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RESISTIVE INSTABILITIES IN A TOKAMAK 

. . , . * 
A. H. Glasser, J. M. Greene, .and J. L. Johnson 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

Application of.resistive insqability theory shows that 

toroidal effects can stabilize the tearing mode in devices like 

the Princeton Large Torus. Contraction of the current channel 

is destabklizing. Finite fluid compressibility is crucial to 
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1. INTRODUCTION 

The Mirnov oscillations frequently observed in tokamak 

di~char~es''~ are generally interpreted as resistive instabilities, 

specifically tearing modes, driven unstable by the Ohmic heating 

current. 3 ' 4 f  The analysis is usually done fo: r straight, 

cylindrical model tokamak. The eff2cts of toroidal curvature are 

n e g l e c t e d  on the ground that the singular layer where resis- 

tivity is important is unaffected by curvature because it is 

so narrow.5 ~likser, -- et a16 have treated resistive instabilities 

in an arbitrari1.y shaped toroidal plasma. Curvature effects 
. - 

enter the analysis because the perturbations, which are const-ant 

along a field line on the singular surface, sample varying equili- 

brium quantities such as the toroidal and poloidal magnetic field 

strengths. ~ l t h o u ~ h  these effects are small in a tokamak, they 

have a strong,influence on the stability of the.resistive modes 

because the resistivity is so small. 

In this paper we apply the theory of Ref. 6 to a tokamak 

. with large aspect ratio, circular cross section, and arbitrary, 

current and pressure profiles. We find that toroidal effects 

are suffi ient to stabilize the tearing mode in devices such as 9 
the ST tokamak if the current profile is rather flat, but 

1 

contraction of the current channel destabilizes it. The PLT 
. . 

device should be much more stable because of its smaller aspect 

ratio and higher 'temperature. 
.. . 

In S'EC.  T I  w e  describe the equilibrium. In Sec. 111 we 

discuss the stability properties of the system and give numerical 



results for the ST and PLT tokamaks. We also show that allowance 

for finite fluid compressibility is cru'cial for deriving toroidal 

stabilization. In Sec. IV we summarize our results. In the 

Appendix we.evaluate the critical parameters of Ref. 6 which are 

needed in Sec. 111. 

1 EQUILIBRIUM 

We treat an axisymmetric toroidal equilibrium, with the 

magnetic field given by 

where $.is the angle about the axis of symmetry, x is the poloidal 

flux, R is the distance from the axis of symmetry to the magnetic 

axis, and Bo is the externally imposed toroidal magnetic field 

strength at the magnetic axis. As in the earlier workI6 we use 

rationalized electromagnetic units. To convert to Gaussian 

, CGS units, ' make the substitutions 

for rationalized MKS units, use 

A combinakion of Ampere's law and pressure balance gives the well- 

known equilibrium equation, 



with X the radius from the axis of symmetry, p(x) the pressure, 

J the toroidal current dgns,ity, and primes denoting derivatives 
0 .  

with' respect to x . 
We consider large-aspect- ratio -solutions of Eq. (2) , writing 

X = R + r cos 8, z = r sin 8, r / ~  - E < <  1 , ( 5 )  

where z is the distance along the ahis of symnetry, r and 8 are 

circular coordinates about the magriPtir  axis at X = R ,  a - 0, and 

E is the inverseaspect ratio. We seek series solutions of the 

form 

which are circularly symmetric in lowest order. If we prescribe 

the pressure p (x) and the safety factor 

where the integral is taken around a poloidal cross section at 

constant X, or equivantly prescribe g (2) '(=) and q ( )  ( r  , then the 
8 

. . 
. . 

first terms in the solution are I 



a 
1 dr " d r 2 

(2) 
9 (r) = 2 -- - p(2) (r) 

9 
(0) dr' q 

2 
Bo 

111. STABILITY 

The stability of the system is determined by a set of para- 

meters defined in Eq. (13) of Ref. 6. These are evaluated in the 

Appendix of this work. for the equilibrium of Sec. 11. In this 
i 

section we examine the conditionsjfor  ability against the 

various modes treated in Ref'.'6 and summarized in Sec. VI of that 

pap.er. We first show that the ideal magnetohydrodynamic inter- 

change is very effectively stabilized by shear, We then consider 

conditions"for the stability of the resistive interchange. Using 

a particular model of.the current and pressure profiles and the 

numerical results o f  Furth et al15 we then show that the same favor- -- 

able curvaturewhich stabilizes the resistibe interchange can 

stabilize the tearing mode in the ST and PLT tokamakk. The 'result 

is first obtain.ed by treating the parameters G and H as small. 

