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AJV.il K-V ; 

Tr.-tn.'iit.'ii; furijjje:.silijo ("Jim- in (HJ.-UDS u-.JJa has !>vc-« Jir.'i: t i ; ; . \ : c-.I 

iri.uyl u-.i] ly . 'lilt iwjii:' ]iort j:.ii c-f 1 i• r; invtuLi i-at io;i liii-j l.v.n '.!:>. v'U-j 

lt].;.p,ril i':!;>i'0\ iiij; t he iii-Jir-.Uii^in;; <•'" ilhii-crsi'vn in llic-sv fliiv>s an-! ik--

vvlniiii,;; ••••ipid ; •vii.n.'l ;• iiiL"iciic-:i U'CI.-'IKIII'.-.S f,>,- ;j;\--iic; ir ; ; i j c n i c ; ; ; 

c i r rl i :=pi. j-i'.iitn. i'ii" /cs ' . i l t s :i n • nf inp.Tc.v in t!u' co'ituiiiiiu-.-it of ;J:1'.;: •-,-

j;iv«"i' iv.'c]'.-:;." o.jivrhi;-;,1.:;.. 

!!n ti'MbjM'n (if Liaitc-r in pn/cm:. i::-.<.?ia cuii'vist.;. of cjiivuct ivc- ;tn-: 

d i s p ^ s r - v i]';-.!!:-',.!.-"!. (ionvc-vi ivo v!T.!I.;;..-II-; is an ouVrvu : . ; tJP: : ;it s e r e 

i- ,v,i Uvul f luul v.-ltvi ly. Purely coi:"-.^ ;•"-,-? t r a n s p o r t i s c 'p ' s fon- l i i .o 

! luv. v.hcii.- the- jnvaJii i j ; I 'hud oVip^cU'!/ ili !•[>' -CLS llu: f iu i . : i r . u i n . ' l y 

ii-'ii'i.n .-! j-crt-, .-\ ili.sji-.-i---.ive f i r . l-epi.hn rrv;\ Ti-.r.iio.-, disOTili-iL'J yb1--

nui.-ji.i MI-.-II :is rcmni'. ;,nd i:i'>kvui;ii' tli i'J ii: ;i\ i l y . The v..."; I> pLS of t,:,ii----

jiiii'l ;DV Iml.ii i i - p o n a n t i i : t he fi'v,.-.-; v^i 'sidi rii-.i h i w . 

Ilisju-iNii'L' i i';ins])OH n> :-,V lie iJi'St-j-ilii-J I'.V n il ;.-".j'.-rs L:': ,:-V : r ; : , r , . r 

sis.iihu- i:i cflcvrt to :i tli ffiisif-n i v c f f i c i i-nt. At )'.'•' I'v.-lt-t r.'.,.".;'i-.. 

ilisju'i 'sio:! result:-. pn:n;;!-ily fron :;iokvn I :w" J i f fir-ion ;/i:J ;l--- iil sp^- - i >:, 

(.-OL-fficit n l i s of vltc- onk 1 ] 1 of ;.. . ;.i:i ;;..]<.• of t)u- ::•.'!c, ti],:r ui f i •' i -'it < . 

Ai hiyli l\v.'.U't .ii]..;i'i-i's . the Oisjn r r l u n ' .-eeffiiioiil i. J- ; - •\<.\:,: . i 1 t ':. 

lncnl iVeli-'t mii;:!v>- r.iv.i is i\v,;;!,iy p ivpuruoiv- l < •> i t . 

The tr-MMVnt oni. ciIT:P.,-TIS-Tc-!i:-i t iv ics iv r r ('*" ;i t r x v fi'":;v].'-.-:.. in :' 

); J s flew i* iin.'i] • ::.'il. A tv . i su , - . ' i".- t .put ii'ii .- '•;:-.: i--:,. hi: flu -. 1 ' . •. >-

of (-!>::•,•: vt i , r t r ;v-.i>.-; ; .11 -y.-v- •'•-,• i •.-.:;-..-,_ i--.-i ,;•-..', >'.-.-liy, ;>•• l-\i ' i- . ;- •'.. 

'llH^ ivl . i! inn, ;-:- V,,-U ;:s I! i v l . i i i ' " ! y.n .-rn i Hi; i !k f l . i i J fir.-:, i:" i:-'i.! 

to pVtPP/l 1 i:irt- i-0".:;v.\.i:l L"'.i]-,i--.-n: :.u • •,'.' :.-. :! i ..iM u--.i :'' :•,•.> v t ii::i i...! : i 

A ili-t.iil 'V jii;; !;•:•-is i-,' tr.;ii: :-.'!-• , :'•:..i.-i."' i-1 ,-.ii!. \h' is^lln-rr: i! :'!>.. 

(if tti; iiK.il i'.:i.-. is iium-. !Vt-.in ..- i'-,, i-i. i i.i i;. i., : i ; ii.ii-> :ii"i i i . n ! ; : . . , . .» 
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nuwiTinil calculations art- jicrfoviiioil. Thi' ulra] >;as rim; is *.-•: 1 «-i= 1.1».--il 

usiiij ;i iiii;iily stuMc iii-vi^'it itiT.it h i jwumlmv iiitli ;i•» huli"-i:i:i ,.••-.ii. 

Ill IM'.UT to nvuid i> full ;..•:::'. of .•moiujoii'', t'.ispiT; u-:i .'isswiali J i.iili t": 11L»• -

Oil fciviu'i1 t;.ivuJ:ilum, t r u e CiV.i]'j:ifiU tomvetit',! aiul ilh.pi'i sum .uv I'at-

cul.'iU-J iisiii;; a l.a;;i'a!i!M;in ir.i'Hh. 

Iiot.'il:'. of tlu- r.;ikTi::n-l..r:i':i:v;i;!:i laccrica) U'-'iiai ::,!•• J IV j-r.-
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l-'oi lo„'ir:i; .in umk r ;;rou:ul mi.'k-ai' '..\p,- rii/.\;t , r : i i : , . .., .- I..... 

the su.''i',".i-j'.!iili! ] i-.i :••. .j-= i ; . ! l t i ' i ; l o;- the •~u.-.\,.i •••• 11 ...-•, 1. '!; •. ' ii.'i 

su re ex i s t in;; wi th in the ciiVUy -ei'i e:- . u ilrivi l ! , i . fiuiil ihi i'i; 

poriui:". nuiiu::i. Tins i'lo:.- i.:.iy CM:', iniv for s u i * ; i..i: ul . -I ; :. ' 1 

eol);i|i!'-i' wlion lhi.' J r ivir i , ; pu-ss: : i i ' i!u r . ' . iw- .'-j;.nj i li.n.t ly . I '.:' 

eva lua t ion inch;! . :* a <l, r-»• re:»n •; ion ul' t in o t c n t of t- . -,• I • . i.. . p 

t r . i t ion. 

P r e v i e w nn;:lyses | 1 , 2 ] ' ' en' tin. i'ioi. t t---.ii 11 :n;: f-vr n,i r ; ' •: 

t e s t have di 'toraiilei! t'i'c c\ tc) t t of pe;lc! ra l ','•:) py :i.v'u,:ii:y. . p: •' 

di Sjila.-iiii-iit. liif j;n< issuili;', fio:;itl,c. c i ' . ' i ty i'1. p . t . - i ' : . . ' ..- 1 !>• 

with 1 lie i-.a-i on j ; i iwI ly p r e s e n t , Imt to t o t a l l y it is pi an- i t . 'I lie 

niccli.'inis!:, of coa r se , jnvol vc s sonii. EiLitiii.'.. A p.ir <.-•• of 1!: i ; i 

jjaiiou .is to d e t c r a i n e the; ex ten t of t h i s i':i.>:i:i.; c:i.l ! ;> -.'. M.-i. 
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Tlirury ;:)n! r>.|i. 1 i ;v r.t in..'. •<: iu- li.iil iii*jn!' inn in \A-.rij\f ;.c!i;i 

fan i|ii'. Ii in; I'II 1 ' l i ' v I 1 ' .'.'. i i ' i ' •..': 1,.' ;• i i i .V i ' I'lv."'./: . t,.\.ji;.. ••: . v , 

lii-'i; i s . a .T!:I ' i»:1 MI.'II .v, ;:i-.\. fir i\i'i[iK,n. i 'cr r. ('•:•,-(! i: .f.-is i Oi-.:l 

i'l'.'W, I'!..'.: us '.!• i-x:!',;i.i \iv'.;, 1!ii: Ji '•"'.•I'si .'i- D u.\ uf :J 1 r;j'-f S | . i i i " 

i s ji'-vn. ;.v 

1' i" i!n '.'• i .":: •;!.•:., :•. i s ti .r p . - i i n i i i'o..iiliii..'.i in '.':,<. i'.i "r.;i i . .\ . ;" 

I i-.'c -1; ...'i , :'•:'. J i s ll.i' ili .'•JH'- • }(••' M'.'f.". I ' i^u; . !-i'ji'l' in.- !;• i* ],,•';. i.'.i 

i!ir. [•;...! '. •••. ill ; ; ' . i l : i " i ' . i ; ' i .i v.. I m_- ci \\v C-'•;•':!•• >o;, 1 . ; f •• i i i n . : , i t 

i . ! :• • , ! i " . . i " . , 1 i:>* i ' ! . . ! ' ! ' . , ! , ; ] v " . - ( . " • ' [ • • ! ' , ; ) ' .•:,s V...<•.. ' •••• i ' . \y i . i i ; . . <\ 

;u\- i'lij f ••.: Jy li.L 11.':". wyi'lid.'iVU , : •.'.:.".•.• i'f ui.-j'i-! sio; . 1 >P1';' ' . ' i . :V ' . 

U i l . i l ' I,'' ':, .''1 i.! ( :•:..'•;.' :. :.'! c! 1!',,' ,.i"l; '...ij'i, i.;i ills, i s , , ; ] Cu-

..•(''':• : m > . .\ '• ''. : u v , s : :.>i;v..y ',:..:;• !.-. /n,;:!' •.-. !..•..] ' [•]. 

il'-'. >.;i I'll lit H' ; i ! in\s 11 i' tli >;.•.• rs i 1"! : ;i ;'1 ••; , ,'',V,ia I'.III ',.- .!-: , ' r ! ' i •: 

1,ii!;.' : . ; • ; • ]_• . i'i- j v'i'sii-.'i r s - i i ! i ' . !']''>! :.. j ' t ' , 1:: ;''. I l"!i>i i''::y :.;i.' fp-..: .: 

v'linw'l i n i'is; :i v. i. n •• '..,li:i'.', 'I'II'.; {'!'.:!.! !..•.';•,•;•,. '!iu' i v l . ' ' i ' . .• ':.,'.'n" .:. 

»f i ln '.>:.> t- l ' l ' f . i ' t'.-.i1..'.:.!'. on Mi. lav ! i ' .v ' l i ; s - v n r 1 1' 1!:. I'KV.-. 

'I'ii'-- l n ' l . i i!''i..'.>-. ; i u , ! T : i ; . U.v j'l .'.,. ; v.T •]x Sv-'i".,'...; ;;.' ! . " •. ! 

