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CALCULATION OF THE COMPOSITION OF 
REACTOR-IRRADIATED HEAVY NUCLIDES 

by 

R .  P . Schuman and R .  L.. Tromp' 

Calculations have been made of t h e  compositions of reac tor - i r rad ia ted  

~h-230,  ~h -232 ,  U-233; U-235, U-236, U-238, Pu-239, Pu-242, and b -244 .  

P l l e  f luxes  with resonance f l ux  per  I n  E i n t e rva l  equal t o  1/12 ( t yp i ca l  

of MTR fue l )  o r  1/30 ( t yp i ca l  of MTR beryllium pieces.) of t he  thermal fl& 

were used f o r  t he  calcula t ions;  thermal f luxes  of 5 x 1013, 2 x 1014, and 
2 

1 x lo1? n/cm sec were assumed. Calculation methods, assumptions con- 

cerning cross  sect ions ,  and poss ible  methods of producing spec i f ic  nuclides 

a re  discussed. 
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CALCULATION OF TRE COMPOSITION OF 
REACTOR-IRRADIATED HEAVY NUCLIDES 

R.  P. Schuman and R. L. Tromp 

INTRODUCTION 

Two neutron react ions  a r e  most probable f o r  heavy nuclides i n  a thermal 

reac tor :  f i s s i on ,  espec ia l ly  with t h e  even-odd and odd-odd nuclides; and 

capture,with all nuclides.  Other react ions  occurring with small y ie lds ,  

such a s  n,2n react ions  with prompt f i s s i o n  neutrons, a r e  a l so  of i n t e r e s t  

t o  reac tor  operations.  Because of t h e  capture react ions ,  i so top ic  com- 

posi t ions  of f ue l  and f e r t i l e  mater ia l  i n  a p i l e  w i l l  change during operation, 

with corresponding changes i n  r eac t i v i t y .  Also, isotopes w i l l  be produced 

which may be valuable by-products o r  may, on t he  other  hand, complicate the  

chemical reprocessing o r  the  re fabr ica t ion  of t he  f u e l .  

Since t he  high burnup of fue l  i s  e s sen t i a l  t o  t he  low cost  operation 

of most reactors  contemplated today, and s ince  isotopic  capture products 

w i l l  accumulate i n  chemically reprocessed fue l ,  it i s  of i n t e r e s t  t o  ca lcu la te  

t he  composition of t he  fue l s  and f e r t i l e  mater ia ls  a f t e r  long i r r ad i a t i ons .  

The calcula t ions  can serve as  a guide i n  determining t h e  value of f ue l s ,  

how of ten t h e i r  reprocessing i s  necessary from a nuclear standpoint, and 

how of ten they must be i so top i ca l l y  re-enriched. The calcula t ions  a r e  a l so  

of importance i n  planning i r r ad i a t i ons  f o r  t h e  production of such heavy 

nuclides a s  U-232, Np-237, Pu-242 and t h e  transplutonium elements. 

Because t h e  Nuclear Physics Branch a t  t h e  MTR i s  in te res ted  i n  obtain- 

ing neutron cross sect ion da ta  on t h e  heavy nuclides of i n t e r e s t  t o  reactor  

operation, ca lcula t ions  have been made of t h e  compositions of Th-230, Th-232, 

U-233, U-215, U-236, U-238, Pu-219, Pu-242, and Cm-244 i r r ad i a t ed  at  several  

d i f f e r en t  f luxes f o r  d i f f e r en t  time periods.  I f  a mixture of these  isotopes 

i s  i r rad ia ted ,  tohe final. compnsi.tion can be found from these  calcula t ions  

by summing the  f i n a l  products from the  several  input i sotopes .  These ca l -  

cula t ions  were made t o  serve as  a guide f o r  scheduling i r r ad i a t i ons  t o  produce 

samples f o r  cross sect ion measurements. The calcula t ions  w i l l  a l so  be h e l p f ~ l  

i n  evaluating thermal Th-232 - U-233 breeder reactors  and comparing U-233, 

U-235, and Pu-239 as enriched reac tor  f ue l s .  



METHOD OF CALCULATION 

The radioact ive  nuclides i n  a reac tor  may disappear both by radioactive 

decay and by neutron absorption. I f  t h e  reac tor  operates a t  a constant f lux,  

each nuclide may be considered as  having an e f f ec t i ve  decay constant i n  t h e  

r eac to r  which we w i l l  c a l l  t h e  dest ruct ion constant " 1 'I. The dest ruct ion 

constant  of  t h e  i t h  - nuclide i s  t h e  sum of t h e  radioact ive  decay constant, 

X.  and t h e  neutron reac t ion  r a t e  constant ,  nvui9 i . e .  
1 

where 4 = dest ruct ion co~r s t an t  of i t h  nuclide.  - 
X. = radioact ive  decay constant of i t h  nuclide ( t he  sum of 
1 - 

p a r t i a l  decay constants f o r  a: and p decay, spontaneous 

f i s s i o n ,  e t c . ) .  

nv = constant  f l u x  of reac tor .  

'i = t o t a l  react ion cross  sect ion i n  t h e  reac tor  f l u x . ( t h e  

sum of f i s s i on ,  rad ia t ive  capture, n,2n, e t c . ,  cross 

sec t ions ) .  

Likewise, new nuclides w i l l  be produced i n  t h e  reactor  by radioact ive  

decay and neutron react ions .  There w i l l  be an e f f ec t i ve  production constant, 

which we have designated by p, f o r  t h e  production of a nuclide from each 

parent .  The r a t e  of production of a nuclide w i l l  be t h e  sum of t h e  products 

of t h e  production constant from each parent  and t he  amount of each parent .  

I f  a given nuclide i s  produced by radioact ive  decay (beta,  alpha, o r  e lect ron 

capture),  t h e  production constant i s  equal t o  t h e  p a r t i a l  decay constant of 

t h e  parent  leading t o  t h a t  nuclide.  I f  t h e  nuclide i s  produced by a neutron 

reac t ion  ( r ad i a t i ve  capture o r  n92n),  t h e  production constant i s  equal t o  

t h e  product of p i l e  f l u x  and p i l e  cross  sect ion f o r  t h e  react ion leading 

t o  t h e  nuclide.  The r a t e  of  change of a nuclide i n  a constant f l ux  reac tor  

i s  given by: 

where N = amount of i t h  nuclide 
i - 

N, = .amount of a p a r t i c u l a r  parent  j 
J ' 

1. = dest ruct ion constant of' t h e  i t h  .nuclide 
1 - 

"j 
= production constant  from parent  j .  



The equations f o r  t he  r a t e  of change of t h e  amounts of nuclides i n  a 

constant f l ux  r eac t c r  a r e  e n t i r e l y  analogous t o  those f o r  members of t he  

natural  radioactive decay chains except t h a t  t h e  constants 1 and "p " a re  

subst i tu ted f o r  the  appropriate h ' s .  Thus i n  a. reactor  the re  a r e  capture 

chains analogous t o  t h e  na tura l  radioact ive  decay chains, and t h e  amounts 

of t h e  chain members can be c a l c d a t e d  using t h e  Baternan equation192 developed 

f o r  t h e  na tura l  radioactive decay chains. 

For t he  specia l  case of production from only one s t a r t i n g  nuclide and 

by only one path,  t he  amount of t h e  i t h  - chain member i s  given by t h e  Bateman 

equation : 

B 
where Dl = (12- < ) ( A ~ -  11)-----(Ri- Rl) = 7T ( /.- <) 

j f 1  J 

D 2 = ( .t,- 12)( X3- .{)-----(1.- I 4) = . n (1 .- 12) 
J f 2  J 

1 1 
( ,2 - = .n-.(R - O i-1 i J f 1, j 'i) 

0 N1 = I n i t i a l  amount of s t a r t i n g  nuclide.  

I f  production of a nuclide i s  poss ible  by several  paths,  t h e  amount of t he  

nuclide i s  given by t h e  sum .of t h e  Bateman equations, one f o r  each path, 

with t h e  production constants being those leading along t he  appropriate pa th .  

I f  more than one isotope i s  i n i t i a l l y  present,  a summation i s  made f o r  pro- 

duction from each i n i t i a l  nuclide,  

The f i r s t  s t ep  i n  calcula t ing t h e  composition of p i le- i r radia t .ed  mater ia l  

i s  t o  e s t ab l i sh  t h e  capture chains.  Although t h e  chains may contain many 

branches, usual ly  there  are  only one o r  two s ign i f ican t  react ions  f o r  each 

chain member. Thus, i n  a reactor ,  Pu-239 can undergo neutron capture, 

undergo f i s s i on ,  undergo an n,2n react ion,  o r  may undergo alpha decay; 

however, only t h e  capture and f i s s i o n  react ions  a r e  important. The chains 

used f o r  t h e  calcula t ions  a r e  given i n  Figures 1 through 4. I n  most cases 

t he  chains a r e  qui te  simple with only occasional two way branching. \iy 
the  calcula t ions  a re  made f o r  f a i r l y  high fluxes,  and f o r  i r r a d i a t i o n  per io  s\ 

of days t o  a few years, the  approximation i s  made t h a t  long-lived nuclides,  

tl - ) l o 0  years, a r e  s tab le  with respect  t o  radioact ive  decay. Also t h e  
2 

approximation i s  made t h a t  shor t - l ived nuclides,  tl - < 1 day, decay instan- 
2 

taneously, so t h a t  neutron capture by, o r  decay of a long-lived nuclide i s  



considered as  leading d i r e c t l y  t o  t he  next long-lived member of t he  chain. 

The approximation w i l l  not  normally cause a s ign i f ican t  e r r o r  f o r  times 

much 1,onger than  t he  h a l f - l i f e  of t he  shor t  l i ved  nuclide, s ince  nuclides 

with h a l f - l i v e s  l e s s  than one day w i l l  usual ly  decay before bui lding up i n  

quan t i t i e s  l a r g e  enough t o  undergo s ign i f i c an t  neutron react ions .  I n  any 

case, when one assumes t h e  shor t - l ived parent  decays instantaneously, t h e  

ac tua l  amount of shor t - l ived parent  p lus  t he  amount of long-lived daughter 

i s  v i r t u a l l y  equal t o  t h e  abundance calcula ted f o r  t h e  daughter. 

I n  order  t o  s impl i fy  t h e  calcula t ions ,  a number of f u r the r  approximations 

have been made which w i l l  normally not. .)..earl ser ious  e r ro r s .  Inspection of 

Figures 1 through 4 shows many minor branches, such a s  t h e  e lect ron capture 

decay of Am-24% t o  Pu-242, neutron capture by U-232, n,2n react ions  on 

U-233, U-235, U-236, PU-239, Pu-242, and (311-244, and others ,  which have been 

ignored s ince  t h e i r  contr ibut ions  a r e  very  s m a l l .  The assumption of constant 

f l u x  i r r a d i a t i o n  i s  not  c o r r e c t  f o r  most operating reactors  which have 

scheduled down periods.  For nuclides with ha l f  l i v e s  much grea te r  than t he  

down period,  t h e  calcula ted compositions w i l l  be e s s e n t i a l l y  correct  i f  t h e  

average f l u x  f o r  t he  e n t i r e  i r r a d i a t i o n  period i s  used f o r  t he  ca lcu la t ions .  

A comparison of continuous v s  cyc l ic  i r r a d i a t i o n  of Th-232 has been made by 
3 R. Go Nisle  . 

An addi t ional  complication i n  t h e  capture chains i s  t h a t  t h e  alpha decay 

of capture products can l e ad  t o  closed loops i n  which a nuclide may reappear 

as a r e s u l t  of four  neutron captures, two be ta  decays, and an alpha decay. 

Usually t h e  loops a r e  unimportant and can be neglected i n  t h e  calcula t ions ,  

bu t  i n  t h e  case of Pu-239, two capture products Cm-242 and Cm-244 have 

s u f f i c i e n t l y  shor t  alpha ha l f  l i v e s  so t h a t  t he  loops w i l l  be important. 

Because of t he  loops, t h e  concentrations of Pu-239, Pu-240, and Pu-241 i n  

napkin r ings  a r e  appreciable a t  high in tegra ted  f luxes  even a f t e r  t h e  

i n i t i a l  Pu-239 and t h e  f i r s t  generation Pu-2110 and Pu-241 have been burned 

up. The closed loop which i s  due t o  Cm-244 a decay i s :  



This loop l a r g e l y  accounts f o r  t he  presence of Pu-240 and Pu-241 i n  

highly  i r r ad i a t ed  napkin r ings .  I n  order  t o  make approximate calcula t ions  

of t he  abundances of Pu-239, PU-240, and PU-241 i n  highly  i r r ad i a t ed  Pu-239, 

t he  closed loops have been approximated by assuming t h a t  recycle Pu-239, Pu-240, 

and Pu-241 a r e  new members of a capture chain which ends a t  second generation . . . , 

Pu-241. The approximation i s  thus:  .. :;I 

n'r 7 
h - 2 4 4  --- '- > Cm 244 \ 



Since the amount of material  recycled i s  f a i r l y  small due t o  losses  

by f i s s ion  and t o  neutron capture of .Cm-242,.an'd Cm-24.4, .the appraxim&tion: .will give & l 

sa t i s f ac to ry  abundances f o r  Pu-239, Pu-240, and Pu-241 for  the times of 

i n t e r e s t .  Since the  "recycle chain" i s  cut off a t  PU-241f, the calculated 

abundances of ~m-241, Cm-242, Pu-242, and ~m-243 w i l l  be debidedly 1b.w a t  

t he  very highest integrated fluxes. Calculated abundances tha t  are' expected 

t o  be highly i n  .error  have been omitted from the tables  of r e su l t sp  In the 

other  chains, t h e  loops have been ignored since t h e i r  e f fec ts  are  small. 

