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RESISTIVE INSTABILITIES IN A TOKAMAK

*
A. H. Glasser, J. M. Greene, and J. L. Johnson

Plasma Physics Laboratory, Princeton University

Princeton, New Jersey 08540

ABSTRACT

Application of ‘-resistive instability theory shows that
toroidal effects can stabilize the tearing mode in devices like
the Princ;ton Large Torus. Contraction of the current channel
is destabjilizing. Finite fluid coﬁpressibility is crucial to

this phenomenon.
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1. INTRODUCTION

The Mirnov oscillations frequently observed in tokamak
dischargesl'2 are generally interpreted as resistive instabilities,
specifically tearing modes, driven unstable by the Ohmic heating

current.3'4’5

The analysis is usually done fo: 2 straight,
cylindrical modél tokamak. The effects of toroidal curvature are
————Tneglected on the.ground that the singular layer where resis—
tivity is impo?tant is unaffected byhcurvature because it is
SO narrow.5 Glééser, et gls have treated resistive instabilities
in an arbitraril§ shaped toroidal plasma. Curvature effects
entexr the analyéis because the perturbations, which are constant
along a field line on the singular surface, sample varying equili-
brium quantitieshsuch as the toréidal and poloidal magnetic field
strengths. Althéugh these effects are small in a tokamak, they
have a sttongkin%luence on the stability of the resistive modes
because tée resi;tivity is so small. '
In this paéer we apply the theory of Ref. 6 to a tokamak
- with large aspect.ratio, circular cross section, and arbitraryf
current and pressure profiles. We find that toroidal effects
are suffiqient to stabilize the teéring mode in devices such as
the ST togamak if the current profile is rather flat, but
contractién of tﬁe current channel destabilizes it. The PLT
device shouldAbe'ﬁuch more stable because of its smaller aspect
ratio and higherﬁﬁemperature. |

In Sec. TI we describe the equilibrium. In Sec. III we

discuss the stability properties of the system and give nﬁmerical



‘results for the ST and PLT tokamaks. We also show that allowance
.for finite fluid compressibility is crucial for deriving toroidal
stabilization. 1In Sec. IV we summarize our results. In the

Appendix we evaluate the critical parameters of Ref. 6 which are

needed in Sec. III.
11. EQUILIBRIUM

We treat an axisymmetric toroidal equilibrium, with the

magnetic field given by
-»_l-»‘—» .
B o= 5= Vo Wx + RBog(X)§¢ , | . (D)

where ¢ .is tﬁe angle abouf the axis of symmetry, X is the poloidal
flux, R is the distance from the éxis of symmetry to the magnetic
axis, and Bo is the externally imposed toroidal magnetic field
'strength at the,magnetic.axis. As in the earlier wofk,6 we use

rationalized electromagnetic units. To convert to Gaussian

7 make the substitutions

 CGS units,
B+B/vaT , J+/ETW 3¢, n+nc2/4w ; (2)
for rationalized MKS units, use

> > — > 2
b-*B/»/‘L!O , \J-WIJO J ERVATS . (3)

A combination of Ampere's law and pressure balance gives the well-

known equilibrium equation,

2

X9 (50y) = 2nx38 = ~an? R 290" 4 xB) (4)
X* : ,
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with X the radius from the akis of symmetry, p(x) the pressure,

J¢_ the toroidal current density, and primes denoting derivatives

with'respect to x

We consider large-aspect- ratio solutions of Eq. (2), writing
X=R+rcos 8, z =r sin 6, r/R ~ e<< 1 , : (5)

where z is the distance along the akis of symmetry, r and 6§ are

circular coordinates about the magnetic axis at X = R, z — 0, and

€ i1s the inverse aspect ratio. We sSeek series solutions of the

form
x(r,8) = x(é)(r) + &x(l)(r,e) + ...,
g(x)'= 1+ ¢ g(z)(r) + 63g(3)(r,6) + ..., (6)
ply) = C2p(z)(r) + €3p(3)kr,6) S

which are circulariy symmetric in lowest order. If we pgéscribe

the pressure p(x) and the safety factor

() _ RBog de
qix) = - _—
2™ J x28-ve
= q(o)(r) +Aaq(l)1f,e) + ey, o (7)

where the integral 1s taken around a poloidal cross section at

constant Yy, or equlvantly prescribe p( )(r) andlq( )(r), then the

first terms in the solution are® o : _ !