,'inil liu RiAli'l'!.' imi.'n-i- (u . l /v j . flu- t V . M n;:,"; 1 ;• is .t <. i i ; . 1 \:-n -is';.,; 

tin' n (iiiivi- :'. ii'jii !"• i-::iu'v" i l ' tOiiH'v'l i \v 1 i v : ;'i'i". :'ii«' t i .';-;"."'i i o ; i ! ! ' i i : , 

I'm..' ' . . ! i ' i i . ! . i i ' <ii 1 I ' I : - i i i n , 'Hit •"/•,'•'• ,'• 1 i ' • ! ' l i ' . . . 1 . - I ' l - U 1 . i i . i ' . | * ' i ) . 11 

S'.i.i'n: i.i:i-i V is l!n- .i;>;v;i',ui l'liiivl Vi-! t \ ' : |v ; ; ::i.! ii :;>'..! -, :;.-, ,- : , i-.i|;::-

ili I ':,; I ' . ' i iy .niJ. j.i:-,-. • ' J I • c \ !.•'•;••.•:' i : ; ' . i v . ; . . ; ' ; i : ' i , 

'Jlir .''.'l.iiiilr uir':n'i (!:';,' •>,•}:• v'jly 01. i'i'ii ' ,.|'i-; .-I't i I'S :vi j , r .T ;', u -.':• , 

is IJ'l'ii'.'il !y i'l I'lji'V imi iv . i'!:, !'.•( ' . x • ,•• he , |i;,'.'i. v i ' i •-' J>IM;; ." ; i • 

v it'u IH-V. ' IUS ' it..'.!>•.'. ;• iv.l li,:S u v . ' ' " r I'l ('•!.' mi1,., i- ^1 li l t ! ; i \ i ' . i ! . ' - n:r'•*••. 

'])» I'li.ii.i. IIT- ..,' ,)ii' : i:in.-|H'i t is I 'HI ' - I" ' ! i ! '".' i!v 'K:'»i. •' I ' i . i ' . i . v . 
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\-0T l l ' \s K ' . i l l . ' U s I M . l l ' t r \ ) i ' . . 1'L". ',•.'*, n i iv! ••!•) 1'li'V, , l l i i ' ', .' 

r e s u l t s ju ' i r i i . i r i ' . ; : ' i ' . ' ; ; r . ^ k a i ! . : ! i i i " ' : ' : : : ' . - : i , Tin' J i : ;*i-J . i.'.'i u -

i'.; i ' l ' i p l':-.:.i ' J i r i ! i ; ' i i . Inn an- ! ' ! ' i\-.-:i' > \"/ '• s u i ' l :.'...';. t • 

t'.n' '.'".' ii,v'.:.:-,if" . 11 ' - - ••;' t l . i ;v, I!::'.. V,u i . i l i.-i! in til-. <'.'..-• : -

f ' f f i i ' i i : : - : ."i.-ni!: - j " . , : : -I'l l.i i n " . . .-.-;•' v,. . ' i ;; ; i « i;; t h e i ! i ! i . • • ' ! . . 

c l ' i ' i i.1 ' i v ' . "•;-•'J... l . i i i \ i'f:. ! ' . ; " » .!-. ;• :. ' • ;• : .•! '; ; • . . . : . : 1' .' 

s u : Y . . . 'I . . t " . v i ' , . ' J ; : . , ;:...• ;'li>., i - : . n / i i j w . • > • - ! i . t ',•• n : : : . : ! . f 

t i u ". : ! , v : ! v ;',• j ' i v , , ,:... J , - ; ' , ; . .• ; s i ,i i I . . ' . i i , i , I . In'. '• 

l i t i : ' ; ' ' , J'. ••;:•. i".- i 1.=:. ' S I!L':'.^I ', li.'.l l i / ii ilf- • , : • ' • I'M i '> . l Y , , :. l l t i l , 

i ! i - ••' :•: Li' ;'i .. i-:.;..- . i n . ' v . - . r i i - . : ' : . . • . . y . n ' i t V - ! . . . . I ; n • 

0 [l 

t i s J i ' i ' i - i - i - i t y n:,il ;• j - ; 1V.- UK :'. V- :•:••• 

l.i",. l ! r y . . . i : : - mi ' ' . i- i I M : ; ; - •'! ','. • . l i - , [ r i'. " . : ]) •:•! •:. ' 

l l s i l n ' . t i l ' s l l . ' - l l T ' i H ii'it ( i f t l i s j ' C ' , ' . . i i - : i . \'!. . l i i . ' . l , i i ' r ' l l : : - . | i u I , . ' . 

Vi ! i / , , J ''-.I - T in 1 i ' , ; i i ' i . ; : i L i \/'„ .'!' ; . i ; . ! ' I i . i ; : •.;•."• . ! . . • . ' : » . t i ' i I : : . - -. 

mii,;.; r : : . I ill s ; . i s it>i ;' ;-.•:;. •.! !•••• ! . . r . . i i I i i ! ' . !"!' v ' . i .'.:•']•: i 

' ? r . ! .in i n K ' i i. n - l ' i ) ; . ' • : . / inn r.itiiin.I '. 

M I S p i ' t s t n l i J n ' irn.' I'ifl'.i' <';.'ii;v. <• . \:\ :.>•' ..;v':.-. •• i s l i p : 

• . I ' i r . lH* A. 

A II.. I'l- ' . i . ' l . '. 1' 1 ' M i l / . • • >'' 

p i v ; :IVll I'l.ll I:,', . . i l ' . . .IS - ' . IV;^: ' ! ' ' 

;.'(,• ( : c j ' i u > i . '>'.'•<.• i i :K ,' . . , i i- l . . ' i ,L'' . ' 

. . : i l . . ' , | ] . ' i l i"l-: , ni ' i ' l i p : ' : ' i : ' i ' i t J ' .H I'' . i. i ' l r : P : . : : h i i ' ; l''''.i: :• '' " 

f>f . in i : ; f . : | K ri.ii.l i . i i n l j ; . " . i l i u m , I. ;• ii;"ii l \ .r . . i ; I . . I V . P l n \ l , 

l-'oll:'.'.'!!!;'. . l i t l i ; i" : , i i l ; i l i u i ! ;::.il i : i i n U ' i i s u l l ' s . V . n i ' M ' s ir 

p o r l . i i l l t i ! ' . i o n i.;:.: l i i r i i ' l i ' : ; i l !. ; .'. '• l ' » ".••'•••'• f,'••''*•'. I ' l 1 ' 1 ' - -

..-. . < . . , • • ! i , i : " - i i i ! ' . . ! . - ; 

. ' l l;i : - ! . - 1 ' . I I : I : i . n v t n - i -

.i.-...•! U - i i . : i i . , i i | ' i; " , \ i i ' i . ' i i . 



el ' t in- r,,Uic ! j> tb; iiup>.-:: '."-.i.-.- <>i r .^ 0):.]H rvjon Cui-ffic'iCiit (!) 

i . ' . i i . 'M' i,.: • '> . ! . I'.'MIV liis <)i ; > ; : - : , : ' ii-i. I'l'i> : • • J if is jo:.;>;i..l-i'. CJ:I 

M.i.t i\'i l!i _.-|i. KN ir.,.:."n • ̂  k ' v , !i..:i, :;!•:: i1. uiit', U:C \:'ii, ! f i • • i w:', .••ti^J! !;• 

mi ;••. 'A •• i. 'ui. ! i i ."! i ' i ' , : :LIT. ' . ' i . i;: I'f/iK'K!:' W" ' . '1 ' . Vr. i i A1, ,>•. T.'. i.fO i-. 

.1; , . : : i ' :M: ' ; ; . I ::•.•.•;]• r : ;: ]..,I'T., . l , . i . 

Ii' 1')i.\ i" !'< 1 !;!• : i i >;.'i 1 L- \\,'- v i l ' ik i nf n j ^ : . ' - : ' !•'•. . ,II;I)->. ii;::..'i".-r 1:1 

w i n ; ;.,-i-, , it 1,,,-'. riiv: •: ;:ry tu fnr-i i!.-,L'i'.;/ ;.|i :. !;;t>;'it!>':, J'ov r . l o u U t i'.r; 

!:•• u ! . . i ! y ;.:•.! • . . . . . in - i!i:-l 1 i!-.i". i' 1 r.-f t V L M T L - I :-'.:S. 

,\1 h-.-. |!v> :<''• ::-i ' •-!>, l i - s :'i;:'i (1.1, i!ic iij'jcin-r. f ! r i , ! i"; l c c i v ; 

>.' ,'i"., "I 1 '..-lull U' l"h'.' 1I>L;II ^V;I ..-.'.LI ;• 5 ,: . licn'i , p | i.y in,.; I'lij ;;.'' S l ' i>. 

u * - i -J* 

! ;•• llii' ;••.;-.. •••::: i*>) . " ) > : . - | . . >-.;• nf lii- r- I M :. . . ' ; \ .- , . • i s !!..• )"IUh1 

v' , . . ! : . - . :'.i i-i;.:i./' lU'.'lii.lil. ;".•'..''•.!•: , • :n.-r! ; :•! :i'jVi:t:. ! 1:\- >' •, s i ^ p j ; ; -

1',mi ;ir..! l a i y y V I;-... via . v.; ' 0 !'• n s:'I isfji.'U-ry liu.scri ]•: ii'i! cf r V fl,,-,. 

Ii;.•... . ,!. I ' V / I ; l , / . . i ;•;';•.:.: 11;:: iu - t ' v ;i! i •:. • .•i\v.;ni hv. i'; r h i . u i ! >j;;"h.: 1,^ : 
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APPENDIX A 

AN EULERIAN-LAGRANGIAN METHOD FOR 

CONVEOTVE-DISPERSIVE TRANSPORT 

Frank A. M o r r i s o n , J r . 
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mmct 
Conveetive-dispersive transport In a one-dimensional compressible Flow is solved 

using an Eulorian-lagrangian technique. The transport of a taggtd species, resulting 
from dispersion and gas flow in porous media, is studied. The velocity distribution 
of the bulk gas motion is calculated using an Eulerian viewpoint, this velocity dis­
tribution determines the motion of the Ugrangian raesh, the ajxed Eulerian-Ugrangian 
approach is adopted as a means of avoiding anomolous numerical dispersion. A Lagrangian 
ttsh oaves along characteristic curves of tile convectiv* transport equation, Any trans­
port relative to this mesh i s dispersive. In the absence of physical dlsperslor, there 
is no transfer of the species between Lagrai.gian mesh points and concentration changes 
then result solely from compression and expansion of the fluid element. Because the 
flow is compressible, tt,; Lagrangian mesh points are unequally spaced. I l l i c i t me­
thods for solution of the diffusion equation are developed for unequally spaced mesh 
points, totalled calculations have teen done for the transient, low Reynolds number, 
isothermal flow of an ide^l gas. 

