o) 4 o0 4 o0,
| AD) = 40 4 0@ 4 o),

we require that

4

AMG ) (2 = h,y) + ACIE) (2, y) + AP (z + h, y)
=0 (z,9) € Q4o
ABE)(z,y — B) + ABG)(z,y) + AME) (z,y + })
< =0 (@y)el., (10.3.9)
aC¥&)(z — h,y — ) + a®8)(z,y — k) + a8, )(z + h,y — )
+a)8)(z — b, y) + a98)(z,y) + aé)(z + b, y)
+a"§,)(z — h,y + k) + a™8)(z,y + h) + a6 )(z + h,y + k)

=0 (z,y) € Q44

\

Based on (10.3.9), the interpolation 6, = P,6;; can be defined by

[ 6an(z,v) (z,y) € N__
Pz — h,y)ban(z — h,y)
+p)(z + h,y)éan(z + h,y) (z,9) € Q4o
P™(z,y — h)bam(z,y — h)
6n(z,9) =1  +p(z,y + h)ban(z,y + B) (z,y) € Q_, (10.3.10)

Pz — h,y — k)ban(z — h,y — b)
+pl*)(z — h,y + k)6an(z — h,y + k)
+p") (2 + b,y — R)bon(z + b,y — h)
+p("")(:l: + h,y+ h)52h($ +h,y+ h) (x’ y) € N4y

\
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where for (z,y) € Q__

(p9(z,9) = —(A™(z+h,1))/(A9(c +h,y))
P(ay) = ~(AB(z ~ hy)/(A9z = h,p) 0
M (z,y) = —(A¥)(z,y+1))/(AP(z,y + b))
| P (z,y) = —(AM)(z,y—R))/(AP(z,y — 1))
and
[ pe)(z,y) = —[a®)(z—h,y—h)+aO(z — h,y — k)p)(z,y)
+a®(z — h,y — h)p!)(z,y)]/ () (z — h,y — 1))
PN (z,y) = —[aC)(z - h,y+ k) +a)(z—h,y+h)p(z,y)
+a®)(z — k,y + h)pt) (z,y))/ (@ (z — b,y + k) (103.12)
PN (z,y) = —[a)(z+h,y— k) +a®)(z+ h,y— k)pl)(z,y)
+a™)(z + h,y — k)p(z,y)]/ (a2 + h,y — }))
PN (z,y) = —[a“)(z + k,y+ k) +a™(z+h,y+ h)p"(z,y)
\ +al)(z — h,y + h)p™)(2,y))/ () (z + h,y + b))

The interpolated corrections generated by the interpolation operator
(10.3.10) will not cause a large residual on the fine grid. In fact 4,6 is zero
at any point (z,y) € Q44 and is approximately zero at any point (z,y) € Q-+
or (z,y) € ,4_.

The transpose of the interpolation matrix can be used as the restric-
tion matrix. Specifically for any point (z,y) € Q__, the restriction rop = Ryry
is defined by

(Rarn)(z,y) = ra(z,v)
 +p9(z, y)ra(z + hyy) + pN (2, y)ra(z — b, y)
+p™) (2, y)ra(z,y + k) + p (2, y)ra(z,y — B) (10.3.13)
+p (2, y)ra(z + h,y + k) + p) (2, y)ra(z + hyy — k)
+p") (2, y)ra(z ~ b,y + ) + p) (2, y)ra(z — b,y — h)
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where p(®), p() p(n) p(s) p5(ne)  plae) p(nw) and pl*«) are defined in (10.3.11) and
(10.3.12).

After the interpolation and the restriction operators have been con-

structed, the coarse grid operator A, can be defined by
Aop = RLALP;. (10.3.14)

It can be shown that the A} is a 9-point stencil operator if A, is also a 9-point

stencil operator.

10.3.2 Coarse Grid Matrix

We use z;, to denote the vector on the grid 2, with all its elements

unity. We have the following lemmas.

Lemma 10.1 If the row sums of the matriz A are zero and the values A(©),
S@) and a9 are not zero, then the interpolation operator P, defined in (10.3.10)
has the property

P},Zzh = Zh. (10.3.15)

Proof: We use A(®) denote the row sum of the matrix Aj. By direct calculation
from (10.3.11) and (10.3.12), we have

29z, y) + p¥)(z + 2h,y)

10.3.16
=1- APz 4 h,y)/AO(z + h,y) = 1, (10:3.10)

p™(z,y) + p)(z,y + 2h)
=1-AB®(z,y+ h)/AD(z,y + k) =1,

(10.3.17)




p")(z,y) + p") (z + 2k, y) + pU) (2, y + 2h)
+p*¥)(z + 2h,y + 2h)
=1-A®(z+h,y+h)/aO(z+hy+h)=1

(10.3.18)

Since the restriction matrix is the transpose of the interpolation matrix, we

have

(22)T R = (21)". (10.3.19)

Lemma 10.2 If the conditions in Lemma 10.1 are valid and the coarse grid
problem is defined by Agnban = rop with Aoy = Ry ApPr, and rqp = Ryry, then

1. The sum of elements of ra is equal to the sum of elements of ry;

2. Every row sum of matriz Ay, equals zero if every row sum of matriz Ay

equals zero;

. Every column sum of matriz Az equals zero if every column sum of ma-

triz A, equals zero;

. Az is a nine-diagonal matriz with a nine-point difference stencil.

Proof: All four parts can be verified by direct calculation. For part (1) to part
(3), we have

(228) ran

Aznzan

(Zzh)TAzh

(220)T Rurs,
(zM)Trs, (10.3.20)
Ry ApPrzap
Ry Apzs,
(220)T RhAnPy
(z)T AL P.

(10.3.21)

(10.3.22)
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Part (4) is based on the fact that for any row of the matrix Ry, there are at
most nine columns of the matrix AP, such that their inner product is not

Z€ro.

For the Poisson problem with homogeneous Neumann boundary con-
ditions, the linear system A,u; = b, arising from a conservative discretization
scheme, is singular but solvable. The row sums, the column sums and the sum
of elements of B are all zeros. Because of Lemmas 10.1 and 10.2, the linear

systems constructed on all coarse levels are also singular and solvable.

10.4 Semicoarsening Interpolation

If a semicoarsening scheme is used in multigrid methods, the interpo-
lation and restriction are applied only in the coarsening direction. We consider
two-dimensional cases with the y direction as the coarsening direction. The
extension of the discussion to higher dimensional cases is straightforward. The

coarse grid is defined in (9.4.8).

10.4.1 Pointwise Scheme

In this scheme, the elements of the interpolation matrix P, at point
(z,y) depend only on the elements of A at this point and its neighbor points.
The interpolation §*) = P,6(") is defined by requiring

AB)z,y)6u(z,y — k) + AP (2, y)8(=, y)

N (10.4.23)
+AM™)(z,y)6n(z,y+ k) =0 (z,y) € Q.
Therefore, we have
ou(z,y) = bam(z,y) (z,y) € Q_, ;
bu(z,y) = p™(z,y— h)6an(z,y — h) (10.4.24)

+p)(z,y + h)bam(z,y + k) (2,y) € Q4
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where for (z,y) € Q-

PP (z,y) = —(AO(z,y+ h))/(AD) (z,y + k),
P9 (z,y) = —(AM(z,y - k))/(AD(z,y - R)).

The transpose of the interpolation matrix is used as the restriction

(10.4.25)

matrix and ry, = Rpry, is defined by

(Rirn)(z,y) = ra(z,y) + P (z,y)ra(z,y + R)

(10.4.26)
+p(a)(z’ y)rh(x$ y— h)

where p( and p(¥) are defined in (10.4.25).

The interpolation and restriction operators defined here still have
properties (10.3.15) and (10.3.19). If the conditions in Lemma 10.1 are true,
then the coarse grid matrix Az, = Ry, AnP; still has the properties described in
Lemma 10.2. /

10.4.2 Blockwise Scheme

In the interpolation (restriction) process of the semicoarsening multi-
grid methods, we treat a two-dimensional case as a one-dimensional case and
each unit is a line in the x-direction. Therefore it will be more accurate if
we consider all the points on the whole z-line together rather than individual
points in the interpolation process.

