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Department of Chemical Engineering; University of California 
Berkeley, California 94720 

ABSTRACT 
Calcia stabilized zirconia and yttria doped thoria are used as 

oxide electrolytes at elevated temperatures to measure the activities 
of gallium in Ga-In, Ga-Sb and Ga-In-Sb liquid alloys. The measured 
Ga activities of Ga-In melts are used to calculate enthalpies of mixing, 
which reach a maximum of 226 calories per mole at x G = 0.53. The 
measured Ga activities in Ga-Sb alloy melts are shown to fit a 
chemical reaction model postulating complexes in the melt to explain 
stabilization time constants on the order of one day and to result in 
large negative enthalpies of mixing. The limited investigation of Ga 
activities in Ga-In-Sb showed that Ga activities deviate strongly from 
ideality,as expected. 

The quasi-chemical model is examined, and the higher order 
derivations of Guggenheim are modified to account more fully for the 
second nearest and third nearest neighbor interactions in a cubic 
lattice. These higher order extensions more closely approximate the 
a parameter or zeroth order quasi-chemical model in predictions of the 
activity coefficients than the well known first order quasi-chemical 
model. 
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I. GENERAL INTRODUCTION 
Solid state electrochemical methods were applied to the study of 

the thermodynamic properties of Ga-In-Sb liquid alloys. The experi­
mental investigations on the ternary required that the available 
data on two of the corresponding binaries be verified. The In-Sb 
system has been investigated quite thoroughly by Terpilowsky, 

2 3 
Hoshino et al., and Chatterji and Smith using liquid and solid 
electrolyte techniques. Also, the Ga-Sb system has been experimentally 

4 explored on a limited basis by Danilin and Yatsenko using an electrolyte 
5 technique, adding to the earlier study by Schottky and Bever through 

liquidus measurements. The Ga-In system has been somewhat more 
thoroughly explored by Klinedinst et al. using a solid state electrolyte 
technique, by Svirbely et al. using studies of the liquidus as 

o 
determined by resistivity measurements, and by Denny et al. using 
cooling and melting studies of given alloy compositions followed by 
metallographic examination of the quenched alloy melts. 

The liquidus in the Ga-In-Sb ternary system has been explored 
g experimentally by Krister and Thomas. Component activities in the 

tenary system have been calculated by Blom and Plaskett using 
activity data for In-Sb, Ga-Sb,and In-Ga,activity data for the 
InSb-GaSb psuedo-binary, and liquidus data for the ternary. In this 
study, activities of gallium in the Ga-In and Ga-Sb systems were studied 
further and the gallium activities in the Ga) (In1 Sb system studied for 
a gallium rich alloy. 
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Recent work on the Ga-In-Sb syscem was spurred on by the important 
semiconducting properties of the intermetallics GaSb and InSb and by 
Gunn-effect device applications of Ga In, Sb solid solutions. The 
semiconducting properties of GaSb are much like those of Ge or are superior. 
Also, both GaSb and InSb are good candidates for light emitting diode 
(LED) materials in the infrared region. The interest in InSb is 
mainly due to the Gunn effect exhibited when a magnetic field is 
applied. The greatest interest is in Ga In, Sb as a Gunn-effect 

11-13 device material. Gunn-effect devices are useful for the 
amplification of small signals, generation of microwave signals, and 
generation of microwave power. 

Studies of Ga In, Sb have shown the Gunn effect for the composition 
range 0.3<x<0.54. The important characteristics of Gunn effect 
materials, such as the bandgap between the valence and conduction bands 
and the energy separation of the sub-bands of the conduction band, have 

17-22 been studied by a number of methods. From such data, as described 
above, and from Monte Carlo calculations of the characteristics important 

12 to the operation of Gunn-eiFfect devices, Hilsum and Rees have 
theorized that Ga In, Sb with 0.7<x<0.95 will have very favorable 
Gunn-effect characteristics due to electron transfer between 3 sub-
bands in the conduction band; in GaAs, the Gunn effect depends on 
transfer between two sub-bands. As of 1970 efforts to fabricate a Gunn-
effect device from Ga In. , Sb have failed for values of x>0.55. The 
failures have been attributed to the lack of sufficiently lightly 

12 doped n-type Ga In. Sb. 
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Because of the interest shown recently in the quasi-chemical 
treatment, a closer examination was accorded this treatment and its 
derivation. By using mathematical procedures described by Guggenheim/ 
the quasi-chemical treatment was extended to next-nearest neighbors 
and third nearest neighbors for a simple cubic lattice. Though the 
mathematical procedures of Guggenheim were followed, a new method of 
bond counting was used. This difference led to a conclusion different 
from that reached by Guggenheim regarding the consolute temperature. 
In addition, by going to higher order approximations,the quasi-chemical 
model was shown to yield activity coefficients approaching those of the 
a-parameter model (i.e., 0 order quasi-chemical model). 
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II. THEORY 
A. Introduction 

