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PISCUSSION

Convectivewdispersive transport in comoressihle gas flow has been
i &

investigarad coalytically.  The guverning relations describing this

i , .
: transport have been formelited,  Nwwerice) procedures have heen develepes
to gecurately calewlate trapsport acd to caleulate high Revpolds number
gas flow. Results of such caleulations hove been presented and discussed.
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APPENDIX A

AN EULERIAN-LAGRANGIAN METHOD FOR
CONVECTIVE-DISPERSIVE TRANSPORT

Frank A. Morrison, Jr.
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AN FULERJAK-LAGRANGIAN KETHOD FOR
CONYECTIVE-DISPERSIVE THANSPORT

Feank A, Horpison, Jr.

Lawrence Livennore Laboratory
Professer of MWechanical Enpineering
Udversity of Illinois at Urbana-Champaign
Urbana, Il 62601

ABSTRACT

Convective-dispersive transport in a cne-dimensional compressible Flow is solved
uaing an Bulerian-Lagrangian technique. ‘The transport of a tagged species, rosulting
from dispersion and ges flow in porous media, is stydied. The velocity distribution
of the bulk gas motion is calew/ated using an Fulerian viewpoint. This velecity dis-
tribytion determines the motion of the Lagrangian mesh, The mixed Lulerian-Lagrangidn
appreach {s adopted as a means of avoiding apomolous numerical dispersion. A lagrangian
msh maves alang charseteristic curves of the convective transport equation. Any trans-

port relative to this mesh is dispersive.

In the absence of physical dispersior, there

i3 no transfer of the species between Lagraugian mesh points and concentration changes
then result solely from compression and expansion of the fluid elemear. Because the
flow is compressible, thc Lagrangian mesh points are unequally spaced, Implicit me-
thods for solution of the diffusion equation are developed for unequally spaced mesh
points. Petalled calculazions have bsen done for the transient, low Reynolds number,

isothermal flow of an idecl gas.
INTRODUCTION

Copvective and dispersive transport
are 3ssociated with many processes of engi~
neering significance, Techniques develaped
for the analysis of the relatioss governing
these phanoena may, conseduently, have
wide applicgbility. Here, ws presept some
techiniques developed in the aralysis of
piscible displacement in a transient com-
pressible flow tirough porous media. Be-
cause the relation goveraing e bulk fluid
velocity distribution is nonlinear, numeri~
cal techniques are used, We examine dif-
ficulties encountered in the pumerical so-
lution of the convective-dispersive trans-
port equation and describe means of over-
coddng these difficulties,

Ve consider the transpert in one
space dimension of a trace component char-
acterized by a concentration ¢, ¢ is a
funetion +f position x and time t. The
concenttution distribution is to be de-
termined. The poverning relation is ob-
talned simply by applying connervation of
specles to an infinitesimal eloment of
space. The comvective flux across a umit
control surface normal to the direction
of flow is ue, u is the apparent ve-
locity, volume Flow vate por unit normal
area, of the cavvier gas, The dispersive
transport L6 normally considered, Like
diffuslon, to obey a retation of the form

of Fick's law, Using a dispersion co-
efficient, D, the flux is -D(dc/dx).
Equating the net flux into the element fo
the rate of accumilacion within the ele-
ment, the transport equation results.

¥ .3 A
g-a-e-w&-(uc-nﬁ)-o )

£ is the porosity of the mediuwm, the vold
volune fraction,

In an incompressible flow in rre di-
mensioh, the veloeity u is constant. Ad-
ditionally, the dispersivity ie often
taken tc be conscant. Neither simplifi-
cation is valid in our applicarion, The
equation poverning the concentraticn dis-
tribution has voncenstant coeffizients,
u and D, functions of pesition and time
and deternined by numerical toehnigues.
The velacity and dispersivity meult from
solution of the equation governity tulk
gas nction.

KOTION OF THE FLUID

The form in which the fluid velocity
distribution hecome: wnown affecis the
subSequent choice of tooks gtilizing this
distribut ien,

The low Reynolds aumber flow of an
isothermal ideal gas in one dinepsion




i

cbeys a well knawn'*? relation
3p).cud
(’ ) Sk ae @

p is the local gas pressure, while

U is the gas viscosity and k, the perme-
ability of the medlum. The gas velocity
13 .expressed in terms of the pressure
gradient by Darcy's law.

u=-&-P- (3)

The dlspersian coefficient is independent
of velocity in the low Reynolds number,
low Peclet number range. It doesy how-
ever, vary inversely vith the gas pressure

Py
pzD —
p {4)

The subscript o refers to ambient con-
ditlons, Calculation of the pressure dis-
teibution ylelds the velocity and dis-
persivity dlsreibutions.

Equation (2) {s analogous tec a non=
linear heat conduction equation. The pu-
merical procedure chosen for [ts salution
i the method of Bruce, Peaceman, Rachford,
and Rice. This is an implicit, uncon-
dlticnally stable procedure similar to the
Crank-Nlcolson® method for the lingar dif-
fuaion equation. Because of the non~
linearlty of £q. (2), the procedure is
lteratlve. However, the convergence is
rapld, Moreover, the coafficlent matrix
of the finite difference equations is tri-
diggonal 5o that each itepatien is ef-
ficiently perforned using Themos'? al-
goritha,

NUMERICAL DISPERSION

Because an Lulerian gpproach is used
to determine the velocity and dispersivivy
dfstributions, Lulerian methods should ke
considured for subsequent analysis of the
trace compoicht trapsport, Eulerian tech-
niques, hownver, tend 1o pratuce dn anowo-
lous nymerica) dispursion which could
aasily axceed the physica) disperalon of
intereat.

Consider, as an example, convective
tronsport in an Incosprensible flov. In
thiz olmple case, Bq. (2) peduces to

5-5-1 u-ax= (5)
having ) "
xIx +ot (6)

as a characteristic curve. ¢ is constunt
on a characteristic. There s no physical
dispersion. How, consider a finite dif-
ference approximstion to Eq, (5).

F_ ko ko k
o 17 %

€ m +u = =0 (7}

The expression is chosen to employ upwind
differeneing. The superscripts refer to
the time level while the subscripts are
spatial indices, Using Taylor series ex-
pansions for the concentration, we may
readily show that Eq. (7} is equivalent
to

ac

R

€x
(8)

The coefficient of the second spatial
derivative on the right side is a numeri-
cal dispersion coefficient, !t results
from the use of the finite difference ex-
pression. This coefficient can exceed
the actual dispersion coefficient by
orders of magnituyde.

Because tho flow actually being con-
sidered {3 compressible, the situation is
even more complex. The veloeity varies
with position and time. Techniques de-
veloped 1c elininate articial dispersion
in Eulerlan calculations, but relying on
a uniform fluid veloeity, are not appli-
cabis. Accordingly, a aixed Fulerian-
Lagrangian approach wa: considered and
then adopted. In additlon to the fixed
Fulerian grid used to calculate p, u, and
B, a moving Lagranpian mozt, is used to de-
rernine tlie concentration, c.

# Lagrangian obuerver poveu, with g
fluid element, along 4 chapucteprintic
curve of the conpvertive Lrantpors
equation. The velocity of g fagranpian
woiihy polnt is

{9)

el

~lx
"

Ll [

There s no convective tramiport
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between Lagrangian mesh points, Such
transport occurs solely as a result of
dispersion, The numerical dispersion of
the Fulerfan approach resulted from the
convective transport through the Eulerian
mesh, When a lagrangian viewpeint is
addpted, there is no such transport and
no humerical mechanisa producing tuch
transport is generated. The Lagrangian
approach provides a natural means of
#lininating artificial dispersion, valid
for compressible flow and for flow with
physical dispersion. A Lagrangian tech-
nique has been used by Garder, Peaceman,
and Pozzi® to treat dispersion in an in-
compressible flow through porous media.
The technique described here differs by
{ncryding compressibility and also dif-
fers in the means of calculating dis-
persive transport,

LAGRANGIAN FORMULATION

A temporal. derjvative in the
Lagrangian frame is expressed by the ma-
terial or substantial derivative.

& .2 ud
T nteEwm (1)
30 that the convective~dispersive trans-
port equation, Eq. (2}, becomes

de, A 3 f ac)
ey ° ax( (11}

The first term on the left side of Ug. {11)
is the rate of change of concentration in
8 fluid element, This results from dis-
persion, expressed on the pight side, L.,
also from compression or expansion of the
fluid element as expressed in the second
term on the left.