(o) _ r'dr’ -
X (r) = 2mwB_ J[ (o)(r Y . (8)



'ZﬁB r ‘ (0)2 R°r ‘(2) ,
(1) e} dp
X (r) = cosf —— dr’ jﬁgr -2 : ' )
‘ Rq(o) ° ( )2 BOZ dr » (9)
B 2 .
(o) o) d r
J (r) = — = —=F— ' . (10)
¢ Rr dr q(?)(r)
(2) 1 a-dr'._' d . r'% _ p(2)(r)

g (r) = RZ . q(o) ar’ q(o) BO2 ‘ . (11)

ITI. STABILITY

The stability of the system is determined by a set of para-
meters defined in Eq. (13) of Ref. 6. These are evaluated in the
Appendix of this work. for the equilibrium of Sec. II. In this
section we examiﬂe the conditionséfor stability against the
various modes treated in Ref. 6 and summarized.in Sec. VI of that
paper. We first show that the ide&l magnetohydrodynamic inter-
change is very effectively stabilized by shear, Welthen consider
conditions 'for the stability of the resistive interchange; Using
a particular model of the current and pressure p}ofiles and the
numéricél results of Furth et gl,s we then show that the same favor-
able curvature which stabilizes the resistiVe interchange can
stabilize the tearihg mode in the ST and PLT tokamaks. The result
is first obtained by'treating the'parameters G and H as small.

Then, in diécussing the effects of large G, we‘show thét allowance
for finite fluid compreésibility ié necessafy to obtain curvature
stabilization. Finally, we show that the effects of H will be signi-

ficant in PLT.



A, Interdhénge Modes

The rapidly-growing ideal magnetohydrodynamic interchange
is unstable unless the Mercier criterion,

D

E+F +H - 1/4

I ,
(o) 2 (2) _(0) 2
_ 29 dp q 1 - 1 )-1 (12)
< 0 '

is satisfied. It is interesting to note that the terms F and H,
Egs. (Al19) and (AZ}), cancel all"but?the first two terms of E,

Eq. (Ald). Since these terms are of jorder e? they are generally
much smaller!than the term -1/4/.whiéh représents shear stabili-
bzation, and thus the ﬁercier criterion is nearly always satisfied.
Although it can be violated, for example if dp‘2)/dr<o, q(®<1 ,
and dq(o)/dr vanishes, this would be.exceptional. It can occur
in the 1mmedlate vicinity of the magnetic axis.

The re51st1ve 1nterchange is unstable unless9

- 2
DR = E + F + H
_ 2992 (2)( (o) ll -~
Bo r /dr
(o) (2) ' K ypl 3.2 (2)
g dg- r _ 2Rr dp g
T3 ar f d’_‘_( 102 - o 2 - —ar H (13)
r” , % ¢ A Bo
<0 . |



This 1s always more stringent than the Mercier criterion, since

. ) ,
DR—DI-— (H - 1/2)° > 0 . (14)

The term H2, while destabilizing, is of order 84 and therefore
. ' . 2
negligible compared to the other : terms of DR,whlch are of order ¢

The shear. stabilization term - 1/4 of D. does not occur in DR

I
The integral terms in Eq. (l3)are the terms of E which are cancelled
by H in bI If dp(z)/dr < 0 and dq(°)2/dr > 0 everywhere, they

(0)

are stabilizing. If, in addition, g >1 , D, < 0 everywhere and

R

the resistive interchange is stabie. As discussed in Sec. VI of
Ref. 6 , average toroidal field-line curvatﬁre then provides
stabilization by decreasing DR'
BT Tearing Modes with G and H Smgil

If D,<0, we must consider the stability of the tearing mode.