Because of the a decay of PU-238, some U-234 and secondary U-235 capture 

product, which a re  not shown i n  the  calculations, w i l l  be produced intvery 

highly i r rad ia ted  samples of U-235 and U-236. Actually there i s  a Limit 

t o  the  burnout of U-235 i n  U-235 - U-236 mixtures. 

By using t h e  approximat-ion tha t  the recycle members i n  a loop are new 

members of a chain, it i s  possible t o  calculate the  compositions of the 

i r rad ia ted  nuclides using the  Bateman equations. Since i n  t h i s  case two 

chain members have the  sane destruction constants, the Bateman eq.uati.on, 

as given . in equation (3),  becomes indeterminate. A sa t i s fac tory  solution 

:of the  Bateman equation can be obtained by permitting th,e two destruction 

constants t o  d i f f e r  by a s m a l l  value E ,  and then allowing E t o  approach 

zero,. The solution f o r  the amount of the kth member of a chain i n  the case - 
where two chain members, m and n, have the same destruction constant, 

,fm = Yn, i s :  

where D = n .  (1-1.) 
j i # J  1 J 

Dm 

A somewhat similar solution i s  obtained i f  there  a r e  two pa i rs  of nuclides 

with ident ical  destruction constants, as there w i l l  be f o r  the calculation 

of recycle Pu-241. 

A number of calculations have been made with a desk calculator.  These 

were made as  check calculations f o r  the  IBM-650, and f o r  some of the short 

chains, were the only calculations,made., Most of the compositions were 

c d c u l a t e d  using the  IBM-650 and a radioactive decay program set  up by 

12 



Adrian Grimaud of t h e  Theoretical  Physics and Applied Mathematics Branch of 
4 MTR Technical. The program i s  such t h a t  t h e  machine canno% ca lcu la te  abun- 

dances i f  two dest ruct ion constanks a r e  t h e  same; t h e r e f o r e , . f o r  t h e  loops, 

an addi t ional  approximation was made ( f o r  t h e  machine calcula t ions)  t h a t  

t he . r ecyc l e  nuclide had dest ruct ion constants lower than t h e  o r ig ina l .  

For our case,-where the  recycle nuclides have much grea te r  des t ruct ion 

constants than several  other loop members, t he  assumption .makes o n l y / v %  

(o r  l e s s )  e r r o r  i n  t h e  calcula ted abundances, which i s  ins ign i f ican t  i n  

comparison with other  u n ~ e r t a ~ n t i e s .  

The input da ta  cards f o r  t h e  IBM-650 suppl ied. the  cross sect ions  and 

decay constants .of t h e  nuclides and t h e  chain member t o  which they lead .  

The machine then determined t h e  poss ible  paths,  ca lcula ted t h e  abundances 

of the .nuc l ides  along each path,  then added t h e  production from all t h e  . 
possible  paths t o  give t h e  t o t a l  production f o r  t h e  desired f luxes  ,.and times. - 
Since the  machine was using f l oa t i ng  .point  ar i thmet ic  which can ca r ry  eight  

decimal places,  t he  accuracy of t he  r e s u l t s  (which a re  sums and 'di f ferences  

of lq rge  numbers) i s  l imi ted t o  around one p a r t  i n  lo7  of t h e  maximum 

abundance u n t i l  a f t e r  t h e  maximum abundance i s  reached. Therefore t h e  ve ry  

small yields, of t he  heaviest  nuclides from low. in tegrated f l u x  i r r ad i a t i ons  

could not be calcula ted by t he  program. Early values, which a re  i n  e r ro r  

due t o  the. l imi ted  number of decimal places  ca r r ied  by the  machine, have 

been omitted from the  t ab l e s  of r e s u l t s .  Calculations made with a .desk 

ca lcu la to r  were ca r r ied  out t o  t e n  decimal places .  

The caleula t fons  of t h e  proauction of heavy nuclides i n  a p i l e  depend 

upon t he  radioactive decay constants and . the  neutron cross  sect ions .  The 

decay constants a re  well  known i n  t h e  range where they  a r e  important. The 

values used f o r  t h e  calcula t ions  a re  given i n  Table 1, 5 

The 1a rges t . unce r t a in t i e s  i n  t h e  calcula t ions  a r i s e  from t h e  assumed cross  

sect ions .  The neutron cross sect ions  of the '  elements vary g r ea t l y  with neutron 

energy, and t he  energy speetrum of neutrons var ies  from reac tor  t o  reac tor  and 
' 

from place  t o  place i n  one reac tor ,  .To ca lcu la te  ' t he  composition of i r r a -  

d ia ted  mater ia l ,  i d e a l l y  one should'know t h e  neutron energy spectrum a s  a . . .  

~ ~ c t ~ o n ' ~ o t '  ,time; ahd the: cro'ss ';section .of' each nuclide as. a function o f .  

neutron en,ergyz ,,,Further9, ' serf -shielding. an6.. f l &  depression corrections' 



should be made. Thus the.  p i l e  des t ruct ion and production constants of a  

p a r t i c u l a r  nuclide w i l l  depend upon p i l e  spectrum and sample thickness,  and 

w i l l  change with t i m e  as t h e  p i l e  spectrum s h i f t s ,  t h e  f l u x  densi ty  var ies ,  

and t h e  se l f -shie lding changes. Thus t he  abundances ca lcu la ted  i n  t h i s  report  

may be qu i te  s e r i ous ly  i n  e r r o r  due t o  erroneous assumptions as  t o  neutron 

spectrum and se l f - sh ie ld ing .  Another complication i n  comparing calcula ted s 

and observed r e s u l t s - i s  t h e  l a rge  poss ible  e r r o r  i n  t h e  in tegrated f lux,  

"nvt", of t he  i r r a d i a t i o n .  Since t h e  "nvt" of i r r ad i a t i ons  a r e  of ten poorly 

known, and compositions vary  rap id ly  with "nvt", it i s  probably best t o  use v 

one component (usua l ly  t h e  i n i t i a l  component) a s  an i n t e rna l  monitor; thus 
2  

f o r  i r r a d i a t i o n s  up t o  +6 x n c  U-235 o r  Pu-239 burnout i s  a f a i r l y  

good f l u x  monitor ' fo r  enriched fue l  o r  napkin r ings .  

For our ca lcu la t ions ,  we have assumed very t h i n  sampLes so t h a t  s e l f  

sh ie ld ing  and f l u x  depression a r e  neg l ig ib le .  .The pi1.e f lux  i s  considered 

a s  being composed of t h r ee .  energy groups; thermal ( ~ a x w e l l i a n )  neutrons, 
6 resonance (11~) neutrons, and unmoderated f i s s i o n  neutrons. For some of 

t h e  nuclides,  Th-232, U-233, U-235, U-236, and Pu-239, a  pile f l ux  was 

assumed i n  which t h e  resonance f l ux  per  I n  E i n t e rva l  i s  1/12 of t h e  t h e m  

f lux and t h e  fast f l u x  (unmoderated f i s s i o n  neutron f lux)  i s  equal t o  t h e  

thermal f lux;  t h i s  roughly approximates t h e  f l ux  seen by MTR fue l i 7  For 

U-238, Pu-239, Pu-242, 'and'Cm-244, a  p i l e  f l ux  was assumed i n  which t h e  

resonance f lux  per  I n  E i n t e rva l  i s  1/30 of t he  thermal f l ux  and t he  f a s t  

f l u x  i s  ,equal t o  113 of t h e  thermal f lux;  t h i s  roughly approximates t h e  f l ux  

seen by t h e  plutonium napkin r ings  i r r a d i a t e d  i n '  t h e  beryllium region of t he  

MTR . 
When resonance i n t e g r a l  data  were avai lable ,  t he  p i l e  cross  sect ions  

used f o r + t h e  ca lcu la t ions  were calcula ted from resonance i n t eg ra l s  and 

thermal ( ~ a x w e l l i a n )  cross   section^.^-^^'^^ When resonance i n t eg ra l  da ta  

were unavailable, p i l e  cross  sect ions  were taken, 8'15'16 and assumed t o  be 

t h e  cross  sec t ion  f o r  a p i l e  f l ux  with resonance f l u x  equal t o  1/30 thermal /" - 

f lux .  Some l i t e r a t u r e  values of t h e  cross sect ions  a r e  given i n  Table .II. 

I n  c e r t a i n  cases, -cross sectson values had t o  be estimated. Most of t he  

est imated values were those which gave a reasonable f i t  between t h e  ca l -  . 
cu la ted  and observed compositions of t h e  t h r ee  KAPL napkin r ings  ( i r r ad i a t ed  

PU-'239) .I6 The values a r e  r e a l l y  only "educated guesses", s ince  t h e  mea- 

sured abundances of t h e  napkin r ing  components were only  approximate, and 



t h e  amount of da ta  was i n su f f i c i en t  t o  determine accurate cross sect ion values.  

The measured abundances show t h a t  c e r t a in  p i l e  cross  sect ions  apparently 

var ied considerably from napkin r ing  t o  napkin r ing,  probably due t o  t h e  

varying resonance t o  thermal f l ux  r a t i o .  The ac tua l  p i l e  cross  sect ions  

t h a t  were used f o r  t h e  calcula t ions  a r e  given i n  Table I11 f o r  t he  case of 

resonance f l ux  per  I n  E i n t e rva l  equal t o  1/12 thermal f lux,  and i n  Table I V  

f o r  t h e  case of resonance f l ux  per  I n  E i n t e rva l  equal t o  1/30 thermal f lux.  

Stoughton and Halperin have recen t ly  published a compilation of e f f ec t i ve  

p i l e  cross sect ions  f o r  nv 
18 

res/nvth = 1/12 f o r  most of t he  nuclides con- 

sidered f o r  t he  calcula t ions  up t o  and including Pu-242; t h e i r  compilation' 

was not avai lable  when these calcula t ions  were made. With t h e  exception 

of Pa-233, t h e i r  cross  sections usua l ly  agree well within t h e  quoted l i m i t  

of e r r o r  with those used i n  our ca lcu la t ions .  Most of t h e  cross  sect ions  

f o r  nuclides above Pu-242 a r e  poorly known. 

DISCUSSION OF RESULTS 

I. I r r ad i a t i on  .of Ionium 

Protactinium-231 i s  a na tu r a l l y  occurring decay product of U-235, and 

can be i so l a t ed  from uranium ore  residues.  However, because it i s  very 

r a r e  (0.33 g Pa-231 pe r  metric ton uranium at equil ibrium),  and d i f f i c u l t  

t o  i s o l a t e  chemically, t he  a l t e rna t e  production of Pa-231 by p i l e  i r r a d i a t i o n  

-of ionium concentrates (mixture .of Th-230 from U-238 decay and ~ h - 2 3 2 )  i s  

qui te  a t t r a c t i v e .  I n  order t o  evaluate p i l e  i r r a d i a t i o n  of Th-230 (+ ~ h - 2 3 2 )  

a s  a method of producing gram quant i t i es  of Pa-231, hand calcula t ions  'of 

t h e  composition of a p i l e  i r r ad i a t ed  ionium-thorium mixture; has been made,' 

see Table V and Figure 5 .  The calcula t ions  show t h a t  Pa-231 can be produced 

i n  f a i r l y  high concentrations i n  t h e  ionium, but.  t h a t ,  due t o  Th-232 i n  t h e ,  

sample, l a rge  amounts of Pa-233 w i l l  a l s o  be produced so t h a t  t h e  i r r ad i a t ed  

ionium w i l l  have t o  be cooled f o r  a long time before it i s  chemically pro- 

cessed. The i r r ad i a t ed  ionium w i l l  a l s o  contain a considerable f i s s i o n  

product a c t i v i t y  due t o  U-233 f i s s i on .  

11. I r r ad i a t i on  of Th-232 and U-233 

There a r e  two power reactor  cycles t h a t  hold t h e  bes t  promise. of cheap 

nuclear power: the  Th-232 - U-233 breeder reactor ,  which can be e i t h e r  a 

thermal o r  f a s t  reactor ,  and t he  U-238 - Pu-239 breeder reactor ,  which must 

be a f a s t  reac tor .  I f  e f f i c i e n t  power-breeder reactors  a r e  developed, the  

15  



e a r t h ' s  thorium and uranium resources form an almost l imi t l e s s  source of 

energy, comparable i n  magnitude t o  the fusion energy content of the deuterium 

i n  the  oceans. 