As a result of this compressibility,
the concentrarion s not constant on a
characteristic curve aven fn the ahsence
of dispersion. Additlonally, the spacing
between successive Lajrangian mesh points
will vary ac they move through the medium,
Yelther of these effects are present in
an Incompressible Flow,

CONVECTIV:  RANSPORT

First, Jet us address the problem of
calculating the positions of the paintz
In the nonunlform espanding Laprangian
msh, The Instantancous voloelty of uny
tagranglan mesh polat, &, is plven v
K. (9), The waloclty, u, 13 piven In
terms of the pressure gradient by £q. {3).
The problem reduces to one of interpolote

ing to cbtaln the pressure gradient at the
location of £. The pressure is known at
each of the Lulerlan nodes. These

Eulerian nodes are separated by a distance
dx. The lagrangian node, !, iz a distance,
fAx, in front of the nearest Eulerian
node, i.

If] c12 12

The pressures at the Eulerian nodes,
i~1,1,and{ ¢1, can be expressed in
terms of a Taylor sepies expansion about
£. These three expressions are then Solved
to yield the pressure pradient, and thus
the velocity, at the Lagrangian node.

0 (2f +1) Py ® ufpi + {2f - l)pi_1
X l 8%

3
+-1--'-5-?£2-sz 3—%’ LRLY (13)
1
¢+

Numerioal integration of veloeity
ylelds the node position as a funetion of
time, Because the local velocity changes
with position and time, however, the node
velogity during a time interval At is
better approximated Wy a mean of calcu-
lated velocities at the two time levels
and at the new ahd 0ld positions. The new
position is unknown, however, wntil the
calculation is complete. An iterative
procedure ta determine the new position
s employsd. A single iteration appears
to be adequate in our application. Such
tine centering of lagrangian node motion
calculations has previously been praposid
by Forester.

The concentratlon changes resulting
fron expansion of a fluid element may now
be treated. This contribution to rhe
variation of concentration Is deseribea
by Eq. (11} with dispersiviry set egual
to zero.

du _
dt"“'o {16}

€
The velocity gradient, Bu/dx, i% positive
in an expanding Flow and neyarive in a
compressing flow. 1t can be caleulated
by a varicty of methods, The mettu)
recommended hore, hodever, is to olimie
nate the caleulation entirely with the
following oluervation,

The bulk Fluld depsity otevs o con-
vective transporl oquation analupou: 1q
£q, {1u), This 13 the continuity

kg
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equaticn.
. Su_ *
CEHtPH° ()

Consequently, the concentration of a fluid
alement changes in propertion with the
density, Because the density in an iso-
thermal. ideal gas is proportional to the
pressure, the concentration becomes pro-
portional to the pressure of the fluid
elenant.

Because of dispersivity in the geperal
case, the concentration dees not remain
proportional to the pressure, [nstead,
the concentration change for a siogle time
atep is separated into convective and dis-
persive changes. Starting with the con-
centration, c’i. of he Lth Lagrangian nede
at time level k, t . convective contri-
bution ylelds an intermediate value of the
new concentration,

Pk’l

kel kPL

R (18}
Py

The intermediate spatial distrioution of
concentration is then used to determine
how dispersiop i -»s the concentration
distribution at ti.s time level. Note
that, without explicitly introducing dis-
persion, no dispersion Is generated.

The pressure used in £q. (16) is
found by a procedure similar to that used
to abtain Eq. {13), the pressure gradient
interpolation.

CHE+ D
Py By t (e ) p,

£(E 1)
A /8

1
-%m - Py ad d-g- +ee (17)
dx 1
Having accounted for node movement, ex-
panslion, and compression, it remains to
caleulate the dispersive coptribution to
transport of the tagged spocies.

DISPERSIVE TRANSPORT
Pisporsive transport s gowerhed by

£q. (11} with the fluid veloclty set equal
10 ze70,

dc _ 3 o
£ T (D 3;) {1%)

This §s the diffusion equation. Its ze-
luticn here is complicated only by the fact
that the Lagrangian mesk is nonunifort.

In order to Find the concentrations
at time level k + 1, the Lagrangian prig
is held in its k + 1 configuration. The
intermediate concentrations, caleulated
to account for expansion and described in
the previous section, are treated as the
concentrations at time level k but in the
new positions. The order of operations is
as if the node movement and fluid expan-
sign occurs lastantaneusly, then the
tagged species disperses threugh station-
ary fluld for a period of rime At.

The finite difference approximation
to Eq. (18) is developed in an analogeous
form to techniques widely used in the so-
lution vith 2 wiform mesh, for a uniZorm
mash, ohe would write

ktl k
S aaeose* ™y (3 - BISCOBYY
at sz

an

8 is the central difference operatsr. B i
s a Factor weighting the calculation of |
the second spatial derivative between time
levels k and k + 1.

B is zero for an explicit calculatien,
If 8 is 172 and D Is constant, this is che
Crank-Nicolson method. For 8 > 1/2, the
calculation is unconditionally stable.
Note that the coefficient matrix of the
unknown concentrations is trigiagonal, so
that the same effizient algorithm as was
enployed to caleulate pressure could be
used here.

¥hen treatlng the nonuniform mezh,
1t Is desirable to retain a tridiagondl
form because of the considerable savinps
In computational time. There it a penalty
in accuracy hownver, & thres-point ap-
proximation to the uecond derivative, fop
exanpla, hat a lower order crror than the
uniform mesh cquivalent.
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The leading error term vanishes for a
uniform mesh. & nonupiform pesh should
be generated so as to ralntain small
values for these additional error terms.
& smooth slow variation of mesh size is
best from this standpeint.

With varying dlffysivity, the nen-
uniform nesh equivalent of Eq. (19) was
taken as

Kl k ‘
" _w f G
bt Xee1” ¥} LA X1 " %
k¢l
R el
L-% RN

€L - £)

A
11 k)

D “te1 2
Wh Xy, - %y

ey~ ey *
- D L — (n)
6% - Xy

for B oqual to 1/2, a silght osell-
lation was observed [n the results. A
welghting facior, B, greater thaa }/2 is
recommended, Mo oscillation appears for
lavger B,

CONCIASTONS

The numerdcal treatment of conveetivo
end dlspersive tronuport bas been conuldered.
Reanons for utlllzing an Eulcrian-lagraaglon

approach have been presented. Techniques
for accurately determining mesh movement ,
fluld expansion, and trace element diz~
pergion are described. These techniques
have been develdped for the analysis of
transport associated with gas flows in
porous media. A program, OIASPORA, em-
ploying these methods has been written
and implenented on the COC 76005 at the
Lawrence Livermore Labaratory,
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CONVECTIVE AND DISPERSIVE TRANSPORT IN A PORGUS MEDIUM*
R. §. Downing
F. A, Morrison, Jr.
Department of Mechanical and Industrial Engineering
Un®sersity of Iilinois at Urbana~Champaign
Urbana, IL 61801
ABSTRACT

Convective and dispersive transport of a tagged species in a porous
medium is investigated analytically, The flow is transient and compres-

sible. As a means of avoiding anomelous numerical dispersion in trans-

port calculations, an Eulerian-Lagrangian technique is developed. The
Lagrangian mesh travels along characteristic curves ol the convzetive
transport equation. Tramsport relacive to this mesh is dispersive. De-
tailed calculations are made for low Peclet number tramsport in the un-

steady, low Reynolds number, Isothermal flow of an ideal gas through the
bed, Results are obtained for a bed of finite lengch. Similarity, valid

for an infinite bed length, yields widely applicable results. The analysis

and results are useful in the containment of underground nuclear explosions.

*This work was performed under the auspices of the USERDA and was supported
by the University of California Lawrence Livermore Laboratory under Sub~

contract 1160305 of Contract W-7405-Eng-y8,




INTRODUCTION

Tollowing an underground nuclear explosion, gas from the cavity may
enter the stemming colump or surrounding porous medium. Driven by the
high pressure within the cavity, the fluid flous through the perous ma-
terizl, The duration period of this high cavity pressure is typieally
several minutes. The extent of penetration of cevity gas into
the porous material is of Interest in containment evaluation.

Single phase {1] avd multiphase [2] flow analyses have been presented
describing such transient flows, If the absence of gaseous phase dispersion
is posited, the gas originally in the medium is displaced in a piston-like
manrer. A distinet interface then exists between the gas originally in
the bed and gas originating in the cavity. The extent of cavity gas pene-
tration is unambiguous and can be determined inastraight forward manner.