This depends on the parameter A, defined in Eq. (84)of Ref. 6, which
arises in matching the solutions insidé the resistive layer to the
solutionsiin the ideal regions oﬂ either side of it. For H = 0

it is the jump in the logarithmic derivative of the normal component

of the perturbed magnetic field across the singular layer. It

carries the destabilizing~influéhce of the Ohmic heating current.
For the equilibrium treated here, and for poloidal mode numbers

m > 1, it is given correctly to lowest‘order by the cylindrical
apprnwimatioﬁ, ﬁnd is unattected by the pressure profile. It is

evaluated for several profiles q(O)

(r) in Ref. 5. 1If Dp = 0,
the tearing mode is unstable for A > 0, as discussed in Ref. 5,

But it DR'< 0, the mode is converted to the modified tearing mode

!
i
l



with a complex frequency, and is unstable only if A > Ac,ywhere

5/6

(15)

Ao = 1.54- (Vg/X)) ]DRI

when G and H are small. The large factor VS/Xo is the ratio
of a macroscopic scale length to the resistive layer thickness.
[t 1s given by Eq.(ABl). Because of this large factor, curvature

stabilization can be important even though D_ is small.

R

To determine the magnitudes of DR and AC and compare then

to the values of A, we use the peaked model of Ref. 5, in whuiCh
o ,

q( ) is a quadratic function of r. We also use a parabolic pressure

profile. These profileS'are given by

p ) (r) = p (1-r?/a%) (16).

¢ (x) - q, (1+sr?/a?) , (17)

where a is the limiter radius. We call the constant s a shear
parameter, since dg /dr = 2qosr/a2 . The radial variable used in
Ref. 5 is x = r/ro,"with T, = a/vYs . The current density iS-given

by
3,07 = 3 / (1+sr’/a?) . (18)
3, = 2B_/qR = (1+s)I/ma’ , . (19)

where I is the total_toroidal current. As S increases, the cur-
rent channel contracts, as it normally does during the course of a

tokamak dlscharge due to the thermal instability of the Ohmlc

10

heating current. If I is held flxed during this contractlon, q

o
falls, while if 9, is held fixed, I falls. It is convenlent to

4



express p in terms of

(o)
g = 2R (a fdr r p(r) ; (20)
P l7p 22 |
. Ba. 2 :
_ Bp o (21)
p =
o (l+s)2 ( qu)

Note that Bp is of order unity in the aspect ratio expansion.

With these profiles, we obtain

4
8 _a 2, 2.4 2,2
D= 2p2 5 (1+sr /; ) [(l+§r éa )ln(l+sr2/a2)
s"Rr (1+s)° sr-/a
28 2 .
- > 12 55 + APZ srz’ (l+sr2/a2)] . (22)
d, (l+sr“/a”) (1+s) a , '

Iif 9, > 1, DR <0 everywhere, and is therefore stabilizing. 1If

d, <1, DR > 0 in the vicinity of t?e axis, and the resiétive‘inter—
change is unstable. If this occurs, the resultant instability

will flatten the profiles and return S £o one or greater.. We

_ therefore gonsidef the case for which'qo is held fixed at 1.1.

The solid éurves in Fig. 1 show values of IDRI vs. r/a between the
axis and tﬁe limiter for values of s between 1 and 3, with

Bp = 0.8 and R/a = 8.4, épéropriéte for the ST tokamak. Thélbe-
havior at the axis is sensitive to the particular model employed.

I1f g, were less than 1, they would dive;ge with the opposite sign.

s p(2

were flatter at the axls, they would remain finite. The
open circles denote the q = 2 surfaces, while the solid circles
denote the q = 3 surfaces. As s increases and the current channel

shrinks, |D decreases, and its stabilizing influence is lost.

R‘l
Since the integral g surfaces also move in and down the curves as

S increases, each mode is destabilizea'even faster. The dashed



curve is for R/a = 2.9, appropriate fbf PLT, with s = 2. The
values of IDRI for a given value of s are due to the smaller aspect
ratio. The shrinking of the current channel can be thought of as
an increase of the effective aspect ratio, leading to a redﬁction
of the curvature effects.