Then, in discussing the effects of large G I  we show that allowance 

for finite fluid compressibility is necessary to obtain curvature 

stabilization. Finally, we show that th,e effects of H will be signi- 

ficant in PLT. 



A. Interchange Modes 

The rapidly-growing ideal magnetohydrodynamic 'interchange 

is unstable unless the Mercier criterion, 

DI, - E + F  + H - 1/4 

< o ,  

is satisfied. It is interesting to .note that the terms F and H, 

Eqs. (A191 and ( A L ~ ) ,  cancel all but,the first two terms of E, - 
2 

Eq. (~18). Since these terms are of ,order E they are generally 

much smaller1 than the term - 1 / 4 ,  whidh represents shear stablli- 

zation, and thus the Mercier criterion is nearly always satisfied. 

Although it can be violated, for example if d~(~)/dr<0, q(O) <1 , 

and dq (O)/dr vanishes, this would be exceptional. It can occur 

in the immediate vicinity of the magnetic axis. 

The resistive interchange is unstable unless 9 



This is always more stringent than the Mercier criterion, since 

The term H*, while destabilizing, is of order c4 and therefore 

negligible compared to the other :terms of DR,which are of order E 
2 

The shear. stabilization term - 1/4 of DI does not occur in DR . 
The integral terms in Eq.(l3)are the terms of E which are cancelled 

- by H in DI . If dp(*)/dr < 0 and dq */dr > 0 everywhere, they 

are stabilizing. If, in addition, q(0)>l , DR < 0 everywhere and 

the resistive interchange is stable. As discussed in Sec. VI of 

Ref. 6 , average toroidal f ield-line curvature then .provides 

sCabiliz,ation by decreasing DR. 

B. Tearing Modes with G and H Small 

If DR<O, we must consider the stability of the tearing mode. 

This depends on the parameter A, defined in Eq.(84)of Ref. 6, which 

arises in matching the solutions inside the resistive layer to the 

solutions~, in the ideal regions on either side of it. For H = 0 

it is the jump in the logarithmic derivative of the normal component 

of the perturbed magnetic field across the singular layer. It 

,carries the destabilizing - influence of the Ohmic heating current. 

For.the equilibrium treated here, and for poloidal mode numbers 

m > 1, it is given correctly to lowest order by the cylindrical 

aggrnxima$ion, and is unattected by the pressure profile. It is 

evaluated for several profiles q(o) (r) in Ref. 5. If DR = 0, 

the teari*g mode is unstable for , A > 0, as discussed in Ref. 5. 

Bu€ if D c: 0, the mode is converted to the modified tearing mode 
R ;  



. . 
with a complex frequency, and is unstab,le only if A > Act where 

when (; and H are small. The large factor VS/Xo is the ratio 

of a macroscopic scale length to the . . resistive layer thickness. 

It is given by Eq.(A31). Because of th.is large factor, curvature 

stabilization can be important even though D is small. R 

To determine the magnitudes of DR and AC and compare then ,  

to the values of A, we use the peaked model of ~ e f .  5 ,  in w h ~ C h  

'1 ( O )  i.s a quadratic function of r. We alsp use s parabolic pressure 

profile. These profiles. are given by 
, 

where a is the limiter radius. We call the constant s a shear 

parameter, since dq(~)/dr = ~ ~ ~ s r / a *  . The radial variable used in 

Ref. 5 is x r r 0  i t  r Z a . Thc current density is given 

where I is the total.toroida1 current., As s increases, the cur- 

rent channel contracts, as it normally does during the course of a 
. . 

tokamak discharge due to the thermal instability of the Ohmic 
I 

. . .  

heating currqnto If I i s  held fixed., ,during this contraction, q0 
. .. .? . .. . . 

falls, while if qo is held fixed, 1,falls. It is convenient to :. 
. . 



express p in terms of 
0 

Note that 13 is of order unity in the aspect ratio expansion. 
P .. . 

With these profiles, we obtain 

If qo > 1, DR < 0 everywhere, and is therefore stabilizing. If 

< 1, DR 0 in the vicinity of the axis, and the resistive. inter- 
40 t 

change is unstable. If this occurs, the resultant instability 

will flatten the profiles and return qo to one or greater.. We 

therefore consider the case for which'q is held fixed at 1.1. 
0 

The solid curves in Fig. 1 show values of I D ~ J  VS. r/a between the 
axis and the limiter for values of s between 1 and 3, with 

. . 
B~ = 0.8 and R/a = 8.4, appropriate for the ST tokamak. The .be- 

havior at the axis is sensitive to the particular model..employed. 