In many respects, the  thermal Th-232 - U-233 breeder reactor holds the  

bes t  promise of producing cheap power, since it would use the  more abundant 

thorium a s  i t s  energy source, would require a smaller inventory of f iss ion-  

able  material ,  and would be similar t o  the  well-tested enriched U-235 thermal 

reactors  presently i n  operation. However, a very well designed reactor w i l l  

be required i f  it i s  t o  breed using Th-232 and U-233. The value of thermal 
8 

f o r  U-233 of 2.28 neutrons produced/neutron absorbed, leaves r e l a t ive ly  

few neutrons, 0.28 n/neutron absorbed, for  paras i t ic  capture, leakage, and 

breeding gain. Also, an abundant nuclide i n  the Th-232 - U-233 cycle i s  

27.4 day Pa-233, which has a moderately high paras i t ic  capture cross section, 

and which w i l l  bu i ld  up i n  large amounts i n  a high f lux reactor.  Neutron 

capture by Pa-233 w i l l  use up neutrons and also decrease the U-233 production. 

One advantage of U-233 over U-235 as  a reactor fuel  i s  tha t  the capture pro- 

duct of U-233 i s  f e r t i l e  U-234 which forms fissionable U-235 upon neutron 
-- 

capture. 

Another problem i n  the  operation of a Th-232 - U-233 breeder i s  t ha t  

U-232 i s  produced which w i l l  build up i n  the uranium, and ~h-228,  which i s  

formed through U-232 a: decay, w i l l  bui ld  up i n  the  thorium. These f a i r l y  

short  l i ved  alpha emitters,  through subsequent decay, resu l t  i n  large sources 

of gamma emitters and thus increase the cost of fue l  handling. 

Calculations have been made of the  compositions of th in  Th-232 and U-233 

i r r ad ia t ed  i n  a p i l e  f lux with resonance f lux per  I n  E interval  equal t o  

1/12 thermal f lux,  see Tables V I  and V I I  and Figures 6 and 7. The calcu- 

l a t i o n s  demonstrate U-232 production due t o  t h e  f a s t  Th-232 (n,2n) reaction, 

and a lso  the  very high buildup of Pa-233, especially a t  high fluxes. The 

Pa-233 i s  probably even a bigger unknown i n  evaluating the  Th-232 - 11-233 

cycle than fo r  U-233, and Pa-233 buildup may very l i k e l y  l i m i t  the  f lux 

a t  which the  reactor  can operate. Better cross section data on Pa-233 are  

needed f o r  evaluating Th-232 - U-233 breeder reactors.  In an actual reactor, 

t he  thorium breeding blanket elements w i l l  be thick, par t icu lar ly  f o r  

resonance neutrons, so the  effect ive p i l e  cross section of Th-232 w i l l  be 

smaller than t h a t  used i n  these calculations.14s18 The main resu l t  of t h i s  

"cross section change" w i l l  be t o  decrease the r a t i o  of the products (except 



. .., : ,n32n "products.)' $0. thorium' by ap~roximately.  t he  r a t i o  of e f f ec t i ve  t h i c k  

Tli-232 p i l e  cross sect ion t o  t he  t h i n  Th-232 cross  sect ion used i n  thei.cal- 

-culat.ianso- .A comparison of cyc l i c  and continuous i r r a d i a t i o n  of Th-232 has 
3 .  been ,made. by Nisle .:- . 

. . .  Even though a Th-232 - U-233 reac tor  does not breed o r  break even, it 

w i l l  g r ea t l y  extend the  f i s s i o n  energy resources. The U-233 produced from 

Th-232 wi l l .be  an, .excellent  enriched reac tor  fuel . .  The' U-233 w i l l  be more 

: ;. d i f f i c u l t  to . , f abr ica te  than U-235 due t o  t h e  much more in tense  alpha and 

gamma i r rad ia t ion ,  but  with respect  t o  'neutron economy, it. w i l l  be b e t t e r  

f ue l  since U-2.33 has a higher 4 than U-235 and a l so  t h e  second order capture 

* product .of U-233 i s  f i s s ionab le  U-235, while t h e  second order capture pro- 

duct .of U-235 i s  t h e  r e l a t i v e l y  shor t  l i ved  U-237 .which be ta  decays t o  . 

es sen t i a l l y  nonfissionable Np-237. 

111. I r r ad i a t i on  of U-235 and U-236 

;Since t he r e  i s  a great  deal  of experience i n  operating enriched , 

,,,uranium reactors ,  our main i n t e r e s t  i n  ca lcu la t ing  t h e  composition of ir- 

radia ted U-235 and U-236 was t o  evaluate the  p o s s i b l i t y  of producing valuable 

. .by-products. l i k e  Np-237 and plutonium r i ch  i n  PU-238. . The e f f ec t  of t he  - I '  

,capture products on t he  enriched uranium fue l  reprocessing has been discussed 

elsewhere. 19 
Although t h e  thermal cross  sect ions  and resonance i n t eg ra l s  of t h e  

nuclides i n  the  chain a r e  b e t t e r  known than those i n  t h e  o ther  chains, the  

calcula t ions  s t i l l  only approximate ac tua l  compositions, s ince  t he  assumed 

constant p i l e .  f l ux  only approximates t h e  ac tua l  p i l e  f luxes .  The r e su l t s  

of t h e  c a l c d a t i o n s  f o r  a resonance f l u x  per  I n  E i n t e rva l  .equal  t o  1/12 

t h e  thermal f l ux  a r e  given i n  Tables V I I I  and I X  and Figures 8 aqd 9. The 

calcula t ions  show t h a t  i r r ad i a t ed  enriched reac tor  f u e l ,  such a s  MIX fuel,,, 

i s  an excel lent  source of Np-237, p a r t i c u l a r l y  i f  t h e  enriched uranium 

had been previously i r r ad i a t ed  so t h a t  it i n i t i a l l y  contained U-236. The 

Np-237 production i s  h ighly  dependent upon t h e  resonance f l u x  s ince  U-236 

has a low thermal capture cross  sect ion and a high resonance capture i n t eg ra l .  

no I r r ad i a t i on  of U-238 

Since a thermal U-238 - Pu-239 breeder reactor  i s  impossible, t h e  thermal 

p i l e  i r r ad i a t i on  of U-238 i s  of i n t e r e s t  as  an extender f o r  U-235 o r  Pu-239 

fue l ,  .as a producer of plutonium, .and as  a source of c e r t a in  heavy elements 

as  Np-237 and poss ibly  transplutonium isotopes.  



The r e s u l t s  of t h e  U-238 calcula t ions  a r e  given i n  Table X and Figure 10. 

The calculation's'. were made f o r  a  resonance t o  thermal f lux  r a t i o  of 1/30, 

a f a s t  f l u x  equal. t o  1/3 of t he  thermal f lux ,  and t h i n  U-238 samples. . The 

ac tua l  composition of i r r ad i a t ed  U-238 i s  h ighly  dependent upon t he  res -  

onance f l u x  .s ince  U-238 has a  low thermal cross  sect ion and a high resonance 

capture i n t e g r a l .  The composition w i l l  a l so  depend upon t he  thickness of 

t h e  U-238 s ince  U-238 samples, l i k e  Th-232 and U-236 samples, w i l l  show 

considerable s e l f  p ro tec t ion  espec ia l ly  f o r  resonance neutrons. 14'18 Therefore, 

t h e ' e f f e c t i v e  p i l e  c ross  sect ion of t yp i ca l  U-238 breeding blanket samples 

wil1,:be ,:Tess. than t h a t  used i n  the  ca lcu la t ion ;  however, t he  f i e ld  of the 

capture.:products w i l l  be near ly  those calcula ted times t he  r a t i o  of e f f ec t i ve  

thick'u-2.38.-cross sec t ion  t o  t h i n  U-238 cross  sec t ion .  

V. I r r ad i a t i on  of Pu-239, Pu-242, and Cm-244 

The long term p i l e  i r r ad i a t i on  of plutonium, a s  plutonium-aluminum ' 

al loy.  napkin r ings ,  has been the  source of most of t h e  transcurium elements 

used ' for  nuclear and chemical s tud ies .  A t  present a  l a r g e r  scale  plutonium 

: 2 r r a d i a t i o n . i ~  ge t t i ng  underway which w i l l  produce samples of Am, Cm and 

transcurium:elements s u f f i c i e n t l y  l a rge  t o  permit more accurate cross sect ion 

measurements. This program w i l l  consis t  of i r r a d i a t i n g  Pu-239 a s  plutonium 

aluminum a l l o y  u n t i l  t h e  remaining plutonium i s  l a rge ly  Pu-242. The mater ia l  

w i l l  then be chemically processed and t h e  resu l t ing  plutonium (mainly PU-242) 

and perhaps a l so  curium (mainly (311-244) fu r ther  i r r ad i a t ed .  Because of our 

i n t e r e s t  i n  the  i r r a d i a t i o n  of Pu-239,. Pu-242 and Cm-244 f o r  t he  production 

o f ,  heavy element samples f o r  MTR chopper cross sect ion measurements, a s  well 

a s  t h e  i n t e r e s t  i n  Pu-239 a s  a  reac tor  f ue l ,  ca lcula t ions  have been made of 

tkie composition of Pu-239, PU-242, and Cm-244 ir .radiated t o  a  ve ryh igh  

in tegra ted  f l ux .  The r e s u l t s  of t he  calcula t ions ,  assuming a  resonance 

flux per  I n  E i n t e r v a l  of 1/30 t he  thermal f l u . ,  a r e  given i n  Table X I  

and Figure ..11. f o r  Pu-239, i n  Table X I 1  and Figure 12 f o r  Pu-242, and i n  

Table X I 1 1  and ~ i ~ u r e  13. f o r  Cm-244. The composition of Pu-239 i r r ad i6 t ed  

- , in  a  f l ux  with nv /nvth = 1/12 has a l so  been calculated,  see Table X I b  
r e s  

and Figure l l b .  Other calcula t ions  of t he  composition of i r r ad i a t ed  'plutonium . 
and c u r i k  have -beenmade by UCRL, ANL,15 and Hariford. 20  he cross ' sect ions  

1 (especially'those-of.'the heaviest  nuclides) used f o r  these  calcula t ions  

o f ten  differ'quite+~xte'~kivel~ from those we have. used. 
.. . . - .  



Since many of t h e  cross sect ions  of t he  heavies t  nuclides a r e  very 

poorly known o r  unknown, we have se lected values f o r  c e r t a in  cross sect ions  

i n  order t o  obtain a f a i r  f i t  between t h e  calcula ted yie lds  and t h e  observed 

KAPL napkin r ing  y ie lds .  Table XIV compares t h e  calcula ted and observed 

yie lds  f o r  th ree  KAPL and th ree  ANL napkin r ings  i r r ad i a t ed  i n  t h e  MTR. 1 5  ,I6 

The "nyt" f o r  comparison was chosen t o  give t h e  be s t  agreement between 

observed and calcula ted yie lds  and i s  appreciably d i f f e r en t  from t h e  "nvt" 

reported f o r  t h e  i r r ad i a t i on .  For t he  lower "nvt" values, t he  burnup of 

Pu-239 was used t o  est imate t h e  "nvt" f o r  comparison. For t he  higher "nvt" 

values, the  yie lds  of (311-244 and Pu-242 were used t o  est imate t h e  "nvt" 

f o r  comparison. As shown i n  Table X I V ,  f a i r  agreements between calcula ted 

and observed yie lds  a r e  obtained. Unfortunately, t he  observed yie lds  a re  

only approximate, and no attempt has been made t o  obta in  t h e  bes t  cross  

sect ion values, so t h e  estimated cross  sect ion values used f o r  t h e  calcu- 

l a t i o n s  should be considered only a s  educated guesses. 

Also, s ince  many p i l e  cross  sect ions ,  such a s  t h e  Pu-240 and Pu-242 

capture cross sect ions ,  have very high resonance in tegra l s ,  t h e  y ie lds  of 

the  nuclides w i l l  depend s t rongly upon the. resonance f l ux  contr ibut ion.  

The mass spectrometrically detefmined r a t i o  of Cm-245/Cm-244 shows t h a t  

t he  cross sect ion r a t i o  of Cm-245 t o  Cm-244 var ied considerably from napkin 

r ing  t o  napkin r ing.  Most l i k e l y  Cm-244 (poss ibly  a l sp  Cm-245) has a very 

l a rge  resonance i n t e g r a l  compared t o  i t s  thermal cross  sect ion.  The com- 

parison of plutonium i r r ad i a t ed  with nv 
res lnv th  of 1/12 t o  nvres/nvth = 100 

shows the  quite l a rge  dependance on resonance f lux,  even when both curves 

are norm3lized t o  t h e  erne burnup of' Fu-239, Gee Figure XIc.  