In any real flow, however, there is a dispersive transport as well as
convective transport. A sharp interface does not exist, Instead, a gradual
transition occurs. The purpose, them, of this paper is to analyze and de-
seribe the concentration distributions resulting from such trausient flows
with dispercion, Because the leading cavity fluid is a gas, only an fdeal
gas flow is considered in detail, We do not examine the multiphase flow

following the leading cavity gas.
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THE TRANSPORT EQUATION
We consider the transport of an inert trace species, characterized

by a concentration c. The species is transported by convection and dis-

persion. Convective tramsport results from the directed motion of the

carrier fluid., Without dispersion, there is no mixing. Changes in the

species concentration within any fluid element would then result solely

from compression or expansion of that element. The convective flux across

a unit area normal to the direection of flow is
jc 2 ue (1)
G is termed the apparent velocity and is the volume flow rate per wnit area.

The dispersion assoclated with miscible flow within porous media has

received a great deal of attention. [t is normally assumed that the dis-

persive flux can be described by Fick's law and can be simply added to

the convective flux. For the one-dimensional flew considered here, the

dispersive flux is

-pl (@)

U is vhe dispersion coefficient and x is a position coordinate in the direc-

tion of flow. In a two-dimensional flow, the dispersion coefficient for

dispersion transverse to the direction of bulk fluid motion is, in general,

different from the longitudinal dispersion coefficienmt. Only longitudinal

dispersion is considered here.

The magnitude of the dispersion coefficient depends on the chlet
number, based on grain size, of the fluid flow. For low Peclet number flows,
dispersion results primarily from molecwlar diffusivity. In this range, the
dispersion coefficient is essemtially independent of Peclet number and is of
the order of the molecular diffusion coefficient. In faster flows, additional

mixing occurs as a result of the inhomogeneity of the medium. Velocity
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variations, path tortucsity, and dead spaces all contribute to increased
dispersion. The dispersien coefficient is a monotonically increasing
function of the Peclet number, being roughly proporticnal to Peclet number
over a broad range. While theoretical models for the dispersion coefficient
are availeble, dimensionless correlations of experimental results appear to
have greater present utility. Reviews [3-4] of analysis and experiment
directed toward providing hydrodynamic dispersion coefficients for porous
media desepribe much of the work in this area.

The flows of particular interest here are characterized by Reynolds
numbers less than one. Since gas Schmidt numbers are normally of order
wity, the corresponding Peclet numbers arve small. The dispersion coef-
ficients are taken to be independent of the lacal velocity and to be of the
order of magnitude of the molecular diffusion coefficient.

The molecular diffusion coefficient is itself a function of the
thermodynamic state of the gas. The molecular diffusivity in gases in-
creases with increasing temperature and varies inversely with the pressure
[5]. Despite the high temperature within a nuclear cavity, the gas flow
is isothermal at ambient temperatwre ahead of the saturation front pro-
duced by condensation [2], While the gas and the solid material will
rapidly come to local thermodynamic equilibrium, the heat capacity of the
solid greatly exceeds that of the invading gas. Accordingly, the tempera-
ture pise from ambient in this portion of the porous medium will be small,
Since the pressure will vary by at least an order of magnitude in the same
region, the molecular diffusion coefficient, and thus the dispersion co-

efficient, is taken to vary only with pressure

(3)

=

L]

A=)
o ]o'U



p is the pressure. The subscript o denotes atmospheric conditions.

Conservation of species for an infinitesimal region of space pecomes

e 3 .. vy L
sat+3;((:|c+3n)-0 . (43

for a flovw in one dimension. € is the porosity of the medium. t is the time.

Using the flux expressiops, we have

dc , 3 .8 fg8c
e gty we) = 55 (9 55) (5

the convective-dispersive transport equation in an Eulerlan frame.

by
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THE FLUID MOTIOM

In order to determine the concentration distribution, the fluid ve-
lecity and pressure distributions must first be determined. The forms
in which these distributions become known will also affect the subsequent
choice of tools utilizing them.

The fluid veloeity ia a low Reynolds number single phase flow i3 re-
lated to fluld and material properties by Darcy's law. The apparent velocity
is

(6)

=
n
v
==
1.4

k is the permeability of the medium, ¥ ¥s the fluid viscosity. Continuity

for a compressible fluid is

3,3 -
e-a?hﬁ-(ou)—o {7)

p is the fluid depsity.
In an isothermal ideal gas, the viscosity may be taken as constant and
the local density is directly proportional to the pressure. Combiaing (6)

and (7), we obtain

%—;(p%%)=%%% {9)

governing the pressure. Permeability is presuned uniform.

Prior to a nuciear explosion, the gas in the medium is ar a uniform
ambient pressure, P, As a boundary condition, we will consider a step
change to a higher pressure, Pyy at the inlet. The position, x, is taken
as the distance from this inlet. Both semi~infinite and finite media arve
of interest. The results of analysis of flow in a semi-infinite ;nedium
may be applied to flow in a finite porous medium until such time as ef-
fects of the flow appear at the distant boundary. The column length is

denoted by L.

CCadatany, T
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1
ior numerical calculation, it i5 convenient to introduce a set of
dimensionless variabies and to exprass the governing relations and re-
sults in terms of them, Dimenslonless posirion is
(%)

¢
(1]
Lad b

vanging, in the finite bed, from zero at the inlet to one at the distant
boundary. Dimonsionless time is defined

i k(pl - poi t

1 (10)
:ul.“'
e ratic of applied to inftial pressure Is
P
ped (1)
po
& dimensionless pressure,
PP
2 —
b - P, (12)

alse varying betwgen O and 1, depends only on X, 1, and ¥. The governing

equation, (8), becones

2 -
1% g2, 2 \_2®
i () w )

describing flow in & finite bed,

In ap unbounded bed, the bed length is infinite and the separate defi-
nitions (2} and (10) are not suitable. The length is conveniently removed
by the observation that the pressure distribution resulting from a scep
pressure change at the surface of a semi-infinite porous medium may be ex-

pressed in terms of a single variable, 8, rather thap position ané tine

separately. Introducing

Bz =5’£v L (1)
2T kip, - p) ¢
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we find that the governing partial differential equaticn (13) becomes the
ordinary differential equation

? (?9 zpl)me-- (15)

4

a?
subject to the boundary conditions
P=1 at =0
(16)
P+0 as g0
the Flow is similar. lote that the characteristie length L does not appear
in 6.
Flows governed by (13), or alternatively, (15) were analyzed in [1]
and results presented. In the results to be presented here, all fluid flow
caleulations are numerical solutions of (13). For short times, until change;
oceur at the distant boundary, the flow in a finite column is identical to
that in the infinite column. Pressures found as a function of position and
tine, can be expressed as a function of the similarity variable by using (14).
The early time flow is similar. Attention was devoted to the analysis of
finite columns beczuse the results are more general and because semi-infinite
bed reslts are readily extracted from short time Finite column calculations.
Furthermore, a reduction in the number of variables, producing an ordinary
differential equation, does not necessarily simplify the mumerical solution.
It may be noted, in this context, that boundary conditions (16) include a i
condition at infinite 8.
Equation (13) is analogous to a nonlinear heat conduction equation. The
numerical procedure selected for its solution is the method of Bruée, Peaceman,
Rachford, and Rice (6]. The procedure is implicit and unconditionally stable.
It is similar to'the Crank-Nicolson [7] method for solution of the linear dif-
fusion equation. Because (13) is nonlinear, the Bruce, Peaceman, Rachford, ,

and Rice procedure is iterative, Its convergence is rapid. Moreover, the



am .

———

e i L o i i e, @10

coefficient matrix of the finite difference equations is tridiagonal so that
each iteration is efficiently performed. An algoritim (B8} for the solution

of a tridiagonal set of n equations requires only 5m - 2 storage locations

and a number of operations of order n.
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TRANSPORT IN LOW REYNOLDS NUMBER FLOW
Before procesding, the convection-dispersion equation may also be
put into dimensionless form, Suitable parameters were introduced in the
discussion of “iuid morion. A dimensionless speed,

uly
7
T (17)

v

would be unity in an incompressible Darcy flow. A reduced :oncentration is

expressed in terms of the concentration of entering gas, €.