If qo were less than 1, they would diverge with the opposite sign. 

If p ( 2 )  were flatter at the axis, they would remain finite. The 

open circles denote the q = 2  surfaces, while the solid circles 

denote the q = 3 surfaces. As s increases and the current channel 

shrinks, IDR] decreases, and i t s  stabilizing influence is lost. 

Since the integral q surfaces also move in and down the curves as 

s increases, each mode is destabilized'even faster. The dashed 



curve is for R/a = 2.9, appropriate for PLT, with s = 2. The 

values of / D ~ \  for a given value of s are due to the smaller aspect 

ratio. The shrinking of the current. channel can be thought of as 

an increase of the effective aspect ratio, leading to a reduction 

of the curvature ef.fects. 

Figure 2 is a graph of roAC as a function of r/a . The 

general features are similar to those in Fig. 1, but the variations . . 

are even more pronounced because of the ektects' of varyrng resistivity. 

Wc use the Spitzer resistivityiL enhanced by a factor Zeff, chosen 

as 2.5 for ST and 1.5 for PLT, to account for impurities. We take ... . 
the electron temperature in ST to be 2 . 5  keV, while for PLT we use 

.. . 

4.0 keV. We take the radial dependence of T-I to be inversely pro- 

portional to J (O) (r). The s = 2 cwgve for PLT is off scale here 
@ . .  

because of 2ts higher temperature, 89 we show the s = 3 curve. The 

curves drop more steeply with increasing s because of the radial 
. . 

increase of q. The horizontal line near the bottom is the value 

of roO calculated in Ref. 5 for the m: = 2, n = I mode.. While 

the analysis of that reference predicts instability for the mode 

because A is positive,.we find it to be stable until s reaches 

about 2.5 and AC drops below A at the q = 2 surface. For the m = 3 

mode, this model gives a negative value of A for these parameters,. 

so it is stable. 1,ncreasing q would,raise A, and eventually givs 
0 

the m = 3 mode a positive value of A,,  in general less than that 

associated wlth m = 2. , - 

The higher v.alues of AC for WT:!i.ndicate that the m = 2 
I '  

mode is much' more stable than in ST. This is also seen in Fig. 3, 



which shows r AC vs. s at the q = 2 surtace in ST and PLT. While 
0 

ST goes unstable to the m = 2 mode when s reaches 2.4, PLT remains 

stable until s reaches 7.5 . Since the contraction of the current 

channel is caused by the thermal instability of the Ohmic heating 

current, and since PLT will derive much of its heat from neutral 

injection, s may never reach this value. 

The.growth or damping rate for the m = 2 mode is of order 

3 -1 5 x 10 sec in ST and slightly lower in PLT. This is comparable 

to the growth rates of the observed m ='2 Mirnov oscillations, 1,2 

but much smaller than the electron diamagnetic rotation frequency 
* 

w z 105sec-' which has not been included in our treatment. 12-15 e 

Since it is also comparable to the electron collision frequency 

4 -1 v = 2 x 10 sec , this should be incorporated in the theory'. 12,15 e 

Similarly, the resistive layer thickness Sr, Eq. (A32), is of order 

3 x 10-~cm., and thus smaller than the ion gyration radius, which 

is of order 8 x 10-*cm. This indicates ' that the treatment should 

include the effects of finite ion gyration radius. I3'l6 These effects 

will be considered in future papers. 

C. The Effects of G and H 

The expression for A given in Eq. (15) is valid only if G C 

and H are small. It can be seen from Eq. (A201 that G is not small 

-2 but large,of order E - ~ ;  i~ fact, G = 2/yB, and ' 10 in a 

tokamak. However, it can be seen in Fig. 4 that G has a very 
I 

weak effect on A = , .  There are two reasons for this. First, the 

Appendix of Ref. 6 shows that G enters the dispersion relation 

only through L l ~ r  uu~nbinarion GD, when Q "* is scaled to DR. 
- .  - ~ 

Since DR iS proportional to c2 and B, this product is of order unit? 



and independent of B .  A graph of 1 G D ~ /  vs. r/a for ST and PLT with 

s = 2, shown in Fig. 5, indicates that the:,)product is still rather 

large. 