Because t h e  IBM-650 ca r r i e s  only e ight  s i gn i f i c an t  f igures  when using 

f l oa t i ng  point  ari thmetic,  and t h e  calcula ted y ie lds  are determined,as t h e  

di f ference of l a rge  numbers, t h e  l i m i t  of accuracy of t h e  calcula ted y ie lds  

i s  roughly l o - '  of t h e  maximum abundance (it may be somewhat more o r  l e s s  

depending upon t he  ac tua l  coef f ic ien t s  . i n  t he  Bateman equation).  Therefore, 

t h e  y ie lds  of' t h e  heaviest  nuclides can not be calcula ted Sor t h e  shor te r  

i r r ad i a t i ons .  Another e r ro r  i n  t he  calcula ted y ie lds  r e s u l t s  from cu t t ing  

of f  t he  Cm-242 - PU-238 and (31-244 - PU-240 cycles at Pu-241, so t h a t  t he  

calcula ted abundances of Pu-242, Am-241 and Am-243 a r e  low f o r  t h e  highest  

"nvt " values . 



It i s  of i n t e r e s t  t o  look a t  poss ible  methods of producing samples of 

nucl ides  f o r  c r o s s . s e c t i o n  measurements. The nuclides f o r  which cross 

sec t ion  measurements w i l l  be most valuable a r e  those which a r e  found i n  

appreciable amounts i n  reac tor  f u e l . o r  f e r t i l e  mater ia l ,  and which can be 

produced i n  high p u r i t y  and i n  gram quant i t i es  f o r  chopper measurements; 

Only methods which do not require  isotope separation w i l l  be considered 

here .  Many nuclides,  such a s  721-230, U-234, 'u-236, PU-240, PU-241, e t c . ,  

w i l l  pro'bably be be s t  produced by isotope separation.  The production 

methods a r e  summarized below: 

Pa-231: G r q  s+ les  of Pa-231 can be produced,.by p i l e  i r r a d i a t i o n  of 

ionium concentrates.  A long decay period before t h e  sample i s  processed 

w i l l  be necessary t o  allow Pa-233 t o  decay. 

Pa-233:  ram‘ samples of Pa-233 can be produced by i r r a d i a t i n g  Th-232, then 

chemically separat ing and pur i fying Pa. The sample w i l l  contain very small 

amounts of Pa-231 and U-233 growing i n  from the  27.4 day be t a  decay of Pa-233. 

The Pa-233 has a spec i f i c  a c t i v i t y  of +23,000 curies/gram of 4400  kev 

gamma. Capture cross  sec t ion 'vs  energy da t a  on Pa-233 a r e  needed t o  evaluate 

Th-232 - U-233 breeder reac tors .  

U-232: Suf f ic ien t  U-232 f o r  chopper cross  sect ion measurements can be . . 

obtained by i r r a d i a t i n g  gram quant i t i es  of Pa-231, and ,then chemically 

separat ing and pur i fying U. Repeated shor t  i r r ad i a t i ons  and chemical pro- 

cessing w i l l  be required t o  produce U-232 with a minimum U-233 content . . .  

U-233: The b e t a  decay of t h e  Pa-233 samples w i l l  produce very high p u r i t y  

U-233. 

U-236: I so top i ca l l y  enriched U-236 can be fu r ther  pu r i f i ed  from U-235 by 

s e l e c t i v e l y  burning out t h e  U-235 by p i l e  i r r a d i a t i o n  ( ~ r e f e r a b l ~  with a 

highly  thermal f l ux ) .  The a decay of PU-238 t o  U-234 and subsequent neutron 

capture t o  U-235, a s  well a s  the  f a s t  neutron n,2n react ion on U-236, w i l l  

l i m i t  t h e  burnout of  U-235; however, i f  t h e  highly  ir>adiated uranium i s  - 
pur i f i ed  from Np and Pu, then r e i r r ad i a t ed  fo r  a short  time (so  t h a t  PU-238 

does not have a chance t o  bu i l d  up) t h e  U-235 content can be reduced t o  a , 

minimum. 



U-237: Uranium containing 41% U-237 can be produced by t h e  very high f l u  

i r r ad i a t i on  of U-236 followed by chemical separation and pu r i f i c a t i on  of U. 

I f  t h e  'u-236 i s  s u f f i c i e n t l y  f r e e  of U-235, it should be poss ible  t o  obtain 

t he  f i s s i on  cross sect ion of U-237. I f  t h e  o r ig ina l  U-236 i s  suf f i . c ien t ly  

f r e e  of U-238, t h e  buildup of U-238 i n  t h e  sample w i l l  give a capture cross 

sect ion f o r  U-237. 

PU-238: The alpha decay of (31-242 w i l l  give very pure samples of PU-238. 

Suff ic ient  PU-238 f o r  chopper measurements can be made i n  t h i s  manner. 

Pu-240: The alpha decay of Cm-244 w i l l  give very pure samples of Pu-240. 

The plutonium w i l l  contain l e s s  f iss ionable  Pu-239 ,and Pu-241 than t h e  

p resen t ly  avai lable  i so top i ca l l y  enriched PU-240 .and so w i l l  be valuable 

f o r  f i s a ion  cross  ~ e c t i o n  measurements. 

Pu-242 : Highly i r r ad i a t ed  plutonium w i l l  u l t imately  become e s s e n t i a l l y  

pure ( rJ 9%) Pu-242. Napkin r ing  Pu-242 has been used by ANL f o r  chopper 

cross sect ion measurements,21 and l a rge r  and purer samples should become 

avai lable  from t h e  l a rge  scale  i r r ad i a t i on  of Pu. The Pu-242 samples w i l l  

be t he  best  samples f o r  chemical s tudies  of plutonium s ince they contain 

only about 1% of t he  spec i f ic  alpha a c t i v i t y  of Pu-239. 

Pu-244: Pu-244 i s  produced by t he  minor Pu-243 capture branch i n  t h e  Pu-239 

and Pu-242 capture chains.  A small concentration of Pu-244 w i l l  bu i ld  up 

i n  res idual  Pu-242, and w i l l  be su f f i c i en t  f o r  resonance i n t eg ra l  measure- 
2 

ments. I f  a very high f l ux  reactor  becomes avai lable ,  @ >> 1015 n/cm sec, 

qui te  high conce11Lral;ions of Pu-244 co1~1-d be produced by t h e  long term 

i r r ad i a t i on  of Pu-239 o r  b e t t e r  of Pu-242. Because of i t s  very long ha l f -  

l i f e ,  pure Pu-244 would be very valuable f o r  heat  capacity measurements on 

plutonium compounds. 

Am-243: Thp high  f l .11~ i-rradiat ion of Pu-239 o r  Pu-242 w i l l  produce high 

p u r i t y  Am-243. Napkin r ing  Am-243 has been used by ANL f o r  chopper cross . - 
sect ion measurements. 21 Am-243 samples w i 3  1 be be s t  f o r  americium chemistry 

(31-242: Q~d.t.e pure Cm-242 can be produced by t h e  f a i r l y  shor t  i r r ad i a t i on  

of Am-241. The curium could be used f o r  cross sect ion measurements, o r  

allowed t o  decay t o  produce pure PU-238. 



011-243: The res idua l  curium a f t e r  t he  Cm-242 i n  t h e  Cm-242 samples have 

decayed w i l l  be qu i te  r i c h  i n  Cm-243. Suf f ic ien t  Cm-243 may be produced f o r  

chopper o r  c r y s t a l  spectrometer f i s s i o n  cross  sect ion measurements. 

(311-244: Cm-244 i s  t h e  most abundant curium isotope produced i n  napkin 

r ings . .  Purer (311-244 f o r  cross  sect ion measurements could be produced by 

t h e  shor t  term i r r a d i a t i o n  of pure Am-243. 

Cm-245: Because of i t s  high cross sect ion,  Cm-245 bui lds  up t o  only a 

small extent  i n  napkin r i n g  Pu. Very small samples of pure (31-245 could 

be produced 'by i r r a d i a t i n g  Pu r i c h  i n  PU-244, then immediately separating 

the  plutonium from Cm and Am. The Pu-245 i n  t h e  resu l t ing  Pu w i l l  then 

beta decay through ~m-245 t o  pure Cm-2:&5. Cf-249 alpha decay would a l so  

produce very small samples of pure Cm-245. The pure Cm-245 samples could 

be used f o r  thermal c ross  sect ion and resonance f i s s i o n  i n t eg ra l  measure- 

ment s  . 
Cm-246: Cm-246 w i l l  bu i l d  up i n  very highly  i r r ad i a t ed  Pu-239, Pu-242, o r  

Cm-244, but  w i l l  be of low pu r i t y .  Cm-246, contaminated with Crn-248, w i l l  

be produced by Cf decay (preferably  californium as  r i c h  as  poss ible  i n  

Cf-250), and could be used t o  obtain a b e t t e r  value f o r  t he  Cm-246 capture 

cross  sec t ion .  

Cm-247: (31-247 w i l l  bu i l d  up t o  a low abundance i.n very highly  i r r ad i a t ed  

Pu-239, Pu-242, 6rCm-244. Perhaps, i f  a very high f l ux  n/cm2 sec) 

reac tor  were ava i lab le ,  it could be b u i l t  up t o  a g rea te r  abundance than 

On-245 and a p i l e  of and ce r t a in  decay proper t ies  of Cm-247 could be deter-  

mined. I f  pure Cm-247 could be obtained, say by isotope enrichment, it 

would be extremely valuable f o r  chemical s tud ies  and heat  capaci ty  measure- 

, ments because of i t s  1.ong ha l f - l . i f e .  

~h-248:  A moderate concentrat ion of Cm-248 could be produced i n  t h e  res idual  

curium i f  Pu-242 o r  Cm-244 were i r r ad i a t ed  f o r  a long time i n  a very high 

f l ux  (@ >> 1015 n/cm2 see)  reac tor .  Very small samples of f a i r l y  pure Cm-248 

can be produced by californium (preferably  r i c h  i n  ~ f - 2 5 2 )  decay. Such 

curium would be useful  f o r  thermal cross section,  resonance in tegra l ,  and 

decay property s t ud i e s .  Also Cm-249 could be produced f o r  decay s tud ies .  

Curium r i ch  i n  ~m-248 w i l l  probably be t he  be s t  curium avai lable  f o r  chemical 

s tud ies .  



Bk-249: The l a rge  scale  i r r a d i a t i o n  of Pu w i l l  u l t imately  produce m i l -  

l igram amounts of ~ k - 2 4 9  f o r  chemical s tudies ,  cross sect ion measurements, 

and s tudies  of Bk-250 produced by neutron capture. 

Cf-249: The beta decay of ~ k - 2 4 9  w i l l  produce pure ~ f - 2 4 9  f o r  thermal and 

resonance cross sect ion measurements. Because of i t s  moderately long ha l f -  

l i f e  and ease of production, Cf-249 samples w i l l  be t h e  best  californium 

f o r  chemical s tud ies .  

Cf-250: Cf-250 i s  a const i tuent  of napkin r ing  californium. Purer Cf-250, 

produced by i r r a d i a t i o n  of Bk-249, might be used f o r  thermal and resonance 

cross sect ion measurements. 

Cf-251: Cf-251 i s  a minor const i tuent  of napkin r ing  californium. It can 

not be produced i n  any degree of p u r i t y  by p i l e  i r r ad i a t i on .  Perhaps b e t t e r  

cross sect ion da ta  can be obtained from t h e  low p u r i t y  samples. Very s m a l l  

samples of qui te  pure Cf-251 could be produced by t he  decay .of cyclotron 

produced Es-251. 

Cf-252: F a i r l y  pure Cf-252 can be obtained by t h e  long term i r r ad i a t i on  

of Pu-239, Pu-242, and Cm-244. A determination of t h e  Cf-252 resonance 

capture i n t eg ra l  would be valuable.  Cf-252 i s  very valuable f o r  studying 

spontaneous f i s s i on .  The chief  i n t e r e s t  i n  Cf-252 production a t  UCRL i s  

i n  i t s  use a s  a t a rge t  f o r  production of heavy elements by heavy ion bom- 

bardment with t h e  Heavy Ion Linear Accelerator. 

Transcalifornium Elements: Isotopes of einsteinium and fermium a r e  a l so  

prod.uced i n  long term i r r ad i a t ed  Pu-239, PU-242, and Cm-244. When l a r g e r  

sarnpies become avai lable ,  b e t t e r  cross sect ion data  on Es-253, Es-254, 

Es-255, Fm-254, and F'm-255 can be obtained. Both 20d E-253 ar@ 480d E-254 

w i l l  be valuable t a r g e t  mater ia ls  f o r  the  production of new heavy nuclides.  
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I . . 
TABLE I 

Nuclide. 