- C
Cs -q (18)
The dimensionless dispersivity is defined by
- up
D E e (19)
k(p1 - po)

and expresses the relative importance of dispersive and convective transport.
It is roughly the inverse of 3 Peclet number based on bed length. In terms
of these addirional variables, equation (5) becomes

3° aﬁ () = & (n %) . (20)

The dimensionless speed, U, is the speed of a fluid element in the di-
mensionless coordinates. In dimensional coordinates, this speed is the

"pore velocity"

mls:
1:'*'

—BE (21)

Changing variables yields

__ o '
gs= % {22)

Introducing this expression for U in terms of the dimensionless pressure

gradient into transport equation (20), we note that this partial differential

equation may be written as an ordinary differential equstion in the same
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similarity variable as describes the pressure.
d 4P dc , d acy.,
GlE)r 25 mlF): (23)

Since the initial concentration throughout the medium is zero and since the
inlet concentration is given a step change to a constant value, the initial
and boundary conditions are compatible with a similarity selution.

t=1 at 8z=0

(2)

c+0 as fro
The concentration distribution in the semi-infinite medium is similar and is
expressed in terms of the same variable, 0, as {5 the pressyre. Altiough
strictly valid only for semi-infinite medium, the similarity may be used
with great accuracy in a finite bed until such tvime as effects of the flow
appear at the distant boundary.

A finire column requires an examination of conditions to be imposed at
the distant boundary. For an open column, the exit pressure is taken to be
equal to the initial pressure, The solution of (14) reguires such a boundary
condition as well as the initial comdition and inlet boundary condition
previously impesed. In the absence of dispersion, no exit boundary con-
dition is required for the solution of (20). With dispersion, however, a
boundary condition becomes necessary. The form of this exit bowndary con-
dition on concentration is not obvious. Convective and dispersive fluxes
within the porous bed and directed toward rhis surface must be coupled to
fluxes leading from this swrface and outside the bed. Test conditions be-
yond the medium are subject to considerable variation. Horeover, ¢ontainment
efforts seek to predict, and then prevent, any measurable comcentration of
cavity gas a: the surface. Accordingly, we simply take as this boundary
condition the widely used Danckwerts [9] conditien for the exit ~f a chemical

reactor. The dispersive flux, given by {2), is set equal to zerc at the exit,
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This condition has been extensively employed in both steady state and wn~
steady state analyses. As noted by Wehner and Wilhelm {10] however, its
use in the unsteady state is strictly valid only when the Peclet number

is infinite in the region beyond the bed.
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WUMERICAL DISPERSION

Pecause an Eu'erian approach is used to determine the velociry, pres-
sure, and dispersivity distributions, Eulerian methods should be con~
sidered for subsequent analysis of trace compoment transport, Eulerian
techniques, however, tend te produce an gnomolous numerical dispersion
which can exceed the physical dispersion of interest here. Noh and
Protter {117 analyzed the diffusion resulting from a finite difference
approximation to the linear convection equation.

Consider briefly, as an exanmple, the linear convective transport in
an ingompressible flow. In this simple case, equation (20) reduces to

L (25)

+u-—-

31 o
with a constant veloeity, U, and having

K=k +Ut (26)
as a characteristic cupve. The concentrstion, C, s constant on a charac-
teristic. There is no physical dispersion.

Further, consider a finite difference approximation to (25) which is

forward in time and employs wpwind differencing.

ktl .k k
& ci+Ucli(.'Ci-l

I Ax = (27)

The index denoting the time level is the superscript k. The subseripts, i;
are spacial indices in the wiform Eulerian mesk. Using Taylor series ex-
pansions for the concentration, neplecting terms above second order, and
using (25), we find that (27) is equivalent to .

»e
W

The coefficient of the second spatial derjvative on the righi-hand side is

aC 30 "2“(1 UAT)

ax vy L SN (28}

a numerical dispersion coefficient. It has no physical basis but arises




[

PR

-ty

13

from the use of the finite difference expressions. Numerical dispersion

coefficients of this type can exceed the actual dispersion coefficient

by orders of magnitude. For small Courant number, UAT/AX, the ratio of i
these terms is roughly UAX/D0 which we s.all call the "eell Peclet number."

Dc {s the dimensienless dispersivity at ambient conditions.

Because the flow actvally being investigated is transient and com~
pressible and possesses physical dispersion, the situation is considerably
more complex. The velocity varies with position and time. Techniques de-
velobed to reduce artificial dispersion in Eulerlan calculations, bit rely-
ing on a wiform fuid velocity, e.g. [12], are not applicable. Accordingly,
a mixed Eulerian-Lagrangian approach was considered, developed, and then
adopted, In addition to the fixed uniform Eulerian grid used to calculate
pressure, veloecity, and the dispersion coefficient, a moving nonuniform
Lagrangian mesh is used to determine the concentration, c, of the trans-
ported trace component. The method yields accurate results independent

of cell Peclet number.

e mmrrr R
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LAGRANGTAN FORMULATION
A Lagrangian observer moves, with a fluid element, along a charac-
teristic curve of the convective transport equation. The velocity ¢f a

lagrangian mesh point is, in dimepsionless coordinates,

ax .
T U {22)

There is no convective transport between Lagrangian cells. Such transport
eccurs solely as a result of dispersion, fThe numerical dispersion of the
Eulerian approach resulted from convective transport through the Eulerian
mesh. When a Lagrangian viewpoint is adopted, there is no such transport
and no numerical mechanism producing such transport is generated, The
Lagrangian appredch provides a natural means of eliminating artificial
dispersion, valid for compressidle flow and for flow with physical dis-
persion. A Lagrangian technique has been used by Garder, Peaceman, and
Pozzi [13] to treat dispersion in an incompressible flow through porous
media. Their analysis did not address the myriad effects of compres-
sibility. The technique described here differs in that respect, includes
vaviable dispersivity, and differs in the means of calculating dispersive
transport,

A temporal derivative in the lagrangian frame is espressed by the ma-

terial op substantial derivative

iv

9
T+U'§3-{- {30)

a)=
a

50 that the convective-dispersive transport equation, (20) becomes

&, 30 3 (B ‘
& W (o ax) (31)

The first term on the left-hand side of (31) is the rate of change of con~
centration in a fluid element. This concentration change results from dis-

persive trangport into the fluld element, expressed on the right-hand side,

'
P
‘-
4
!
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. l and also, when the flow iz compressible, from the compression or expansion

of the fiuid element. This last contribution is expressed in the second

term on the left-hand side of (31).

As a consequence of this compressibility, the concentration is not

;
]
1
!

constant on a characteristic curve even in the absence of dispersion.

Additionally, the spacing between successive Lagrangian mesh points will

vary as they travel through the medium. Neither of these effects are

present in an incompressible flow.
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CONVECTIVE TRANSPORT
First, let us address the problem of calewlating the positions of the
points in the nommiform expanding Lagrangian mesh, The instantaneous ve~
locity of any Lagrangian mesh point, %, is given by (29). In a low Reynolds
numbei flow, this velocity is given in terms of the pregsure gradient by
equation (22), The problem then reduces to one of interpolating to obtain
the pressure gradient at the location of &. The pressure is Jmown, from
fluid flow calculations. at eack of the Eulerian nodes. These Eulepian
nodes are separated by intervals of AX and the Lagrangian node, &, is lo-

cated at some distance, fAX, in front of the nearest Lulerian node, i.
lif <2 (22)
2
Using the pressures at three Eulerian nodes, i-1, i, and i+l, the pres-
supe gradient, and thus the veloeity, at the Lagrangian node is found with

error of order Ax2.

i QF+1) P, - P+ (2 - 1) P, o 1- 3 2 2%

W
A Xt + ... (33)
Kl A% 6 el

Numerical integration of veloeity yields the Lagrengian node position
as a function of time. Because the local fluld velocity varies with pesition
and time, however, the node velocity during a time intepval AT is better
approximated by a mean of calculated velocities at the two time levels
and at the old and new positions, Since the new position is unknown umtil
the calevlation is complete, an iterative procedure to determine the mew
position is employed. A single iteration appears to be adequate in our
application. A criterion used to judge the adequacy of the convective
transport caleulations is described in a later section on application and
results. Time centering of Lagrangian node motion calculations has pre-

viously been proposed by Forester [14].
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We may now consider the concentration changes resulting from the ex-
pansion or compression of a fluid element. This contribution to the vari-
ation of cancentration is described by the convective transport equation,

(aL) with dispersivity set to zero.

dc U
-a?+c-ﬁ-0 (3u)

The velocity gradient, 9U/8X, is positive in an expanding flow and negative
in a compressing flow, It cap be calculated by a variety of metheds. The
method recommended here, however, is to eliminate the calculation entirely
with the following coservation.

The bulk fluid density obeys a convective transport equation idemtical
to (3%). The continuity equation, (7), in a Lagrangian frame and written

in dimensionless coordinates is

o, 0,
wt P ax 0 (35)

The concentration of a fluid element changes in proportion to the density.
Because the density in an isothermal ideal gas is proportional to the fluid
pressure, the concentration becomes proportional to the pressure of the fluid

element. In dimensionless form, this becomes

C~(F-1P+1 (36)
The pressure at Lagrangian node, %, is found by interpolating between the

Eulerian nodes where the pressure 1s known.