MTRQDUCnOF 

Coovective and dispersive transport 
are associated with many processes of engi­
neering significance. Techniques developed 
for the analysis of the relations governing 
these phenomena may, consequently, have 
wide applicability. Here, us present some 
techniques developed in the analysis of 
Biscibic displacement in a transient com­
pressible flow through porous «edU. Be­
cause the relation governing u e bulk fluid 
velocity distribution is nonlinear, numeri­
cal techniques are used. We examine dif­
ficulties encountered in the numerical so­
lution of the convective-di&persive trans­
port equation and describe means of over­
coming these difficulties. 

He consider the transport in one 
space dimension of a trace component char­
acterised !>y a concent rat ion c. c is a 
function -,f position x and time t . Tin 
concentration distribution is to be de­
termined. The I'pveming relation ir. ob­
tained simply by applying conservation of 
species to an infinitesimal e lesion t of 
space. The convective flux across a unit 
control surface normal to the direction 
of flow is uc, u is the apparent ve­
locity, volume flow rate per unit normal 
area, of the carrier gdn. The dispersive 
transport is normally considered, like 
diffusion, to obey a relation ol ifw form 

of l ick 's law. Using a dispersion co­
efficient, D, the flux is -DOcAt). 
Equating the net flux into the element to 
the rate of accuaulatico within the ele­
ment, the transport equation results. 

i is the porosity of the medium, the void 
volume fraction. 

In an incompressible flow in or.e di­
mension, the velocity u is constant. Ad­
ditionally, the dispemvity i? often 
taken to be constant, Neither .-implifi-
eation is valid in our application. The 
equation governing the concentration dis­
tribution has noncenMant coo t fkkn ts , 
u and 0, functions of position aid time 
and delcrnlnud !<y numerical techniques. 
The velocity and dispcruivity iv :uh from 
solution of the equation governing bulk 
gas notion, 

Norton or TIH; ruiiD 

The form in which the fluid velocity 
distribution Iwcomft- known ,if{ew- the 
subsequent choice of tool;, miliniti,'. this 
distribution. 

The low Reynold:' numkr flow of an 
isothermal idedl gas in one dimension 



obeys a well known'•' relation 

H V 9K/ k «t ' ' 

p i s the local gas pressure, while 
M Is the gas viscosity and k, the perme­
ab i l i ty of the medium. The gas velocity 
Is expressed In terns of the pressure 
gradient by Barcy's law. 

k 3p_ 0) 

The dispersion coeff icient i s independent 
of velocity in the low Reynolds nuaber, 
low Peclet number range. It does, how-
aver, vary inversely with the gas pressure 

D = D 
op (*) 

The subscript o refers to ambient con­
d i t ions . Calculation of the pressure d i s ­
tribution yields the velocity and d i s -
persivity distributions. 

Equation (2) i s analogous to a non­
linear heat conduction equation. The nu­
merical procedure chosen for i t s solution 
i s the method of Bruce, Peaceran, Sachford, 
and R ice . 1 This i s an implicit , uncon­
di t ional ly stable procedure similar to the 
CMnk-Hicolson" method for the linear dif­
fusion equation. Because of the non-
l ineari ty of Eq. ( 2 ) , the procedure is 
i t era t ive . However, the convergence is 
rapid. Moreover, the coefficient tutrix 
of the f i n i t e difference equations i s t r i -
diagonal so that each iteration i s ef­
f i c i ent ly performed using Thomas'1 a l -
tor i thn. 

NUMERICAL DISPERSION 

Because an Culcrian approach i s used 
to determine the velocity jml disperBlvity 
d is tr ibut ions , Uler ian methods should he 
considered for subsequent analysis of tlu 
trace component transport, Eulcrim tech­
niques, liownver, tend to prjduco an anooo-
lous mporic i l dinpuralon which could 
eas i l y exceed the physical dispersion of 
interest . 

Consider, as an example, convccttvc 
transport in an Incoftprunsibic flow. In 
th is simple ease, (q. (2) reduces to 

having 

; t l l i r : 0 

**vr 

(5) 

(5) 

as a characteristic curve, c is constant 
on a characteristic. There is no physical 
dispersion. How, consider a finite dif­
ference approximation to Eq, 15). 

M k k k 

e ! L ^ t + u ! L ^ k i = 0 ( 7 , at ax 

The expression is chosen to employ upwind 
differencing. The superscripts refer to 
the tine level while the subscripts are 
spatial indices. Using Taylor series ex­
pansions for the concentration, we say 
readily show that Eq.. (7) is equivalent 
to 

3c 3 c . uto/ . uAt^jV . . . 

'* (B) 

The coeff ic ient of the second spat ia l 
derivative on the right side is a numeri­
cal dispersion coef f i c ient , It results 
from the use of the f in i t e difference ex­
pression. This coeff ic ient can exceed 
the actual dispersion coeff ic ient by 
orders of magnitude. 

Because the flow actually being con­
sidered i s compressible, the s i tuation i s 
even more complex. The velocity varies 
with position and time. Techniques de­
veloped U eliminate a r t i c U l dispersion 
in Eulerian ca lcu lat ions , but relying on 
a uniform fluid v e l o c i t y , arc not appli­
cable . Accordingly, a aixed Eulerian-
Lagran£ian approach wa- tonsidfred and 
then adopted. In addition to the fixed 
Eulerian grid used to calculate \>, u, and 
D, a movlnri Lagranijian IKV.I, is used lo de­
termine the conr.entr.iUun, c. 

A Ugrangian otrwrvrr iwve^, with j 
f luid clement, along a ch,iructeri..i[(: 
curve of the convertivc tvunpori 
equation. The veloci ty of a !<v,r.mi;ijn 
MKh point i s 

dx . u 
dt ' E 

Ihcre Is no cofivftetivo tran:;|wrl 

19) 
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between Lagrahgian mesh points. Such 
transport occurs solely as a resul t of 
dispersion. The numerical dispersion Df 
the Eulerian approach resulted from the 
convectlve transport through the Eulorian 
•esb . When a lagrangian viewpoint is 
adapted, there i s no such transport and 
no numerical mechanise producing such 
transport is generated. The Lagrangian 
approach provides a natural means of 
t l l a ina t ing a r t i f i c i a l dispersion, valid 
far compressible flow and for flow with 
physical dispersion, h Lagrangian tech­
nique has been used by Garder, Peaccman, 
and Pozzi' to treat dispersion in an in­
compressible flow through porous media. 
The technique described here differs by 
Including compressibility and also dif­
fers in the means of calculating d i s ­
persive transport. 

LAGRANGIAH FORMULATION 

A temporal de r iva t ive in the 
lagrangian frame i s expressed by che ma­
terial or substantial derivative. 

d__ 3_ u 3_ 
dt " 3t 1 ix 

(10) 

so that the convective-dispersive trans­
port equation, Eq. (2), becomes 

Tlie first terra on the left side of "q. (11) 
Is the rate of change of concentration in 
a fluid element. This results from dis­
persion, expressed on the right side, I., 
also from compression or expansion of the 
fluid element as expressed in the second 
terra on the left. 

to a result of this compressibility, 
the-concentration is not constant on a 
characteristic curve even in the absence 
of dispersion. Additionally, the spacing 
between successive Lajrangian mesh points 
will vary as they wove through the nodiun. 
Neither of these effects are present in 
•n iMosaprcsslbte flow, 

COOTCTIVi RAHSPORT 

F i r s t , l e t us address the problem of 
calculating the positions of the points 
in the nc-nunUoiw expanding Lagrtmgian 
Mth. the Instantaneous vuloelty or jny 
fcJEranglan wwli point, I, i s given hv 
Eq, (0), The velocity, u, i s givon In 
terns of the pressure gradient bv Cq. (3) . 
Jfce problem tvducor. to one of interpolat­

ing to obtain the pressure gradient at the 
location of t . The pressure i s known at 
each of the Eulerlan nodes. These 
Eulerian nodes are separated by a distance 
ix. The lagrangian node, I , is a distance, 
fox, in front of the nearest Eulerian 
node, i . 

|f | < Ui (12) 

The pressures at the Eulerian nodes, 
i - 1, i, and 1 * 1, can be expressed in 
terns of a Taylor series expansion about 
4. These three expressions are then solved 
to yield the pressure gradient, and thus 
the velocity, at the Lagrangian node. 

3x 

<2f + 1 ) p U l - Ufp. + (2f - D p 
i-1 

2Ax 

i^jt^ii 
f is 

(13) 

numerical integration of velocity 
yields the node position as a function of 
t i n e . Because the local velocity changes 
with position and t i n e , however, the node 
velocity during a t ine interval i t i s 
bet ter approximated Vf a mean of calcu­
lated velocities a t the two time levels 
and a t the new and old positions. The new 
position i s unknown, however, un t i l the 
calculation i s complete. An i tera t ive 
procedure to determine the new position 
Is employed. A single i teration appears 
to be adequate in our application. Such 
time centering of Lagrangian node notion 
calculations has previously been proposed 
by Forester . ' 

The conceiitration changes resulting 
from expansion of a fluid element nay now 
be treated. This contribution to the 
variation of concentration is described 
by Sq. (11) with dispcrsivity set equal 
to zero. 

«fc*«fe'» (IK) 

The velocity gradient, Su/5x, i:; positive 
in an expanding Mow jnd nivjrtvc in a 
compressing flow. It can be calculated 
by a variety of molhod;.. The m-iinul 
reeojraended horo, however, is to oltmi-
natc the calculation untirelv with Hie 
following oluicrvdt ion. 

The bulk fluid density oH'v:' >i coft-
vective transport equation an.iUi/oii:: to 
Eq, (1H). Tliis la the continuity 



aquation. 

dp 3u', eff*f»S*° (15) 

Consequently, the concentration of a fluid 
•leaent changes in proportion with the 
density. Because the density in an iso­
thermal ideal gas is proportional to the 
pressure, the concentration becomes pro­
portional to the pressure of the fluid 
element. 

Because of dispersivity in the general 
case, the concentration does not remain 
proportional to the pressure. Instead, 
the concentration change for a single tine 
step is separated into convective and dis­
persive changes. Starting with the con­
centration, ct, of .tie Jth lagrangian node 
at time level k, t . convective contri­
bution yields an intenwdiate value of the 
new concentration. 

>« (16) 

The intermediate spatial distrioution of 
concentration is then used to determine 
how dispersion >' rs the concentration 
distribution at n.*s tine level. Note 
that, without explicitly introducing dis­
persion, no dispersion is generated. 

The pressure used in Eq. (16) is 
found by a procedure similar to that used 
to obtain Eq. (13), the pressure gradient 
interpolation. 

hz - «LLii, in (i - f 2) i 

f(f - i> . 
' M 

4m-fW& 
dx 

(17) 

Having accounted for node ttovemont, ex­
pansion, and compression, it remains to 
calculate the dispersive contribution to 
transport of the tagged species. 

DISPERSIVE TRANSPORT 

d c * 3 /n M (19) 

This is the diffusion equation. Its so­
lution here is complicated only by the fact 
that the Ugrangian mesh is nonuniform. 

In order to find the concentrations 
at time level k t 1, the Lagranglan grid 
is held in its k t 1 configuration. The 
Intermediate concentrations, calculated 
to account fop expansion and described in 
the previous section, are treated as the 
concentrations at time level k hut in the 
new positions. The order of operations is 
as if the node movement and fluid expan­
sion occurs instantaneously, then the 
tagged species disperses through station­
ary fluid for a period of rime At. 