The matrices A, can be written in the block form with each block
row corresponding to points on one z-line. In the case of a five z-lines grid, for

example, the block form of the matrix A is given by

Al,l A1,2

A2,1 A2,2 A2,3

Ap = Azg Azz Aszy . (10.4.27)

Ags Aga Ay
Asa As

k4

95J
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If we let gh(yk) denote the sub-vector of 6, corresponding to the points on the

z-line with y = y;, then we require

Ak k-18n(yk—1) + Aradn(ys) + Ak ps18n(yrer) = 0,
(ma yk) € Q+'

(10.4.28)

Based on (10.4.28), the interpolation & = Pyézs is given by

San(vx) (z,y:) € Q-
Bu(yr) =4 P™)(yi_1)8an(x — b) (10.4.29)
+PO(yrs1)Bon(vr + B) (2, 9x) € Ot

where the matrices are given by

P(") _ = —A—l Apo
{ (yk-1) k=1,k—14k=1,k (10.4.30)

PO(yip1) = —Aptiprlesiie
Unfortunately, this definition would lead to a nonsparse interpolation and
therefore lead to nonsparse coarse grid operators. In practice, p("™) (yx-1) and

) (yr41) can be defined as diagonal matrices which are approximations to
— AL, 41 Ak1 and -A;_}_Lk +14k41,% in the following sense

(10.4.31)

PO (y1)Z = —Al g1 Aka?
P (’)(ykﬂ)z = —A;}-l,k+1Ak+1'kg

Here, 7' is the vector with all unit elements. The interpolation (10.4.29) can

now be written in the form

62n(y) (z,y:) € N
6u(z,9) = {3 p™(z, yr—1)62n(z, Y — h) (10.4.32)
+p)(z, yk41)0am(yx + B) (z,9x) € Uyt

where p™(z, yx_;) and p*)(z, Yi+1) are the diagonal elements corresponding to

position z in the matrices P(")(yx_;) and P®)(y.,,) respectively.
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As in the pointwise scheme, the transpose of the interpolation matrix

is used as the restriction matrix and rqs = R,rs is defined by (10.4.26).

The calculation of the diagonal matrices p{ (yx—1) and ) (yx41) in-
volves solving small three-diagonal systems. For example, to calculate PO (yrs1),

we need to solve the equation

Appris1? = App1a? (10.4.33)
for vector ¥ which is the the main diagonal of PO (yrs1):

PO (ypyq) = It (10.4.34)

In order to make the whole algorithm effective, (10.4.33) need not be solved
exactly. Usually one cycle of a low dimensional multigrid iteration is good

enough (See Smith [60]).

Since the interpolation operator defined in (10.4.31) still holds the
property of Lemma 10.1, the coarse grid matrix Az, = RpAnP; still has the
properties described in Lemma 10.2.

10.4.3 Schur Complement Scheme

It is well known that the Schur complement scheme for solving a linear
equation system can be considered as a two-level multigrid method ([17], [2]).
Based on the Schur complement scheme, we can construct the interpolation

and the restriction operators.

We use the partition of unknowns based on the so-called zebra or-
dering. We mark all the odd numbered z-lines red and all the even numbered
z-lines black. We then reorder the position of unknowns in such a way that
the red unknowns are counted first. The linear system can then be expressed

U, b, |
[ “ } = [ b } = b. (10.4.35)

in the form

Ar Arb
Ay A

Au =
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The solution procedure of the Schur complement method may be described as

follows. First we solve a smaller Schur complement linear system

Asup = b, ‘ (10.4.36)
for u;, where

A, = Ay — A AT A (10.4.37)
and

b, = by — Ap, A7), (10.4.38)
After u;, becomes known, we solve

Aru, = b, — Arsup (10.4.39)

for u,.

If we consider the black nodes as the coarse grid, then the Schur
complement method can be viewed as a two-level multigrid method where
(10.4.36) is the coarse grid linear systemn. The matrix A, in (10.4.36) can be
written in the form

Tn
I,

where I is the identity matrix on the black node set and 7}, and T, must be

Ar Arb
Ay A

A= [ Ty I, ] = RAP (10.4.40)

determined.

Equation (10.4.38) can be considered as the restriction operation b, =

Rb and the restriction operator R is given by

R - [ Tbr Ib ] = [ —Ab,.A:l Ib ] (10.4.41)
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By comparing (10.4.40) to (10.4.37), one can see that if T, is defined
by (10.4.41), the coarse grid matrix A, defined by (10.4.40) is independent
of T,5. In other words, there is no restriction for choosing the interpolation

operator as far as tthe coarse grid matrix A, is concerned.

Equation (10.4.39) can be considered as the interpolation operation
u = Puy. If we let b, = 0, the interpolation operator P is given by

Tr _A—lAr

P=|""|= oo
L I

In the case of five z-lines, the nine-diagonal matrix A, arising from

the discretization of differential equation (10.2.1) can be written in the form

. (10.4.42)

[ A Ara
A3,3 A3,2 A3,4
A= As s As 4 (10.4.43)
Azy Azz Az
| A4,3 A4,5 A4,4 |

where each A;; is a tridiagonal sub—matrix. The corresponding T,; and T}, will
be

T = —A7'An
[ 47 [ 41
= = A3y Asz Aszg
! Asy ] Asg
[ AT1A;: ]
= —| A33432 A33434 (10.4.44)
! A55As4 |
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and

Ty = —Ab,A:l

- Al
A2,1 A2,3 e -1
= - A3,3
Ass Asgs

-1

- A5,5
[ A3 AT ApaAsl
2141, A23A33

2 L (10.4.45)
Ay3Ass AgsAss

The Schur complement linear system (10.4.36) is generally a dense
system even if the original matrix A is sparse. However, we can use the diago-
nal approximation of the sub-matrices in T, and T}, to construct the 3-point
interpolation operator and the 3-point restriction operator and to keep the
coarse grid matrix A, a nine-diagonal matrix.

From (10.4.44) and (10.4.42), the interpolation &, = P,6s; is defined
by

San(ys) (z,yx) € N
6n(yk) = 3 PO (yp_1)ban(yr — b) (10.4.46)
+PO(yr1)oon(yr + h) (2, 38) € Q4

where the diagonal matrices P*")(y;_;) and P®)(y.4;) are given by

(10.4.47)

PM(y1)i = —A2 i1 Ak-14Z
PO(yi1)Z = —AihesrArsii?.

From (10.4.45) and (10.4.41), the restriction ry;, = Ryr is defined by

fan(yx) = alyx) + B™ (yi)7n(yrs1)
+R® (y2 )74 (yr-1) (z,yx) € Q-

(10.4.48)
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where the diagonal matrices R (y;) and R()(yx) are given by

T R(")(yk) = -7 Ak,k+1Al:-|l-l,k+1

: (10.4.49)
ZTRO(y) = —TApp1Al 150

Here 7 is a vector with all unit elements.

Comparing the interpolation operator and the restriction operator
derived from the Schur complement scheme to those derived from the blockwise
scheme, we find that the interpolation operators are actually the same although
they come from different points of view. The restriction operator from the Schur
complement scheme uses the information of the transpose of the matrix A. In
the case of nonsymmetric problem, the matrix R is in general not equal to
the transpose of the matrix P. Since the Schur complement scheme does not
require a symmetric problem, the interpolation operator and the restriction
operator constructed from the Schur complement scheme are also suitable in

nonsymmtric cases.




Chapter 11

A Compositional Reservoir Simulator

11.1 Introduction

One of the target application fields of multigrid methods is in reservoir
simulation. Numerical reservoir simulation refers to the development and usage
of a mathematical model or simulator which describes the flow of fluids in a
permeable medium. In general, the reservoir simulator requires the numerical
solution of a set of coupled, nonlinear partial differential equations describing

complex physical processes in a three-dimensional domain.