_EE+ ) £(£ - 1) 1 © 3 3P
p = 2524 Piﬂ+(l-f2)Pi+——-2—Pi_l-€f(l~f2)AX =
9x 3
(37)
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l ' The error is of order 8, Equation {33) for the pressure gradient is simply
I a derivative of (37).

In the general case of convective-dispersive transpert, the concentration,
because 'of dispersivity does not remain proportional to the pressure. Instead,
: the concentration change for a single time step is separated into convective
and dispersive changes. Starting with the concentration, C];, nf the Lth
Lagrangian node at time level k, the convective contribution yields an inter-

mediate value of the new concentration at the succeeding time level.

w1k -1 P]Eﬂ 1
g = ¢ ———— (3)

E(N-l)P];'+l

This intermediate spatial distribution of concentration is them used to de-

B T

termine how dispersion alters the concentration distribution at this time

level. MN¢  ‘hat, without explicitly introducing dispersion, no dispersion

is generated, In the Lagrangian calculation of convective tranmsport, a mov-

ing node with zero concentration at amy time has zero concentration for all

time,
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DISPERSIVE TRANSPORT

Dispersive transport is governed by the diffusion equation, equation (20},
with the fluid velocity set equal to zero.

-5 ( ¥ (29)
Its solution here is complicated only by the fact that the Lagrangian mesh
is nonuniform.

In order to find the concentration at time level k + 1, the lLagrangian
grid is held in its k + 1 configuration. The intermediate concentrations,
calculated tu account for expansion and described in the previous section,
are treated as the concentrations at time level k but in the new positions.
The order of operations is as if the node movement and fluid expansion oc-
cur instantaneously, then the tagged species disperses through the stationary
fluid during the time in.erval AT,

The finite difference approximation to the diffusion equation (18) is
developed in an analogous form to techniques widely used in the solution for
a wiform mesh., Fer a uniform mesh, one could write

ktl  k _ At kil k i
¢ -C-= 2\?{3[5(060)] +(1-8B) [G(DGC)]} (40)

¢ is the central difference operator. H is a factor weighting the calculation
of the second spatial derivative between levels k and k + 1.

B is zero for an explicit calculation, For constant dispersivity, the
behavior of (40) is well known. When B is 1/2, this is -he Crank-Nicolson
method having truncation error of order A'tz, AXZ. More generally, the er-
ror is of order AT, AXZ. For B > 1/2, the calculation is unconditionally
stable. Note that the coefficient matrix of the wnknown concentrations is
tridiagonal so that the same efficient algorithm a3 was used to calculate

pressure could be used here,
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When treating the monuniform mesh, it is desirable to retain a tri-

diagonal form because of the considerable savings in compytational time,

There is a penalty {n accuracy, however, A three-point approximation to

the second derivative, for example, has a lower order error than the wni-

form mesh equivalent,

C
¥ o - )
o, Faa KM% TR B B R
2 3
1 1 2%
+ - SRy -2t Ry )=l t ..
T gy~ Rpgd 3 " e g
(41)

The leading error term vanishes for a uniferm mesh. A nonuniform mesh

should be generated so as to maintain small values for these additional

error terms. A smooth slow variation of mesh size is best from this stand-

point,

With varying diffusivity, the nonuniform mesh equivalent of (40) was

taken as
kel
ktl ok
% cq, % i Gath & °9.-1)
it oo - ¥goy \ MW/22 X = X7 T0-(U2) X - X,
k
TR T ' Tl S L&i)
Kpop = %oy \ B2 K =% -(L2) % - X o
(42)

D£+(l/2) is the dimensionless dispersivity midway between Lagrangiqn nodes
Rand &+1.

For B equal to 1/2, a slight cscillation was observed in the results.
Since the variable diffusivity and nonuniform mesh preclude the possibility

of a higher order error associated with B equal to 1/2, there need be no

VR A e ot



peluctance to vary B, For stability, a weighting factor, B, greater than

1/2 is recommended. No oscillation has been ohserved for larger B.

21
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APPLICATION AND RESULTS

A program, DIASPORA, employing these twthods has been written and
applied to the transient convective-dispersive transport in a porous
medium, Consider, as an example, the transpert resulting from a step
increase in pressure and concentration at one end of a wniform porous
bed. The bed is finite with the other end open to the atmesphere. The
initial concentration in the bed is zero, The resulting pressure and
conceptration distributions are of interest in containment calcurations.
Pressure distributions have previously been obtained for ideal gas [1]
and multiphase [2] flows of this type. We here obtain the concentration
distribution associated with the ideal gaa flow.

Following (1] and [2], consider a flow characterized by a pressure
ratio, N, of 45, This value is obtained from Olsen's [15] description
of the cavity pressure history of an underground nuclear explosion in
alluvium, The pressure distribution in the bed, govarned by (13), was
found and is shown in Fig. 1. As the pressure increase propagates
through the medium, the region of higher pressure is clea;ly discernible.
A near discontinuity is present in the pressure gradienat as a pressure
front seems to travel through the bed, For higher pressure ratio, N,
the initial pressure rise at any location is even sharper, When the pres-
sure ratic is infinite, this pressure vise is discontinuous. Because of

this behavior, the far boundary has little effect on the flow for a well

defined period, TFor an infinite pressure ratio, the pressure front reaches

the exit when T is 0,38, Ppior to this time, the flow is similar and the

pressure depends on the single variable, 8, defined by (13). For large but

finite pressure ratie, N, the similarity is not rigorously exact but is an

excellent approximation until T is about 0.38, This similarity can be seen

o b A A b s 4t e
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in Fig. 1 where positions on the T = 0,2 curve are twice thke corresponding
positions on the T = 0.05 curve. The pressure calculation is Eulerian,
using the procedure of Bruce, Peaceman, Rachford, and Rice (6],

The corresponuing concentration distribution in the absence of dispersion
is presented in Fig. 2. The Lagrangian formulation yields the abrupt change
in concentration as the injected gas passes through the column, This feature
would not be observed if an Eulerian expression such as (27) were employed.
Note also that the early time behavior is very nearly similar, The effects
of the distant boundary are not apparent for T less than about 0.38. As
with the pressure, B is the sole independent variable in a similar flow.

The positions of corresponding points on the short time curves vary as the
square root of time. The agreement among the calculated conceptration dis-
tributions in this regard is an excellent indication of the accuracy of the
calenlations.

The positizn of the interface is a particularly stringent and readily
observed indication of this aceuracy. When 1 is 0.05, the position of the
interface was calculated to be 0.30. Accordingly, the calculated value of
B at the interface is, from (1%), 0.87. Since the flow is nearly similar
for time less than 0,38, 9 at the interface should remain relatively con-
stant prior to this time. For times of 0.1, 0.2, and 0.3, the calculated
positions correspond to & being 0.67, 0.68, and 0.68, respectively. The
initial step change in pressure at the interface is responsible for making
this Lagrangian node the most difficult to move accurately.

The concentration curves for times 0.5 and 3.0 are shown ending before
the exit. The reason is simply that the plotting routine used to generate
the curves used the Lagrangian node nearest.the exit as the final peint,

All leading nodes have exited in both cases. Because the contentr.tion



B T IR

I 2%

l remains proportional to pressure in convective transport, the exit con-

L op 45} fop both curves.

centration € is N
( Figures 3 through 5 show the effect of dispersivity. Variable dis-
persivity is employed in each case. At ambient pressure, the dimension-

'2, and 10'1, respectively, in these figures.

less dispersivity is 10-3, 10
The dimensionless dispersivity at ambient conditions Do can be estimated
in any application using (19). Using air viscosity of 1.8 x 10-5 kg/n sec,
a diffusivity of 2 x 107 n’/sec, a perneability of 0.1 darcy (3.8 x 10™% o?)
and fhe applied pressure difference of 4 x 105 pa, the dimensionless dis-

’ a persivity R is of order 1070, The dimensionless dispersivity would be

. larger in less permeable media, smaller in more permeablé media, The perme-
ability determines the rate of convective transport. With convective-
-': dispersive transport, application of the Danckwerts boundary con~
dition, zero concentration gradient, at the exit yields the concantration
there.