The finite difference approximation 
to Eq. (19) is developed in an analogous 
fora to techniques widely used in the so­
lution with a unifotm mesh. Tor a uniCorm 
mesh, ohe would write 
m k ,k+l 
at 

A . B[f(P6c)f t (!-&)[6(«c)r 
Ax' U») 

5 is the central difference operator. B 
is a factor weighting the calculation of 
the second spatial derivative between tine 
levels k and k + 1. 

8 i s zero for an explicit calculation. 
If 8 i s 1/2 and D is constant, this is the 
Crank-Nicolson method, for 8 > 1/?, the 
calculation is unconditionally stable, 
Kote that the coefficient matrix of the 
unknown concentrations is tridiagonal, so 
that the sane efficient algorithm a" was 
employed to calculate pressure could be 
used here. 

Vhcn treating the nonuniform ne'ti, 
i t i s desirable to retain a (ritliigoiwl 
form because of the- considerable '.avinc,̂  
in Co»puUtioni] tloe. There is ,1 penalty 
in accuracy hownvtrr. ft [hiw-poini jf>-
proxinatlsn to the second df.riv.jtiv, for 
example, hoc a lower order ,:rror chan the 
uniform rat-r.h equivalent. 

Dispersive transport is governed by 
fiq. (11) with the fluid velocity set equal 
to zero. 

http://df.riv.jtiv
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approach have been presented. Techniques 
for accurately determining mesh movement, 
f lu id expansion, and trace eicnent d i s ­
persion are described. These techninues 
hive been developed for the analysis of 
transport associated with gas flows in 
porous nedia. * program, DIASPORA, em­
ploying these methods has been written 
and impleranted on the CDC 7600s at the 
Lawrence Llvepnore Laboratory. 
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ABSTRACT 

Convective and dispersive transport of a tagged species in a porous 

medium is investigated analytically. The flow is transient and compres­

sible. As a means of avoiding anomolous numerical dispersion in trans­

port calculations, an Eulerian-lagrangian technique is developed. The 

Lagrangian mesh travels along characteristic curves o* the convoctive 

transport equation. Transport relative to this mesh is dispersive. De­

tailed calculations are made for low Peclet number transport in the un­

steady, low Reynolds number, isothermal flow of an ideal £as through the 

bed. Results are obtained for a bed of finite len&'ch. Similarity, valid 
cor an infinite bed length, yields widely applicable results. The analysis 

and results are useful in the containment of underground nuclear explosions. 

*This work was performed under the auspices of the (JSERDA and was supported 
by the University of California Lawrence Liverisore Laboratory under Sub­
contract 1160305 of Contract K-7t05-Eng-48. 
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INTRODUCTION 

Following an underground nuclear explosion, gas from the cavity may 

enter the stemming column or surrounding porous medium. Driven by the 

high pressure within the cavity, the fluid flows through the porous ma­

terial, Hie duration period of this high cavity pressure is typically 

several minutes. The extent of penetration of cavity gas into 

the porous material is of interest in containment evaluation. 

Single phase fl] and multiphase [2] flow analyses have been presented 

describing such transient flows. If the absence of gaseous phase dispersion 

is posited, the gas originally in the Medium is displaced in a piston-like 

manner. A distinct interface then exists between the gas originally in 

the bed and gas originating in the cavity. The extent of cavity gas pene­

tration is unambiguous and can be determined in a straight forward tanner. 

In any real flow, however, there is a dispersive transport as well as 

ccnvective transport. A sharp interface does not exist. Instead, a gradual 

transition occurs. The purpose, then, of this paper is to analyze and de­

scribe the concentration distributions resulting from such transient flows 

with dispersion. Because the leading cavity fluid is a gas, only an ideal 

gas flow is considered in detail. We do not examine the multiphase flow 

following the leading cavity gas. 
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THE TRANSPORT EQUATION 

He consider the transport of an inert trace species, characterized 

by a concentration c. The species is transported by convection and dis­

persion. Convective transport results from the directed motion of the 

carrier fluid. Without dispersion, there is no mixing. Changes in the 

species concentration within any fluid element would then result solely 

from compression or expansion of that element. The convective flux across 

a unit area normal to the direction of flow is 

j c = uc (1) 

u is termed the apparent velocity and is the volume flow rate per unit area. 

Ths dispersion associated with miscible flow within porous media has 

received a great deal of attention. It is normally assumed that the dis­

persive flux can be described by Ficlc's law and can be simply added to 

the convective flux. For the one-dimensional flow considered here, the 

dispersive flux is 

v - » l <» 
V is the dispersion coefficient and x is a position coordinate in the direc­

tion of flow. In a two-dimensional flow, the dispersion coefficient for 

dispersion transverse to the direction of bulk fluid motion is, in general, 

different from the longitudinal dispersion coefficient. Only longitudinal 

dispersion is considered here. 

The magnitude of the dispersion coefficient depends on the Peclet 

number, based on grain size, of the fluid flow. For low Peclet number flows, 

dispersion results primarily from nolecular diffusivity. In this range, the 

dispersion coefficient is essentially independent of Peclet number and is of 

the order of the molecular diffusion coefficient. In faster flows, additional 

mixing occurs as a result of the inbomogeneity of the medium. Velocity 
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variations, path tortuosity, and dead spaces all contribute to increased 

dispersion. The dispersion coefficient is a monotonically increasing 

function of the Peclet number, being roughly proportional to Peclet number 

over a broad range. While theoretical models for the dispersion coefficient 

are available, dimensionless correlations of experimental results appear to 

have greater present utility. Reviews [3-ij] of analysis and experiment 

directed toward providing hydrodynareic dispersion coefficients for porous 

media describe much of the work in this area. 

The flows of particular interest here are characterized by Reynolds 

numbers less than one. Since gas Schmidt numbers are normally of order 

unity, the corresponding Peclet numbers are small. The dispersion coef­

ficients are taken to be independent of the local velocity and to he of the 

order of magnitude of the molecular diffusion coefficient. 

The molecular diffusion coefficient is itself a function of the 

thermodynamic state of the gas. The molecular diffusivity in gases in­

creases with increasing temperature and varies inversely with the pressure 

[5]. Despite the high temperature within a nuclear cavity, the gas flow 

is isotheraal at ambient temperature ahead of the saturation front pro­

duced by condensation [2], While the gas and the solid material will 

rapidly come to local thermodynamic equilibrium, the heat capacity of the 

solid greatly exceeds that of the invading gas. Accordingly, the tempera­

ture rise from ambient in this portion of the porous medium will be small. 

Since the pressure will vary by at least an order of magnitude in the same 

region, the molecular diffusion coefficient, and thus the dispersion co­

efficient, is taken to vary only with pressure 



p is the pressure. The subscript o denotes atmospheric conditions. 

Conservation of species for an infinitesimal region of space becomes 

for a flow in one dimension, e is the porosity of the medium, t is the time. 

Using the flux expressions, we have 

'f^'^fe) < 5 ) 

the convective-dispersive transport equation in an Eulerian frame 
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THE FLUID MOTION 

In order to determine the concentration distribution, the fluid ve­

locity and pressure distributions must f irst be determined. The fonts 

in which these distributions become known wil l also affect the subsetjucnt 

choice of tools uti l iz ing them. 

The fluid velocity in a low Reynolds number single phase flow i s re­

lated to fluid and material properties by farcy's law. The apparent velocity 

is 

—Hi 
k is the permeability of the medium. V !s the fluid viscosity. Continuity 

for a compressible fluid is 

£ | e + |j(pu) = o (7) 

p is the fluid density. 

In an isothermal ideal gas, the viscosity may be taken as constant and 

the local density is directly proportional to the pressure. Combining (6) 

and (7), we obtain 

fcfrS-ffe 
governing the pressure. Permeability is presumed uniform. 

Prior to a nuclear explosion, the gas in the medium is at a uniform 

ambient pressure, p . As a boundary condition, we will consider a step 

change to a higher pressure, p , at the inlet. The position, x, is taken 

as the distance from this inlet. Both semi-infinite and finite media are 

of interest. The results of analysis of flow in a semi-infinite medium 

may be applied to flow in a finite porous medium until such time as ef­

fects of the flow appear at the distant boundary. The column length is 

denoted by L, 
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ior numerical calculation, it is convenient to introduce a set of 

Jicwnsionlcss variables and to express the governing relations and re­

sults in terns of then. Diiwnsionless position is 

X-=f (9) 

ranging, in the finite bed, from zero at the inlet to one at the distant 
boundary. Dinonsionless tine is defined 

. M f l - P 0> t 
epL' 

Tno racic of applied to initial pressure is 

p l H - f (ii) 
"o 

1= J (10) 

A. iiracnsionless pressure, 

also varying between 0 and 1, depends only on X, T, and !(. The governing 

equation, (8), becows 

describing flow in a finite bed. 

In an unbounded bed, the bed length is infinite and the separate defi­

nitions (S) and (10) are not suitable. The length is conveniently removed 

by the observation that the pressure distribution resulting from a step 

pressure change at the surface of a semi-infinite porous medium may be ex­

pressed in terms of a single variable, 9, rather than position and tine 

separately. Introducing 

o\ZP ^ V., 2VT ' v M p v - p 0 ) t 

T l 
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we find that the governing partial differential equation (13) becomes the 

ordinary differential equation 

Subject to the boundary conditions 

P : 1 at 9 = 0 
(16) 

P + 0 as 9 * <*> 

The floa is similar, Uote that the characteristic length L does not appear 

in 9. 

Flows governed by (13), or alternatively, (15) were analyzed in [1] 

and results presented. In the results to be presented here, all fluid flow 

calculations are numerical Solutions of (13), For short times, until changes 

occur at the distant boundary, the flow in a finite column is identical to 

that in the infinite column. Pressures found as a function of position and 

tine, can be expressed as a function of the similarity variable by using ( M ) . 

The early tine flow is similar. Attention was devoted to the analysis of 

finite columns because the results are more general and because semi-infinite 

bed rer'ilts are readily extracted from short time finite column calculations. 

Furthermore, a reduction in the number of variables, producing an ordinary 

differential equation, does not necessarily simplify the numerical solution. 

It nay be noted, in this context, that boundary conditions (16) include a 

condition at infinite 8. 

Equation (13) is analogous to a nonlinear heat conduction equation. The 

numerical procedure selected for its solution is the method of Bruce, Peaceman, 

Rachford, and Rice [6]. The procedure is implicit and unconditionally stable. 

It is similar to'the Crank-Nicolson [7] method for solution of the linear dif­

fusion equation. Because (13) is nonlinear, the Bruce, Peaceman, Sachford, 

and Rice procedure is iterative. Its convergence is rapid. Moreover, the 



J coefficient matrix of the finite difference equations is tridiagonal so that 

each iteration is efficiently performed. An algorithm [8] for the solution 

I of a tridiagonal set of n equations requires only Sn - 2 storage locations 

i and a number of operations of order n. 
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TRANSPORT III WW REYHOLDS NUMBER !*L0W 

Before proceeding, the convection-dispersion equation nay also be 

put into dimensionless form, Suitable parameters were introduced in the 

discussion of \iuid action. A dioensionless speed, 

U « P l - P o ) ( 1 7 ) 

would be unity in an incompressible Sarcy flow. A reduced concentration is 

expressed in terns of the concentration of entering gas, c.. 