The most complex simulators are those used for the simulation of
enhanced oil recovery processes. Enhanced oil recovery processes involve the
injection of chemicals, solvents or heat into the underground reservoirs in order
to supplement the natural energy and to increase the recovery of the trapped
oil from the reservoir rock.

Those methods using solvents such as carbon dioxide or enriched gas
are called miscible gas flooding. Miscible gas flooding processes typically in-
volve the multiphase flow of a large number of components. This process can
be represented by a mathematical formulation involving a set of coupled, highly
nonlinear, time-dependent partial differential equations [59].

Two basic methods for solving multiphase coupled equations are the
implicit pressure explicit saturation method (IMPES) and the fully implicit
method. In the IMPES method, the gridblock pressure is solved for implicitly
using explicit dating of saturation dependent terms. After the pressure solution
is obtained, the saturations are explicitly updated by substituting the results
in the material balance equations. In the fully implicit method, the coupled
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equations are solved simultaneously. Since the number of unknowns is the
number of grid points multiplied by the number of phases, the method becomes
expensive per time step for multidimensional problems. However, the fully
implicit method has much better stability properties. This means that one is
able to take much larger time steps in general. Therefore, the fully implicit
method may solve the simulation problem faster due to its ability of taking

larger time steps in comparision to IMPES.

The governing partial differential equations, due to their nonlinear
nature, must be solved by using numerical methods such as finite-difference or
finite-element methods. In the petroleum industry, the most popular methods
are those invblving finite-difference techniques. Thus the partial differential
equations are discretized using finite-difference approximations of time and
spatial derivatives. This leads to a system of algebraic equations that must be

solved at each time level numerically.

Because the performance of a miscible process depends heavily on the
accuracy of the solution of the governing nonlinear miscible flooding equations,
both a fine mesh and very small time steps are needed. Thus, a very large
amount of computer time, as well as a large amount of storage, is required for
field simulation. The solution of the governing equations takes a large part of
the total computer time and usually determines the storage needed. Therefore
it is especially important to use a highly efficient numerical method to solve
the governing equations.

In this chapter we discuss the mathematical formulation of UTCOMP,
a three-dimensional, multicomponent, multiphase miscible-flooding simulator
developed at The University of Texas at Austin [12], [13].

11.2 Description of the Simulator

UTCOMRP is an isothermal, three-dimensional, miscible-flooding com-
positional simulator. In a compositional model, the principles of mass conser-
vation and phase equilibria are employed to compute phase pressures, satura-
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tions and phase compositions at each grid block in the reservoir. Compositional
models are usually required when the fluid properties are dependent on compo-

sition and pressure in petroleum reservoir simulation. Such reservoir processes

include

1. miscible flooding by carbon dioxide or enriched gas injection; and

2. depletion of volatile oil reservoirs or gas condensate reservoirs.

The model permits a maximum of four phases to flow simultaneously:
(1) an aqueous phase, (2) an oil phase, (3) a gas phase and (4) an additional
nonaqueous liquid phase. Water is only allowed in the aqueous phase. Water

is slightly compressible and water viscosity is constant.

The model also assumes that the reservoir is surrounded by imper-
meable zones so that no-flow boundaries exist. The permeability tensor is
orthogonal and aligned with the coordinate system. The adsorption of the
rock is negligible. The fluid flow in the reservoir is characterized by Darcy’s
law for multiphase flow. The injection and production of fluids can be treated

as source or sink terms.

The solution scheme is analogous to IMPES. In this procedure, we
first solve the pressure equation implicitly for the grid block pressure by using
explicit dating of saturation dependent terms. Then we solve the material
balance equations explicitly for the total concentration of each component in
moles. Finally, we obtain phase compositions for each component by flash
calculations.

11.3 Mass Conservation Equations

Multicomponent, multiphase flow in porous media occurs as a trans-

port of chemical species in multiple homogeneous phases under the influence

of four forces: viscous, gravity, dispersion (or diffusion) and capillary forces.
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The mass conservation of each component should hold at each point in the

reservoir.

The law of mass conservation for component k¥ can be written in the

following form:

oW,

where W, F. and R, are the mass accumulation, flux and source terms respec-
tively. If equation (11.3.1) is expressed in terms of moles per unit bulk volume
per unit time, the accumulation term can be expressed in terms of the sum of
the moles in each phase. Since hydrocarbon is not permitted in the aqueous
phase nor water in the hydrocarbon phases, the accumulation terms can be

written in the form

ic ¢ P&Szxnz k=1,...,n
We= 63 GSia = > (11.3.2)

= #6151 K=nc+1

where ¢ is porosity, ¢ is the molar density of phase I, S; (saturation) is the
fraction of the pore space occupied by phase I, and z,; is the mole fraction of
component x in phase !. Here we assume that there are n, = 4 phases and
the phase index is in the following order: (1) aqueous phase, (2) oil phase, (3)
gas phase and (4) an additional nonaqueous phase. We also assume that there
are n. hydrocarbon components and a water component (the index number is
n, + 1).

The flux of component x can be represented as a sum of convective
flux and dispersive flux:

- %p Tp -
Fo=3 baai— Y 65K aVza (11.3.3)

I=1 =1
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where 4 is the superficial velocity (flux) of phase j and I?,d is the dispersion
tensor. Physical dispersion in the simulator is modeled using the full dispersion

tensor:

3 K§? K§Y K$)
K= | K% g g4 (11.3.4)
K5 K§Y K |

Each element of K ,; is a function of the flux @; and the saturation S;.

The relationship between the flux and the pressure gradient in each

phase is described by the multiphase version of Darcy’s law for fluid flow in

porous media:
@ = —k\i(VP — 3V D) (11.3.5)

where £ is the absolute permeability tensor, A, is the relative mobility, v; is
the specific weight of phase [ and D is depth. The relative mobility is defined
as

krl

A1'1 = -
Hi

(11.3.6)

where k,; is the relative permeability of phase / and p; is the viscosity.

In most cases the absolute permeability tensor k is assumed to be a

diagonal tensor given by:
k= k, (11.3.7)

where k;, k, and k, are the components of the permeability tensor in the x, y

and z directions respectively. If these three values are the same, the medium
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is called isotropic, otherwise it is anisotropic. An anisotropic medium typically

occurs under most reservoir conditions.

The source terms are determined by the well conditions. Thus
RK=-“17: k=1,...,n.+1 (11.3.8)
where V, is the bulk volume of a grid block and ¢, is the molar flow rate of
component & which is positive for injection. For grid blocks which do not

include a well, g, is set to zero.

Substituting (11.3.2), (11.3.3) and (11.3.8) into equation (11.3.1), one
obtains the mass conservation equations in moles:
P np ) . = 0
-a—t(¢Z§151$n1) +V -3 (bxiji — $GSIK V) — V= 0
I=1 i=1
k=1,...,nc+1  (11.3.9)
Equation (11.3.9) is a set of coupled, nonlinear differential equations with
nen, + 6n, + 2 variables. There exist n.n, — n. + 6n, + 1 other independent
functional relationships among these variables (see Chang [13]). Therefore the

system is solvable.

Since the solution scheme is analogous to IMPES, only the pressures
are solved implicitly. In fact, each of the phase pressures is related to a refer-
ence phase pressure P; and the capillary pressure which is a function of phase
saturations and compositions (see Chang {13]). Thus only one variable, the
phase pressure P; needs to be solved implicitly.