The study of the activity of Ga in Ga-In, Ga-Sb,and Ga-In-Sb melts 
was conducted with the use of solid oxide electrolyte. Use of such 
oxides for the purpose of determining Gibbs energies at elevated 
temperatures was pioneered by Kiukkola and Wagner. These materials have 
since been used for the measurement of the Gibbs energies of formation 

1-9 of many oxides and the partial molar Gibbs energies of components 
of alloys. 1' 2' 1 0- 1 5 

B. The Nerns*. Equation 
As in emf measurements in aqueous electrolyte applications, 

the interpretation of high temperature solid oxide electrolyte emf 
measurements utilizes the Nernst equation. In the system used here, the 
relevant equilibrium for the development of the Nernst equation is the 
one that concerns the formation of Ga-0, form 0- and Ga, .. The cell 
is the following: 

A B 
wlGa.Ga^O-jllsolid oxide electrolyte IIGa.O.,, Ga Alloy|w . 

The Gibbs energy of formation of Ga ?0, is expressed for either 
half-cell as: 

Thus, 

A G ° = "Ga z 0 3

 + 6 M

e - " 2 pGa " 3 t J

Q 2 - (1) 

6{u - » . ) = 2(y G - y G ) + 3{u , . - p , ) - ( U „ - v ) ( 2 ) 
e B e A B A 0 g 0 f t 2 3 g 2 3 f l 
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But 

u - u = AG •= -FE (3) 
e B eA e 

a G a R 
ur„ " >VJ. = R T 1 n a ( 4 ) 

^ B G a A a G a A 

Choosing pure Ga as the reference state gives: 

ir, = 1 (5) 
a a A 

In the experimental situation given, the Ga„0, remains the only solid 
and the Ga and Ga-cr,oy are •iquid so thai: the following holds: Since 
the electrolytes us<;d are pred* inmtely conductors of 0 ions with 

2-
transport numbers of 0 better than 0.99, if the external circuit 
represented by the emf maasurement circuit has a resistance greater 

3 than a factor of 10 of that of the internal resistance of the cell to 
2-

minimize meter leading, then 0 will equilibrate between the two 
half-cells giving: u , - u , - Under the abovi conditions, Eq. (2) 

°i °A~ 
reduces to: 

3FE 
1 n aGa(alloy) = " Tf ( 5 ) 

Thus, the gal Mum activities can be obtained from the measured concentration 
cell voltages. 
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C. Solid Oxide Electrolytes 
Solid oxide electrolytes are materials which carry current 

predominately i.i the form of doubly negatively charged oxygen sublattice 
vacancies. The theory for the conductivity of these materials is 
presented in several other places, and only a brief review of ths 
material is presented here. 

The crystals of interest for use as solid electrolytes are those 
ionic crystals with a large band gap between the valence and con­
duction bands, serving to minimize electronic conduction. The conduction 
in such cases is due to the existence of charged dpfects. Ionic 
conduction was first studied in pure crystals. In those crystals, the 
defects are created by thermodynamic equilibrium which result in 
either pairs of interstitial atom and lattice vacancies (Frenkal defects) 
or pairs of cationic and anionic suhlattice vacancies (Schottky defects). 
The interstitials and vacancies are subject to diffusion and thermal 
motion. Thus, the motion of these defects is random. However, once 
charged and subjected to an external electric field these defects no 
longer move randomly but with the field, giving rise to the ionic 
current. In pure ionic crystals where Frenkel defects dominate, the 
ionic current can be due to charged interstitials, charged vacancies, 
or botl, since the diffusivities of these defects are not in general 
equal. The same is true in crystals dominated by Schottky defects. 
These crystals, as ionic ronductors, are normally highly dependent 
on the partial pressure of one of the components over the crystal and 
as such are ionic conductors over only a narrow range of partial 
pressure of that component, usually the anionic component. 
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To be useful for thermodynamic measurements, the charge carrier 

must not be ambiguous but rather a single species. In order to 

rid the electrolytes of ZrO, and ThO„ of the objection of a narrow P Q 

range and to minimize the ambiguity of the current carrier, CaO and Y„0, 

are used to dope the electrolytes. The effect is to replace the 

tetravalent Zr and Th with the divalent Ca and trivalent Y. The effect 

is to create oxygen sublattice vacancies. By so doing, the P n range 
u2 

is broadened since the concentration of the oxygen vacancies is not 
dependent on the P n over this range. Furthermore, the concentration 

u 2 
of the one defect is increased greatly over that of the other of the 
defect pair, so that this defect when charged becomes the dominant 

defect for ionic conduction purposes. 