C 5 7- (18) 
Cl 

The dimensionless dispersivity i s defined by 

and expresses the re la t ive importance nf dispersive and convective t ransport . 

I t is roughly the inverse of a Peclet number based on bed length. In terras 

of these additional var iables , equation (5) becomes 

The dimensionless speed, U, i s the speed of a fluid element in the d i -

mensionless coordinates. In dimensional coordinates, th i s speed i s the 

"pore velocity" 

JL.iJE ( 2 1 ) 

Changing variables yields 

U = - | < 2 2 > 

Introducing th i s expression for U in terras of the dimensionless pressure 

gradient into transport equation (20), we note tha t th i s pa r t i a l d i f ferent ia l 

equation may be written as an ordinary di f ferent ia l equation in the same 

file:///iuid
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similarity variable as describes the pressure. 

Since the initial concentration throughout the medium is zero and since the 

inlet concentration is given a step change to a constant value, the initial 

and boundary conditions are conpstible with a similarity solution. 

C = 1 at 6 = 0 

c •» o as 8 + • 

The concentration distribution in the semi-infinite medium is similar and is 

expressed in terms of the sane variable, 6, as is the pressure. Although 

strictly valid only for iemi-infinite medium, the similarity may be used 

with great accuracy in a finite bed until such time as effects of the flow 

appear at the distant boundary. 

A finite column requires an examination of conditions to be imposed at 

the distant boundary. For an open column, the exit pressure is taken to be 

equal to the initial pressure. The solution of (It) requires such a boundary 

condition as well as the initial condition and inlet boundary condition 

previously imposed. In the absence of dispersion, no exit boundary con­

dition is required for the solution of (20). With dispersion, however, a 

boundary condition becomes necessary. The form of this exit boundary con­

dition on concentration is not obvious. Convective and dispersive fluxes 

within the porous bed and directed toward this surface must be coupled to 

fluxes leading from this surface and outside the bed. Test conditions be­

yond the medium are subject to considerable variation. Horeover, containment 

efforts seek to predict, and then prevent, any measurable concentration of 

cavity gas a1: the surface. Accordingly, we simply take as this boundary 

condition the widely used Danekwerts [9] condition for the exit "f a chemical 

reactor. The dispersive flux, given by (2), is set equal to zero at the exit. 
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Tnis condition has been extensively employed in both steady state and un­

steady state analyses. As noted by Wehner and Wilhelm [10] however, its 

use in the unsteady state is strictly valid only when the Peclet nuntosr 

is infinite in the region beyond the bed. 
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uwwmi DISPERSION 

Dscause an Eu?.erian approach is used to determine the velocity, pres­

sure, and dispersivity distributions, Euiefian methods should be con­

sidered for subsequent analysis of trace consonant transport, Eulerian 

techniques, however, tend to produce an anoraolous numerical dispersion 

which can exceed the physical dispersion of interest here. Hon and 

Protter [H] analyzed the diffusion resulting from a finite difference 

approximation to the linear convection equation. 

Consider- briefly, as an example, the linear convective transport in 

an incompressible flow. In this simple case, equation (20) reduces to 

^ • 1 1 ^ 1 (25) 
ft ax 

with a constant velocity, U, and having 
X = X t Dt (26) 

o 
as a characteristic curve. The concentration, C, is constant on a charac­

teristic. There is no physical dispersion. 

Further, consider a finite difference approximation to (25) which is 

forward in time and employs upwind differencing. 

ck+l _ ck £ _ ck 

The index denoting the time level is t h e superscript k. The subscripts, ij 

are spacial indices in the uniform Euierian mash. Using Taylor series ex­

pansions for the concentration, neglecting terms above second order, and 

using (25), we find that (27) is equivalent to 

F t U_._ r^._J-_. + ... (28) 

The coefficient of the second spatial derivative on the right-hand side is 

a nuiaerical dispersion coefficient. It has no physical basis but arises 



from the use of the finite difference expressions. Numerical dispersion 

coefficients of this type can exceed the actual dispersion coefficient 

by orders of magnitude. F w small Courant number, UAT/AX, the ratio of 

these terras is roughly UiX/D which we s^all call the "cell Peclet number." 

D is the dimensionless dispersivity at ambient conditions, o 
Because the flow actually being investigated is transient and com­

pressible and possesses physical dispersion, the situation is considerably 

more complex. The velocity varies with position and time. Techniques de­

veloped to reduce artificial dispersion in Eulerlan calculations, Lrt rely­

ing on a uniform fluid velocity, e.g. [12], are not applicable. Accordingly, 

a mixed Eulerian-Lagrangian approach was considered, developed, and then 

adopted. In addition to the fixed uniform Eulerian grid used to calculate 

pressure, velocity, and the dispersion coefficient, a moving nonuniform 

Lagrangian mesh is used to determine the concentration, c, of the trans­

ported trace component. The method yields accurate results independent 

of cell Peclet number. 
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LAGRANSIAN FORMULATION 

A Lagrangian observer moves, with a f luid element, along a charac­

t e r i s t i c curve of the convective t ranspor t equation. The veloci ty cf a 

lagrangian mesh point i s , in diraensionless coordinates , 

3 § = U (29) 

There is no convective transport between Lagrangian cells. Such transport 

occurs solely as a result of dispersion. The numerical dispersion of the 

Eulerian approach resulted from convective transport through the Eulerian 

mesh. When a Lagrangian viewpoint is adopted, there is no such transport 

and no numerical mechanism producing such transport is generated. The 

Lagrangian approach provides a natural mews of eliminating artificial 

dispersion, valid for compressible flow at,d for flow with physical dis­

persion. A Lagrangian technique has been used by Carder, Peaceian, and 

Pozzi [13] to treat dispersion in an incompressible flow through porous 

media. Their analysis did not address the myriad effects of compres­

sibility. The technique described here differs in that respect, Includes 

variable dispersivity, and differs in the means of calculating dispersive 

transport. 

A temporal derivative in the Lagrangian frame is expressed by the ma­

terial or substantial derivative 

so that the convective-dispersive transport equation, (20) becomes 

d t f c 3 x - ax l D 3x / m ) 

The first teas on the left-hand side of (31) is the rate of change of con­

centration in a fluid element. This concentration change results from dis­

persive transport into the fluid element, expressed on the right-hand side, 
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and also, when the flow is compressible, from the compression or expansion 

of the fluid element. Thit last contribution is expressed in the second 

terra on the left-hand side of (31). 

As a consequence of this compressibility, the concentration is not 

constant on a characteristic curve even in the absence of dispersion. 

Additionally, the spacing between successive Lagrangian mesh points will 

vary as they travel through the medium. Neither of these effects are 

present in an incompressible flow. 
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CDHVECTIVE TRANSPORT 

F i r s t , l e t us address the problem of calculat ing the posi t ions of the 

points in the nonuniform expanding Lagrangian mesh. The instantaneous ve­

loc i ty of any lagrangian niesh poin t , i, i s given by (29) , In a low Reynolds 

number flow, t h i s veloci ty i s given in t e rns of the pressure gradient by 

equation (22). The problem then reduces t o one of in terpolat ing t o obtain 

the pressure gradient a t the locat ion of i. The pressure i s taotm, from 

fluid flow calculat ions* a t each of the Eulerian nodes. These Eulerian 

nodes are separated by in t e rva l s of AX and the Lagrangian node, A, i s l o ­

cated a t seme d is tance , fAX, in front of the nearest Eulerian node, i . 

| f | < - (32) 
1 2 

Using the pressures a t three Eulerian nodes, i - 1 , i , and i + 1 , the p re s ­

sure gradient , and thus the veloci ty , a t the Lagrangian node i s found with 
2 

e r ror of order AX . 

, • '• " c fix % 

I 2iX 6 3XJ 

t . . . (33) 
I 

Numerical integration of velocity yields the Lagrangian node position 

as a function of tine. Because the local fluid velocity varies with position 

and tine, however, the node velocity during a tine interval A T is b e t t e r 

approximated by a mean Of calculated velocities at the two tine levels 

and at the old and new positions. Since the new position is unknown until 

the calculation is cofflplete, an iterative procedure to determine the new 

position is employed. A single iteration appears to be adequate in our 

application. A criterion used to judge the adequacy of the convective 

transport calculations is described in a later section on application and 

results. Time centering of Lagrangian node motion calculations has pre­

viously been proposed by Forester [ W ] . 
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We may now consider the concentration changes resulting from the ex­

pansion or compression of a fluid element. This contribution to the vari­

ation of concentration is described by the connective transport equation, 

(31) with dispersivity set to zero. 

The velocity gradient, 3U/8X, is positive in an expanding flow and negative 

in a compressing flow. It can be calculated by a variety of methods. The 

method recommended here, however, is to eliminate the calculation entirely 

with the following conservation. 

The bulk fluid density obeys a convective transport equation identical 

to (31). The continuity equation, (7), in a Lagrangian frame and written 

in dimensionless coordinates is 

The concentration of a fluid element changes in proportion to the density. 

Because the density in an isothermal ideal gas is proportional to the fluid 

pressure, the concentration becomes proportional to the pressure of the fluid 

element. In dimensionless form, this becomes 

C " (S - 1) P + 1 (36) 

The pressure at Lagrangian node, I, is found by interpolating between the 
Eulerian nodes where the pressure is known. 

•A 

3x 
+ 

I 

(37) 



^•^^^->T^^r^>>^*^mtmmK,Ji. • 

is 

3 . . 
The error is of order AX . Equation (33) for the pressure gradient is simply 
a derivative of (37). 

In the general case of conveetive-dispersive transport, the concentration, 

because of dispersivity,does not remain proportional to the pressure. Instead, 

the concentration change for a single time step is separated into convective 

and dispersive changes. Starting with the concentration, C , of the Hth 

Lagrangian node at time level k, the convective contribution yields an inter­

mediate value of the new concentration at the succeeding time level. 

k+i k ( K • i ) ?T * l 

h -ci Z ( 3 8 ) 

x * (N - i) p£ + I 

This intermediate spatial distribution of concentration is then used to de­

termine how dispersion alters the concentration distribution at this time 

level. Nc ^hat, without explicitly introducing dispersion, no dispersion 

is generated. In the Lagrangian calculation of convective transport, a mov­

ing node with zero concentration at any time has zero concentration for all 

time. 
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DISPERSIVE TRANSPORT 
Dispersive transport is governed by the diffusion equation, equation (20>, 

with the fluid velocity set equal to zero. 

Its solution here is complicated only by the fact that the Lagrangian mesh 
is nonuniform. 

In order to find the concentration at time level k + 1, the lagrangian 
grid is held in its k t 1 configuration. The intermediate concentrations, 
calculated to account for expansion and described in the previous section, 
are treated as the concentrations at time level k but in the new positions. 
The order of operations is as if the node movement and fluid expansion oc­
cur instantaneously, then the tagged species disperses through the stationary 
fluid during the time interval A T . 