The'second reason why G is not very important is the weak 

- dependence of A on.,GD as shown ih Fig. 4. ForlGDR(c< 1,. AC - A. , C R' 

the value given in Eq. (15), while for GDR >>  1, 

,I 

This scaling with G D  can also be obtained anaiyt~caliy by introducing 
. R. 

a small parameter 6 << 1 and the ordering 

into Eqs. (AS), (Ag).,. and (A101 of Ref, 6. Stirling's formula is used 
-1/4 

to determine, the ratio af gamma functions in Eq. ( A 9 )  as (-R+/4) I - 

with 1 arg (-R.) 1 <a . The resulting expression for A ' (Q) is a 
2 

product of I DR 1 5'6/ I G D ~  I times a c~mplex function of the variable 
3 GP /DR. Since we are interested in marginal stability, we take 

Re Q= 0. The imaginary part of A" (g) vanishes for 

. .. 
while the real part yields Eq. (23). Figure 6 shows AC/Ao VS. r/a 

for ST and PLT with s = 2. The value of  AC is reduced by 24 percent 

'at the q = 2 surface. For larger vlheis' of s, the approximation 
. .  . 

Ac : A. is even better. Only near %he axis and the limiter does 

the approximation get-bad. 



It is stated in the Appendix of Ref. 5 that the effects of 

toroidal curvature cannot stabilize the tearing mode. This con- 

clusion is based on a low-pressure approximation, given in Eq. (109) 

of Ref. 4, in which 

This is equivalent to the l i m i t / ~ ~ ~ l - + m , ~ ~ ' ~  in Fig. 4 ,  and thus 

misses the stabilizing effect of DR through AC. 1.t can be seen in 

Fig. 6 that this limit is not appropriate to a tokamak. 

There are two approximations frequently made in treating 

resistive instabilities that 1ead:to this.same misleading conclusion.. 

If the ordering of Eq. (26) is introduced into Eq. (23) of Ref. 6, 
i 

the lowest-order terms in the equation give - c = P.  If thisap- 

proximation is introduced into Eqs. (9) and (22), the constant-'? 

approximation leads to the dispersion relation appropriate to the 

- 
limitlGD I--. The approximation = = T also follows from the assumpt.ion R 

- > 
that the f1ui.d motion is incompressible, so the 9 5 = 0, instead' 

-+ 
of adiabatic, with ? 5.- E ,  as in Ref. 6. This can be seen by 

taking the scaler of Eq. ( 4 )  in Ref. 6 with $V .x $ 8  and using 

the ordering in Eq. ' (6) of that work. The use of a fictitious 

gravitational field to simulate the effects of curvature in a slab 

model, as'in Ref. 3, also leads to this inappropriate limit, since 

the  mass r l c n ~ i L y  pcrturldLioa which would then enter Eq. (4) of Ref. 6 

would lead to a term proportional to E rather than T in Eq. (22) 

of Ref. 6. 



2 While the parameter-H, Eq. (A211, is of. order E , it can have 

a significant effect on AC. Figure 9 shows the behavior of the 
.. - 

dimensionless ratio. r 
0 

2 H ~  /A as a function of H,  where'^^ is given C 0 

by Eq. (111) of Ref. 6 and A. is the value of AC for H = 0, given 

by Eq. (15). with DR held fixed at -0.01 and roVS/Xo held fixed at 

250.17~his shows that AC is reduced by a factor of 2 for H 2 0.1 . 
For the peaked model, Eqs. (16) and ,(17), H is given by 

Figure 8 shows the vaiue of H in the ST and PLT tokamaks as a function 

of minor radius with s = 2. Figure 9 shows the corresponding 

variation of Ir -2H AC/Ao as a function of minor radius. While the 
0 

effect of H is very small in ST, it should be significant in PLT. 

As s increases, H decreases, and its efBect is reduced. 

There are two further difficulties in determining the influence 

of H on the stability .of the system. First, while the treatment 

in the main body of Ref. 61 gives thb effects of H when G is small, 

and the treatment in the Appendix of that work gives the effects 

of G when H is small, neither treatment gives the combined effects of 

G and H. Figures 6 and 9 indicate that this could be important in 

PLT. These effects must be determiged by a numerical solution of 

Eqs. (9) through (12)' of Ref. 6, and will be treated in a future 

paper. 