D. P n Range of CSZ and YDT 
2 

A number of investigations have been conducted on earlier stabilized 

zirconia and yttria -doped thofia to this date concerning the optimal 
21-25 compositions and accompanying P n range. The main feature of these 

u 2 
studies is the fact that the conductivity of the electrolyte increases 

as the doping oxide content is increased until the doping content 

reaches about 15 cation percent.at which ixiint the conductivity as a function 

of doping oxide begins to decline. This behavior is expected since 

the doping initially increases the anion vacancies available for ionization 

and conduction and at some point further doping destroys the crystallinity 

of the tetravalent oxide lattice leading to a decline in the conductivity. 

Of itself, maximum conductivity is highly desirable in a solid 

electrolyte. However, increasing the doping oxide concentration has the 

added benefit of extending the useful P Q range cf the electrolyte, 
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subject to the same upper dopant concentration limit. Thus 
Z r0.85 C a0.15°1.85 ( C S Z ) a n d T hO.85 Y0.15°1.925 ( Y D T ) h a V e b e e n t h e m s t 

studied compositions and are the electrolytes used here. 
Figure 1 shows the conservative and liberal lower oxygen partial 

pressure limits to the electrolytic domain of CSZ as derived from the 
data of Schmalzreid and Patterson et al. by Patterson. This 
figure shows that the Pg in equilibrium with Ga in the temperature 
range of interest (T<1000°C) does not lie within the electrolytic domain 
of CSZ as defined by the conservative lower limit. This limit is derived 
from the earlier work of Schmalzreid. The later work of Patterson, 

22 24 25 
Bogren and Rapp, Patterson, and Tretyakov ' define domain boundaries 
which place that part of the Ga„0, - Ga - 0~ equilibrium of interest 
in the electrolytic domain of CSZ. Included in Fig. 1 is the lower 
Pg electrolytic domain boundary of YDT as derived from the data of 

OO pQ -JA 
Tretyakov and Muan, Hardaway et al., and Lavine and Kolodney 

24 by Patterson. 
Plotted also in Fig. 1 are the standard Gibbs energies of formation as 

a function nf temperature of the various oxides of the species of interest 
based on a single mole of 0,. The Gibbs energy of formation of the oxide 
of gallium and the oxide of indium are obtained from the iata of 

2 3 Klinedinst and Stevenson. * The data for gas'ous suboxide of gallium, 
Gii,0(g), is derived by Seybolt. The data for the solid suboxide of 
gallium, Ga 20{s), and the most stable oxide of antimony a.3 derived from 

31 Coughlin. i-rom this graph it is obvious that for the temperature 
of interest ,'600°C<T<1000°C), the sequioxide of gallium, Ga 20, is by 
far the most stable. This implies that the formation of the other oxides 
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is so heavily disfavored that Ga-0, is the only solid to exist in the 
presence of the Ga and Ga-alloy melts studied here. 
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III. EXPERIMENTAL APPARATUS AND PROCEDURES 
A. Introduction 

In order to study the activity of Ga in high temperature melts 
using a solid oxide electrolyte technique it is necessary to exclude 
ocher sources of oxygen by making measurements either in a vacuum or 
in a high purity inert gas atmosphere. Since oxygen is the important 
component in electrochemical cells using the above technique,a very 
low oxygen partial pressure is necessary over the mclten electrodes. 
Because of the simplicity of building and maintaining a gas tight system 
and purifying argon to the requisite purity as compared to an quivalent 
vacuum system, measurement under an inert atmosphere was chosen 

Complicating factors are the need to introduce electrical leads 
into the molten electrodes and the necessity to separate the atmospheres 
of the two molten electrodes. 

B. Ga-In Cell 
1. Apparatus 

An unsealed schematic of the cell is shown in Fig. 1. The main cell 
body was an 18 in. long tube of high purity recrystallized alumina 
1 1/2 in. OD, 1 1/4 in. ID, closed at one end. The open end was sealed 
to a water-cooled stainless steel head with a buna rubber 0-ring. Three 
ceramic tubes were passed through the lead at the vertices of an 
equilateral triangle inscribed in a 3/8 in. radius circle centered on 
the head. These ceramic tubes were sealed to the head with viton 0-ring. 