11.4 The Pressure Equation

The pressure equation in UTCOMP is derived on the assumption
that the pore volume V,(P), which is a function of the pressure P only, is filled
completely by the total fluid volume V;(P, N) which is a function of pressure
P and the total number of moles of each component N,:

Vi(P, N) = V,(P) (11.4.10)
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Differentiating both sides of equation (11.4.10) with respect to time using the

chain rule gives

av,op "cf 8V, dN. _ 8V, 8P
aP Bt . ot 0P ot

K=1

(11.4.11)

Since the formation is assumed to be slightly compressible, the pore
volume V,, is approximately a linear function of the pressure P

V, = V2L + ¢s(P — P°)] (11.4.12)

where V” is the pore volume at some constant pressure P° and ¢y is a constant
coeflicient.
The accumulation term, in units of moles of component « per volume

V; is given by

p
Ne=ViW, =V &Siza (11.4.13)
=1
The mass conservation equation (11.3.9) can then be written in the form of the
net change for component £ in moles

N =
( ) - ¢SIKaVzy) —qe=0

I=1
k=1,...,n.+1 (11.4.14)

Substituting equations (11.4.12) and (11.4.14) into equation (11.4.11),

we have

oV, 0P " =
a—P’ =~V Z_; VieV - g(amuz 651K aV )
netl oP
+ Z ‘/MQK = ‘/pocfﬁ (114'15)
x=1
where
_ vV,
Vie = =—— (11.4.16)

ON,
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If the pressure of phase 2, the oil phase, is chosen to be solved as the
reference phase pressure, P; = P;, then other pressures can be expressed by

the relations
P =P;— Py (11.4.17)

where P.y; is the capillary pressure between phase 2 (oil phase) and phase I.
P.,; is assumed to be a known function of saturation.

Substituting (11.4.14) and (11.4.17) into (11.4.15), and using the mul-
tiphase fluid flow version of Darcy’s law (11.3.5), we have the final expression

for the pressure equation

oV, 0P o o AT
- —)—— -V ViV - kAi&ix VP
BP) 5 b ; A ;::1 1&1Z
netl | Tp =
=W 3. ViV D kAibiza(V P — VD)
x=1 =1
ne+1

(Voes

ne+1

-

+V 3 ViV - S d6SIKaVza+ Y Vieds (11.4.18)

x=1 =1 x=1

11.5 The Finite-Difference Form of the Pres-
sure Equation

The discretized form of the pressure equation (11.4.18) is obtained
using the central difference scheme in space and the backward difference scheme
in time. The transmissibilities for phase ! are given by

) 28y 82k Mnilt)y s
(T = Az; + Azis
(kz)isk  (kz)izrjk

(11.5.19)

. 2A:c;Azk(/\rI§I)?j¢ Lk
( l)ej*%k - T Ay; Ayin
(kyie — (Ry)ijean

(11.5.20)

-+




2082 Ay; (A1)

T)xer = —X 2
i 3 2k + Azkﬂ:l

(k2)isk (R2)ijia

We denote the central difference operator as A, e.g.

and define

(AA™AP)ij = AZ g (Pirjk — Pije) — A1 (Pujx
+Aq+1k(P¢J+1k - :Jk) A,,_-k(Pth
+A:Jk+1 (})‘Jk"':l - iJk) A;Jk_..(Pt]k
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(11.5.21)

(11.5.22)

— Pi_1jk)

sJ-—lk)
Pioi)  (11.5.23)

where the superscript n indicates the time level and the subscript ijk is the

index for spatial block V; = V,;; and

ne+l
At:f: Jk = At Zl(‘/t")sjk g(wanl i:t%]k
ne+1
A?j:’:%k = At Z (Vt")tjk Z(mn,ﬂ)g_‘,i] k
k=1 =1
ne+1 _
?jk:h% = At 2_; (Ve )i IE;(mnsz) ijktl

(11.5.24)

(11.5.25)

(11.5.26)

The finite difference form of equation (11.4.18) can be written in the

form
(2] aV ﬂ n 7 n
(Vyer — op)inPat’ — (AA"AP™ )y = (Vi = V)5
V; netl
+(V;>oc.f - t)z]k i3k + At E (‘/t")tjkq"

r=1

+A4(B? — B* + B}) (11.5.27)
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where BZ, By and B} are the collection of terms corresponding to capillary
pressure, the gravity and the physical dispersion respectively. The term related
to capillary pressure is given by

net1 _ np
Br = 3 (Vi) 2_(A(zuTi)" AP )ijk (11.5.28)

x=1 i=1
The gravity term is given by
nc+1 _ Rp
By =2 (V)i ;(A(xnITI'VI)nAD)ijk (11.5.29)
K= =1

where

(W)srse = (Vor)%ix + (Von) o
gk (Vo) + (Vo) lenje

(11.5.30)

(m);41 and ()71 are expressed similarly but with differencing being car-
2 2
ried out in the y and z directions respectively. The contribution due to physical
dispersion is given by
ne+l _ fip
By = (V)i 2_ (Ve 2 (Ba(TR)isk + ABy(J)iik + Ba(J5)isx)(11.5.31)
x=1 =1
where
AL(Jg)ik = (J:l)H--;-jk - (Jr?l)i--;-jk
1
A.’E;

@)y (Ex)Prje — (T
AGpSK #2336 Az + Azip

(@)l — @)
+ SI{,("W) n i+35+1 i+1i-1k
(§1¢ 148 ):+%JkAy,- +0.5(ij+1 +ij_1)

- (@at)iy kr = (@)
S KENn +55k+1 ikl
GBS G ) 1 Azy + 0.5(Az41 + Azpy)

1 N € L )
Az; [2(6@511{"' i~ ik Az; + Az,
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(@a) 1 — (Ea) 1 1k
g K(zy) n -3+ bt X
+(&pSIK g );--;-Jk Ay; + 0.5(Ayj4+1 + Ayj-1)

()™ 100y — (@)™ 1.
{(zz)\n i—33k+1 i-1jk-1
+(£‘¢SII{KI i—%jkAzk + 0-5(A2k+1 +AZ}‘¢_1)

,(11.5.32)

Ay(I%)ijk and AL(J%)ix can be expressed in a similar way but with the differ-
encing being carried out in the y and z directions respectively.

A “volumetric error” term, (V; — V,), is added in equation (11.5.27)
to account for the discrepancy in pore volume and fluid volume at the previous
time step. It reflects the fact that the pressure obtained at the previous time

step may not have been computed exactly.

The coefficient matrix of the resulting linear system is a nonsymmet-

ric, seven-diagonal matrix.




Chapter 12

Numerical Results

12.1 Introduction

In this chapter we present the numerical results of multigrid methods
for solving both model problems and real reservoir simulation problems on
parallel machines. The problems may be strongly anisotropic. The coefficients
are often nonconstant with jumps across some inner boundaries.

The motivation of our experiments is twofold. First we want to ex-
amine the performance of the multigrid methods in solving real problems (here
we use reservoir simulation problems). Second we want to test the performance

of the multigrid methods on currently available parallel machines.

12.2 The Multigrid Algorithm

We are concerned with a multigrid algorithm which should be robust
for solving a relatively broad range of problems in the sense that the algorithm
should obtain an expected convergence rate without special treatment. The
multigrid algorithm we used in our numerical experiments is a semicoarsening

multigrid algorithm (SCMG).

To handle an anisotropic problem, plane smoothing iterations in the
coarsening direction are needed. The plane smoothing iterations are required to
solve many 2D matrix problems. If a 2D direct method or an iterative method
is used to solve these 2D matrix problems, the effect of the whole 3D multigrid
method may not be attractive [5]. One way to overcome this difficulty is to
use a 2D multigrid method to solve these 2D problems [24]. Since the solution
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of the 2D problems is part of the smoothing iterations, they need not to be
solved exactly. In practice, one multigrid V-cycle is adequate for solving the
2D problems. Thus the 3D multigrid method can be very effective in solving

anisotropic problems.

To handle problems with discontinuous coefficients, matrix depen-
dent interpolation operators and restriction operators should be used. The
interpolation and restriction matrices we used are obtained using the Schur
complement approximation method. This is because the reservoir simulation

problems we used are nonsymmetric.

The coarse grid matrices are constructed using (10.3.14). Since the in-
terpolation operation and the restriction operation only involve three points in
the coarsening direction, the coarse grid operators have 15-diagonal structure.

For smoothing iterations, the zebra line Jacobi method is used in 2D
cases. In 3D cases, the zebra plane Jacobi method is used.