-15- 

The second difficulty is that the cylindrical approximation 

used in Ref. 5 to determine .A from the solution of the ideal equations 

in the outer regions may not be valid when II is large enough to . . .  

,affect AC. The definition of H in Eq. ( A 2 1 )  shows the H vanishes 

in a cylinder. The asymptotic behavior of the inner solutions, given 

in Eq. ( 8 2 )  of Ref. 6 ,  shows that for H # .0, the power-like terms 

do not match those in a cylinder, and this affects the definition of 

A. Thus, we do not know the behavior of A for H # 0, and we cannot 

predict the stability boundary. This behavior could be determined 
18 

from a two-dimensional numerical ~omputation in the outer region, 

and will be treated in a later work. 

IV. DISCUSSION 

..-I To summarize our results, we 'have shown how to apply the 

resistive stability theory of Ref. 6 to a large-aspect-ratio 

tokamak with a circular cross section and arbitrary current and pres- 

sure profiles. We have given numerical results appropriate to the 

ST and.PLT. tokamaks. These results indicate that toroidal curvature 

can stabilize the tearing mode in the ST tokamak if the current 

profile is sufficiently flat, but,that contraction of the current 

channel de~tab~lizes it. The PLT tokamak is expected to be more 

stable becguse of its smaller aspect ratio and higher temperature. 

We have shown that the parameters G and H of Ref. 6 have a small . 

effect on stability, and that finite fluid compressibility is crucial. 

The'se results are used to show why ,the stabilization found here was 

riot seen P{eviously. * 



For q < 1, the internal kink mode, an m = 1 ideal magneto- 
0 

hydrodynamic instability which has recently received considerable 

attention, 19p20 is expected to be uns.table. A recent treatment of 

this mode shows that the value of A obtained in the outer region 

where the ideal equations apply is etrongly affected by toroidal 

curvat-ure, and cann'ot be treated in the cylindrical approximation. 
21 

A second reason sometimes for t.he special nature of this mode 

i s  that the value of the perturbed magnetic field at the singular 

surface vanishes,. invalidating @he qmnstant-Y approximation and 

leading to an i n f i n i ' t e  value of A. This is strictly true only in 

the cylindrical approximation; toro$dal corrections show that 

A .- R/a, which is not too large to be included in the theory of 

Ref. 6. More effort is needed to aekermine the relation between this 

mode and the modes treated here and in Ref. 6. 

Despite 'the need for further generalization of the model that 

has been pointed out, these results, indicate that magnetohydrodynamic 

instabilities should.pose less severe limitations on PLT than on ST. 

We appreciate P. H. Rutherfokd's interest in and encouragement 

of this work. We: gratefully acknowkedge useful discussicons with 
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In this Appendix we evaluate the equilibrium quantities 
V ' 

E ,  B', G, HI K, and M I  and the scale factors Qo,. Xo , and V . defined s f  

in Eqs: ('13), (14), and (81) of Ref. 6. We give details of the 

calculation of E, and only the results for the others. 

For axisymrnetric field in Eq. (1) , E is given by 

where 

V(X) 5 Jdr (A2 I 

is the volume contained within a surface of constant x , 

v1 =' {as/ W e  ( ~ 3 )  

- .  - 
1- 

and the field-line average of any quantity A is 

with the integrals taken around a poloidal cross section at constant 

X. We also use the relations 



The toroidal flux (P whk denoted by + in Ref. 6. 
. The lowest-order terms inside the brackets of Eq. ( A L )  

exactly cancel. ' To find the first nonvanishing contributions, it 

2 is necessary to determine V, @, and < B  > to higher order. The 

volume V is 
t 

21T 

dr rX 

2 2 
- n R  / d ~  r ( x , R )  (A10) 

0 

We invert the power serics solutlon fo r  x (r , 8 )  of E q .  i 4 )  , Eqs. 

(8) and ( 9 )  , to determine r ( x ,  8 )  iteratively as 
. . 

While r (2' and q 2  ( 2  , involve the sggond-order solu%kion x ( 2 )  ( x ,  8 )  , 
0 

these .terms cancel out of E and the first-order so1utiol1.i~ suf- 
. . 

ficient. Then 

Similarly, 



so that 

2  I I 2 using R Bog<l/x > = 2 ~ @  /V in the expression for < B  >, we find 

Then., using Eqs. ( t i ) ,  i 9 ) ,  and '(li) , we obtain ' 

Of the remaining parameters, F and H require expansion to 

second order, as with E l while G I  Kt and M ca'n be evaluated with the 



lowest-order fields.. The results are: 
. . . - 

where y = 5/3 in .:the ratio of specific heats, 

. . 02 Note that E l  F ,  and H are of order E while G and K are of order cm2. 