* Morganite refractories. 
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The inner ceramic tube,which served as the reference electrode 
compartment, was a slip cast high purity calcia stabilized zirconia, 
Zr„ „ cCa„ , c 0 , o c, (CSZ) tube.* Centered in this tube was a 1/8 in. OD 

U.&D U. I 0 I.03 
high purity alumina thermocouple insulator through which the high 
purity argon was introduced at a point near the closed bottom 
of the CSZ tube, as shown in Fig. 1. A tungsten electrode lead 
was also run through this insulator to the bottom of the CSZ tube. The 
open top of this CSZ tube was sealed to a 1/4 in. stainless steel 
Swagelok tee with a teflon front ferrule backed with a nylon back 
ferrule. The 1/8 in. tube was run through the tee and sealed also with 
teflon and nylon ferrules to a 1/8 in. Swagelok reducer swaged to the tee 
(see Fig. 1 ). The side port from the straight run of the tee was the 
gas outlet for the CSZ tube venting the gas to a mercury vapor trap. 
The 1/8 in. tube was sealed to a second 1/8 in. reducer swaged to a 
second 1/4 in. Swagelok stainless steel tee, then the 1/8 in. tube was 
run through the straight run of the tee. T Ke second run of the straight 
run was sealed to a short length of pyrex tubing. The 1/8 in. pyrex 
tube was ended within the pyrex tube with the tungsten wire extending 
completely through the pyrex tube. The open end of the pyrex tube was 
then sealed with black sealing thus forming a seal through which the 
tungsten lead was extended but which did not seal the 1/8 in. tube. 
The inlet gas was introduced through the side port of the second tee, 
routed by the tee configuration to the pyrex tube and into the 1/8 in. 
alumina tube. This configuration allowed a positive gas circulation 
* Zircoa Corporation. 



-17-

in the CSZ tube electrode leads which were isolated from the stainless 
steel swagelok parts, and seals which were vacuum tight. 

The second ceramic tube was made of high purity alumina.* This 
tube had both ends open and serves to transport the high purity argon 
blanket gas to a point near the bottom of the main cell body. In 
addition, the second electrode lead was threaded through this tube. The 
top end of this tube was sealed to one arm of the straight run of a 
1/4 in. stainless steel swagelok tee. The other arm was sealed to a 
short piece of pyrex through which the tungsten lead was threaded. This 
pyrex tube was sealed as in the assembly of the CSZ electrode. The 
electrical lead for the sample electrode was warpped around the tip of 
the CSZ tube to insure good electrical contact with the sample liquid 
alloy. The side arm of the tee was the inlet for introducing the high 
purity argon to the tube. 

The third ceramic tube was similar to the second tube except that 
the bottom end wasclosed. This tube served as the thermocouple well. 

The gas outlet for the main cell compartment was a 1/8 in. tube 
welded to the center of the lead. This also led to a mercury vapor 
trap. 

As the bottom of the main cell body was hemispherical, a flat 
platform made of alumina was placed at the bottom. On this platforn 

** was placed a crucible made of high pi-ity crystallized alumina, 26 mm 
1n height and 18 mm in diameter, containing the alloy electrode. 

i 
McDanel Refractory Porcelain. ** 
Morganite Refractor ies. 
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The furnace was wound with Kanthal A-1 wire and powered by a proportional 
controller utilizing a triac gate, which controlled the temperature of 
the region of the sample to 0.5°C. The cell was maneuvered in a position 
such that with shunts across the appropriate section of the furnace 
windings, the region of the crucible had a vertical temperature 
variation of +0.5°C in the sample region. In later runs to alleviate 
the laterial temperature variation which must exist in a cell of this 
geometry due to natural convection of the gas, two baffles were used. 
These created a small compartment for the crucible, a second small 
compartment above that compartment, and finally, a compartment which 
was the remainder of the main compartment. Also, initial runs indicated 
the necessity of a ground shield which was installed to alleviate 
pick-up of noise from the furnace windings. 

The temperature was measured with a chromel-alumel thermocouple 
referenced to the melting point of ice. The thermocouple and cell 
emfs were read with a Leeds and Northrup K-3 potentiometer. Figures 2 
and 3 show the temperature control and gas manifold systems. 