Each of the calculations presented used an Eulerian grid having 101 i

nodes. The time step was 2 x 10" /3 for 225 steps, tien changed to 10,

The smaller initial time step is used to prevent large initial lagrangian

= node movement. With either time step and presuming U to be of order unity,

the numerical dispersion expressed by (28) is of order 1072, This nuperi-
cal dispersion would be large compared to physical dispersion. The cell
Peclet number is about 10 for the example just given. The simple Eulerian

approach would not have yielded useful results. r
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CONCLUSIONS

Convective and dispersive transport in transient compressible flow
has been analyzed. The governing relations were formulated and a numeri-
cal procedure for calculating results was presented. Reasonms for utiliz-
ing an Eulerian-Lagrangian approach were considered, Techniques for ac-
curately dctermining mesh movement, fluid expansion, and trace element
dispersion are described. Results were presented for transport resulting
from 2 transient flow of an isothermal ideal gas through a uniform porous

bed.

rd



FIGURE LEGENDS

Figure 1 Pressure distribution in unsteady flow

Figure 2 Concentration distribution in convective transport

Tigure 3 Concentration distribution in convective-dispersive
transport with varying dispersivity

Figure 4 Concentration distributien in convective-dispersive

transport with varying dispepsivity
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Figure 5 Concentration distribytion in convective-dispersive

transport with varying dispersivity
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Figure 1 Pressure distribution in unsteady flow
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Figure 2 Concentration distribution in convective transport
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Figure 3 Concentration distribution in convective-
dispersive transport with varying dispersivity
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TRANSIENT NON-DARCY GAS FLOW IN A POROUS MEDILM*

F. A. Morrison, Jr.
Menber, SPE
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F e ' ABSTRACT
i The high Reynolds number flow of gas through porous materials

is a subject of increasing significance. Gas recovery from frac~

i tured beds, gas flow produced by in gitu coal gasification, flows as-

j i, sociated with storage and withdrawal in highly permeable structures,

and transpiration cooling are examples. Darcy's law, mormally used .

to describe flows through porous materials, is invalid in the range

‘ of Reynolds nunber of interes: here. A nonlinear constitutive
equation with empirically determined transport properties is applic-

i able instead.

] Transient, compressible gas flow over a broad range of Reynolds
number has been analyzed. The flow is governed by a set of coupled

i‘ nonlinear partial differential equations. An iterative implicit
stable numerical procedure has been developed and succussfully tested

l. for calculations in one dimension. Results are given for the flow re-

sulting from a step change in pressure at one¢ end of a finite bed. A

PR
. .

similarity solution is obtained for the flow into 2 semi-infirite bed.
This latter solution is also applicable to short time flow in finite

beds.

*This work was performed under the auspices of the USERDA and was supported
by the University of California Lawrence Livermore Laboratory under Sub-
contract 1160305 of Contract W-7405-Eng-48.
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INTRODUCTION

The: high speed flow of a pas through a porous structure is a matter

of considerable interest in several areas. This interest has resulted

-in a wealth of experimental information on such flews. In particular,
Darcy's law, a linear constitutive equation between the apparent fluid
veiocity and the local pressure gradient, is found to fail for Reynolds
: ' numbers in excess of sbout 0,1, Correlations, describing the deviations

5 from Darcy's law, have been developed and have remarkable agreement

P mmienie,

among themselves and with experiment.

The analytical ability to use these results in the prediction of more

complex flows has not been obtained, however, Whil:s transient gas flows

in the Darcy regime have been successfully analyzed and efficient ale

B TP IR N N

gorithms for the calculation of multidimensional flows developed, -
little progress has been made in the nonlinear flow regime.
The purposes of this paper are to obtain relations governing non- 3
Darcy, transient compressible flow, to develop a numerical procedure '

for calculations in one dimension, and to present results of the analy-

sis of such a flow. :

i
i
:
i
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DESCRIPTION OF THE FLOW
Consider the one-dimensional flow o a gas through a porous struc-
ture, The apparent velocity of a fluid flowing through a porous bed
is, by definition, the volume flow rate per unit area normal to the
direction of flow. In a low Reynolds number flow, this velocity, u,
is given by 2 linear constitutive equation, Darcy's law.
.k
L= 4]

k is the permeability of the medium, u is the fluid viscosity, p is the fluid
pressure, and x is the position coordinate in the direction of flow. For
local Reynolds number, pud/y, based on pore or grain size d and above

about 0.1, this relation is unsatisfactory. p is the fluid depsity, Be-
cause of the highly curved tortuous paths followed by fluid elements, in-
ertial effects become significant. The relation between velocity and pres-
sure gradient becomes nonlinear,

Forchheimer [1]* proposed that Darcy's law be modified by the inclu-
sion of a second order term in velocity. In the usual format, Forchheimer's
relation is written.

a1u+azpu2=-§£- (2)
Since this relation was originally propesed, an impressive amoufit of experi-
mental evidence has been amassed to justify its use. In the low velocity
range, the relation reduces to Darcy's law. The comstant, 3y, is simply

w/k and can be determined experimentally or, for uniform beds, the widely

used Carman-Kozeny relationship {2] or Happel's [3] free surface madel yield

*Numbers in brackets refer to entries in REFERENCES.
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good estimates. At high velocities, the Forchheimer relation reduces to
the form found experimentally by Burke and Plummer [4), From the Darcy
range, spanning a transition region, and up to Reynolds numbers of several
thousand, the complete Forchheimer relation has accurately described re-
sults of experiments by numerous investigators. These include Ergun and

Orning [5], Green and Duwez [6], Ergun [7], Schneebeli [8], and Ward [9].

- Theoretical developments of the Forchheimer relation, e.g., Irmay [10],

Bachmat [11], and Black [12], having varying degrees of sophistication
are also available.
A further generalization of (2) was propused by Polubarinova-

Kochina [13] and consists of the inclusion of a local acceleration term.

. 2 a8
duta;put ragpar= - )

t is the time. Because disturbances propagate across a pore having a
typical dimension d with a relaxation time of order dzlu, this effect
is negligible. v is the kinematic viscosity. For air at atmospheric
conditions, v is 0,15 cm2/sec. A bed with a permeability of one Darcy
(5.8 x 107 en®) has 2 typical pore dimension of order 1073cn, The
corresponding relaxation time is of order 10-5 sec, considerably less
than any significant time in a transient flow. Including this local ac-
celeration effect has no obvious merit.

The effect of convective acceleration, as considered by Beavers and
Sparrow [14], is expressed in the relation used by them. In a form con-

sistent with our notation, they have

2,1 ,au  _3p .
Bputa, pu + ; puzreE-F (4)

€ is the porosity of the medium, the void volume fraction. The inertial

coefficient, a,, is of the order of the reciprocal pore dimensjon, a?,
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The length, d, is considerably smaller than any bed length of interest
here. Variations in the apparent velocity occur over distances much
larger than d. Accordingly, the quadratic resistance term greatly ex-
ceeds the convective acceleration contribution and the latter is safely
neglected.

| An excellent verification of this conclusion is provided by recent
results of Masha, Beavers, and Sparrow [15]. Compressible steady gas
flow in one dimension was examined in a series of careful experiments
where gas compressibility was significant. The porous medium was a block
of foamed nickel with a mean pore size of roughly 0.05 in. and a length of
8 in. The length scale for velocity changes is this bed length. The
relative importance of convective acceleration and inertial drag should
then be approximately the ratio 0.05:8. The contribution of convective
acceleration should, in this case, be roughly 0.6 percent of the effect
of inertial drag. Masha, Beavers, and Sparrow found that experimental
pressures and calculated pressures based on Eq. (4) agreed within 2 per-
cent, They further found that calculations based on Eq. (2) normally
agreed with those employing convective acceleration within 0.1 percent.
At the highest test Reynolds nunber reported, 81.6, the deviation was

about 0.7 percent. The two expressions agree within the expected range

and both agree well with experiment. For larger beds, with corréspond-
ingly smaller pore size-to-bed length ratios, the difference betweer
expressions will be smaller yet.

We conclude that Forchheimer's relation (2) adequately describes the
resistance of transient compressible flow over a broad range of Reynolds

number. Accordingly, this relation is adopted and, in agreement with } ?

Darcy's law, written

_ ka3
u+bpluju=- o 5& (5)
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The quadratic term v is here replaced by |u|u to account for flow in
either &irection. la) is the absolute value of u. The coefficient b
can be determined from any of several correlations. Typicai are those
of Ergun [7] and Rard [?] which yield

i a
YEER O 6

and

_a.s50 w2 o

b
H

respectively.

In addition to the constitutive equation describing flow resistance,
the flow abeys the continuity equation, an equation of state amd the first

law of therodynamics. Conservation of mass is

B ,8 s
€5 * % {pw)= 0 (8

for an incompressible porous structure. The ideal gas equation of state is
P = PRT )]
R is the gas constant and T, the thermodynamic temperature.