Th-230 
Th-231 

m1-23~ 
'l'h-233 

Pa-231 

Pa- 2 32 

Pa-233 

Pa-234 

Pa-234m 

U-232 

' U-233 

U-234 
U-235 ' 

u-236 

u-237 
I u- 238 

.U- 2 39 

NP-237 
NP-238 

NP-239 
Np-240 

P.U- 2 38 

Pu- 2 39 

Pu- 2 40 

' Pu-241 

Pu-242 

Pu-243 

Pu- 244 

Decay Cqnstants of Heavy Nuclides 
Used f o r  Calculations . 

/ D,ecay Constant 
Decay assumed for .  c cula t ion 

H a l f  - L i f e  Process sec- P- To 
4 - 

8 .  x 1 0  yr a o , . . .  . 

23 min B' 
4 3.43 x 10 yr. a 

1.32 day 

.27.4 .day 
6.66 h r  

1.16 min . 

6.75 day . B- 
9 4.50 x 10 y-r a 

(a> . . Pa- 231 
0 

( a>  u- 232 
2.93 x u-233 

( a >  U-234 
( a >  U-234 

3.05 x 10-lo Ignore 

23.5 min 0' ( a >  NP-239 
6 2.20 x 10 yr a 0 

2.10 day 

2.34 day 

P- 7.3 m i n  ( a.) 

88 y r  - 10 a 2.5 7; 10 
4 2.44 x 10 y r  a 0 

Pi.].- 240 

Ignore 



Nuclide 

Am-241 

Am-242 

Decay Constants of Heavy Nuclides 
Used f o r  Calculations 

. Decay Constant 

Hal f  -Life 

450 yr 

100 yr 

7950 yr 
26 min 

162.5 d 

. 35 yr 
18 ,4  y r  

8000 yr 

6600 yr . . . ' . 

7 > 4  x 1 0  yr 
5 4.2 x 10 yr 

64 min 

314 d 

3.13 h r  

360 yr 

10.9 yr 
4800 yr 

2.2 yr 

Decay 
Process 

a 

8 6  p-, E.C. 

assumed f o r  .calculat ion 
sec-1 TO - 

0 

2.2 x lo-10 Ignore 

( a >  C 0.8 t o  Cm-242 
0.2 Ignore 

( a )  rh-244 

4*94 x PU-238 

6 -28 x lom1' Ignore 

1.19 x PU- 240 

2.02 lo-g Ignore 

0 

9.98 x Ignore 

( a )  Considered .as decaying immediately t o  ..daughter. - 

27 



Thermal Cross Sections and Resonance I n t e g r d s  of 
Eeavy Nuclides 

Thermal (~axwe l l i an  a t  20'. 49~) Resonance In tegra l  excluding 
Process Cross Section - barns l / v  contribution - barns 

(8) capture 27s 

Nuclide 

capture ,  t o  UX2 
capture t o  UZ 

: . capture 
: . : . ; . f i s s ion  

capture 
f i s s i on  

capture 97'. (8 71o(l3) 

capture 
f i s s i on  

. 6(8,1~) capture 310 (calc .  ) ; 340(13), 257(1°) 

capture 
n, 2n 

capture 1 7 0 ( ~ )  600 ( 7, 

f i s s i on  1600s ( 8 ) .  .. 
. . 

capture 



. ., 
Thermal Cross Sections and Resonance Integrals  of 

Heavy Nuclides 

Thermal (~axwe l l i an  a t  2 0 . 4 ~ ~ )  Resonance In tegra l  excluding 
Process Cross Section - barns l / v  ccntribution - barns Nuclide 

capture 
f i s s i on  

:'cal;ture 
f i s s i on  

. - c a ~ t u r e  
f i s s i on  

capture 

capture 

cz~pt-e 

capture t o  l 6h r  ~m-242 750*[:! 
capture. t o  lOOyr Am-242 50s 

f . issio3 ., 3.1* (8) 

f i s s i on  2500* (8) 

(8) 
. , 

.. . . 
f i s s i on  6400+(8) . 

: 16OO+ . . capture . , . . 
Am- 242 

capture 
. . 

capture 
. .  . 

capture ( 8') 
25°*(8) 

f i s s i on  ~ O O *  



~ u d i i d e  

Cm- 244 

Cm- 245 

Cm- 248 

TABLE I1 (Cont) 

Thermal Cross Sections and Resonance In tegra l s  of 
Heavy Nuclides 

Process 

capture 

capture 
f i s s i on  
." . , 

capture 

capture 

capt=e 
f i s s i on  

capture 

capture 

capture 

Themal (~axwe l l i an  a t  20'. 4?b) Resonance In tegra l  excluding 
Cross Section - barns l / v  contribution - barns 

15*(8)20*(15 ) 

* P i l e  cross sect ions  
++ Cross Secticn f o r  m o d e r a t e d  f i s s i on  neutrons 



TABLE I11 

P i l e  Cross Sections Used f o r  ca lcu la t ions  where 
Resonance Flux = 1/12 Thermal Flux 

Cross Section used Cross .,Section Recommended 
f o r  ca lcu la t ions  by Stoughton and Halperin 

18 

Nuclide Process barns .'To . -- barns  

Th-230 capture 27 Th-231 - - -  . 

capture 14.5. Th-?3,3 14.5 +, ' 1 .5  
Th-232 n,2n "'0 0125 h - 2 3 1  . . . .  - - -  
~ a - 2 3 1  capture 200 Pa-232 - - - . . 

Pa-233 capture 

capture 
f i s s i o n  

capture 7 3 U-234 
u-233 1 ..: . 70 .+ 20 

f i s s i o n  617 ---  610 + 38 - ,  

U-234 capture 160 U- 2 35 150 + 20 

u-235 
capture  112 U-236 125 ' f 20 
f i s s i o n  620 - - - 595 + 30 

U-236 capture 

U- 2 37 f i s s i o n  

U- 2 38 capture 

Np-237 capture 

~ p - 2 3 8  f i s s i o n  

Np-.233 capture 

---  
Yip .2'l.O 

Pu-239 
- - - 

Pu- 240 
--- 

Pu-241 

Pu- 242 
- - - 

Pu-243 

Am-244 

Cm-245 

capture 
pu-238 fission 

capture Pu.- 239 
f i s s i o n  

P.u-240 capture 

capture 
Pu-241 ficroion 

Pu-242 capture 

Am-243 capture 

Cni-244 capture 

f i s s i o n  
Cm-245 capture 

end 



TABLE N 

Nuclide 

Am-243 

.Cm-242 

Cm-243 

Cm-244 

Cm-245 

h - 2 4 6  

Cm-247 

on-2118 

Bk-249 

Cf -249 

Cf,-250 

Cf-251 

cf-252 

recyc le  PU-238 

recyc le  Pu-239 

recycle  PU-240 

recycle  Pu-241 

Cross Sections of Heavy Nuclides 
Used f o r  Calculat ions 

, For Resonance Flux = 1/30 Thermal Flux 

Cross Section Cross Section 
ba rns  - To barns  " 

ignore 

u-239 0.0035 

NP-238 

f i s s i o n  

Np-240 

.Pu-239 

Pu-240 

Pu-241 

Pu-242 

Pu-243 

Pu-244 

ignore 

Am-242111 

f i s s i o n  

I 

f i s s i o n  

f i s s i o n  

f i s s i o n  

50 Am-242 

1600 ignore 

Am-244 

Cm-243 

ignore 

Cm-245 

cm-246 

Cm- 247 

.Cm- 248 

.Cm-?49 
Bk-250 

Cf -250 

cf-251 

cf-252 

ignore 

recycle  Pu-239 

recycle  PU-240 840 

recycle  Pu-241 

f i s s i o n  o r  ignore 

f i s s i o n  

f i s s i o n  

f i s s i o n  

600 f i s s i o n  

1800 f i s s i o n  

f i s s i o n  

* Estimated 



TABLE '1 

Composition 3f ~ r r a d i a t e d  % Th-230 - 91% Th-232 Mixture 
i n  Atn3ms per Million I n i t i a l  Th-230 + Th-232 Atoms 

. . 
Time n& ;% 

2 
Th- 230 days n/ cm Pa-231 U-232 Th-232 Pa-233 . .- u-233 Fissions 

o o 90,000 o o 910,000 o o . o . 
2 ~ d r  Flux = 3 x 1013 n/cm sec 

; 8 1 . 1 6 d  3 ~ 1 0 -  89,993 7.3 0 909,961 38.2 0.56 0 

232 d 6 x 1 0  '20 88,554 1,363 77.4 902,280 1,301 . 59457 81 4 
347 d 9 ,: 10 

'20 
87,839 1,977 163.9 898,444 1 9  299 8 9 019 1,925 

695 d 1.8 e 10" 85,731 3,580 5 49 6879035 1,283 13, 356 7,289 
2 For ? l u x  = 1 x 1014 r./cm sec 

1 . 1 6 d  1 > : l o  l9 89,976 24.3 0 909,871 127 3 1 .9  0 

2 . 3 2 d  2 z10 l9 89,951 48.5 0.1 909,742 250.8 7.4 0 .03 



TABLE V ( Cont ) 

Composition of I r rad ia ted  % Th-230 - 91% Th-232 Mixture 
i n   toms per  Million I n i t i a l  Th-230 + Th-232 Atons 

Time . nvt 
.days . - , n/cm2 Th-230 Pa-231 U-232 'Ch-232 Pa-233 u-233 Fissions 

, . 

23.2 d 2 x lo2" 89,515 475 1 9.3 907,419 1,9@ 5 99 23.2 
23 

34.7 d 3 x 10 89,274. 704.7 20.6 906,132 2,550 1,207 71.9 
69.5 d 6 x 88,554 1,363 77.5 902,280 3,576 3,537 

21 
45 5 

116 d 1 x 10 87,603 2,172 199 897,169 4,051 6,794 '1,587 
232 d 2 x 10 85,269 3,892 65 4 884,520 4,196 12,867 7,083 21 

347 3 x 10 ?2,997 5 ,245 1,217 872,048 4,11c7 16,244 15,038 a 
W 

695 d 6 x 10 76,540 7,715 2,837 -835,679 3,974 19,567 44,218 
'23 

1 2 
For Flux = 3 x 10 n/cn sec 

1.16 d 3 x lo1? 89;9~7 72.6 0.2 909,612 332 5.6 0 .03 
2.32 d 6 x 10 lg 89,854 145 0.8 909,225 75 1 22 .O 0.24 
3.47 d g x lo1? 89,782 216 1.8 908,838 1,199 48.6 0 .81 
6.35 d 1.8 x lonCo 89,564 429 - 7.5 907,677 2,118 185 6.23 



TABLE V I  
/ 

Composition of Irradiated Th-232 i n  Atoms per Million I n i t i a l  Th-232 Atoms 
Resonance F l u  per In  E Interval Equal t o  1/12 T h e m  Flux 

Time nvt 
- days - n/,m2 Th-232 Pa-231 Pa-233 U-232 U-233 v-234 U-236 v-237 Np-237 

0 0 L,000,000 0 0 0 0 0 0 0 0 0 
2 "or Thermal Flux = 5 x 1013 n/cm sec 

11.6 5 xlo19 999,275 0.62 . 627 0.003 95.3 1.60 0.003 0 0 0 
23.2 1 x 1 0  20 

46.3 2 x 10 20 997,'102 2.45 ~1,693 0.048 1,128 24.0 0.251 0.002 0 0 
81.1 3.5 x lo2' ' 994,934 4.22 2,126 0.143 2,641 69.6 1.26 0.012 0 0 

116 5 x 10 992,770 5:93 2,301 0.283 ' 4,242 135 3.43 0.050 0 0 20 

2 32 1 x 10 985,592 11.3 2,401 1.03 ' 8,900 463 22.3 0.674 . 0.0008 0.004 
21 

463 2 x 10 21 
971,392 20.3 2,373 3.39 14,570, . . 1,413 121 7.85 0.0098 .0.094 

21 811 3.5 x 10 950,475 30.6 2,322 7.87 18,006 3,017 334 47.8 ' 0.062 ' .1.05 
1160 5 x lop1 930,008 37.9 2,272 12.3 18,950 4,461 '695 134 0.175 '4.26 
2320 1 x lop2 864,914 49.2 2,113 22.3 18,306 7,390 1,476 705 0.932 43.2 
For Thermal Flux = 2 x 1014 n/cm2 sec 

1.16 2 x 1019 999,710 0.25 285 0 4.19 0.26 0 0 0 0 
2.32 4 x 1 0  l9 999,420 0.50 562 0.002 16.5 1.04 0.003 0 0 0 - 

4.63 8 x 1019 998,840 0.99 1,090 0.008 64.0 4.12 0.018 0 0 0 
8.11 1 . 4 ~ 1 0 ' ~  997,970 1.72 1,822 0.024 188 12.5 0.092 0 0 0 

11.6 2 x 1 0  20 997,102 2.45 2,489 0.048 366 25.2 0.262 0.002 o o 
23.2 4 x LO'' 994,212 4.79 4,305 0.185 1,267 96.7 1.96 0.022 o - o 
46 . j  8 \;om 988,457 9.19 6,591 0.684 3,840 357 13.7 0.323 0.0009 0.001 
81.1 1.4 x 10 21 979,888 15.1 8,156 1.86 7,974 960 60.4 2.58 0.0092 0.014 

116 2 x 10 971,392 20.3 8,724 3.40 11,395 1,718 144 9.16 0.0355 0.083 21 

2 32 4 x 10 943,603 33.3 8,863 9.45 16,993 4,484 611 87.4 0.403 1.89 
21 

463 8 x l o  " 890,386 46.4 8,381 19.5 18,031 8,529 1,597 557 2.76 25.7 
811 1 . 4  x 10 816,135 50.9 7,682 25.6 16,658 10,893 2,304 1,702 8.68 129 22 

1160 2 x 10 740,077 49.2 7,041 26.1 15,271 11,169 2,442 2,874 14.8 277 22 



VI ( Cont ) 

Composition of I r r ad ia t ed  Th-232 i n  Atoms per  Million I n i t i a l  Th-232 Atoms 
Resonance Flux 2er I n  E In t e rva l  Equa l  t o  1/12 Thermal Flw. 