Figure 2 is a graph of rOAC as a function of r/a - The
general features are similar to those in Fig. 1, bﬁt the variations
are even more pronounced because of the etfects of varying resistivity.
We use the Spitzer;resistivityll enhanced by a factor Zeff’ chosen
as 2.5 for ST and 1.5 for PLT, to account for impurities. We take
the elecﬁron temperature in ST to be 2.5 keV, while for PLT we use
4.0 keV. We take the radial dependence of n to be inverseLy pro-
portional to J¢(O)§;). The s = 2 ecurve for PLT is off scale here
because of its higher temperature, so we show the s = 3 curve. The
curves drop more steeply with increasing s because of the radial
increase of n. The horizontal line near the bottom is the Value
of rOA calculated ip Ref. 5 for the m = 2, n = 1 mode. While
the analysis of that reférence predicts instability for the mode
because A is positiQe,.we find it to be stable until s reaches
about 2.5 and AC drops below A at tﬁe;q = 2 surface. PFor them = 3
mode, this model gives a negative value of A for these parameters,.
so it is stable. Increasing 9, would raise A, and eventually give
the m = 3 mode a positive value of A;fin éeneral less than that
associated w;th m= 2. »

The higher values of A, for F;mrindicate that the m = 2

t

mode is much'more stable than in ST. This is also seen in Fig. 3,

i

—_—

Ly
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which shows r, 4o vs. s at the q = 2 surtace in ST and PLT. While

ST goes unstable to the m = 2 mode when s reaches 2.4, PLT remains
stable until s reachés 7.5 . Since the contraction of the current
channel is caused by the thermal instability of the Ohmic heating
current, and since PLT will derive much of its heat from neutral
injection, s may never reach this value.

The growth or damping rate for the m = 2 mode is of order

3

5 x 10 sec—l in ST and slightly lower in PLT. This is comparable

to the growth rates of the observed m = 2 Mirnov oscillations,l'2

but much smaller than the electron diamagnetic rotation frequeﬁcy

* 5 -1 . . . 12-1i5
Wy = 107 sec which has not been included in our treatment. ‘

Since it is also comparable to the electron collision frequency

- 4 -1 | .- , , 12,15
ve ¥ 2 x 10 "'sec 7, this should be incorporated in the theory.”

Similarly, the resistive layer thickness §r, Eq. (A32), is of order
3 x 10-2cm., and fhus smaller than the ion gyration radius, which
is of order 8 x lo_zcm. This indicates that the treatment should
include the effects of finite ion gyration radius.l3’16 These effects
will be considered in future papers. |

C. The Effects of G and H

The expression for A, given in Eq. (15) is valid only if G

and H are small. It can be seen from Eq. (A20) that G is not small

but large,of order 5_2; in fact, G = 2/yB8, and B8 % 1072 in a

tokamak. However, it can be seen in Fig. 4 that G has a very
|
weak effect on AC . There are two reasons for this. First, the

Appendix of Ref. 6 shows that G enters the dispersion relation
only through Llie coumbination GDR when 03/2 is scaled to DR'
Since DR is proportional to ez and B, this product is of order unity



_12&.

and independent of R. A graph ofIGDRIVS. r/a for ST and PLT with

s = 2, shown in Fig; 5, indicates that the.product is still rather

large.