12.3 Implementation

12.3.1 Coarsening Direction

Although the choice of the coarsening direction does not affect the
performance of the multigrid algorithms on a serial scalar machine, this may
not be the case on a parallel machine. Without loss of generality, we assume
that n, > n,. If we choose the y-direction as the coarsening direction, the
parallel smoothing work of each V-cycle will be

W(z)log(n,) (12.3.1)

where W(z) is the number of parallel operations for an x-line of nodes per level.

In a 2D multigrid algorithm for solving anisotropic problems, a line
smoothing iteration method is often used. In this case, W(z) ~ d(n.), where d

is some constant. It is obvious that dn,log(n,) < dn,log(n.). Therefore, the
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coordinate direction in which the number of points is largest should be chosen
as the coarsening direction for a semicoarsening multigrid method on parallel

machines. Figure 12.1 illustrates the semicoarsening grids in three levels.

12.3.2 Data Partition

In our current code, we use a one-dimensional parallel scheme. Each
of the grids is partitioned into subgrids in one direction. Each of the processor
nodes holds a subproblem defined on one of the subgrids. One of the reasons
for choosing this partition is to reduce communication costs since each of the
nodes has at most two neighbors. For a parallel system with high start-up com-
munication costs, having fewer neighbors can reduce the total communication

costs.

The parallel direction is chosen as the same as the coarsening direc-
tion. Since the number of points in this coordinate direction is the largest, the
number of levels which can utilize all of the processor nodes will also be largest.

Thus the algorithm will have the maximum parallel efficiency.

As mentioned earlier, in a 3D multigrid algorithm with plane smooth-
ing iterations, the 2D subproblems can be effectively solved by using 2D multi-
grid methods. By using the one-direction parallel scheme, the 2D multigrid
algorithm can be carried out in one node. Thus parallel computing can be

done on a large granularity scale.

12.3.3 Below C-Level

One of the major parallel implementation concerns of the semicoars-
ening multigrid method is the “below C-level” problem (see Briggs et al. [11]).
Below a certain level, the number of the partitions is smaller than the number
of processors. The communication between the nodes becomes complicated
because of two reasons: some nodes are idle and neighbor partitions do not

reside on the physical neighbor nodes.
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Figure 12.1: Semicoarsening Grids in Three Levels
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There are several ways to overcome this difficulty. One way to do
that is to avoid this situation by not going below the C-level, which is called
the “U-cycle” in Briggs et al. [11]. However, if the number of nodes is quite

large, this approach will degrade performance.

Another way to do this is to have one or a group of nodes obtain
all data from the others, complete the below C-level part of a V-cycle, and
then pass the data to the other nodes. In a semi-coarsening case, the global
copies of the current problem are distributed to all nodes in the semi-coarsening
direction. This approach does not scale well. For a moderate number of nodes,

however, parallel performance is good (Smith [60]).

A more natural way is to have all processors do their portion of the
job. Those nodes that are allocated no unknowns are set idle and then re-
awakened upon returning to high levels. This is the approach used by both
Hempel and Schuller [37] and Briggs et al. [11]. In a semi-coarsening case, the

implementation can be simpler.

Since we do coarsening in only one direction, each processor has at
most two neighbors. Each processor keeps a record of its neighbors’ identifi-
cation numbers for all levels and its own “sleep-level.” Below its “sleep-level”
the processor goes to sleep and above this level it awakens. Communication in-
cludes the inner boundary data exchange and global partial summary data. If
a red/black smoothing scheme is used, another flag is needed for each processor
to indicate whether the inner boundary is red or black.

~ 12.3.4 Storage Space

In the SCMG algorithm, the matrices at each level, such as the re-
striction matrices R;, the interpolation matrices P}, and the problem matrices
Ay, should be constructed and saved at the so-called preprocessing stage.

Since the coarse grid matrices A; for 3D problems generally have
15 nonzero diagonals, the space for storing all the A; should be larger than
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7N + 15N. For matrices P; and R;, only two diagonals need to be stored, so

the storage space for these matrices is 4V.

If the 2D SCMG algorithm is used for plane smoothing iterations,
we have to consider storing the 2D matrices at coarse levels. There are two
strategies for generating the 2D coarse grid matrices. We can compute all
of the 2D matrices for all levels and save them for later use. This approach
requires a very large amount of storage space but can save CPU time. We
can also calculate the 2D matrices whenever the 2D SCMG routine is called.
This approach requires a very small amount of storage space but increases the

computation time.

12.4 Parallel Machines

12.4.1 Intel iPSC/860
The Intel iPSC/860 system is a MIMD parallel machine. The iPSC/860

system consists of up to 128 compute nodes, each with an Intel 1860 proces-
sor and up to 64 MByte of memory. Each processor is capable of performing
up to 80 million single-precision or 60 million double-precision floating point
operations per second (MFLOPS).

The hardware for message passing that resides on each node board
links the processors together in a physical hypercube configuration. Each mes-
sage initiating from a node takes about 65 microseconds of CPU time to es-
tablish its path through the cube. The message is then passed along at the
peak hardware bandwidth of 2.8 MByte/sec. Because each node has a direct
connect routing module which is separate from the processor, message passing
through intermediate nodes do not interrupt those processors, so there is no

performance penalty for communicating between nonadjacent nodes.

To run an executable program, the user must allocate a cube consist-
ing of all or part of the nodes in the system. If the user successfully obtains

a cube, he is the owner the cube and no one else can obtain the processors in
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the cube until the user releases the cube.

12.4.2 Connection Machine 5
A CM-5 system is a massively parallel MIMD computer. It may con-

tain thousands of computational processing nodes and one or more control pro-
cessors. Every node is connected to two scalable interprocessor communication
networks, the Data Network and the Control Network. Each processing node
is a general-purpose computer with its own local memory. Nodes can execute
the same (SIMD-style) instruction or independent (MIMD-style) instructions.
A whole CM-5 system can be divided into groups, known as partitions, with
a separate control processor, known as a partition manager. Each partition is

viewed as an independent machine by users.

The operating system on a CM-5 uses a time-sharing scheme. Each
user gets the whole partition during his time slice. The CM-5 timer functions

take this into account automatically.

There are two parallel programming models supported by the CM-5,
the data parallel model and the message passing model.

To use the data parallel model, codes should be written in a high-
level parallel language (e.g., CM Fortran which is similar to Fortran 90, C*,
or *Lisp). Some of the most important features of CM Fortran are the ar-
ray operations. In these advanced parallel languages, an array is treated as a
“parallel variable” and can be used as a single operand of an arithmetic oper-
ator or a single argument of an intrinsic function. By using this model, users
can concentrate on the logical design of their applications and let the advanced
compilers, assemblers, and other system software deal with many details associ-
ated with parallel processing, such as layout across nodes, and synchronization
of operations.

Although many underlying detail problems related to parallelism no
longer need to be taken care of in the data parallel model, the array shape
conversion problem must be dealt with. The curren£ version of CM Fortran




205

does not allow passing a front-end array (a Fortran 77 array) to a subroutine
that expects a CM array, or passing a CM array to a subroutine that expects a
front-end array. It also does not allow resizing or reshaping a CM array across

subroutine boundaries.

In our multigrid codes, one section of a one-dimensional array in the
calling routine is interpreted as a multidimensional array in the called subrou-
tine. This is not trivial in CM Fortran although it can be easily done in Fortran

77.

One way to solve this problem is to declare the storage space as a
one-dimensional CM array in the calling routine and to pass the proper section
of the array to the called subroutine. Inside the called subroutine, a intrin-
sic function RESHAPE is used to create a multidimensional CM array from

elements of the one-dimensional array.

The other way is to declare the space as a one-dimensional FE (Front-
End) array in the calling routine and to pass the relavant part of it to the
subroutine as in Fortran 77. Inside the called subroutine, two transfer subrou-
tines, CMF FE_ARRAY_TO.CM and CMF_FE_ARRAY.FROM_CM, are used
to transfer the multidimensional FE array to and from the multidimensional
CM array. We have chosen this approach in our codes for convenience and

efficiency.

In the message passing model, users take care of communication at
the procedure level. Users must specify explicitly the locations where commu-
nication is involved. This model gives users great flexibility. When operation
of arrays includes procedure calls, the data parallel model usually cannot help
and the message passing model has to be used.