The high purity argon gas was provided by purifying argon with a 
'entorr gettering furnace. This furnace purified argon at rates of 
20 standard cubic feet per minute to less than 0.001 ppm by gettering 
the argon over titanium at 800°C. The total flow of argon through 
the gettering furnace for this experiment was less than 1 standard cubic 
feet per minute. Since the equilibrium partial pressure of 0, over 

-39 
titanium at 800°C is 10 atmospheres, and the equilibrium partial 
pressures of other impurities are equally low, the argon purity 
is considerably lower than 0.001 ppm due to the increased residence time 
in the gettering furnace. 
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The distribution system for the argon was made of 1/4 in. stainless 
steel tubing using stainless steel Swagelok fitting:, where necessary. 
The gas flows were metered to the two electrode compartments. 
The gas flow-rates were 0.12 and 6.0 cc/min in the reference and sample 
compartments respectively, values selected to provide one compartment 
volume at 23°C per hour. The compartments were isolated from the gas 
source by Nupro bellows shut off valves. The final connections, from 
the shut-off valve to ths compartment gas inlets, were made with corrogated, 
flexible sta'nless steel tubing with 1/2 in. nominal O.D. 
2. Procedures 

The reference electrode was formed by dropping first Ga,0, powder of 
4-9's purity* and second molten Ga of 6-9's purity** into the bottom of 
the CSZ tube. The reference electrode was placed in position in the 
head,and the gas delivery and lead feed-through assembly was sealed 
to the top of the tube. 

The other two tubes were positioned similarly, with the sample 
electrode lead fed through the appropriate tube. The end of the sample 
electrode lead was wrapped around the tip of the CSZ tube. The tip of 
the CSZ tube was placed in the crucible containing carefully measured 

** amounts of Ga,Q, and In of 5-9's purity. To secure the positioning 
of the crucible, the crucible was wired to the thermocouple tube with a 
short piece of tungsten wire. This assembly was then placed in 
position in the main cell body and sealed to the main cell body !)y the 
0-r ing seal. 
* 

Ventron Corporation. ** 
Cominco American. 
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The assembled cell was positioned in the furnace,and the gas 
connections were made using teflon and nylon ferrules to alleviate the 
need for large torques on the ceramic tube. The cell compartments were 
then purged for 2 hr with the purified argon at rates of at least 
50 compartment volumes per hour. Since argon is slightly denser than 
the major components of air, Ar was delivered to a point near the bottom 
of the respective compartments. Since the gas outlet was at the top 
of the compartments, the gas atmosphere at the end of the purge period 
had the purity of Ar delivered by the gettering furnace. 

At this point the gas flows were reduced to values corresponding 
to a single compartment volume per hour and shut off. The cell 
temperature at this point was raised to the cell operating values. 

Initially, the cell temperatures were raised and lowered rapidly, 
but problems due to the low value of thermal shock resistance of CSZ 
necessitated much lower temperature elevation rat^s. 

No set procedure for making measurements was established sir,_e for 
this system there did not appear to be any dependence on the thermal 
state of the previous measurement. However, in order to facilitate 
comparison with the data of Klinedinst, cell emfs were measured at 
temperatures of 800°, 850°, 900°, and 950°. One difference was that 
in this study no gas flow was used except when initially purging the 
cell and when the cell temperature was being lowered. Thus, in general, 
all data points represented a condition of no gas flow in the system. 
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C. Ga-Sb, Ga-In-Sb Cells 
1. Apparatus 

The ells containing Ga-Sb and Ga-In-Sb differed from those for 
Ga-In alloy studies in several important details. The mRjor problem, 
reported by Chatterji and Smith, was antimony reacting slowly with 
tungsten electrode contacts. That difficulty is minimized by allowing 
the tungsten to contact the alloy melt only when a measurement was beinj 
made. To accomplish this the pyrex and black wax feed-through of the alloy 
electrode lead feed-through assembly of the Ga-In cell was replaced 
with a sliding lead feed-through assembly. This assembly consisted 
of a 1/8 in. pyrex and black wax feed-through placed within a Swagelok 
union bored thrcigh to slightly over 1/8 in. This union was sealed to 
a length of 1/8 in. stainless steel tubing with the back ferrule 
inverted and the front ferrule replaced with an 0-ring with a approximately 
1/8 in.xl/12 in. wall, greased with vacuum grease. Thi?, formed the 
sliding seal for moving the tungsten lead in and out of the stainless 
tubing. In order to prevent grounding of the tungsten lead, the 
1/8 in. tubing was connected to a 1/4 in. pyrex tube with a 1/4 in. 
to 1/8 in. bored-through union. This 1/4 in. pyrex tube was then sealed 
to the port previously occupied by the pyrex and black wax feed-through 
(Fig. 4). The seal was tested with a He leak detector and was found 
not to leak within the detector range. 

The tungsten lead was threaded through the alloy compartment gas 
inlet tube, now shortened to a point close to the cell head. The 
lead was then threaded through a 1/8 in. alumina insulator wired 
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to the electrolyte tubes. This 1/8 in. alumina tube was positioned 
just above the crucible so that when the sliding seal was pushed 
down the lead would move down through the tubes and into the alloy 
melt. When the seal was r- shed up the tungsten lead was withdrawn 
from the melt. 