The second reason why G is not very important is the weak
dependence of A, on.GDy, as shown in Fig. 4. For|GDR|<< 1,8, =8 »
the value given in Eq. (15), while for GD, >> 1,

: -1/6 .
AL = 1.303 |GD | By - (23)

This scaiing with GDR can also be obtained analyticaliy by‘introducing

a small parameter § << 1 and the ordering

2.3 2,3 -l :
GDp - G°Q7 ~ Dp7/Q7 '~ § : (24)

into Egs. (A5), (A9), and (Al0) of Ref, 6. Stirling's formula is used

to determinz the ratio cof gamma functions in Eq. (AY9) as (-Ri/4)_l/4,
with Iarg(—R¥)|<w . The resulting éxpression for A'(Q) is a
5/6 1/6

product of ]DR[ /{CDRl times a complex function of the variable
GQ’/DR. Since we are interested in marginal stability, we take

Re Q= 0. The imaginary part of A" (Q) vanishes for

_ . 1/3
Q = 0.628 i|D,/G| ' (25)

while the real part §ields Eq. (23).. Figure 6 shows AC/A0 v;. r/a
for ST and PLT with s = 2. The value of AC is reduced by 24 percent
at the q = 2 surface. For larger values of s, the approximation

AC x Ao is even better.. Only near the axis and the limiter does

the approximation get bad.



>
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It is stated in the Appendix of Ref. 5 that the effects of
.toroidalAcurvature cannot stabilize the tearing mode. This con-
clusion is based on a low-pressure approximation, given in Eq. (109)

"of Ref. 4, in which
G -~ d ’ D ~ Q ~ 6 . (26)

This i3 equivalent to the limitiGDR|+w,AC»0 in Fig. 4, and thus

misses the stabilizing effect of D, through AC. It can be seen in

R
Fig. 6 that this limit is not appropriate to a tokamak.

There are two approximations frequently made in treating
resistive instabilities that lead;to this same misleading conclusion.
If the ordering of Eg. (26) is in?roduced into Egq. (23) of Ref. 6,
the lowest-order terms in the equ%tion give £ = T. If this ap-
proximatipn is introduced into Egs. (9) and (22), the constant-¥
approximation leads to the dispersion relation appropriate to the
limithDRl*w. The approximation = =T aiso follows from the assumption
tﬁat the fluid motion is incompressible, so tbe v - é = 0, instead
of adiabatic, with v . E.u €, as in Ref. 6. This can be seen by
taking the scaler Qroduct of Eq. (4i in Ref. 6 with VV x Vg and using
the ordering in Eq. (6) of that Qork. The use of a fictitious
gravitational field to simulate the effects of curvature in a slab
model, as in Ref. 3, also leads to this inappropriate limit, since
the masr dcn:ity prereurbation which would then en£er Eg. (4) of Ref. 6
would lead to a term proportional to £ rather than T in Eq. (22)

[

of Ref. 6.
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While the parameter H, Eq: (Azlf; is of. order 32, it can have

a significént effect on AC. Figure 9 shows the behavior of the
dimensionless xatiofio_zﬂAC/Ao as a function of H, where A, is giveh
by Eg. (111) of Ref. 6 and Ao is the value of AC for H = 0, given

by Eg. (15), with D

R
250.17This shows that AC is reduced by a factor of 2 for H = 0.1 .

held fixed at -0.01 and r V_ /X, held fixed at

For the peaked model;eEqs. (16) and (17), H is given by

Ba ) 2 P .
=B rse /d )? [;(l t st /a Jin(1 + sr?/a®) -1
er (1+s) sr°/a :
28 i 2 2 \
+ P z'usrz (1 + §£7)] o (27)
(1 + s)°7 a a ' .

Figure 8 shows the value of H in the ST and PLT tokamaks as a function
of minor radius with s = 2. Figure 9 shows the corresponding

-2H

variation of'r AC/Ao as a function of minor radius. While the

effect of H is very small in ST, it should ‘be significant in, PLT.
As s increases, H decreases, and its effect is reduced.