Time T 2  
days n cm ' m-232 P a - 2 3  Pa-233 lJ-232 U-233 U-234 U-235 U-236 u- 2 37 NP-237 

For Thermal Flux = 1 x lo1' n/cxn2 sec 



/ TABLE V I I  

Composition of I r rad ia ted  U-233 i n  Atoms per  Million I n i t i a l  U-233 Atoms 
Resonance Flux per  I n  E. I n t e rva l  Equal t o  1/12 Thermal Flux 

* Values of U-237 + Np-237 vary s l i g h t l y  with f lux,  o ther  values depend 

only on "nvt" . 



TABLE VIIb 

Time 
days 

U-237 and Np-23 i n  I r rad ia ted  U-233 
i n  Atoms per  lo8 I n i t i a l  U-233 Atoms 

2 2  lux 5 x 1013 n/cm sec  lux 1 x 1015 n/cm sec 

"nvt I '  2 u-237 ~JP-237 Time "nvt " u-237 NP-237' 
2 n/ cm PPm PPm days n/cm PPm PPm 



TABLE V I I I  

Csmposition of I r radiated U-235 i n  Atoms per Million I n i t i a l  U-235 Atoms 
Reeonan= Flw. per In  E Interval Equal t o  1/12 Thermal Flux 

Time nvt 
days & - U- 2 35 11- 2 36 - U-237 Np-237 Np-238 Pu-238 Pu-239 Pu-243 Pu-241 Pu-242 

0 0 1,000,000 0 0 0 C 0 0 0 0 0 

For Thermal  lux = 5 x 1013 n/cm2 sec 

11.6 5 x d9 964,062 5,49L 3.08 1.33 0.002 0.004 0 0 0 .  0 
20 23.2 1 X ~ O  929,415 10,782 9.01 8.35 '0.018 0.034 0.002 o o o 

46.3 2 x 1 d 0  863,812 20,769 22.2 44.9 0 .U2 0.463 . 0.'012 0.002 0 .O 

81.1 3.5 x 10" 773,987 34,380 40.3 155 0.414 3-17 0.127 0.005 0 0 

11 6 '0 5 x 10- 693,503 46,500 57.5 324 0.857 9.95 0.568 ,A0.026 0.003 o 

232 1 x l o a  480,946 78,010 lo1  1,202 3.33 77.1 8.33 0.721 0.099 0.006 

463 2 x loz1 23,309 113,071 149 3,717 10.6 46 3 85.6 14.1 3.39 0.533 
311 3.5 x lOe1 77,150 130,703 174 7,657 22.0 1,520 39 3 101 35.5 11.1 

1 ~ 6 0  5 x lo'z1 25,733 132,226 176 10,791 3.1 2,747 8 32 273 115 57.6 
2320 1 x loz2 662 116,078 155 15,223 43.9 . 5,391 1,960 8 7 5 .  457 617 
 or Thermal   lux = 2 x 1014 n / c d  sec 

2.32 4 x lG9 971,145 4,412 2.62 0.213 0 0 0 0 0 0 
4.63 8 x lG9 943,122 ' 8,691 9.59 1.59 0.005 0.003 0 0 0 0 
8.11 1 . 4 ~ 1 0 ~ '  902,596 14,869 25 a9 7.69 0.038 0.024 0.001 0 0 0 

11.6 2 x lop0 863,812 20,769 46.8 20.4 0.125 0 .log 0.003 0 0' 0 

23.2 4 x:020 746,171 38,578 130 122 . 0.987 1.84 0.075 0.003 o o 
46.3 8 x io20 556,772 66,873 290 599 5.68 22.7 1.82 0.115 0.012 0 
85.0 1 . 4 7 x l P  340,943 gE;,Og7 497 1,951 20.6 148 20.5 2.37 0.425 0.043 

122 2.1 x 10" 214,92 115,204 606 3,548 , 38.4 391 71.4 11.2 2.79 0.434 
243 . 4.2 x lo" 46,217 132,484 721 8,728 97.0 1,776 492 141 53.8 20.4 
~ 8 6  8.4 x l o  2,136 121,946 669 14,119 158 4,343 1,523 637 323 . 328. .. 

a 

€ 5 0 .  1 . 4 7 x . 1 ~ ~ ~  21.2 99,957 548 14,691 165 5,299 2,008 968 540 1,238 

l a 5  2.1 x loz 0.21 81,710 448 12,771 144 4,785 1,844 918 522 1,888 



TABLE VIII ( ~ o n t )  

Composition of  I r radia ted  iJ-235 i n  Atoms per  Million I n i t i a l  U-235 Atcms 
Resonvlce Flux per  I n  E In terval  Equal t o  1/12 Thermd Flux 

Time , nvt2 
days n cm U-235 U- 2 36 U-237 ~ p - 2 3 7  ~ p - 2 3 8  PU-238 Pu-239 P-1-240 Pu-241 Pu-242 

For Thermal Flux = 1 x lo1' n/cm2 sec 
- - 



t. ime 
cays 

C~mposit ion of I r r a d i z t e d  U-236 i n  Atoins pe r  Mil l ion I n i t i a l  U-236 Atoms 
Resonance Flux pe r  I n  E I n t e r v a l  Equ t o  1 12  Thermal Flux 

For Thermal Flux of 2 x 10' n/c& sec 

nvt, 
n/cmd U-236 U-237 Np-237 NP-238 PU-238 Pu-239 Pu-240 Pu-241 P.u-242 



TABLE X . - 
Composition of Irradiated U-238 i n  Atoms per Million I n i t i a l  U-238 Atoms 

Resonance Flux per I n  E Interval Equal t o  1/30 Thermal Flux 

nvt 
Time & U-238 U-237 Np-237 NP-238 Np-239 PU-238 Pu-239 PU-240 PU-241 - 
0 0 '  1,000,000 0 0 0 0 0 0 0 0 

For T h e d  Flux = 5 x 1013 n/cm2 sec 
11.6 days 5 x 1019 999,395 0.102 0.072 0.0001 170 0.0001 423 3.63 0 . 0 3  
23.2 d 

20 
1 x l o  998,790 0.132 0.214 0.0004 176 0.0011 978 17.2 0.303 

46.3 d 2 x lo2' 997,582 0.144 0.541 0.0012 176 0.0072 1,999 72.8 2.59 
81.1 a 20 3.5 x 10 995,773 0.14y 1.04 O.OC24 176 0.0270 3,309 215 13.2 

116 a 20 5 ~ 1 0  993,967 0.145 1.52 0.0036 175 0.0586 4,394 403 35 .O 
21 232 , d . '1 x 10 -987,969 0.144 3.02 0.0073 . 174 0.233 6,827 1,263 194 

463 ; 'd 
21 2 x. 10 976,084 0.142 5.59 0.0137 , 172 1.76 8,772 3,033 751 

811 d 
' 21 "3.5 x 10 958,522 0.140 8.57 . 0.0210 169 -11.1 9,309 k,73$ 1,517 
21 3.17 years 5 x 10 941,277 0.137 . 10.7 0.0264 166 30.8 ' 9,250 . 5,473 1,929 

6.34 y ' 
22 

1 . x 10 886,003 0.129 14.2 . 0.0351 . 156 94.8 8,727 5,720 2,140 
~ b r  Themal mux = 2 x 1014 n/cm2 sec 

21 ' d q m  8 x 1 0 .  907,712 0.518 12.9 0.120 639. 14.1 8,921 5,81¶ 2,195- ' 

811 a 1.4 x lb22 844,130 0.481 ., 14.6 . 0.135 594 26.5 8,297 F,51i 2,103 
22 . 3.17 years 2 x 10 785;001 0.448 " 14.4 0.133 . 552 29.1 7,716 :,,IS , 1,956 

6.34 y 4 x 6 i . 6 , ' ~ ~  6.351 ' 11.6 6.108 434 24.0 . 6,057 L,028 1,537 
For Thenral Flux = 1 x 1015 n/cm2 sec . . 

11.6 dars 1 x1021  987,969 1.88 1.28 0.033 3,332- 0.037 5,416 92" 129 
21 23.2 d - 2  x 1 0  976;084 2 : 3 2 '  3.39 0.106 3,393 0 . 2 ~ 9  8,233 2,743 645 ' 

46.3 d 
21 4 x 10 952,739 2.;41 , 7.05 0.240 3,332 1.03 . 9,154, 5,086 1,697 
21 81.1 d 7 x l o  9318,765 2.33 10.4 0.363 3,197 2.47 8,927 5,965 2,233 

116 a 1 x %6,003 2.25 ' 12.0. 0.424 ' 3,083 3.73 . 8(612 5,942. 2,267 
22 232 d 2 x 1 0  785,001 1.99 12.8 0.453 2 , 7 p  5.84 7 , 6 3 0 '  5,303 2,031 

463 d .4 x 616,227 1.57 10.4 0.367 2,144 6.02 5,990 4,163 1,595 
811 d 7 ~ 1 0 ~ ~  328,594 1.09 7.20 0.256' 1,491 ,4.58 .4,166 2,89)1 1,109 

3.17 yeers 1 . x ,298,093 -0.757 5.01 . 0.178 1,037 3.24 2,898 2,012 771 
6-34 Y 2 x 1 0 ~ ~  88 ,859 '0 .226  ,1.49 0.053'' 309 0.971 864 6 0 ~ ~  " 2 30 



TABLE X ( ~ o n t )  

Compositim of Irradiated U-238 i n  Atoms per Mlllion I n i t i d  U-238 Atoms 
Resonance Flux per I n  E Interval E q d  t o  1/30 T h e d  Flux 

n v t  
Time - n/cm2 b-246 Cm-247 Cm-21r8 pu-242 Am-241 Am-243 Cm-242 b-244 b-245 . . 

0 0 0 0 0 0 0 0 0 0 

For Thermal Flux = 5 x 1013 n/ca2 sec 

11.6 dayj 5 x l0 l9  0 0 0 0 0 0 0 0 0 

23.2 d 1 x 10 0.003 0 0 0 0 0 0 0 0 20 

46.3 a 2 x 10 o.oi.9 0.00s o o o o o o o 20 

81.1 d 3.5 x 1020 0 .G9 0.038 0.001 0.002 0 0 0 0 0 

116 d 5 x 10 1.8k 0.145 0.011 0.009 0 0 0 0 0 20 

232 d ' 1 x 10 21 22.4 1.62 0.273 0.186 0.006 0 0 0 0 

463 d 2 x 10 201 12.3 5.27 2.71 0.347 0.0015 0 0 0 
811 d 3.5 x 10 855 40.2 42.4 14.2 5.29 0 . 0 3 4  0.0126 o o 21 

I 

3.17 y e a x  5 x 10 21 11793 64.9 133 29.4 25.6 0.181 0.0764 0.0004 0 
6.34 Y 1 x 10 5,021 90.0 764 52.8 348 3.09 2.81 0.0218 0 .oc849 

22 

For T h e m 2  Flux = 2 x 1014 n/cn2 sec 

463 days 8 x 10 21 3,861 22.2 472 3 . 7  166 1-36 0.930 0.0062 O.OCO5 
81.3. d 1 . 4 ~ 1 0 ~ ~  7,136 22.5 1,432 47.9 1,042 9.84 13.6 0.120 0.0455 

22 3.17 years 2 x 10 9,187 21.0 2,321 49.1 , 2,692 26.6 58.6 0.564 0 . 9 6  

6.34 y 4 x 1 0 ~ ~  11,052 16.5 3,617 39.6 10,130 105 575 6.12 8.33 
For Thernd Flux = 1 x 1015 n/cm2 sec 

11.6 day5 1 X 10 21 13.3 0.049 0.149 0.006 . 0.012 0 0 0 0 .  