Because it was generally desirable to minimize electrode lead 
and melt interactions, the sliding seal was also used on the reference 
electrode lead. Since the electrode lead path was straight in this case, 
r,o special changes were made in this electrode to insure that the lead 
contacted the melt. 

A second change in the cell involved the change in solid oxide 
electrolyte material. Since the lower P n limit of CSZ is not sufficiently 

u 2 
lower than the GaJD.-Ga-CL equilibrium, a YDT tube* 18 in. long and 
1/4 in. in diameter was used as a solid oxide electrolyte. 

Another difficulty encountered in the Ga-Sb cells was the high 
internal ceil resistances. The internal resistances were measured to 

4 be as large as 10 ohms. For source impedances of this magnitude with 
(jotentiometers, small cell currents can flow. In order to minimize 

12 cell currents during measurements a Keithley electrometer with 10 ohms 
input impedance was used in place of a potentiometer to determine the 
approximate cell emf as shown in Figs. 5 and 6a. Accurate measurements 
of the cell emf were made by using the potentiometer in series with 
the electrometer (Fig. 6b). This arrangement used the potentiometer 
as a source of bucking voltage to the cell and the electrometer as a null 
meter. The circuit impedance was essentially that of the electrometer. 
Zirconia Corporation 
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Tlie final modifications on the system were in the gas delivery 
system (Fig. 7). Because of the shortening of the main compartment 
gas inlet tube and the greater reliability of vacuum evacuation,a 
mechanical vacuum pump was added to the system to purify the cell 
atmosphere. Additional bellows shutoff valves were added to isolate 
the two cell compartments, the argon source, the vacuum pump, and 
mercury gas traps from each other. The very fine metering valves were 
relocated in order that atmospheric gases might not be pulled into the 
system through packed seals. The last modification to the gas handling 
system was cold trapping the gas outlet lines in trichloroethylene 
and dry ice prior to the mercury vapor traps in order to minimize 
any possibility of back diffusion of mercury to the cell compartments. 
2. Procedure 

The reference and alloy electrode preparation was the same es in 
the Ga-In cells. The antimony used was 5-9's purity.* 

The compartment atmospheres were purified by evacuation to 200 microns 
and back filling with purified argon five times. 

After purifying the cell atmospheres, the temperature of the eel 1 

was slowly raised to 800°C at the rate of 70°C per hour. This rate was 
convenient since a rate of 150°F per hour was recommended by Zircoa 
to avoid thermal stress cracking and recrystallization problems common 
in YDT. 

* Cominco American. 
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Liquid alloys of Ga and Sb, ana of Ga, In and Sb were found to 
equilibrate very slowly. Thus, once the cells reached 800°C it was 
necessary to monitor periodically the cell emf until a constant value 
was obtained. This typically required 2 to 3 days, though 5 days was 
necessary in some cases in order to obtain values constant to within 
0.01 millivolt. This was in great contrast with the Ga-In alloys which 
equilibrated very quickly--in less than a day. After the cell emfs had 
stabilized in this fashion, the alley melts were assumed to have become 
completely mixed.and data were then taken at various temperatures. Even 
the measurements at various temperatures required a great deal of time, 
the time required being a strong function of temperature, so that it was 
necessary to monitor periodically the emfs at each temperature until 
they stabilized in order to obtain the equilibrium values of the emfs. 
Again,the emfs at the various temperatures were independent of how 
the temperatures were reached. 
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IV. The Ga-In System 
A. Results 

The emf measured as a function of temperature in the Ga-In system 
is plotted in Fig. 1 for the compositions investigated, along with the 

4 comparable measurements of the study by Klinedinst et al. These results 
demonstrate the reproducibility of the emf emthod. 

A number of sources of instabilities in cell emf were encountered. 
The main instability was characterized by a rapid drop-off in the cell 
emf with time. In runs showing this effect, measurements of the internal 
cell resistance before emf drop-off gave resistances of the order 
of 10,000 ohms and after emf drop-off resistances of the order of 10 ohms. 
This change suggests electrolyte failure. Thus, improvements in equipment 
and operating procedure were implemented to minimize this problem. 
Further improvements were implemented prior to the initiation of 
measurements on the Ga-Sb system based on experiences gained in the 
Ga-In system. These improvements have been outlined in the Equipment 
and Procedures Section III-C. 