There are two further difficulties in determining_theﬁinfluence
Qf H on the stability of the system. First, while the treatment
in the main body of Ref. 6 gives thé effects of H when G is small,
and the treatment in the Appendix of that work gives the effects
of G when H is small, neither treatment gives the comblned effects of
G and H. Figures 6 and 9 indicate that this could be important in
PLT. These effects must be determined by a numerical solution of

Egs. (9) through (12{ of Ref. 6, and will be treated in a future

paper.
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The second difficulty is that the cylindrical approximation
used iﬁ Ref. 5 to determine A from the solution of the ideal equations

in the outer fegions may not be valid when H is large enough to...

affect A-- The definition of H in Eq. (A2l1) shows the H vanishes

in a cylinder. The asymptotic behavior of the inner solutions, given
in Eq. (82) of Ref. 6, shows that for H # 0, thé power-like terms

do not match those in a cylinder, and this affects the definition of
A. Thus, Qe do not know the behavior 6f A for H # 0, and we cannot
predict the stability boundary. This behavior could be determined

from a two-dimensional numerical computation in the outer region, ~

and will be treated in a later work.
Iv. DISCUSSION

To summarize our results, we have shown how to apply the
resistive stability theory of Ref. 6 to a large-aspect-ratio
tokamak with a circular cross section and arbitrary current and pres-
sure profiles. We haVe given numeriéal results appropriate to the
ST and PLT tokamaks. These results indicate.that toroidal curvature
can stabilize the tearing mode ip the ST tokamak if the current
profile is sufficiently flat,'but'that contraction of the current
channel destabflizes it. The PLT tokamak is expected to be more
stable bec;use of its smaller aspect ratio and higher teﬁperafure..
We have shown fhat the parameters G and H of Ref. 6 have a small
effect on $tability, and that finite fluid compressibility is crucial.
These resuits are used to show why_the stabilization found here was

. 1 . °
not seen previously.
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For d, < 1, the internal kink ﬁode, an m = 1 ideal magneto-
hydrodynamic instability which has .recently received considerable

attention,lg'20

is expected to be unstable. A recent treatment of
this mode shows that the value of A obtained in the outer region
where the ideal equations apply is gtrongly affected by toroidal
curvature, and cannot be treated in the cylindrical approximation.21
A second reason sométimes given fer the special nature of this mode
is that the value of the perturbed magnetic field at the singular
surface vanishesg invalidatiné ﬁhe ¢onstant-y approximation and
leading to an infin%te value of A. This is strictly true oﬁly in
the cylindrical approximation; toroidal corrections show thét
A . R/a, which is nét too large to be included in the theo;y of
Ref. 6. Moré effort is needed to determine the relation between this
mode and the modes treated here and jin Ref. 6.

Despite the need for further generalization of the model that

has been pointed out; these results indicate that magnetohydrodynamic

instabilities should ‘pose less severe limitations on PLT than on ST.
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APPENLIX

In this Appendix we evaluate the equilibrium quantities

E, F, G, H, K, and M, and the scale factors Qo"xo
in Eqs. (13), (14), and (81) of Ref. 6. We give details of
calculation of E, and only the results for the others.

For axisymmetric field in Eq. (1), E is given by

p.l.v' < B2
L -
q | Vx|

Viy) EJ/dr

is the volume contained within a surface of constant y ,

| V' o= ./.de/ BV

. '-' 2 ) '
5> [(2nRBogq /<B >)~v'] ,

where

and the field-line average of any quantity A is

s f —>d—e> A '
B+V8

with the integrals taken around a poloidal cross section at

<A> =

<+

X. We also use the relations

RBO ~ g
o (x) = 7;-‘;% dt ;5 '
]
g=29 '
Az‘-q'/v‘j ’
' = o ] R
J ZHRROg ;

g = —2nRBO(g"+ gp'/Bz) .

, and VS, defined

the

(Al)

(A2)

(A3)

(24)

constant

(A8)

(A9)



~18=

The toroidal flug.@ was denoted by ¢ in Ref. 6.

The lowest-order terms inside.ghe brackets of Eg. (Al)
exactly cancel." To find the first nonvanishing contributions, it
is necessary to determine V, ¢, and <B2> to higher order. The

volume V is

2m r}X,e)
Vix) = Zn./~ dase dr rx
o 27
- 7R fr.m r2(y,0) [; T rxx;e)cose] ~ (Alo)
O

We 1invert the power serics solution for x(r,6) of Eq. (4), Egs.