23.2 d 2 x 10 21 155 0.488 3.78 0.137 0.239 o.oolo o o o 

46.3 d 21 4 x 10 .1,067 2.38 58.3 1.71 8.22 0.0509 0.034 0.00Ol 0 

81.1 d 7 x 10 21 3,160 4 . 3  327 7.20 94.5 0.751 0.396 0.0024 0 

116 d 22 
1 x 10 5,164 4.75 769 13.5 35.6 3.14 2.80 0.0214 0.0058 

22 232 d 2 x 10 9,456 4.36 2,376 27.3 2,784 27.4 59.5 0.571 0.309 

,463 d 4 x 11,444 3.42 3,741 33.0. 10,983 11 3 610 6.49 8.71 . 

81.3. d 22 
7 ~ 1 0  9,382 2.38 3,315 26.4.  19,436 204- . .2,294 25.3 71.7 

3.17yea.r~ 1 x 1 0 ~ ~  6,783 1.66 2,436- 18.8 20,951 221 3,986 44.6 207 
6.34 Y 2 ~ 1 0 ~ ~  2,049 ' 0.493 739 5.66 10,752 '114 5,113 58.0 767 



TABLE X I  

Composition of Irradiated Pu-239 i n  Atoms per Million I n i t i a l  Pu-239 Atoms 
Resonance Flux per I n  E Interval E q u a l  t o  1/30 Thermal F l u  

nut2 Pu-238 Time n/cm Pu-239 Pu-240 Pu-241 Pu-242 Pu-244 Am-2)il ~m-242 
0 0 0 1,000,000 0 0 0 0 0 0 

For Thermal. Flux = 5 x 1013 n/cm2 sec 
11.6 days 5 x 1019 0 939,883 18,151 265 1.79 -- 0.142 0 
23.2 d 1 x 10 20 o 883,380 34,683' 1,001 13.7 -- 1.15 0.0012 
46.3 d 2 x.10 20 0.014 780,360 63,335 3,574 101 -- 8.19 0.0158 
8 1 . 1 d  3 . 5 ~ 1 0  'O 0.154 647,912 96,762 9,245 475 -- 37.5 0.108 

116 d 5 x 10 20 0.730 537,944 120,774 15,950 1,221 -- 93.6 0.333 
232 d 1 x 10 21 14.5 289,385 154,890 56,710 6,499 -- 447 2.16 

463 d 2 x 10 21 184 83,771 130,686 50,262 24,251 -- 1,303 7.57 
811 d 3.5 x 10 773 13,234 66,569 33,514 47,024 -- 1/36  10.2 21 

3.17 years 5 x 1021 1,226 2,443 29,600 16,401 57,046 -- 1 ,15 3 7.49 
22 6 . 3 4 ~  1 X ~ O  603 324 2,140 1,137 51,969 -- 118 0.791 

12.7 y 2 x 1 0  22 10.0 6.76 994. 35 9 29,790 -- - - -- 
22.2 y 3.5 x 10 22 0 0 1,259 469 12,670 -- --  -- 

For Thermd Flux = 2 x 1014 n/cm2 sec 
11.6 days 2 x1020 0.0027 780,360 63,335 3,580 101 0 2.05 -- 
23.2 d 4 x lo2' 0.0198 608,962 105,710 l l ,453 -- 0 13.3 - - 
46.3 d 8 x 0.401 370,834 147,860 29,451 -- 0.047 70.6 - - 
81.1 d 1 .4  x 10 4.05 176,224 152,920 . IF(,080 -- 0.3.1 206 -- 21 

116 d 
21 

2 x 10- 15.1 83,743 130,682 50,936 24,480 0.93 329 l ; 9 l  
232 d 4 x io21 107 7,041 51,100 27,459 52,365 5.1 381 2.43 

463 d 8 x 219 138 5,268 3,151 57,673 17 83.8 0.557 
3.17 years 2 x 10 22 24.1 12.6 294 109 30,293 43 0.10 0.0007 

6 . 3 4 ~  4 ~ 1 0 ~ ~  0.136 0.073 408 15 4 9,689 61 - - -- 
12.7 y 8 x l o  22 0 0 222 85.2 991 64 - - - - 
P.7 2 x l ~ 2 3  0 0 - 11.2 4.32 -- 51 -- -- 



TABLE X I  (Cont ) 

Compositiox of I r r a d i ~ t e d  Pu-239 i n  Atoms per Million I n i t i a l  Pu-239 Atoms 
Resonance Flux per I n  E Interval E q d  t o  1/30 Thermal F l u  

Time n jh2 cm PU-238 3 - 2 3 9  Pu-240 Pu-241 Pu-242 Pu-244 Am-241 Am-242 
For Thermal Flux = 1 x 1015 n;.:m2 sec 

I l . 5  day; 1 x lorJ- 0.043 289,385 154,890 37,063 . 6,500 - - 22.5 -- 
23:> d 2 x loa 0.654 83,743 130,682 51,119 25 , 300 -- 66.0 -- 
46.3 d 4 ~ l o ~  5.10 7,014 51,101 27,612 52,561 - - 76.6 0.49. 
81.1 d 7 x loa 13.3 174 9,306 5,597 -- -- 26.9 -- 

115 d 
22 

1 X ~ O  15.9 10.6 1,618 984 53,077 -- 6.09 0.041 

233 d 2 x 10.0 4.42 64.9 24.7 3 ,430  -- 0.03 0.00014 

463 d 4 x 2.-7 1.23 89.9 34.1 9,733 - - - - -- 
3.17 years 1 x 0.058 0.026 38.3 14.7 3 9  - - -- -- 
6 . 3 4 ~  2 x102' 0 0 4.81 1.85 -- -- -- --  

I ? . ~  Y 4 1 ~ 2 3  o o 0.070 0.027 -- -- -- -- 



TABLE X I  (Cont) 

Composition of I r radia ted  Pu-239 i n  Atoms per Million I n i t i a l  Pu-239 Atoms 
Resonance Flux per In E Interval  Equal  t o  1/30 Thermal Flux 

Time - Am-243 011-242 ~m-243 Cm-244. Cm-245 011-246 Cm-247 ~m-248 ~k-249  Cf-249 Cf-250 Cf-251 Cf-252 --- 
- 0 0 0 0 0 0 0 0 0 0 0 0 . o  0 

1" Q 

For Thermal Flux = 5 x 10 n/cmL sec 

11.6 days 0 0 0 .  0 0 0 0 0 0 0 0 0 0 

23.2 d 0.019 0 0 0 0 ' 0 0 0 0 0 0 0 0 
46.3 a 0.201 0.227 o - 0 o o o o o CI o o o 
81.1 d 2.46 1.98 0 . 0 0 ~  0.027 o 0 0 0 0 0 0 . o  . o 

116 a 9.32 7.04 0.0107 0.217 o o o o o o o o o 

232 d 106 67.4 0.205 4.02 0.0115 0.002 0 0 0 0 0 0 0 
463 d 890 j\91 2.38 74.8 0.356 0.049 0 o o o o o o 
811 d 3,495 830 8.83 5 88 3.90 1.18 0.005 o o G o o o 

3.17 years 6,721 813 12.2 1,815 14.2 6.78 0.040 0.005 O . O O O O ~  o 0 0 0 - 
6.34 y 13,664 135 3.65 9,827 93.1 115 . 0.969 0.274 0.00081 0.00028'0.00046 0.00014 0.00021 

12.7 Y .12,652 - - - 25,565 263 892 9-07 6.65 0.0239 0.0112 0.0176 0.0060 0.0181 
22.2 y 6,206 - - -- 29,867 3 6  2,620 28.5 46.7 0.181 0.096 0.148 0.053 0.233 . 

For Thenoal Flux = 2 x 10IL n/c$ sec 

11.6 days 0.291 0.064 0 o 0 o 0 o 0 Q 0 0 o 

81.1 d 

116 d 

232 d 

463 d 

3.17 years 

6.34 Y 

12.7 Y 

3 . 7  Y 



Composition ,of Irradieted Pu-239 i n  Atoms per Million I n i t i a l  Pu-239 Atoms 
Resnance F l u  per I n  E Interval Equal t o  1/30 Thermal Flux 

, . 
Time Am-24: &-242 Cm-2L3 131-244 01,-245 011-246 Cm-247 Cm-248 Bk-249 Cf-249 Cf-250 Cf-251 Cf-252 

2 
. For Thermal Flux = 1 x 10'' n/cm sec 

11.6 days 10E 4.14 0.014 4.0 0.012 0.002 0 0 0 0 0 0 0 

23.2 d 8% 30.3 0.19 -76 0.36 0.054 o.oocll o o o o o 0 .  

7 .  46.3 d 4,63C 116 1.19 944 6.67 2.39 0.0121 0.0017 0 0 0 0 0 
81.1 d - - 177- -- - - - - -- -- - - -- - - -- -- - - 

116 d 1 3 , 9 3 5 1 6 9  2.73 10;655 1 0 1 .  122 1.026 0.287 0.0011 0.00019 0.00058 0.00018 0.00035 

232 d 12,920 92.7 1.57 30,501. 312 .1,009 10.21 7.31 0.0368 0.00085 0 . 0 2 ~  0.0084 0.0373 
463 d 4,828 25.6 0.43 42,633 449 4,051 44.3 83.1 0 ~ 4 7 4  0.0127 0.354 .0.126 1.28 

. . 3.17yeare, 161 0.54 0.01 17,704 188 7,611 86.2 634 3.84 0.111 3.03 1.10 26.3 

6.34 Y -- -- -- 2,216 23.6 3,697 42.2 1,064 . 6.54 0.192 5.21 1.90 67,6 

P 12.7 Y -- -- -- 32.0 3 .34 .  352 4.03 556 3.44 0.101 , 2.75 1-00 42.4 
-1 



TABLE XIb 

Time 
-- 

0 

11.6 days 

23.2 d 

6 46.3 d 
81.1 d 

116 d 

232 d 

463 d 

3.17 years 

6.34 Y 

12.7 Y 

Composition of I r rad ia ted  Pu-239 i n  Atoms per  Million I n i t i a l  Pu-239 Atoms 
Resonance Flux per  I n  E In te rva l  Eq  t o  1 12 Flux 

Fcr Thermal Flux of 2 x 13 n/c& sec 

Thermal 
nvt 

n/cm2 Pu- 2 39 Pu-240 Pu-241 PU-242 ~m-243 Cm-244 ' ' 



TABLE X I 1  

Composition.of Irradiated Pu-242 i n  Atoms per Million I n i t i a l  Pu-242 Atoms 
For Napkin Ring P i l e  Flux 

0 0 1,ooo,oc~o 0 0 0 0 0 0 0 0 0 0 0 0 0 
For !Chkrmal Flux = 2 x 1014 n/cm2 sec 

20 11.6 days 2 x 10 988,665 10.3 10,851 181 0.22 0 0 0 0 0 0 0 0 0.07 0.002 
20 23.2 d 4 X ~ O  977,458 20.8 ~ , 5 0 0  730 1.63 0.059 o o o o o o o 0.54 0.02b 
30 46.3 d 8 x l o - .  955,424- 41.3 41,371 2,861 11.0 1.06 0.002 0 0 0 0 0 0 4.09 0.392 

116 d 
21 2 10- 892,258 100 90,774 1 5 , p o  109 28.4 o . i i 4  0.008 0 0 0 0 0 51.0 9.48 

232' d 4 x 10" 796,124 190 145,791 55,571 476 272 1.72 0.218 0.0005 0 0.0002 0 0 284 74.9 

463 d . 8  x l 0 "  633,814 339 190,048 162,369 1,592 2,040 17.3 4.88 0.0176 0.0015 0.0093 0.0028 0.0050 1,186 387 
92 3.17 years 2 .  x 10- 39,819 622 144,388 425,428 4,516 18,011 186 160 0.764 0.0918 0.537 0.184 0.857 4,017 1,479 

6.34 p 4 x lo''2 102,284 799 - 51,000 485,022 5,265 55,305 609 1,284 6.73 0.912. 5.19 1.85 16.3 4,925 1,879 
12.7 v 8 x 10'2 -U,om 825 5,273 242,648 2,655 87,251 985 5,633 30.8 4.40 24.7 8.93 124 2,542 976 

F 22.2 p 1 . 4 . ~  749 56,284 617 . 64 ,u3  7 3  10,613 58.9 8.58 47.9 17.4 302 593 228 
.o 2 

Foi- Thermal. Flux = 1 x 10'' n/cm sec 
11.6 days 1 x 944,594 251 49,504 5,226 - 18.8 2.25 0.006 o o o o o o 1.45 0.i64 

.23.2 d 2 x loa 892,25$3 494 89,702' 15,995 106 27.4 0.110 0.007 o 0 0 .O 0 9.92 1.84 
a 46.3 d 4 x l 0  796,124 940 144,822 55,253 472 268 1.69 0.210 0.0004 0 0.0002 0 0 56.2 14.8 
22 116 d 1 x 10 565,525 1,998 192,230 ,220,443 2,218 3,683 33.4 12.2 0.0515 0.0010 0.0292 0.0092 0.0201 349 119 