The emf data are reduced to a G a I n s » defined by 

"Gain = ( 1 n W / ( 1 " x G a ) 2 • 

This parameter can be expected to have the form 

"Gain = a + b xGa + c / T + d x G a / T • ( 1> 

Utilizing a least square fit on the data obtained from the emf 
measurements gives: 
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aGaIn = ° - 2 8 6 2 + °- 0 3 5 2 xGa + 3 9 8- 3/ T + 2 2 0 - 0 x G a / ' T " ' 2' 

The rms deviation of data from this equation is ±0.016 for the range 
0.05<xGa<0.40 (see Fig. 2). The activities of Ga at 1223°K are 
presented graphically in Fig. 3 along with the activities predicted by 
Eq. (2) and compared to the data of Klinedinst, et al. Using the 
Gibbs-Duhem equation and assuming Eq. (2) for the whole composition 
range, the activities of In were calculated for the experimental 
compositions and are presented in Table 1. 

By using Eq. (2) and fundamental thermodynamic identities, the 
following equations for AH. and AS"Ga at 800°C to 950°C are derived from 
the data of this work: 

A H G a = (791.4 + 437.1xGa)(l - x G a ) 2 cal/g-atom (3a) 

A S x
a = -(0.5687 + 0.0699xGa)(l - x G a ) 2 cal/g-atom (3b) 

By extrapolating cqs. (3) over the whole composition range the following 
equations are derived, again using the Gibbs-Duhem equation. 

AH M = (791.4 + 218.6x G a) x G a(l - x G a ) (4a) 

ASXS = -(0.5687 + I.OSSOx^) x G f l ( l - x G j j ) (4b) 

Equation (4a) shows that the integral heat of mixing has a maximum at 

xG = 0.53 with a value of 226 cal/g-atom. AH. and AH are plotted in 

Fig. 4. 
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Table 1. Experimental emf measurements. 

X(GA) T(K) EMF(HV) A{GA) A(IN) 

0.0499 

0.1003 

0.?009 

0.4089 

1073.8 

1123.2 

1174.8 

1224.5 

1073.4 

1124.4 

1174.0 

1223.9 

1073.7 

1124.2 

1174.5 

1224.0 

1073.9 

1124.2 

1174.3 

1224.4 

73.816 

77.322 

81.532 

85.880 

53.898 

56.537 

59.495 

62.335 

35.941 

38.129 

40.316 

42.325 

19.357 

20.509 

21.629 

22.729 

0.0913 

0.0910 

0.0893 

0.0870 

0.1741 

0.1737 

0.1713 

0.1698 

0.3118 

0.3070 

0.3027 

0.3000 

0.5339 

0.5299 

0.5266 

0.5240 

0.9514 

0.9514 

0.9513 

0.9513 

0.9048 

0.9047 

0.9046 

0.9045 

0.8182 

0.8177 

0.8173 

0.8169 

0.6573 

0.6556 

0.6540 

0.6526 
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B. Discussion 
The Ga-In system has been investigated by Macur, Edwards,and 

Wahlbeck using Knudsen effusion, by Bros a and Bros, Castanet,and 
Laffitte using microcalcrimetry at 150°C, by Predel and Stein using 

3 microcalorimetry at 350°C, and by Klinedinst, Rao and Stevenson using 
4 solid electrolyte techniques from 800°C to 95C°C. From their data, 

Bros et al., conclude that the heats of mixing are symmetrical about 
x. = 0.5. The data of Predel and Stein are not in apparent agreement 
concerning the symmetry of the results of Bros et al., f" \igh the data 
of Predel and Stein are not as comprehensive as those of Bros et al. 
The heat of mixing data derived from Gibhs energy measurements 
by Klinedinst et al., are also not in agreement with the conclusion 
of Bros et al. However, the scatter in the Gibbs energy data of 
Klinedinst et al., is such as ti render questionable the derived heats 
of mixing. 

The data of Klinedinst were fitted to Eq. (1) giving 

"Gain = ° - 1 7 0 0 " °- 9 1 8 4 xGa + 4 7 0 - 5 / T + 1186.1xG /T . (5) 

The rms deviation is ±0.044 for the range 0.05<xG <0.80. From this 
equation AH is derived: 

AH M = (934.9 + 1178.4x G g) x,, (1 - x G a ) . (6) 

The conclusions reached from the data of Bros et al., Predel and 
Stein, and Klinedinst et al., contradict those reached from the data 
of Macur et al., that the heat of mixing at x_ = 0.5 is 2200 cal/mole. 
The heats for x G = 0.5 are found by Bros et al., and Predel and Stein 
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to be 265 cal/mole and 288 cal/mole respectively. The heats calculated 
from an equation, of the for„i of Eq. (1) with d set equal to 0, 
fitted to the data of Klinedinst et al. These values are symmetrical about 
x„ = 0.5 with a maximum heat of 472 cal/mole. Relaxing the symmetry 
requirement gives Eq. (5) which has a maximum of 395 cal/mole at 
xGa = "*^ a r K' w n ' c n n a s t n e v a l u e 3 8 1 cal/mole at x. * 0.5. 