On the CM-5, the message passing model is supported by the CM
message-passing library (CMMD). CMMD provides common message passing
subroutines, global operation subroutines, parallel input/output modes and
node timing functions. The CMMD timers measure three values: busy time

(cpu time), idle time, and elapsed time with microsecond precision.




12.5 Parallel Virtual Machine
PVM is a software package developed jointly at Oak Ridge National

Laboratory and The University of Tennessee, which allows concurrent comput-
ing on heterogeneous networked computers via sockets. Users run an appli-
cation program using PVM just like on a real parallel machine. PVM takes
care of data format transformations between different types of machines. The

communication subroutines are provided in a library (libpvm3.a).

Although a group of different types of machines can be used under
PVM, the execution time is limited by the slowest one if each of the machines

accepts the same amount of work. In this case, the work load should be carefully

distributed among the networked machines based on their processing speeds to
obtain the maximum speedup. In our case, we used 16 SUN4 workstations
which are networked with Ethernet-10 with a speed 10 Mb/sec.

The performance of PVM depends on the performance of the local
computer system, especially on the speed and reliability of the local network.
In order to reduce communication contention and minimize network traffic,
each node keeps the whole set of data and only exchanges the updated inner
boundary data.

The nodes in a PVM system are real computers, and usually have
more processing power than the corresponding processor nodes of a real par-
allel machine. However, the communication speed might be slow compared to
those of real parallel machines since the speed of the networks is usually slower
than the data channels in a real parallel computer. Subtasks of an application
program should, therefore, have a moderately large level of granularity in order

to get a reasonable speedup result.
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12.6 Numerical Results

12.6.1 Anisotropic Problems

The first problem is the 2D anisotropic problem defined by (2.3.8)
with the finest grid size 100 x 100.

The second problem is a 3D anisotropic problem defined by

— Uz (2, Y, 2) — Buy(z,y, 2) — Yuza(z,y,2) = 1.0
(z,y,2) € 2= (0,1) x (0,1) x (0,1) (12.6.2)
u(z,y,2) =0 on the boundary 9

with the finest grid size 20 x 20 x 20.

The initial guess ug)) is set to zero. The average residual reduction

factor is obtained by averaging the residual reduction factors over 5 V-cycles

(5) ¢
pa = ( I:IrbLL "ll ) (12.6.3)

where rg‘) = b — ALug'). The convergence results for the 2D and the 3D prob-
lems are presented in Tables 12.1 and 12.2, respectively. In these two tables,
the average convergence factors are listed vs. different anisotropic coeflicients
situations. For both problems, the convergence factors for the anisotropic cases

are smaller than those for the isotropic cases.

A standard measure of the speedup of an algorithm is defined by

T(N)

) _
5 = T(1)

(12.6.4)

where TM) is the wall clock time for solving a problem on N computational
processors and T is the wall clock time for solving the same problem with the

best serial code on one computational processor. In our experiments, T is




Table 12.1: Convergence Factor of SCMG in 2D Anisotropic Cases (NX=100,

NY=100)
Coeflicients To Ts Average
(41 Convergence Factor
1000 7.166 x 107! | 6.777 x 10712 6.240 x 103
100 1.210 4.279 x 10~7 5.125 x 102
10 1.348 1.513 x 10~5 1.023 x 10~
1 1.338 1.798 x 10~° 1.061 x 101
0.1 1.398 4.454 x 10~© 7.955 x 1072
0.01 1.400 1.589 x 10—¢ 6.471 x 102
0.001 1.400 f1.885 x 107 4.225 x 1072

approximated by the time for solving the problem with the same parallel code
on one processor. A measure of the efficiency is defined by

S)
=2 6.
E N (12.6.5)

The efficiency is used to measure processor ultilization.

Tables 12.3, 12.4 and 12.5 list the speedup and efficiency of the SCMG
algorithm for the 2D and 3D anisotropic problems defined in (2.3.8) and (12.6.2)
on the CM-5 and iPSC/860 parallel systems and the networked SUN4 work-
stations under PVM, respectively. The numerical results are obtained for the
problems with different sizes of grids and on different numbers of processors.
Here we use Tcomp; Tcomm and T, sol to represent the time for computation,
communication and solution, respectively. In a multi-user system such as the
CM-5, we use the CPU time instead of the wall clock time because the wall

clock time depends on the number of user processes running on the system.
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Table 12.2: Convergence Factor of SCMG in 3D Anisotropic Cases (NX=20,
NY=20, NZ=20)

Coefficients To rs Average
a, B,y Convergence Factor
1, 1,1 1.225 | 1.967 x 107 6.936 x 102
100, 1, 1 0.4224 | 2.542 x 10713 3.597 x 103
1, 100, 1 0.4225 | 1.058 x 10~12 4.783 x 1073
1,1, 100 1.341 | 1.233 x 1077 3.915 x 1072
100, 100, 1 | 0.2470 | 4.463 x 1013 4.481 x 1073
1, 100, 100 1.281 | 1.577 x 10~ 6.577 x 1072
100, 1, 100 1.281 | 1.575 x 10™¢ 6.577 x 10~2
10000, 100, 1 | 5.29173 | 2.475 x 10713 8.590 x 10~3
10000, 1, 100 | 0.4325 | 2.486 x 10~13 3.564 x 10~3
1, 10000, 100 | 0.4323 | 3.064 x 10~13 3.716 x 1073
100, 10000, 1 | 0.7479 | 3.766 x 10713 3.470 x 1073
100, 1, 10000 | 1.341 | 8.755 x 1078 3.656 x 10~2
1, 100, 10000 | 1.342 | 8.755 x 10~® 3.656 x 1072




Table 12.3: Speedup and Efficiency of SCMG on the CM-5

Size

Tcomp

Tcomm

T,

sol

Speedup

Efficiency

8*8*128

21.1

0

21.6

1

1

10.7

0.19

11.1

1.95

0.98

5.43

0.39

5.94

3.64

0.91

2.84

0.61

3.55

6.08

0.76

1.57

0.98

2.67

8.09

0.51

0.98

1.69

2.78

7.77

0.24

4%4*128

7.67

0

7.74

1

1

3.86

0.13

4.05

1.91

0.96

1.97

0.25

2.28

3.39

0.85

1.04

0.45

1.54

5.03

0.63

0.59

0.70

1.33

5.81

0.36

0.37

5.26

1.10

1.52

5.09

0/16

0

5.31

1

1

2.66

0.16

2.86

1.86

1.39

0.29

1.73

3.07

0.82

0.51

1.36

3.90

0.56

0.69

1.29

4.12

0.47

1.10

1.66

3.20

16*512

1.33

0

1.46

1

0.62

0.12

0.85

1.72

0.31

0.24

0.65

2.25

0.17

0.43

0.69

2.12

0.10

0.86

1.06

1.38

0.07

1.56

1.73

0.84




Table 12.4: Speedup and Efficiency of SCMG on the iPSC/860

Size Nodes | Tcomp | Tecomm | Ty | Speedup | Efficiency
4%4*128 1 5.51 0 5.77 1 1
2 2.87 0.07 3.00 1.92 0.96
4 1.48 0.13 1.64 3.52 0.88
8 0.76 0.18 0.96 6.01 0.75
16 0.39 0.24 0.65 8.88 0.56
32 0.19 0.30 0.51 11.31 0.35
8%8*32 3.32 0 3.37 1 1
1.74 0.05 1.81 1.86 0.93
0.98 0.09 1.10 3.06 0.77
0.61 0.14 0.78 4.32 0.54
16 0.43 0.18 0.65 5.18 0.32
32 O.&_ 0.22 0.66 5.11 0.16
16*512 0411 | o0 [o0420] 1 1
0.223 | 0.071 | 0.301 1.40 0.7
0.122 | 0.101 | 0.230 1.83 0.46
0.071 | 0.117 {0.192 2.19 0.27
16 0.044 | 0.129 | 0.176 2.39 0.15
" 32 0.025 | 0.138 | 0.167 2.51 0.08
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Table 12.5: Speedup and Efficiency of SCMG on a Cluster of SUN4 Using PVM