(8) and (9), to determine r(yx,6) iteratively as

r(x,0) = r(o)(ngr(l)(x)cose + ro(g)(x)+r2(2)césze + ..., (All)
r(o) (x) = ’X(O)_l(x) ) (a12)
L) (o;<(l’ e - (a13)
dyx /Jdrt r '
While ro(2) and :é(?) involve the se¢gond-order solution xkz)(r,e)

these ‘terms cancel out of E and the first-order solution 'is suf-

ficient. Then

17y (1) r (1)
Vix) = 27 Rr(@2[ +-§( b)) + 2 -%;Tm + rR + ... - (Aa14
];.,;

Similarly,

;~ m r(X,e)
¢(X)=Bbzd6f dr r g/.X

° (2)
(1) r (1)

_ (02 l{r s O _r
= mRT [“2(7—)“@»’ Gy T R

©)\ 2 (o)

e}
+ %( = ) f dr s g(z) (r)]+ .« ’ (AlS

r o

r

L &)
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so that . )
v _ 27R 1 1 d ( rzx(l))_‘l r? _ g(2) + .
1 - - - eyl & . 5 - e s e
® | B, r dr Rdx(o)/dr 2 R2 (A16)

1) '
Using R Bog<l/X2> = 21d /v in the expression for <B2>, we find

' : 2
.)TrRB ‘),; ! " ! g i
SR n_ v [l _ \'4 _ [VX|.> ]_ v' o4
<BS> ¢ ZWRBOg@ (27X)
\ \ 2 |
2 2 ‘v" (I)"
= - (j)' <y—') - (\,]—l_> <J¥XI 2>( - )'+ . oo
' ? 2 o (2mx) ZHRBOg.
| .
2 (1)
_q!° {,.FL d [,3d < X )] s i
RB02' r3 dr dr (o)/dr _
2 (2) (o)
R” |dg _ r dg
- R R ) DA @
q .
Then, usiné Egs. (8), (9), and (l1l1), we obtain °’
. 2 (©)2 dp(2)< [1——-———
2 - dr (O) (0)?2
B r
o
+ q(o) dq(o) dr' r'3 _ Rzr ‘ dp(z))
3 ar (o) 2 2 dr '
r (o) q B,
2 (0)2 (2) :
_ Rg dp 1+ __l_)] ool (a18)
o2 dr o) 2
B,°r 2q

Of the remaining parameters, F and H require expansion to

second order, as with E, while G, K, and M can be evaluated with the
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lowest-order fields.. The results are:

. 1779 2- | ;' ’ 2
F = (p v ) [(ZHRBOg)2 <<: B‘2> <— L 5> = <_Tl_§>>
q" 19X B | Vx| - vxl?
2 ’ i
+ < B_, <l§>]
Vx| B
2 ‘(2 (o) 2r 2 (0)2 , _(2)
B, r I Vag'®sar B, ’r a 202
: ) (Al19)
G = _<B2>/ngp = BOZ/YP(Z) + .., ' {A20)
where vy = 5/3 in ‘the ratio of specific heats,
:‘ 1 ] [] - 2 "> 2 ’ .
H = (27RB gp V /q ) (<} —_ iE_/_%_VLJ_i) | (A21)
° [Vx <B“> :
2P et (a2 )
Bozr : dr dq(o)/dr;
: (o) -F '3 2 12 2
SRS A
.3 dr Jo (0)2 2 dr !
: q B
v o
)
pV M<B /l\}xl T
2 .:-L-. . ‘
B a . .
=( ot dq(o)/dr) 2 (a22)
Rq(o)2 d (2)/dr
B2 vy |2 2 {1 -
M =< 2>{<_|__%_|_> + (2TTRBOg) (<_2_> - 12 )] = 1l 4+ ..... (A23)
'IVXI B B <B“>/

Note that E, F, and H are of order 52; while G and K are of order £-2
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A number of scale factors are defined in Ref. 6, and they
must also be evaluated. PerturbatioﬁS*vary as exp [i(mB6-n¢-wt)],
where m and n are inteéers satisfying m = nq(xo), with Xo the
singular surface. The complex frequency w (denoted by g in Ref. 6)
is given by