The finite difference approximation to the diffusion equation (18) is 
developed in an analogous form to techniques widely used in the solution for 
a uniform mesh. For a uniform raesh, one could write 

C j + 1 - c \ = ^ {g[8(D0C)] k + 1 + (1 - 6) [«(B«C)]k} (M) 

6 is the central difference operator. 8 is a factor weighting the calculation 
of the second spatial derivative between levels k and k t 1. 

(J is zero for an explicit calculation. For constant dispersivity, the 
behavior of (40) is well known. When & is 1/2, this is .he Crank-Nicolson 
method having truncation error of order AT , AX . More generally, ibe er­
ror is of order AT, AX 2. For 3 £ 1/2, the calculation is unconditionally 
stable. Note that the coefficient matrix of the unknown concentrations is 
tridiagonal so that the same efficient algorithm as was used to calculate 
pressure could be used here. 
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When treating the nonuniform nesh, it is desirable to retain a tri-

diagonal form because of the considerable savings in computational time. 

There is a penalty in accuracy, however. A three-point approximation to 

the second derivative, for example, has a lower order error than the uni­

form mesh equivalent. 

$ 
!di JL 

(X i + 1 - X £ )(X l + 1 - X ^ ) (X 4 t l - X^XXj - X ^ ) 

M — k <V, - *X, t X,_,) ^ 4 (Xt - X W ) ( X M - X^J 3 ^ + 1 i M ' a x 3 + 

on) 

The leading error term vanishes for a uniform mesh. A nonuniform mesh 

should be generated so as to maintain small values for these additional 

error terms, A smooth slow variation of mesh size is best from this stand­

point. 

With varying diffusivity, the nonuniform mesh equivalent of (40) was 

taken as 
ktl 

ff1 - < 28 /, c M - y D

 c < - c rVi\ 
i' h-i I h* ' X £ + 1 - X M l"tt(l/2) X £ + 1 - X- • "t-(l/2> X, 

, 2(1 - » ( p

 c nn ' ci E

 c a " c t - i ' 

<«) 

D, >j ... is the dimensionless dispersivity midway between Lagrangian nodes 

a and * + 1. 

For & equal to 1/2, a slight oscillation was observed in the results. 

Since the variable diffusivity and nonuniform mesh preclude the possibility 

of a higher order error associated with B equal to 1/2, there need be no 
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reluctance to vary p. For stability, a weighting factor, B, greater than 

1/2 is recommended. No oscillation has been observed for larger 0. 
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A P P U C A T M AND RESULTS 
A program, DIASPORA, employing these Methods has been written and 

applied to the transient convective-dispersiva transport in a porous 
medium. Considers as an example, the transport resulting from a step 
increase in pressure and concentration at one end of a uniform porous 
bed. The bed is finite with the other end open to the atmosphere. The 
initial concentration in the bed is zero. The resulting pressure and 
concentration distributions are of interest in containment calculations. 
Pressure distributions have previously been obtained for ideal gas [l] 
and multiphase [2] flows of this type, He here obtain the concentration 
distribution associated with the ideal gas flow. 

Following [1] and [2], consider a flow characterized by a pressure 
ratio, ff, of HS. This value is obtained from Olsen's [15] description 
of the cavity pressure history of an underground nuclear explosion in 
alluvium. The pressure distribution in the bed, governed by (13), was 
found and is shown in Fig. 1. As the pressure increase propagates 
through the medium, the region of higher pressure is clearly discernible. 
A near discontinuity is present in the pressure gradient as a pressure 
front seems to travel through the bed. For higher pressure ratio, M, 
the initial pressure rise at any location is even sharper, Khan the pres­
sure ratio is infinite, this pressure rise is discontinuous. Because of 
this behavior, the far boundary has littlft effect on the flow for a well 
defined period. For an infinite pressure ratio, the pressure front reaches 
the exit when T is 0,38. Prior to this time, the flow is similar and the 
pressure depends on the single variable, 8, defined by (13). For large but 

'i finite pressure ratio, N, the similarity is not rigorously exact but is an 
I excellent approximation until i is about 0.58, This similarity can be seen 

I 
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in Fig. 1 where positions on the 1 - 0.2 curve are twice the corresponding 

positions on the t = 0.05 curve. The pressure calculation is Eulerian, 

using the procedure of Bruce, Peaceman, Rachford, and Rice [6], 

The corresponding concentration distribution in the absence of dispersion 

is presented in Fig. 2. The Lagrangian formulation yields the abrupt change 

in concentration as the injected gas passes through the column. This feature 

would not be observed if an Eulerian expression such as (27) were employed. 

Note also that the early time behavior is very nearly similar. The effects 

of the distant boundary are not apparent for T less than about 0.38. As 

with the pressure, 6 is the sole independent variable in a similar flow. 

The positions of corresponding points on the short time curves vary as the 

square root of time. The agreement among the calculated concentration dis­

tributions in this regard is an excellent indication of the accuracy of the 

calculations. 

The position of the interface is a particularly stringent and readily 

observed indication of this accuracy. When T is 0.05, the position of the 

interface was calculated to be 0.30. Accordingly, the calculated value of 

B at the interface is, from (14), 0.67. Since the flow is nearly similar 

for time less than 0,38, 9 at the interface should remain relatively con­

stant prior to this time. For times of 0,1, 0,2, and 0.3, the calculated 

positions correspond to 6 being 0.67, 0.68, and 0.68, respectively. The 

initial step change in pressure at the interface is responsible for making 

this Lagrangian node the most difficult to move accurately. 

The concentration curves for times 0.5 and 3.0 are shown ending before 

the exit. The reason is simply that the plotting routine used to generate 

the curves used the Lagrangian node nearest the exit as the final point. 

All leading nodes have exited in both cases. Because the concentration 
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remains proportional to pressure in corrective transport, the exit con-
-1 -1 

centratton C is M or 45 for both curves. 
Figures 3 through 5 show the effect of dispersivity. Variable dis-

persivity is employed in each case. At ambient pressure, the dimension­
's -2 -1 

less dispersivity is 10 ,10 , and 10 , respectively, in these figures. 
The dimensionless dispersivity at ambient conditions D can be estimated 

in any application using (19). Using air viscosity of 1.8 x 10" kg/it sec, 
-5 2 -Vt '1 

a diffusivity of 2 x 10 m /sec, a permeability of 0.1 darcy (9.8 x 10 m ) 
5 and the applied pressure difference of 44 x 10 pa, the dimensionless dis-

.3 persivity D is of order 10 . The dimensionless dispersivity would be 

larger in less permeable media, smaller in more permeable media. The perme­

ability determines the rate of convective transport. With convective-

dispersive transport) application of the Danckwerts boundary con­

dition, zero concentration gradient, at the exit yields the concsntration 

there. 

Each of the calculations presented used an Eulerian grid having 101 
*4 -3 

nodes. The time Step was 2 X 10 /3 for 225 steps, uen changed to 10 . 

The smaller initial time step is used to prevent large initial Lagrangian 

node movement. With either time step and presuming U to be of order unity, 

the numerical dispersion expressed by (28) is of order 10 . This numeri­

cal dispersion would be large compared to physical dispersion. The cell 

Peclet number is about 10 for the example just given. The simple Eulerian 

approach would not have yielded useful results. 



25 

CONCLUSIONS 

Connective and dispersive transport in transient compressible flow 

has been analyzed. The governing relations were formulated and a numeri­

cal procedure for calculating results was presented. Reasons for utiliz­

ing an Eulerian-Iagrangian approach were considered. Techniques for ac­

curately determining mesh movement, fluid expansion, and trace element 

dispersion are described. Results were presented for transport resulting 

from a transient flow of an isothermal ideal gas through a uniform porous 

bed. 



FIGURE LEGENDS 

Figure 1 Pressure distribution in unsteady flow 

Figure 2 Concentration distribution in convective transport 

Figure 3 Concentration distribution in convective-dispersive 

transport with varying dispersivity 

Figure u Concentration distribution in convective-dispersive 

transport with varying dispersivity 

Figure 5 Concentration distribution in convective-dispersive 

transport with varying dispersivity 
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Figure 1 Pressure distribution in unsteady flow 
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Figure 2 Concentration distribution in convective transport 
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Figure 4 Concentration distribution in Convective-

dispexsive transport with varying dispersivity 
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ABSTRACT 

The high Reynolds number flow of gas through porous materials 

is a subject of increasing significance. Gas recovery from frac­

tured beds, gas flow produced by i n s i t u coal gasification, flows as­

sociated with storage and withdrawal in highly permeable structures, 

and transpiration cooling are examples. Darcy's law, normally used 

to describe flows through porous materials, is invalid in the range 

of Reynolds number of interest here. A nonlinear constitutive 

equation with empirically determined transport properties is applic­

able instead. 

Transient, compressible gas flow over a broad range of Reynolds 

number has been analyzed. The flow is governed by a set of coupled 

nonlinear partial differential equations. An iterative implicit 

stable numerical procedure has been developed and succussfully tested 

for calculations in one dimension. Results are given for the flow re­

sulting from a step change in pressure at one end of a finite bed. A 

similarity solution is obtained for the flow into a semi-infinite bed. 

This latter solution is also applicable to short time flow in finite 

beds. 

"This work was performed under the auspices of the USERDA and was supported 
by the University of California Lawrence Liveriore Laboratory under Sub­
contract 1160305 of Contract W-740S-Eng-48. 
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INTRODUCTION 

The high speed flow of a gas through a porous structure is a matter 

of considerable interest in several areas. This interest has resulted 

•in a wealth of experimental infornation on such flows. In particular, 

Darcy's law, a linear constitutive equation between the apparent fluid 

velocity and the local pressure gradient, is found to fail for Reynolds 

numbers in excess of about 0.1. Correlations, describing the deviations 

from Darcy's law, have been developed and have remarkable agreement 

among themselves and with experiment. 

The analytical ability to use these results in the prediction of more 

complex flows has not been obtained, however, WhilA transient gas flows 

in the Darcy regime have been successfully analyzed and efficient al­

gorithms for the calculation of multidimensional flows developed, 

little progress has been made in the nonlinear flow regime. 

The purposes of this paper are to obtain relations governing non-

Darcy, transient compressible flow, to develop a numerical procedure 

for calculations in one dimension, and to present results of the analy­

sis of such a flow. 
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DESCRIPTION OF THE FLOW 

Consider the one-dimensional flow o; a gas through a porous struc­

ture. The apparent velocity of a fluid flowing through a porous bed 

is, by definition, the volute flow rate per unit area normal to the 

direction of flow. In a low Reynolds number flow, this velocity, u, 

is given by a linear constitutive equation, Darcy's law. 

— }6 « 
k is the permeability of the medium, u is the fluid viscosity, p is the fluid 

pressure, and x is the position coordinate in the direction of flow. For 

local Reynolds number, pud/u, based on pore or grain size d and above 

about 0.1, this relation is unsatisfactory, p is the fluid density. Be­

cause of the highly curved tortuous paths followed by fluid elements, in-

ertial effects become significant. The relation between velocity and pres­

sure gradient becomes nonlinear, 

Forchheimer [1]* proposed that Darcy's law be modified by the inclu­

sion of a second order term in velocity. In the usual format, Forchheimer's 

relation is written. 