Rather than ewploying the first law of thermodynamics, it normally
suffices to assume an isothermal flow. The relaxation time for heat
transfer between the solid and gas is negligible compared with the time for
the gas flow to respond to changes at the bed boundaries, Temperature
equality between solid apd gas is usually assumed, In a gas flow, the
heat capacity of the gas in the void vojume is copsiderably less than
that of the surrounding solid. As a result, the solid temperaturs will
normally remain constant and the gas temperature rapidly approaches this

value, Hith tne isothermal restriction, zn ideal gas flow is governed by
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Eq. (5) and Eq. (B) which becone
we O/ p Ju us - B2E (10 L
and |
el =0 )

Pressure and velocity are the sole independent variables.

Equivalent expressions for radial flow in cylindrical coordinates
have been successfully employed [16,17] to describe the performance of
natural gas wells§, Transient high speed gas flow in one dimension has
been examined more recently [18]. Im this latter case, however, the
second-order differential equation describing the flow is incorrect

as given,

[8e B 11
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DIMENSIONLESS FORM

Because the governing equatioms, Eqs. (10) and (11), are non-
linear, their solution is most readily obtained using numerical tech-
niques. Prior to developing a numerical procedure, it is advantageous
to convert these expr.ssions to a dimensionless form. The dimensionless
expressions are chosen to correspond closely with those used in the
analysis of related low Reynolds number gas flow [19], low Reynolds
number multiphase flow [20] and low Reynolds number convective-dispersive
transport [21].

The effects of inertial resistance can be ohserved in the response
of an initially stationary gas to a sudden change of pressure at a
boundary of a ‘one-dimensional porous bed. A switable dimensionless pres-

sure, varying between zero and one, is

=25 (12) i

Py2, {

P, is the ambient pressure while bt is the applied pressure,

A dimensionless position is expressed as a fraction of the bed %
length L.

xef (3 i

The distance is measured from the inlet boundary where the pressure Py is f?

applied. ﬂ

Dimensionless time, in terms of these and previously defined properties,
is
kfpl -p)t
T e ——2-°— : (14)
pel

A low Reynolds number flow has a response time corresponding te T of order

unity. rermeability and porosity are presumed uniform,
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A dimensionless speed, defined by

- pLu
S 15
v R(PI = PO) ( )

expresses the ratio of the local velocity to the velncity that would be ob-

served in ap incompressible Darcy flow having the same applied pressure.

For convenience, we refer to the ratio of applied pressure to initial

pressure by

(16)

=
m
W:lF::

0
A Reynolds number characterizing the flow and expressing the importance
of deviations from Darcy behavior is

Re = pi.kﬂ‘ll_-rfﬁ).i (17)
This is roughly a Reynolds nmumber based on initial density, Darcy velocity
and a pore dimension.
In terms of these parameters, Egs. (10) and (11) become
U+Re[(N-l)P+1]]U]U=-§—§ (i8)

and

-g-f[(hﬁ_ll)u]:o ©a9)

=%
.
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CHANGE OF SCALE
The dimensionless variables as selecied are suitable for description

of low Reynolds number flow with large pressure ratio.r Under other con-

P T R ——

ditions, a change of time scale is advisable.
Consider first the Darcy flow described by Eqs. (18) and (19) with
Re set equal to zera, Substitution yields the single differential equation

describing the pressure

2
w19 (2.
—T~2-—(p +_..-) (20)

\then the pressure ratio is well in excess of one,gas in the Darcy flow regime
will respond to changes in a time 1 of order umity. Darcy flow in a finite
bed will approach steady state in a time of this magnitude.

For very large Reynolds mumber, however, the imertial resisvance
dominates. Consider, for simplicity, flow in the positive X divection so
that the ahsolute value IUI becomes U and the pressure gradient is negative.
In this case and for large Re, Eq. (18) reduces to

ap

2 ¥ {21

vV mIW-DP+i]

and the pressure is governed by

1/2
1/2 9P 3 13 fp2, 2 _ i
Now, when N is large, the appropriate time Scale is seen to be
T l(po 2
Tsg =( ) t {23)
(e - 010 Vo e WPbu
so that the pressure obeys
/2 ;
b g | 13 f,2. 2 ~
aT'ax[' E'ﬁ(P "N-x)] "0 (29 -
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For small pressure ratio, examipation of Eq. (20) reveals that the

suitable time scale for Darcy flow is

——-—-uBLZ (25)

while, for high Reynolds number and small pressure ratio, rearranging

Eq. (24) indicates that a time scale
1/2

T - . T - [ k Po
o- 0" o peal? Lo 1t ey

] T {28)

should be employed.

Choice of an appropriate time scale is important in numerical cal-
culations. Without consideration of the relaxation time, finite differ-
ence time steps are not well chosen. Excessively large time steps result

in loss of accuracy while calculations using overly small time steps are

inefficient.
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SIMILARITY ANALYSES

While our primary interest :s in flow in finite beds, it is worth-
while to consider the flaw into a semi-infinite bed. There are several
reasons for this interest. The short time behavior of flow in a finite
bed is well approximated by flow in a semi-infinite bed. Additionally,
under certain conditions to be described, the transient pressure in a
semi-infinite bed depends only on a single variable and not on position
and time separately. Such a flow is said to be similar,

Similarity permits several general conclusions about early time be-
havior and also permits one to assess the accuracy of numerical solutions.
This latter feature is particularly valuable when, as is the case here,
the governing equations are nonlinear and exact solutions for comparison
do not exist.

Consider a flow into a semi-infinite bed. The gas in the bed is
initially stationary and at ambient pressure. The pressure at the surface

is suddenly increased to some high constant value. The flow then is

~ governed by Eqs. (18) and (19) subject to

P=0 at t1=0
P=1 at X=0 @n
P>D as X=+o
For Darcy flow, governed by Eq. {20) and subject to these can&itions,
the pressure has been shown [19] to be similar. The pressure depends only

on a single variable defined by

. | -351/ ] ‘
9-2(1377_2 k(py - Pl T @

1 ipilt) ¥ i ' P o . W s o
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sincs both the differential equation and boundary conditions can be written

in terms of 9 alone. Equation (20) is

2
P d 2 P Y.
46 p *E?(P +'li'-'-_'—1)-0 {29)

and conditions (27) become
Pz=1 at B=0
{(30)
P+0 as frm
Note that O does not contain a length scale L.
The pressure distribution for this Darcy gas flow _n & semi-infinite
bed was calculated by Morrison [19] and the results are shown in Fig. 1.
Several values of pressure ratio have been selected. The Reymolds
number is zero in each of these cases.
- For high Reynolds number flow, we may also demonstrate similarity.
The similarity variable is different however from the variable, B, that has

been-used for the low Reynolds nutber flow. Consider the flow governed by

Eq. (24) and subject to the conditions (27). If we define

=X (31)

-ﬂ-g_[-_s‘l_(p2+.3&.)] 0 @

and conditions (27) are expressed in tems of £ by
P=1 at E£=0
(33)
Pag as E+w
corresponding to the conditions (30) applied to Darcy flow. &, like 6, con-

tains no length L.

The high Reynolds number gas flow resulting from a step change in surface
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pressure has heen shown to be similar. The pressure depends only on £.
The short time flow in a finite column will behave in this manner. This
similarity requirement can be used to judge the accuracy of finite differ-
ence calculations. Such caleulations are performed and displayed inm

similar form in the section on results of calculations .
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NUMERICAL TECHNIQUE

A numerical procedure has been developed for the soluticn of Eqs. (18)
and (19) governing the transiwmt non-Darcy isothermal gas flow in one
dimension. Because stability considerations may severely restrict the al-
Jowable time step in an explicit calculation, an implicit method was de-
veloped.

Explicit methods have been developed, e.g. [22-26], that are uncon-
ditionally stable for solution of the linear diffusion equation. It re-
mains to evaluate the applicability of their analegs to the nonlinear set
of equations treated here. Consistency requirements will, at least in
certain cases, place limits on the allowable step sizes.

A uniform mesh is employed. The node spacing in the X direction is
AX and the spatial index is i, The temporal step size is At and the time
level is denoted by the superscript k.

Suitable finite difference expressions for the derivatives may now
be developed. Tor this purpose, it is useful to interpret Pi as the di-
mensionless pressure at node i and U; as the dimensionless velocity mid-
way between nodes i and i + 1. ‘The spatial derivative in Eq. (19) expresses
the rate of mass flow into a spatial element. At node i, the derivative is

approximated by
3 SR VT A W 2
W[(P*N-1)”]‘2AX[(P1+1*P1*N-1)”1

2
- (pi FP T ]')Ui-l] (34)

The velecities in this expression may be expressed using a finite

difference equivalent of Eq. (18).