- ' o A24
w ioQ, - _ ( )

Here, Q is a dimensionless, complex quantity, determined by solving

a dispersion relation. The scale factor QO is given by

(na2A2<'B2> ) 1/3

n_ =
° \om<B?/|7v|%
I e Rq(O) dr ' (A25)
[} ] ) . '.
with o = 2mnv = 2mmvV /¢ , n the resistivity, and p the mass

density, all evaluated on the singular surface.
The microscopic, dimensionless variable X describing the

distance from the singular surface is given by
X = (v—vo)/xO ’ | gAzb)

with the scale factor Xo given by

1/3
A e AL AR
_ 2 . R q}O)'2 1/6 (A27)
= 41°rR lp - ) .
. o dg /dr
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(This variable X should not be confused with the coordinate entering
Eq. (4) which measure the distance from the axis of symmetry.) -

To determine the. analogous macroscopic variable Y , defined by
Y = (V—Vo)/VS ’ (A28)

where VS is an unspecified macroscopic scale factor, we choose

2

‘v = av/dr = 4n°rr (A29)

S
so that
Y = r-r_ - ' (A30)

in accordance with the literature on cyliﬁdrical model tokamaks.
Then the large ratio which enters thé dispersion relation in Ref. 6

is given by

S [l (nBO dq}o)/dr)z ]l/6

ANR (o (A3l
\! q() (A31)

The characteristic length within the singular layer is given by

(0) 2 j1/6
Sr =[p(“R g ) - ]' lojt7¢ - . (A32)
nBo dq(o) /dr '

\

This can be regarded as the thicknes§ of the singular layer.
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Fig. 1. The parameter |Dpi. Eq. (22), as a function of the
minor radius in the ST and PLT ‘tokamaks. The solid curves are for ST

for several values- -of the shear parameter s. The dashed curve is for
PLT with s = 2.0. Open circles indicate the q = 2 surface, solid
circles the g = 3 surfaces.

752261

Fig. 2. The dimensionless parameter.r,AC as a function of
minor radius, with A, given by Eq. (15) and®r" the shear scale length
a/ ¥Ys . The solid gurves are for ST; the da®hed curve is for PLT.
The horizontal line denotes the value of r A calculated in Ref.
for the m = 2 mode. This mode goes unstable when the open circle
denoting the q = 2 surface falls below the line. The larger values
of r A, for PLT indicate greater stability.
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Fig. 3. The quantity r C at the q = 2 surface as a function
"of the shear parameter s. TRe“s0lid curve shows that the m = 2
“mode in ST goes unstable when s reaches 2.4 and r_ A, falls below the
‘horizontal line representing r A . The dashed cu?vg shows that this

mode remains stable in PLT untfl s reaches 7.5. .
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. Fig. 4. Log-log plot of the ratio A./A_as a function of

|GDR|, with A, obtained numerically from Eq.o(AQ) of Ref. 6 and A -
the value of gc when Q = 0, given by Eq. (15). Straight lines sh8w

the asymptotic~-behavior given by Egs. (15) and (23). .
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Fig. 5. GDRI as a function of the minor radius in ST and

PLT with s = 2.0.7 The circle denotes the g = 2 surface.
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' Fig. 6. AC/AO as a function of the minor radius in ST and PLT
with s = 2, in response to the variation of IGD ) as shown in
Figs. 4 and 5. R
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Fig. 7. . The dimensionless ratio rM-ZHA /A as a function of #

with A, given by Eg. (111) of Ref. 6, Ag giveén By Eq. (15), Dp = -0.01,
and r ¥_sx = 250. - '
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Fig. 8. The parameter H, Eq. (27), as a function of the minor
radius. The solid curve is for ST, the dashed curve for PLT.

both for s = 2.0. Open circles dencte q = 2 surfaces, solid circles
g = 3 surfaces.
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Fig. 9. The ratio r 2% A_7A_ as a function of the minor
radius, in response to th& vari%ti8n of H as shown in Figs. 7 and 3.