•x u • a 2 pu 2 = - j£ C2) 
Since this relation was originally proposed, an impressive amount of experi­

mental evidence has been amassed to justify its use. In the low velocity 

range, the relation reduces to Darcy's law. The constant, a., is simply 

u/k and can be determined experimentally or, for uniform beds, the widely 

used Carman-Kozeny relationship [2] or Happel's [3] free surface model yield 

•Nunibers in brackets refer to entries in REFERENCES. 
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good estimates. At high velocities, the Forchheimer relation reduces to 
the form found experimentally by Burke and Plummer [4], From the Darcy 
range, spanning a transition region, and up to Reynolds numbers of several 
thousand, the complete Forchheimer relation has accurately described re­
sults of experiments by numerous investigators. These include Ergun and 
Orning [S], Green and Duwez [6], Ergun [7], Schneebeli [8], and Ward [9]. 
• Theoretical developments of the Forchheimer relation, e.g., Irmay [10], 
Bachtnat [11], and Black [12], having varying degrees of sophistication 
are also available. 

A further generalization of (2) was proposed by Polubarinova-
Kochina [13] and consists of the inclusion of a local acceleration term. 

2 3u 3 D 

t is the time. Because disturbances propagate across a pore having a 
2 typical dimension d with a relaxation time of order d /v, this effect 

is negligible, v is the kinematic viscosity. For air at atmospheric 
2 conditions, V is 0,15 cm /sec. A bed with a permeability of one Darcy 

-9 2 •% 

(9.8 x 10 cm ) has a typical pore dimensional order 10 cm. The 
corresponding relaxation time is of order 10* sec, considerably less 
than any significant time in a transient flow. Including this local ac­
celeration effect has no obvious merit. 

The effect of convective acceleration, as considered by Beavers and 
Spairow [14], is expressed in the relation used by them. In a form con­
sistent with our notation, they have 

^u^pu^lpuf^-g w 

e is the porosity of the medium, the void volume fraction. The inertial 
coefficient, a , is of the order of the reciprocal pore dimension, d . 



4 

The length, d, is considerably smaller than any bed length of interest 

here. Variations in the apparent velocity occur over distances much 

larger than d. Accordingly, the quadratic resistance term greatly ex­

ceeds the convective acceleration contribution and the latter is safely 

neglected. 

An excellent verification of this conclusion is provided by recent 

results of Masha, Beavers, and Sparrow [IS]. Compressible steady gas 

flow in one dimension was examined in a series of careful experiments 

where gas compressibility was significant. The porous medium was a block 

of foamed nickel with a mean pore size of roughly 0.OS in. and a length of 

8 in. The length scale for velocity changes is this bed length. The 

relative importance of convective acceleration and inertial drag should 

then be approximately the ratio 0.05:8. The contribution of convective 

acceleration should, in this case, be roughly 0.6 percent of the effect 

of inertial drag. Masha, Beavers, and Sparrow found that experimental 

pressures and calculated pressures based on Eq, (4) agreed within 2 per­

cent, They further found that calculations based on Eq. (2) normally 

agreed with those employing convective acceleration within 0.1 percent. 

At the highest test Reynolds number reported, 81.6, the deviation was 

about 0.7 percent. The two expressions agree within the expected range 

and both agree well with experiment. For larger beds, with correspond­

ingly smaller pore size-to-bed length ratios, the difference between 

expressions will be smaller yet. 

We conclude that Forchheimer's relation (2) adequately describes the 

resistance of transient compressible flow over a broad range of Reynolds 

number. Accordingly, this relation is adopted and, in agreement with 

Darcy's law, written 

u + b p | u | u = . J L | E (s) 
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The quadratic term u is here replaced by |u|u to account for flow in 

either direction. |u| is the absolute value of u. The coefficient b 

can be determined fros any of several correlations. Typical are those 

of Ergun [7] and Ward [?] which yield 

and 

„ = - g > W f t V e ) . (6) 

„ . 0,-550 ( # M 
V 

respectively. 
In addition to the constitutive equation describing flow resistance, 

the flow obeys the continuity equation, an equation of state and the first 
law of therodynaraics. Conservation of mass i s 

for an incompressible porous structure. The ideal gas equation of state is 
P - PRT m 

R is the gas constant and T, the thermodynamic temperature. 

Rather than employing the first law of thermodynamics, it nornally 

suffices to assume an isothermal flow. The relaxation time for heat 

transfer between the solid and gas is negligible compared with the time for 

the gas flow to respond to changes at the bed boundaries. Temperature 

equality between solid and gas is usually assumed. In a gas flow, the 

heat capacity of the gas in the void volume is considerably less than 

that of the surrounding solid. As a result, the solid temperature will 

normally remain constant and the gas temperature rapidly approaches this 

value. With the isothermal restriction, an ideal gas flow is governed by 
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Eq. (5) and Eq. (8) which become 

u * (b/RT)p |u| u = - £ g (10) 

and 

«{?•{; ttl-o (ID 
Pressure and velocity are the sole independent variables. 

Equivalent expressions for radial flow in cylindrical coordinates 

have been successfully employed [16,17] to describe the performance of 

natural gas wells, Transient high speed gas flow in one dimension has 

been examined more recently [18]. In this latter case, however, the 

second-order differential equation describing the flow is incorrect 

as given. 
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DIMENSIONLESS FORM 

Because the governing equations, Eqs. (10) and (11), are non­

linear, their solution is most readily obtained using numerical tech­

niques. Prior to developing a numerical procedure, it is advantageous 

to convert these expressions to a dimensionless form. The dimensionless 

expressions are chosen to correspond closely with those used in the 

analysis of related low Reynolds number gas flow [19], low Reynolds 

number multiphase flow [20] and low Reynolds number convective-dispersive 

transport [21]. 

The effects of inertial resistance can be observed in the response 
of an initially stationary gas to a sudden change of pressure at a 
boundary of a "one-dimensional porous bed. A suitable diroensionless pres­
sure, varying between zero and one, is 

P - P 0 

p is the ambient pressure while p. is the applied pressure, 

A dimensionless position is expressed as a fraction of the bed 
length L. 

X = =S (13) 

The distance is measured from the inlet boundary where the pressure p, is 
applied. 

Dimension! sss time, in terms of these and previously defined properties 
is 

"(Pi * P 0> 
u E L* 

t 
(14) 

A low Reynolds number flow has a response time corresponding tc ~ of order 

unity, terraeability and porosity are presumed uniform. 



A dimension!as3 speed, defined by 

(IS) •<CPl - P 0 ) 
expresses the ratio of the local velocity to the velocity that would be ob­

served in an incompressible Darcy flow having the sane applied pressure. 

For convenience, we refer to the ratio of applied pressure to initial 

pressure by 

P l N = - i (16) 

*o 

A Reynolds number characterizing the flow and expressing the importance 

of deviations from Darcy behavior is 

P 0 MP! - P 0) b 
Re = uL (17) 

This is roughly a Reynolds number based on initial density, Darcy velocity 

and a pore dimension. 

In terms of these parameters, Eqs. (10) and (11) become 

U * R e [(M • 1) P + 1] |U| U = -|| 

and 

3P + 3_ 
ST 3X ' ( " ^ T ) » 

08) 

(19) 
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CHANGE OF SCALE 

Tne dimcnsionless variables as se l eded are suitable for description 

of low Reynolds number flow with large pressure ra t io . - Under other con­

di t ions, a change of time scale is advisable. 

Consider f i r s t the Darcy flow described by Eqs. (18) and (19) with 

Re set equal to aero. Substitution yields the single differential equation 

describing the pressure 

1HWP 2 + N?T) t») t 
3X 2 

When the pressure ratio is well in excess of one,gas in the Darcy flow regime 

will respond to changes in a time i of order unity, Darcy flow in a finite 

bed will approach steady state in a time of this magnitude. 

For very large Reynolds number, however, the inertial resistance 

dominates. Consider, for simplicity, flow in the positive X direction so 

that the absolute value |u| becomes U and tlic pressure gradient is negative. 

In this case and for large Re, Eq. (18) reduces to 

U = Re l(N - 1) P + 1] f 2 1 ) 

and the pressure is governed by 
1/2 

I « » P ' - » ] 1 / 2 p * ! l 2 B X V N - 1 ) = 0 (22) 

Now, when N is large, the appropriate tine scale is seen to be 

T 5 — i — =f—rrH * ( 2 5 ) 

[Re (N - Dr* *p e c lAu ' 

so that the pressure obeys 
r i V 2 
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For small pressure ratio, exauination of Eq. (20) reveals that the 

suitable time scale for Darcy flow is 

N-TT- 1 ! C 2 5 > 
" M E L 

while, for high Reynolds number and small pressure ratio, rearranging 

£q. (24) indicates that a time scale 

_ £ f. 
CN - l)(Re) 1 / 2 Lf 

1/2 
fcP0 I 

(N - 1 ) 1 / 2 [N - l)(Re) 1 / 2 L p Q e 2 L 3 n u (N - 1) J 

should be employed. 

Choice of an appropriate time scale is important in numerical cal­

culations. Without consideration of the relaxation time, finite differ­

ence time steps are not well chosen. Excessively large time steps result 

in loss of accuracy while calculations using overly small time steps are 

inefficient, 
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SIMILARITY ANALYSES 

While our primary interest :s in flow in finite beds, it is worth­

while to consider the flow into a semi-infinite bed. There are several 

reasons for this interest. The short time behavior of flow in a finite 

bed is well approximated by flow in a semi-infinite bed. Additionally, 

under certain conditions to be described, the transient pressure in a 

semi-infinite bed depends only on a single variable and not on position 

and time separately. Such a flow is said to be similar. 

Similarity permits several general conclusions about early time be­

havior and also permits one to assess the accuracy of numerical solutions. 

This latter feature is particularly valuable when, as is the case here, 

the governing equations are nonlinear and exact solutions for comparison 

do not exist, 

Consider a flow into a semi-infinite bed. The gas in the bed is 

initially stationary and at ambient pressure. The pressure at the surface 

is suddenly increased to some high constant value. The flow then is 

governed by Hqs. (18) and [19) subject to 

P = 0 at T = 0 

P = 1 at X = 0 C27) 

P + 0 as X + » 

For Darcy flow, governed by Eq. £20) and subject to these conditions, 

the pressure has been shown {19] to be similar. The pressure depends only 

on a single variable defined by 
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sine; both the differential equation and boundary conditions can be written 

in terns of 8 alone. Equation (20) is 

and conditions (27) become 

P = 1 at 6 = 0 
(30) 

P + 0 as 6 + «• 

Note that 6 does not contain a length scale L. 

The pressure distribution for this Darcy gas flow , n a semi-infinite 

bed was calculated by Morrison [19] and the results are shown in Fig. 1. 

Several values of pressure ratio have been selected. The Reynolds 

number is zero in each of these cases. 

For high Reynolds number flow, we may also demonstrate similarity. 