Size Nodes | Tcomp | Speedup | Efficiency
8*8*128 1 18.4 1 1
9.56 1.92 0.96
4 5.17 3.56 0.89
4%4*128 1 7.42 1 1
2 3.96 1.87 0.94
4 2.11 3.52 0.88
8 | 118 | 6.29 0.79
16 0.81 9.16 0.57
8*8*32 1 4.13 1 1
2 2.32 1.78 0.89
4 1.38 2.99 0.75
8 0.88 4.69 0.59
16 0.65 6.35 0.40
16*512 1 1.21 B 1 1
0.77 1.57 0.79
0.69 1.75 0.44
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The timing results on the CM-5 system are obtained using the timing
subroutines in the CMMD library. These timers can be used to measure busy
time and idle time on each node with microsecond precision. Timing on the
iPSC/860 is performed using the dclock() function which can measure the cpu
time with 100 ns precision. Timers on the networked workstations under PVM
depend on the timing utilities available on the workstations. Here we use the
UNIX system call getrusage() on the SUN4 workstations. In Table 12.5, only
computation times are listed because low-speed communication channels and
repeatedly resending lost messages makes the communication time very large.

The computational time decreases as the number of node processes
increases. The communication time increases as the number of node processes
increases. If the increase in the communication time is larger than the decrease

in the computation time, the solution time will increase.

Speedup depends on the problem size, domain shape and the ratio of
the computational work to the communication work. Speedup becomes larger
when the problem size is larger. This is because the cost of the serial portion of
the process becomes negligible compared to the parallel portion. The domain
shape affects the ratio of the computational work to the communication work.
The longer the shape is in the parallel direction the larger the speedup that
can be obtained.

12.6.2 Reservoir Simulation Problems

We have implemented a semicoarsening multigrid (SCMG) method
and have used the code in the multicomponent, multiphase miscible flooding
simulator UTCOMP as a solver for the numerical solution of the linear systems
of equations arising from the discretization of the governing pressure partial
differential equations. We give some numerical results which show that the
SCMG solver is very efficient and stable.

The first three cases are two-dimensional carbon dioxide flooding sim-

ulations with multiphase flow and heterogeneous field-scale conditions. In these
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cases, the effects of gravity, physical dispersion, capillary pressure, phase behav-

ior, and heterogeneity are combined and simulated for carbon dioxide flooding

on a field scale using stochastic permeability fields. A detailed description of
these cases can be found in [48]. The grid size of these three cases are 80 x 10,
80 x 20 and 80 x 80 corresponding to the cases M2DCLL671, M2DCLL672 and
M2DCLL679 in [48] respectively. The simulations contain up to three phases

and three components.

We run these three cases on a CRAY Y-MP supercomputer. The
resulting linear systems are highly nonsymmetric. For comparison, we have
also run the cases with some other numerical solvers, such as the biconjugate
gradient method (BCG), the biconjugate gradient square method (BCGS) [40],
the ORTHOMIN method (OMIN) [72] and the banded Gaussian elimination
method (DIR). The incomplete LU decomposition (ILU) or the modified incom-
plete LU decomposition (MILU) [53] is used as a preconditioner for the CG-like
methods. For the modified incomplete LU decomposition preconditioner, the
modification factor w is set to 0.9. (The discussion of the modification factor
w can be found in [56].) The simulation is carried out for 200 simulation days
for the first two cases and 50 simulation days for the third case. The timing
results are listed in Tables 12.6, 12.7 and 12.8 where T is the CPU time for
solvers, Tyt is CPU time for the whole simulation runs and R is the ratio
of T, based on the SCMG method.

For all three cases, the performance of the multigrid method is very
good. It is about 17 times faster than the OMIN(ILU) method which is the
second fastest method for case 3. For case 1, the size of the linear system is
the smallest one (80 x 10) in our experiments and the banded direct solver is
faster than all the other CG-like methods except the SCMG method which, by

contrast, is still about 3 times faster than the direct method.

In our experiments, we also consider two three-dimensional water-
flooding simulation cases which use the reservoir and fluid properties of the
Monahans Clearfork reservoir, located in West Texas, operated by Shell Oil
Co [47]. Up to three nonaqueous phases and six components are considered in
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Table 12.6: Timing Results for Case 1 (80 x 10)

Solver Tio1(sec.) | Tyot(sec.) | Rgol
SCMG 10 23] 1
OMIN(MILU) 127 332 | 13
BCGS(MILU) 121 324 12
BCG(MILU) 132 336 | 13
DIR 27 231 3

Table 12.7: Timing Results for Case 2 (80 x 20)

Solver T, (sec.) | Tyot(sec.) | Ryg)
SCMG 19 556 1
OMIN(MILU) 406 951 21
BCGS(MILU) 390 927 | 20
BCG(MILU) 407 949 | 21
DIR 143 685 8
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Table 12.8: Timing Results for Case 3 (80 x 80)

n Solver Tooi(sec) | Tyot(sec.) | Rggl
SCMG 113 928 1
OMIN(ILU) 1922 2734 | 17
BCGS(ILU) 2406 3237 21
BCG(ILU) 3197 4030 | 28
DIR 7036 7842 62

these two simulation cases. We refer to these two cases as Cases 4 and 5 corre-
sponding to Runs SIM21HW1C and SIM46DW1 in [48], respectively. In Case
4, a three-dimensional unconditioned stochastic permeability field is generated
and a grid of 10 x 10 x 8 is used for a real range of 1980 x 1980 x 20f¢3. In
case 5, a three-dimensional stochastic permeability field conditioned with core
data are used with a grid of 10 x 10 x 16.

We run these two cases on a DECalpha workstation. The simulations
are carried out until the number of pore volumes injected is equal to 0.1. All
these runs are successful. For most time steps it takes only one or two cycles for
convergence of the SCMG method. For these two three-dimensional cases, the
CG-like iterative methods are faster than the SCMG method. One reason is
that the current implementation of SCMG needs an initializing process which
takes a large amount of time if only a few multigrid cycles are performed.
Another reason is that the numbers of grid points in the coarsening direction
used in these two cases are too small to obtain usual multigrid efficiency.




Chapter 13

Conclusions

13.1 Review of Dissertation

In this dissertation we studied multigrid methods for the numerical
solution of elliptic partial differential equations. The primary focus of our study
was on parallel multigrid methods and the application of multigrid methods to

reservoir simulation.

In Chapter 2, we described the model problems in 1D and 2D and the
corresponding linear systems which will be used in later chapters. In Chap-
ter 3, we briefly discussed some basic iterative methods, including the Jacobi
method. We also discussed polynomial acceleration procedures such as Cheby-

shev acceleration and conjugate gradient acceleration.

In Chapters 4 and 5, we discussed the standard multigrid methods.
We gave a convergence analysis of the standard multigrid methods for a class
of model problems in 1D and 2D using both standard Fourier analysis and a
multicolor Fourier analysis. The new multicolor Fourier analysis is equivalent
to the standard Fourier analysis since there is a similarity transformation rela-
tionship between the two bases. However, the multicolor Fourier analysis can
be more conveniently used in the analysis of the standard multigrid methods
using red/black smoothing iteration methods.

In Chapters 6 to 9, we considered three types of multiple coarse grid
methods (MCG). In the multiple coarse grid multigrid methods (MCGMG)
more than one coarse grid is used and the interpolation and restriction oper-
ators on each of the coarse grids on one level are the same. In the frequency
decomposition multigrid methods (FDMG) more than one coarse grid is used
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but the interpolation and restriction operators on each of the coarse grids on
one level are different. In the parallel multigrid methods (PMG) one averages
all the coarse grid corrections on one level.

In Chapter 6, we considered an extended problem corresponding to
a given problem with Dirichlet boundary condition. A similar discussion can
be applied to other boundary conditions such as the Neumann-type boundary
condition. The MCG methods can be more effectively applied to the extended
system. In the MCG procedure to solve the extended system, we used a purifi-

cation process to obtain Moore-Penrose solutions of singular systems.