232 d 2 x 99,819 3,097 145,981 441,16c 4,676 18,385 190 162 0,840 0.0201 01577 0.198 1.02 830 306 
463 d 4 ~ 1 0 ~ ~  102,284 3,979 50,869 532,362 5,769 58,337 641 1 , 3 9  7.65 0.207 5 -75 2..05 22.4 1,080 . 411 

3.17 years 1 x +3,500 3,998 1,682 209,598 2,290 97,865 1,109 8,573 52.0 1.50 41.0 14.8 363 437 168 . , 

6 . 3 4 ~  2 x l ~ ~ ~  3,353 . 26,llT 286 46,349 529 13,762 84.7 2.48 67.5 24.5. 881 54.6 21 
12.7 y 4 ~ 1 0 ~ ~  2,339 377 4.13 4,382 50.1 7,083 43.8 1.29 35.0 12.8 541 0.79 0.30 



TABLE X I 1 1  

Composition of Irradiated Cm-244 i n  Atoms per Million I n i t i a l  Cm-244 Atoms 
For Napkin Ring P i le  Flux 

nvt2 
Time n cm Cm-244 011-245 011-246 Cm-247 Cm-248 Bk-249 Cf-249 Cf-250 Cf-251 ~ f - 2 5 2  
0 0 1,000,000 0 -  0 0 0 0 0 0 0 0 

For Thermal Flw = 2 x 1014 n/cm2 sec 
11.6 days 2 x lox 994,823 3,334 159 0.134 0 0 0 0 0 0 
23.2 d 4 x 1 0 "  989,674 5,620 568 0.930 0.014 ' 0 0 0 0. 0 

34.7 d 6 x loX: 984,551 7,182 1,146 2.73 0.067 0.00003 0 0 0 0 
2C; 

46.3 d 8 x 10 979,454 8,243 1,840 5.65 0.191 0.00014 o 0.00002 o o 
1.16 d 2 x lon 949,424 10,139 6,941 42.8' 4.12 0.0082 0.00032 0.0022 0.00044 0.00027 
232 d 4 x 1 0 ~  901,406 9,877 15,711 136 30.4 0.0968 0.0067 0.0432 0.0119 0.0125 

463 d . 8 x loz 812,532 8,909 3,372 3 8  166 0.711 0.0729 0.442 0.144 0.354 
3.17 years ' 2 x 1 0 ~  595,115 6,525 64,962 713 1,084 5.53 0.723 4.15 1.46 9-51 

6.34 Y 4 x loz 354,162 3,883 89,982 1,011 3,489 18.8 2.63 14.8 5.32 58.8 
12.7 Y 8 x 10" 125 ,43  1,375 85,930 976 8,256 45.5 6.57 36.8 13.3 206 

For Thermal Flux = 1 x 1015 n/cm2 sec - 
21 11.6 days 1 x 10 979,033 8,987 2,615 9.69 0.412 0.0004 0 * 0 0 0 

23.2 d 2 x loa 958,505 10,212 6,968' 43.0 4.12 0.0084 0.000~96 0.0022 0.0004 0 

34.7 d 
21 3 x 1 0  938,408 10,220 11,460' 88.1 13.8 0.0384 0.00042 0.0139 0.0034 0.0015 
a 46.3 d 4 x 10 918,733 10,041 15,843 137 30.5 0.102 0.00140 0.0449 0.0124 0.0123 

116 d 1 x 10" 309,046 8,848 39,139 407 274 1-35 0.0301 0.879 0.295 1 .OO 

232 d 2 x loz '  554,555 7,158 67,935 744 1,115 6.22 0.162 4.55 1.60 12.0 

463 d 4 x 428,442 4,686 98,201 1,101 3,689 21.8 0.610 16.8 6.03 87.6 
3.17 years 1 x lo2' 1'20,152 1,314 90,833 1,033 11,207 68.4 1.99 54.1 19.6 5 47 

6-34 Y 2 x lo2' . 14,436 ,158 35,756 408 13,666 84.2 2.47 67.2 24.4 915 
12.7 Y 

4 102z 208 ?.28 3,175 36.3. 6,304 39.0 1.15 31.2 11.4 
I 

486 



TABLE XIV 

Compa~ison 3f Measured an Calculated Yields for  Napkin -3ngs '2 Yields i n  atoms per 10 atoms Pu-239 I n i t i e l l y  Presenc 

Napkin Rixg : W L  52 55 KAPL 54 * k i ~  64 ANL 17 KAPL 63 

Reported n-rt 3.7 x 10 4 x loa 7.5 x 10 21. 21 1.1 x 113 22 1.4 x 10 22 1.46 x' ;022 

'Thermal nTt 
2.6 x 10 21 assm.ed for  conparison 

CaLculated values 5 x, lo1: 5 x1~13 2 x 10 14 2 x 10 14 2 x 10 14 2 x 10 
14 

f o r  Flux of 

Measured Calculated Measured Calculated Measured Calculated Measured Cdculated Measured Calculated Measured Calculated 

PU-238 170 410 --- 1,200 287 170 123 200 55 140 . 34 60 

fi-239 38,500 40,000 7,560 7,800 1,640 1,500 50 84 24 48 25 25 

Pu-240 lll,OOO 103,000 55,700 56,000 25,700 25,000 1,150 2,100 223 700 302 . 330 

PU-241 46,600 45,000 30,80c 29,000 16,400 14,500 75 0 1,200 109 360 98 135 

Pu-242 35 , 700 34,500 48,700 s0,OOG 54,800 58,000 54,800 54,000 34,900 45,000 44,500 37,000 
Pu-244 --- 0.5 1.6 1.2 9 9.0 21 22 18.2 29 34 38 

ul 



FIG. I 
PRODUCTION OF HEAVY NUCLIDES FROM T h - 2 3 0  

T h - 2 3 2  AND U - 2 3 3  





C m -  248 

FIG. 3 
PRODUCTION OF H E A V Y  NUCLIDES FROM U-238 
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FIG. 4 
PRODUCTION OF HEAVY N U C L I D E S  FROM P u - 2 3 9  

P u - 2 4 2  AND C m - 2 4 4  



THERMAL FLUX = 3 x n/'m2 sec 
RESONANCE FLUX = 1/12 THERMAL FLUX 

- - - - 
- 

- - - - - - 
- 

I I 1  1 1 1 1 1  I  I 1 1 1 1 1 1  I  I 1  1 1 1 1 1  

loz0 1o2I , loz2 loz3 

INTEGRATED FLUX - nvt (n/cm2) 
I I 1  1 1  1 1 1  I I I 1 1 1 . 1 1 1  I I 1  1 1 1 1 1  I I 1  1 1 1 1 1  

I 
I I 1  

10 100 - 1000 

T I M E  ( d a y s )  PPCO.-c - 2 4 2 3  

Fig. 5 ' Composition of p i l e  i r r a d i a t e d  ionium; sample i n i t i a l l y  conta ins  
91% ~ h - 2 3 2  p lus  9qb ~ h - 2 3 0 .  



Fig. 6-1 Composition of pile irradiated thorium. 
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THERMAL FLUX = 5 x l o t 3  n / c m 2  sec 
- RESONANCE FLUX = 1/12 THERMAL FLUX 
- FAST F L U X =  THERMAL FLUX 
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Fig.  6-2 Composition of p i l e  i r r ad i a t ed  thorium. 



Fig .  6 -3  C~l f i pus i  LLU'II of p i l e  i r r a d i a t e d  thorium. 



INTEGRATED FLUX-nv t  (n/cm2) P P C ~ - c  - 2 4 2 7  

Fig .  7 Composition of p i l e  i r r ad i a t ed  U-233. (The compositions shown 
a r e  dependent only  upon "nvt", and w i l l  be representa t ive  of any rea- 
sonable reac to r  flux a s  long a s  @res/$themll equals 1/12. ) 

I 



I N T E G R A T E D  FI.UX - nvt  (n/crn2)  

I I 1  1 1  1 1 1 1  I .I 1  1 1  I 1 1 1  I I I 1 1 1 1 1  I I 1 1  I 1  1 1 1  I  
10 100 1000 10000 

T I M E  ( d a y s )  PPCO.-C-2428 

Fig .  8-1 Composition of pile irradiaeed U-235. 



Fig .  8.-2 Composition of p i l e  i r r a d i a t e d  U-235 ; 
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Fig. 8-3 Composition of pile i r r sd in t ed  U-235. 



Fig. 9 Composition of pile irrgdiated U-236. . 



FAS'I' FLUX = I / S  'I'HEHMAL FLUX 
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- 
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- 
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INTEGRATED FLUX nvt (n/crn2) 

TIME ( d a y s )  PPCO.- c . 2432  

, 

Fig .  10 1 Compooition of  p i l c  irradiated U-238. 



INTEGRATED FLUX - n v t  ( n/cm2) 

I I  1 I l l 1 1  I I  1 1  I l l 1  I  I 1 I 1 1 1 1 1  I I  1 1 1  1 1 1  
I 10 100 .I000 10000 

T I M E  ( d a y s )  PPCO: C . 2432  

Fig.  10-2 Composition o f  p i l e  i r r ad i a t ed  U-238 



INTEGRATE0 FLUX - n v t  ( n / c m 2 )  

I I 1  1  1 1  1 1 1  I I 1  1 1  1 1 1 1  I I 1  1 1 1 1 1  I I 1 1  1 ( 1 1  I 
10 100 1000 10000 

T I M E  ( d a y s )  PPCO.-c - 2 4 3 4  

Fig. 11-la Composition of pile i . r ra .di  a . t . ~ i i  Fu-239. 



Fig.  11- lb  Buildup 3f very  heavy nuclides i n  p i l e  i r r ad i a t ed  Pu-239. 
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Fig .  11-2a Composition of p i l e  i r r ad i a t ed  Pu-239. 



. . INTEGRATED F L U X -  nvt  (n /cm2)  
I I I 1  I I 1 1  1 1 1 )  I I 1  1 1 1 1 1  

10 
I I 1  1 1  1 1 1 1  

100 
I 1 1 1  

1000 10000 
T I M E  ( d a y s )  P P C ~ - c  - 2437  

Fig.  11-2b , Buildup of very heavy nuclides i n  . p i l e  i r r ad i a t ed  Pu-239. 



Fig. 11-3a Composition of pile irradiated Pu-239. 
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L I  I 1 1  I I 1 1 1 1 1 1 1  I I 1  1 1 1 1 1  I I 1 1 1  1 1 1 1  I I I I I  
10 - 100 1000 10000 

T I M E  ( d a y s )  

Fig. l l b  ComFosition of' pile iqradlated Pu-239 for a pile t'lux with 
Zre,lBth = 1/12. 



I N T E G R A T E D  FLUX - n v t  ( T H E R M A L )  FOR 9 r e s  / ' b t h  = 1 / 3 0  

I I I I l 1 1 l 1 1  ' I I 1  1 1  1 1 1 1  I I I 1 1 1 1 1 1  

1020 
I I 1  1 1 1 1 1  

l o 2  l o z 2  l o z 3  loz4 , 
P . P . C o . - C - 2 4 4 6  I N T E G R A T E D  FLUX - n v t  ( T H E R M A L )  FOR 9 r e s  / 9 t h  = 1/12  

Fig.  l l c  Comparison of t h e  buildup of. heavy nuclides i n  Pu-239 f o r  a 
p i l e  f l ux  with flres/flth = 1/12 and f o r  a p i l e  f l u  with flres/flth = 1/30. 
Curves p lo t t ed  so t h a t  t he  Pu-239 burnout curves a r e  superimposed. 



INTEGRATED F L U X -  nvt  ' (n/crn2)  
I I I I l l  -1 I 1  1  1 1  1 1 1  I I I I I I I I  I I 1  1 1 1 1 1  I I I I  

10 , . 100 . . 1000 10000 

T I M E  ( d a y s )  PPCo..C . 2 4 4 0  , 

Fig. 12-la Co~nposltlon of pile i r radiated ku-242. 



INTEGRATED FLUX - n v t  ( n / c m 2 1  
L 1 1  I l l  I I I I 1 1 . 1 1  I I 1  1  1 1 1 1 1  I I 1  1 1 1 1 1  I I I ,  

10 100 1000 10000 

T I M E  ( d a y s )  PPCo..C - 2441 

Fig,. 12- lb  Buildup of very heavy nuclides i n  p i l e  i r r ad i a t ed  Pu-242. 



h ' i g .  12-'c'a . Composition of' p i l e  . i r rad ia ted  Pu-242. , 



Fig.  12-2b ~ u i l d u p  of  ve ry  heavy nuclides i n  p i l e  i r r ad i a t ed  Pu-242. 



Fig. 13-1 Composition of pile irradiated h - 2 4 4 .  



Fig .  13-2' Composition of p i l e  i r r ad i a t ed  Cm-244. 