The similarity variable is different however from the variable, B, that has 

been-used for the low Reynolds number flow. Consider the flow governed by 

Eq. (24) and subject to the conditions (27). If we define 

5 = ̂  (3D 

then Eq. (24) can be written as the ordinary differential equation 

1/2 
r * d f-9 d / p2 , ZP \' 
* d$ " J? L 8 d? V N - 11 = 0 (32) 

(33) 

and conditions (27) are expressed in terras of £ by 

P = 1 at I = 0 

P + 0 as £ + « 

corresponding to the conditions (30) applied to Darcy flow. 5, like 8, con­
tains no length I. 

The high Reynolds number gas flow resulting from a step change in surface 
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pressure has been shown to be similar. The pressure depends only on £. 
The short time flow in a finite column will behave in this manner. This 
similarity requirement can be used to judge the accuracy of finite differ­
ence calculations. Such calculations are performed and displayed in 
similar form in the section on results of calculations. 
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NUMERICAL TECHNIQUE 
A numerical procedure has been developed for the solution of Eqs. (18) 

and (19) governing the transient non-Darcy isothermal gas flow in one 
dimension. Because stability considerations may severely restrict the al­
lowable time step in an explicit calculation, an implicit method was de­
veloped. 

Explicit methods have been developed, e.g. [22-26], that are uncon­
ditionally stable for solution of the linear diffusion equation. It re­
mains to evaluate the applicability of their analogs to the nonlinear set 
of equations treated here, Consistency requirements will, at least in 
certain cases, place limits on the allowable step sizes. 

A uniform mesh is employed. The node spacing in the X direction is 
AX and the spatial index is i. The temporal step size is AT and the time 
level is denoted by the superscript k. 

Suitable finite difference expressions for the derivatives may now 
be developed. Tor this purpose, it is useful to interpret P. as the di-
mensionless pressure at node i and U. as the dimensionless velocity mid­
way between nodes i and i + 1. The spatial derivative in Eq. (19) expresses 
the rate of mass flow into a spatial element. At node i, the derivative is 
approximated by 

3X ( P +^T) U] =2Al[( Pi +l + Pi +^) Ui 

-(pi*pi-iTrT)uM (34) 

The velocities in this expression may be expressed using a finite 
difference equivalent of Eq. (18). 

I P. P. U. = — ul—Li , (35) 
1 « i + ILiiliifp t P • - M i n i 2 \ i+i i N - n 1 i 1 
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The pressure gradient of Bq. (18) has been replaced by a central difference 

approximation for the derivative midway between i and i + 1. 

The finite difference approximation of Eq. (19] is formed using a 

forward difference in time and expressing the spatial derivative as a 

weighted average of finite difference expressions at the k and k + 1 

levels. Using Eqs. (34) and (3S), we have 

P k + 1 - P. 
_i I 1_ 

i X ~ 2 ( A X ) 2 

k+l 

( pi* pi-i * uh) ?i - Pi-P (36) 

^•"[(' i^Vrrh-^'M^li ,] 

The spatial derivative is expressed differently &t the two time levels for 

reasons that will shortly be apparent. 6 is the weighting factor. It can 

assume values between 0 and 1. 0 equal to zero corresponds to an explicit 

formulation, ft greater than zero is implicit. By analogy with the linear 

diffusion equation, 0 greater than or equal to 1/2 can be expected to yield 

stable results, independent of time step. In the absence of rigorous 

stability limits for nonlinear equations, such analogs provide useful 

guidance. The corresponding finite different approximation, with $ 

equal to 1/2, is the Crank-Nicolson method 127]. The Crank-Nicolson 
2 2 method has a truncation error of [flx) , (flX) . When fl 
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is not equal to 1/2, the truncation error is of order h i , (AX) . For the 

nonlinear equation treated here, 6 equal to 1/2 would not yield higher order 

error so that the choice of 8 is somewhat arbitrary. J5 equal to 1/2 has been 

satisfactory in applications to date; however, -he option of increasing 0 is 

retained. 

The nonlinear diffusion equation governing Darcy flow of a gas has been 

solved, using (3 equal to 1/2, by Bruce, Peaceman, Rachford, and Rice [28]. 

This procedure is efficient, iterative, and stable. It has been widely 

employed. 

Defining 

» • # m 
and rearranging with the unknowns, the variables at the k + 1 time level, 

on the left and known quantities, those evaluated at the k time level, on 

the right. 

P k + 1 • 2g 
ta + VN. 2 iKi- p i> r. 

1 
• 2g t^h^V^K 

k+1 

(pi * pi-i * J T r r K - Pi-P (38) 

»[(' «"J• *u • » | ( » , „ • ' , • » 2 
T)u. - (P. + P. , + rr^V 
1/ 1 \ l l-l N - 1 / i-l 
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This relation, to be solved for the pressures at the new time level, is non­
linear in the unknowns. The pressures are obtained by linearization and 
iterative solution of the resulting set of linear equations. The nonlinear 
portion is factored and then linearized by assuming a value for part of the 
expression. Because the assumed value may not be presumed correct, an itera­
tive procedure is employed to generate progressively better assuaptions. 

Using the superscript K * 1 to denote assumed values at level k + 1, 
Eq. (38) is linearized in a manner consistent with, but generalizing, the 
linearization of Bruce, Peaceman, Rachford, and Rice. 

4h tf1 - 28 

+ 2g 

P i + 1 + P i + ^ T 
-.K+l 

' •^(wVf^M 
[P. , - P.) 
L l + l l ' 

X+l 

k+l 

P. * P. , + B-Z-T i l - l N - 1 Ml 

k 
- « P{ • 2(1 - 3) [ ( P i H + P, • f f j ) U. - (?, + P ^ + flj) U._/| 

(39) 
We have a set of linear equations among the unknown pressures. In a 

more compact notation, this is 

A P k + 1 • B P k + i + c P k + 1 - n A i Pi-1 B i i + C i Pi+1 Di (40) 

where 



i r^*^*£?$?* W .L' 
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K+l 

A. = -23 
P. , + P. +TT- S - T i*l I N - 1 

••^^(wv^hij (41) 

C. = -2B 
K+l 

P. + P. , + i i-1 N - 1 
['•^('•"M'Alig) (42) 

B. = 4h - A i - C. (43) 

D. = 4h P* • 2(1 - S) ( Pi + l
 + Pi +NTT) Ui-( Pi + Pi-l +N J-) Ui. 1 

(44) 

The set of finite difference equations(4Gj has a tridiagonal co­
efficient matrix and thus the iterations can be done efficiently. The 
solution of a set of n such equations can be obtained using a well known 
algorithm, described by Bruce, Peaceman, Kachford, and Rice [28], re­
quiring only 5n - 2 storage locations and using a number of operations 
of order n. 

If (J is chosen equal to sero, the pressures are uncoupled, the formu­
lation is simpler, the method is explicit but stability requirements re-

2 
strict the temporal step size AT to the order of (&X) , Within this restric­
tion, the explicit formulation has also been successfully used by the author. 
Tb/; restriction vanishes when g greater than 1/2 is used. 
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' RESULTS OF CALCULATIONS 

A series of calculations have been performed using the implicit 
procedure just described. Transient response characteristics are ex­
amined by considering the flow produced by a step change in pressure at 
one end of a finite bed. The other end remains open to the atmosphere, 
its pressure unchanged. The flo*, then, is governed by Eqs. (18) and (19) 
subject to 

P = 0 at T = 0 
P = 1 at X = 0 (45) 
P = 0 at X = 1 

Only the pressure ratio N, defined by Eq. (16), and the Reynolds number Re, 
defined by Eq. (17), need be specified to describe the flow. 

Consider a pressure ratio of 50. The flow was analyzed for several 
values of Re in order to display the effects of gas inertia. In Figs. 2, 
3, and 4, results are presented for selected values of the diraensionless 
time i . 

Figure 2 shows flow at zero Reynolds number, Darcy flow. For the 
largest time selected, T equal to 3.0, the pressure distribution is, 
for all practical purposes, fully developed. Calculated pressures at 
T equal to 3.0 agree with those at i equal to 2.S to at least five digits. 
The flow can be considered to be in a steady state. For short times, T 
less than about 0,38, the effect of the distant boundary on the Darcy 
flow is negligible. The gas moves as if through a semi-infinite bed. 
The short time flow is similar. The similarity variable is 6 and the 
early pressure history is very well described by the infinite pressure 
ratio curve of Fig. 1. 

Figures 3 and 4 reveal how increasing Reynolds number affects this 
behavior. Because of the added inertial resistance, the response is not 
as rapid. Neither of these flows is fully developed by T equal to 3. At 
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least for the flow having a Reynolds number of 10, the time scale T, de­

fined by Eq. (25), is more useful. 

Changing scales, we will again describe the Re equal to 10, N equal 

to SO flow. For selected values of the dimensionless time T, the pres­

sure distribution is presented in Fig. 5. The full range of the flow re­

sponse is observed within a range of T of order unity. In addition, and 

of greater importance, all flows possessing large Re and large N, and 

subject to conditions (45), are virtually indistinguishable from the flow 

presented in Fig. 5. In this high Re, high N range, the pressure distri­

bution is nearly independent of Re and N when presented as a function of 

X and T. 

The curve for T equal to 3.0 does not correspond to steady state. 

Only for much larger time is steady state achieved. This steady state 

pressure distribution is indeponden* of Reynolds number and the final 

distribution corresponds to the T equal to 3.0 curve of F*g. 2. The 

independence of the steady distribution from Reynolds number follows from 

Eqs. (18) and (19) with the temporal derivative set equal to zero. A 

non-Darcy flow resistance relation other than Forchheimer's relation 

would ".ot necessarily yield this result. 

For times prior to significant pressure change at X equal to 1, 

this high Re, high N flow is nearly similar. It behaves as flow in a 

semi-infinite porous medium. The appropriate similarity variable is £, 

defined by Eq. (31) and describing the high Reynolds number flow governed 

byEq. (32). 

Results of calculations for very large Re and N are shown in similar 

form in Fig. 6. All the curves of Fig. 4 as well as the short time cuvves 

of Figs. 3 and 5 are well represented by this single curve. 
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CONCLUSIONS 
Non-Darcy flow of an ideal gas has been investigated. Relations 

governing transient isothermal flow in one dimension were considered. 
Pressures resulting from a step chcnge in pressure at the boundary of 
a semi-infinite bed were shown to depend on a single variable for high 
Reynolds number flow. A numerical technique was developed to describe 
transient flows in finite beds. Results have been obtained and presented 
showing response characteristics of non-Darcy flows. 



22 

CAPTIONS FOR FIGURES 

Figure 1 Pressure distribution in an infinite bed, low Reynolds number [19] 
Figure 2 Pressure distribution in a finite bed, low Reynolds nunber 
Figure 3 Pressure distribution in a finite bed, internediate Reynolds number 
Figure 4 Pressure distribution in a finite bed, high Reynolds nunber 
Figure 5 Pressure distribution in a finite bed, high Reynolds number 
Figure 6 Pressure distribution in an infinite bed, high Reynolds nunber 
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Figure 2 Pressure distribution in a finite bed, low Reynolds mud}, er 



0.0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 5 Pressure distribution in a Unite bed, inteniiediaie Reynolds number 
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