In Chapters 7 and 8, we described and analyzed three types of MCG
methods including MCGMG, FDMG and PMG in one and two dimensions.
Multicolor Fourier analysis was used in our analysis. We derived convergence
factors of the two-level procedures for MCG methods with various smoothing
iteration methods including the damped Jacobi method and the red/black SOR
method. We showed that with an MCGMG procedure or a PMG procedure
with a certain type of smoothing iteration (e.g. the damped Jacobi method)
the “aliasing error” caused by the coarse grid correction process on each of
the coarse grids was eliminated and thus the convergence was improved. The
analysis showed that using the red/black SOR smoothing iteration method led
to a better MCGMG convergence rate than using the damped Jacobi method.
We showed that the convergence factors of the FDMG method without any
smoothing iterations were bounded from above by 1/3. The coarse-grid cor-
rection of the FDMG method is in fact equivalent to a block Jacobi iteration

applied to a similarity transformation of the given system.

In Chapter 9, we considered a variant of PMG methods using the
semicoarsening and line smoothing techniques to solve anisotropic problems. A
multilevel convergence analysis of the semicoarsening PMG method (SCPMG)
for an anisotropic problem was given. The results of the analysis show that
the multilevel convergence factor of the SCPMG method with one line Jacobi
smoothing iteration is bounded from above by 0.5 for the anisotropic model
problem with the coefficient ratio being from 10~° to 10°%. If the modified
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line Jacobi smoothing iteration proposed by Tuminaro [64] is used then the
convergence factor can be bounded by 0.2. The bound of the convergence
factor can be reduced further to 0.11 if the red/black SOR smoothing iteration

1s used.

In Chapters 10 to 12, we considered the application of multigrid meth-
ods to petroleum reservoir simulation. We developed a multigrid code using
the semicoarsening and the line (plane) smoothing techniques for UTCOMP, a
three-dimensional, multiphase, multicomponent, compositional reservoir simu-
lator developed at The University of Texas at Austin. The governing equation
in the reservoir simulator is an anisotropic differential equation which may have
discontinuous coefficients. The matrix problem arising from the discretization
of the governing equation is nonsymmetric. Special matrix-dependent interpo-
lation and restriction operators were used to handle the discontinuous coeffi-
cients. The numerical results showed that the multigrid procedure we used were
competitive with the Gaussian elimination method and with standard iterative
methods. The multigrid algorithm has also been implemented on a variety of
parallel systems such as the CM-5, iPSC/860 and networked workstations un-
der PVM. From the results of the numerical experiments, we observed that the
speedup depends on the size of the problem to be solved and the computing

environment.

13.2 Summary of Contributions

In this dissertation we introduced a new multicolor Fourier analysis,
described and analyzed the multiple coarse grid methods including a new one
based on the use of semicoarsening and line smoothing techniques, and applied
multigrid methods to reservoir simulation.

In our analysis of two-level multigrid methods we used a multicolor
Fourier analysis based on the partitioning of coarse grids. It can be conveniently
used in cases where more than one coarse grid is used and/or a multicolor

smoothing iteration is used. The connection between standard Fourier analysis
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and multicolor Fourier analysis is derived.

We studied the coarse grid methods (MCG), where at each coarse
grid level more than one coarse grid is used to improve convergence perfor-
mance. Three types of MCG methods were considered, including multiple
coarse grid multigrid methods (MCGMG), frequency decomposition multigrid
methods (FDMG) and parallel multigrid methods (PMG).

We constructed an extended system corresponding to a given prob-
lem with Dirichlet boundary conditions. The extended system is periodic and
thus can be conveniently handled by MCG methods. We used a purification
process to obtain the Moore-Penrose solution of the singular systems which

were encountered.

We considered a new variant of PMG methods using semicoarsening
and line smoothing techniques to handle anisotropic problems. A multilevel

convergence analysis was carried out.

We applied multigrid methods to petroleum reservoir simulation. We
developed a multigrid code using semicoarsening and line (plane) smoothing
techniques for solving the governing pressure equation of a three-dimensional
reservoir simulator. We used special matrix-dependent interpolation and re-
striction operators in the code which can be used for solving the pressure equa-

tion with discontinuous coefficients.

We systematically performed numerical experiments of the multigrid
method on a variety of parallel systems such as the CM-5, iPSC/860 and net-
worked workstations under PVM.

13.3 Future Research
The performance of an MCG method largely depends on the choice of

the interpolation and restriction operators. Since the operators can be chosen
differently on different coarse grids, there are a large number of possible choices.
A further study should be carried out on the choice of operators for the MCG




221

methods.

The analysis of the MCG methods should be extended to three-
dimensional cases to see if the performance declines. A broader class of prob-
lems should be considered. Such problems include elliptic problems with mixed
boundary conditions. The use of MCG methods for solving equations with dis-

continuous coefficients should also be considered.

Semicoarsening techniques can be used with the FDMG methods. A
semicoarsening FDMG method has fewer coarse grids and therefore the algo-
rithm has a simpler structure. With the semicoarsening scheme, the interpola-
tion and restriction operators are also much simpler. In a higher dimensional

case, this advantage is greater.

In reservoir simulation, the solution can be very smooth in some re-
gions and oscillatory in others. For such cases it might be more efficient to
use a grid with more resolution in some regions. Using local mesh refinement
techniques, the efficiency of a multigrid method can be further improved.

The governing pressure equation in UTCOMP is a nonlinear equation.
It may be more efficient to apply the multigrid method directly to the original
nonlinear problem instead of to the linearized systems.

For time dependent problems where the low-frequency modes in the
solution on the finest grid do not change very much with time, the coarse grid
corrections do not have to be sent back to the finest level at each time step.
Instead, one can run a simulation by solving the coarse grid system for several

time steps and then solving the fine grid system once. Procedures based on
this idea should be developed.




Appendix A

Moore-Penrose Solution of a
Symmetric Linear System

Let A be a real symmetric N X N singular matrix. The linear system

Au=1b (A.0.1)

may either have an infinite number of solutions or no solution depending on
whether the vector b lies in the range of A. However, there always exists a
unique solution to the problem of finding w such that |6 — Aw|| is minimized
and such that ||w|| is minimized. The solution u* of the modified problem is
referred to as the Moore-Penrose solution (see Moore [54] and Penrose [58))

and is denoted by
u* = At (A.0.2)

The Moore-Penrose solution can be determined as follows. Since A is

symmetric there exists a orthogonal matrix V such that
V1AV = A = diag(Ay, Az, . .., Ap,0,...,0) (A.0.3)

where A, Az,..., A, are the nonzero eigenvalues of A. The Moore-Penrose
inverse At of A is defined by

At = Vdiag(AT1,27%,...,A51,0,...,0)V! (A.0.4)
Note that

Vv1i=vT (A.0.5)
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The Moore-Penrose solution is given by
u* = Alb (A.0.6)

We note that if A is nonsingular, then u* = A~'b. Moreover if A is singular

and b is in the range of A then
|6 — Au*|| =0 (A.0.7)

Let v, v®), . . o) denote the eigenvectors of A associated with
nonzero eigenvalues and let v®+1),... v(™) denote the eigenvectors associated

with the zero eigenvalue. Evidently b can be represented in the form
b=div® + - 4+ dv® + dpyy 0@ 4 ... 4 dyo®™) (A.0.8)
The Moore-Penrose solution u* = A'b can be written in the form
u* = di o™ 4o dAS ) (A.0.9)
We note that u* is a solution of the system
Au= ¥ (A.0.10)

where

(v(P“), b)
(v(P'H), v(?+1))

(v'™,b) )
(v), p(V))

o) 4ot dy (A.0.11)

B =b—dp

We say that ¥ is a “purified” vector corresponding to b. Moreover, the general

solution of the modified system Au = ¥’ is given by
i =d AT M 4+ AT e 0D ol eno®) (A.0.12)

Therefore the Moore-Penrose solution u* can be obtained from @ by “purifica-

tion”.
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