A (35)

R
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l

-l The pressure gradient of Eq. (I8) has been replaced by a central difference
approximation for the derivative midway between i and i + 1.

" The finite difference approximation of Eq. (19) is formed using a
forvard difference in time and expressing the spatial derivative as a
weighted average of finite difference expressions at the k and k + 1

levels, Using Eqs. (34) and (35), we have

2
(Pm ¢ P4 N“-'1) (Pyyy = Py)

o amn? 1+i"—:-1-3£(p +P*N—f—-1~)[Ui|

2 i+l i

i kel

2
P+ P *N-‘T)(Pi - Py

- gN-QRe( 2 )
1+ oy i) 10l

{36)

2

] . 2
*-8 [(Piu ) URI RS . 1)”1-]

The spatial derivative is expressed differently &t the two time Ievelg for
reasons that will shortly be apparent. B is the weighting factor. It can
assume values between 0 and 1. B equal to zero corresponds te an explicit
formulation, @ greater than zero is implicit. By analogy with the linear
diffusion equation, f greater than or equal to 1/2 can be expected to yield
stable results, independent of time step. In the absence of rigorous
stability limits for nonlinear equations, such analogs provide useful
guidance. The corresponding finite different approximation, with B

equal to 1/2, is the Crank-Nicolson method [27}., The Crank-Nicolson

. method has a truncation error of (Ar)z. (Ax)z. Khen A
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is not equal to 1/2, the truncation error is of order AT, [Ax)z. For the
nonlinear equation treated here, B equal to 1/2 would not yicid higher order
error so that the choice of 8 is somewhat arbitrary. B equal te 1/2 has been
satisfactory in applications to datc; havever, .he option of increasing 8 is
retained.

The nonlinear diffusion equation governing Darcy flow of a gas has been
solved, using B equal to 1/2, by Bruce, Peaceman, Rachford, and Rice [28).
This procedure is efficient, iterative, and stable, 1t has been widely
employed.

Defining

(37)

and rearranging with the unknowns, the varigbles at the k + 1 time level,
on the left and known quantities, those evaluated at the k time level, on

the right,

(38)

k

k 2 2
an P2l - B)[(Piu Yhr e 1)Ui ( iRt 1)”i-1]

;
1
i

i
F
4
e
w
!
1
4
1
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‘ ) This relation, to be solved for the pressures at the new time level, is non-
; " linear in the umknowns. The pressures are obtained by linearization and
iterative solution of the resulting set of linear equations. The noalinear
o porticn is factored and then linesrized by assuning a value for part of the
expression. Because the assumed value may not be presumed correct, an itera-
tive procedure is employed to generate progressively better assumptions.
Using the superscTipt K + 1 to denote assumed values at level k + 1,

Eq. (38) is linearized in a manner consistent with, but gemeralizing, the

linearization of Bruce, Peaceman, Rachford, and Rice.

p p 2 Kl
T
i P]ic+1 .2 _1;1 - i N-1 - [pi+1 . Pi)lwl
v 3 (Pm PhE -‘“1)’”11
Xed
P. +P + 2
s 28 i f P PR N
BT Re( > i P
145 Pyt Py i) 10y

We have a set of linear equations among the unknown pressures. In a

more cémpact potation, this is

: ’ A. Pk'l'l )-:+1

K4l
s P $C P D (40)

vh P i1 Y

where



E———

K+l
2
P,
1" TN
A, = -28 L (41)
i [CENYED 7T
L+ (pi+1+Pi+N—l)IUil :
K+1
2
P.+P.  +
G = -8 -11) A | “2)
1+ 53 (Fi*Pi-NN-T)IUi-l'
B, =4h-A -G (43)
k
% 2 2
= 2 - —— - —_—
by = dh Py v 2l B)[(Pm R e L R )”1-1]
(44)

The set of finite difference equations[dbj has a tridiagonal co-
efficient matrix and thus the iterations can be done efficiently. The
solution of a set of n such equations can be obtained using a well known
algorithm, described by Bruce, Peaceman, Rachford, and Rice [28], re-
quiring only 5n - 2 storage locations and using a number of operatiens
of order n.

If B is chosen equal to zero, the pressures are uncoupled, the Formu-
lation is simpler, the method is explicit but stability requirements re-
strict the temporal step size AT to the order of (AX)z. Within this restric-
tion, the explicit formulation has also been successfully used by the author.

Thr. restriction vanishes when B greater than 1/2 is used.
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* RESULTS OF CALCULATIONS

A series of calculations have been perfo.med using the implicit
procedure just described. Transient responsc characteristics are ex-
amined by considering the flow produced by a stop change in pressure at
one end of a finite bed. The other end remains open to the atmosphere,
its bressure unchanged. The flav, then, is governed by Eqs. (18) and (19)
subject to

P=¢ at t1=90
P=1 at X=0 : (45)

1

"

P=0 at X

Only the pressure ratio N, defiped by Eq. (16), and the Reynolds number Re,
defined by Eq. (17), ueed be specified to describe the flow.

Consider a pressure ratio of 50, The flow was analyzed for several
values of Re in order to display the effects of gas imertia. In Figs. 2,
3, and 4, results are presented for selected values of the dimensionless
time 1.

Figure 2 shows flaw at zero Reynolds number, Darcy flow. For the
" largest time selected, 7 equal to 3.0, the pressure distribution is,
for all practical purpeses, fully developed. Calculated pressures at
T equal to 3.0 agree with those at 1 equal to 2.5 to at least five digits.
The flow can be considered to be in a steady state. For short times, T
less than about (.38, the effect of the distant boundary on the Darcy
flow is negligible. The gas moves as if through a semi-infinite bed.

The short time flow is similar., The similarity varisble is 9 and the
early pressure history is very well described by the infinite pressure
ratio curve of Fig. 1.

Figures 3 and 4 reveal how increasing Reyuolds nmumber affects this

behavior. Because of the added inertial resistance, the response is not

as rapid. Neither of these flows is fully developed by t equal to 3. At
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least for the flow having a Reynolds number of 10, the time scale T, de-

fined by Eq. (23), is more useful.

TS

Changing scales, we will again describe the Re equal to 10, N equal
to 50 flow. For selected values of the dimensionless time T, the pres-
sure distribution is presented in Fig. 5. The full range of the flow re-
sponse is cbserved within a range of T of order unity. In addition, and
of greater importance, all flows possessing large Re and large N, and
subject to conditions (45), are virtually indistimguishable from the flow
presented in Fig. 5. In this high Re, high N range, the pressure distri-
bution is nearly independent of Re and N when presented as a function of

Xand T,

The curve for T equal to 3.0 does not correspond to Steady state.
Only for much larger time is steady state achieved. This steady state
pressure distribution is independen® of Reynolds number and the final
distribution corresponds to the T equal to 3.0 curve of Fig, 2. The
independence of the steady distribution from Reynolds number follows from
Eqs. (18) and (19) with the temporal derivative set equal to zero. A
non-Darcy flow resistance relation other than Forchheimer's relation
would =0t necessarily yield this result.

For times prior to significant pressure change at X equal to I,
this high Re, high N flow is nearly similar. It behaves as flow in 2
semi-infinite porous medium. The appropriate similarity variable is €,
defined by Eq. (31) and describing the high Reynolds number flow poverned
by Eq. (32).

Results of calculations for very large Re and N are shown in similar *
form in Fig. 6. All the curves of Fig. 4 as well as the short time cuives

of Figs. 3 and § are well representcd by this single curve.
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CONCLUSIONS
Non-Darcy fluw of an ideal gas has been investigated. Relations
governing transient isothermal flow in one dimension were considered.
Pressures resulting from a step chinge in pressure at the boundary of
a sepi-infinite bed were shown to depend on a single variable for high
Reynelds number flow, A numerical tecﬁnique was developed to describe
transient flows in finite beds. Results have been obtained and presented

showing response characteristics of non-Darcy flows.
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CAPTIONS FOR FIGURES

Pressure distribution in an infinit: Yed, low Reynolds mumber {15}
Pressure distribution in a finite bed, low Reynolds mumber
Pressure distribution in a finite bed, intermediate Reynolds number
Pressure distribution in a finite bed, high Reynolds nusber
Pressure distribution in a finite bed, high Reynolds number

Pressure distribution in an infinite bed, high Reynolds mumber
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Figure 2 Pressure distribution in a finite bed, low Reynolds nuaber
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