A number of scale factors are defined in Ref. 6 ,  and they 

must also be evaluated. Perturbations ,vary as exp [i(me-n@-wt) j ,  

wnere m and n are integers satisfying m = nq(xo), with x the 
0 

singular surface. The complex frequency w (denoted by q in'Ref. 6 )  

is given by 

w = iQQo - (A241 

Here, Q is a dimensionless, complex quantity, determined by solving 

a dispersion relation. The scale factor Qo is given by 

2 2 .  3 - rla A < B & >  9 = 
-O (pM<B2/ 1 ?V 1 3 

I I I .  

with a = 2 ~ n V  = 2 ~ m V  / @  , rl the resistivity, and p the mass 

density, all evaluated on the singular surface. 

The microscopic, dimensionless variable X describing the 

distance from the singular surface is given by 

with the scale factor Xo given by 



(This variable X should not be confused with the coordinate entering 

, Eq. ( 4 )  which measure the distance from the axis of symmetry.) 

To determine the, analogous macroscopic variable Y , defined by 

where V is an unspecified macro~copic scale factor, we choose 
S 

so that 

in accordance with the. literature ori cylindrical model tokamaks. 

Then the large ratio which enters the dispersion relation in Ref. 6 

is given by 

The characteristic length within the singular layer is g i v e n  by 

This can be regarded as the thickness' of the singular layer. 
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Fig. 1. The parameter . Eq. (22). as a function of the 
minor radius in the ST and PLT tokamaks. The solid curves are for ST 
for several ~:alues.of the shear parameter s. The dashed curve is for 
PLT with s = 2.0. Open circles indicate the q = ' 2  surface, soli.i! 
circles the q = 3 surfaces. 

Fig. 2. The dimensionless parameter .r, A as a function of 
0 C minor rad'ius, with A given by Eq. (15) and r the shear scale length 

a/ 6 . The solid Eurves are for ST: the daghed curve is for PLT. 
The horizontal line denotes the value of r A calculated in Ref. 5 
for the m = 2 mode. This mode goes unstabye when the open circle 
denoting t'he q = 2 surface falls below the line. The larger values 
of rOAC for PLT indicate greater stability. 



Fig. 3. The quantity r at the q = 2 surface as a function 
;of the shear parameter s. T R ~  solid curve shows that the m = 2 

, "  '.mode in ST goes unstable when s reac,hes 2 . 4  and r A falls below the 
horizontal line repiesenting r A . The dashed cuPvg shows that this 
mode remains stable in PLT untfl s r,gaches 7.5. 

Fig. 4 .  Log-.log plot of the ratio A /Ao as a function of 
I G D ~ I  , with A obtained numerically from Eq. (A9) of Ref. 6 cnG A 
the value of 5ic when Q = 0 ,  given by . . Eq. (15) . Straight lines shew 
the asymptotic behavior given by Eq,S. (15) and (23). 
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F i g .  5. IGD I a s  a f u n c t i o n  of  t h e  minor r a d i u s  i n  ST and 
PLT w i t h  s = 2 .0 .  The circle d e n o t e s  t h e  q :  = 2 s u r f a c e .  

F ig .  6 .  A,/Ao as a f u n c t i o n  of  t h e  minor r a d i u s   in^^ and PLT 
w i t h  s = 2 ,  i n  r e sponse  t o  b h e v a r i a t i o n  o f  I G D  1 as shown i n  
F i g s .  4 and 5. R 
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Fig. 7. The dimensionless ratio ro /A as a function o 11, 

with A given by Eq. (111) of Ref. 6, A. givfn gy Eq. (151, nR = --Go91t 
and r 6 = 250. 

0 sixo 
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Fig. 8. The parameter H, Eq. ( 2 7 ) ,  as a function of the minor 
radius. The solid curve is for ST, the dashed curve for PLT, 
both for s = 2.0. Open circles denote q = 2 surfaces, solid circles 
q = 3 surfaces. 
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F i g .  9.  The r a t i o  r -2H A 76 as a f u n c t i o n  o f  t h e  minor 
r a d i u s ,  i n  r e s p o n s e  t o  t h 8  v a r i G t i 8 n  o f  H a &  shown i n  F i g s .  7  and 3. 