A comparison of heat of mixing data is shown in Fig. 4. Thus, the 
heats derived from high temperature emf measurements bracket the heats 
measured at lower temperatures by microcalorimetry. The values at 
x = 0.5 are all in fair agreement except those obtained by Hacur et al., 
2200 cal/mole, obtained by Knudsen effusion. In addition, the high tempera­
ture emf data and the data of Predel and Stein suggest that the maximum 
heat of mixing is shifted towards the Ga rich side rather than at 
x- = 0.5 as suggested by Bros and by Bros et al. 

C. Conclusion 
The use of solid oxide electrolytes is ouite reproducible. However, 

derived data are extremely sensitive to the -solute errors in measure­
ment. Nevertheless, the enthalpy of mixirj derived from the data of 
this work is consistent with the data of earlier works. Though, along 
with the data of two of those works, the data of this work contradicts 
the conclusion of Bros and Bros et al., that the enthalpy of mixing 
is symmetric about the composition x r =0.5. 
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V. THE Ga-Sb SYSTEM 
A. Introduction 

The study of the Ga-Sb system was motivated by the dearth of 
thermochemical information on this III-V system. Closer examination of 
the existing data revealed indirect contradictions in conclusions and 

4 derived data. It has been pointed out by Sirota that the liquid metals in 
close proximity to the liquidus in coir .ound semiconductor systems 
exhibit short range order. This observation is contradicted by the 
low values of heats of mixing selected by Hultgren for the Ga-Sb 
system, which are more consistent with a more randomly mixed liquid. The 
derived results of this study show large negative heats of mixing, which 
are more consistent with liquids with short range order. 

The activities in the Ga-Sb system have been previously studied 
by use of a chloride electrolyte. This technique, as pointed out by 
Chatterji and Smith, has the disadvantage of being ambiguous with 
regard to the charge of the ionic carrier in the electrolyte. For the 

3 +1 +3 
cells of Oanilin and Yatsenko the ionic carrier can be Ga or Ga . 
Thus, the value of "n" in the Nernst equation (RT In a = nFE) can not 
be definitely stated. Nevertheless, Danilin and Yatsenko have used n = 3, +3 i.e., assumed Ga is the ionic carrier, to arrive at the conclusions 
that the Ga-Sb liquid alloy system has very strong negative deviations 
from the ideal. This led them to suggest that these deviations can be 
accounted for by complexes resembling molecules. This conclusion is 

5 in contrast to the conclusion of Schottky and Bever that the system is 
close to ideal. Schottky and Bever pointed out that the liquidus 

1 measured by Koster and Thoma is very nearly that predicted by an ideal 
mixing model. 
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B. Results 
The emfs measured as a function of temperature in the Ga-Sb system 

are given in Table 1 and plotted in Fig. 1 for the compositions investi­
gated. Table 1 also contains the activities and activity coefficients 
of Ga. Since the emf data were reproducible to 0.5 n;V, the error in 
the activities and activity coefficients are ±2%. The activity coefficients 
are shown in Fig. 2 as a function of composition. 

In making these measurements care was taken to remain in the single-
phase liquid region. For this reason measurements at the lower tempera­
tures were not made for those compositions near x~ = 0.5. Furthermore, 
measurements were not made at temperatures higher than 800°C as Sb has 
a significant partial pressure for those temperatures. 

It is important to note that equilibrium was assumed to have been 
reached when the emf values remained constant over a period of several 
hours. The time for initially homogenizing the components of the melt 
varied from 2 to 5 days. The time constant for equilibration after a 
temperature change was 1.4 hrs at 997°K and 14 hrs at 922°K. Because 
of the long equilibration times, at least one data point was repeated 
for each composition. 

It should be pointed out that the depolarization rate is rapid. 
By passing current through the cell momentarily and watching the emf 
return to the initial value, it was found that the largest time 
constant measured was less than 10 min. 
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Table 1 . Experimental data. 

x r„ T emf a r_ 
G a (°C) (mV) G a 

0.2000 

0.4000 

0.5998 

0.7998 

0.8998 

797.9 
772.6 
747.8 
723.1 
699.6 
676.8 
803.1 
775.1 
749.7 
721.9 
797.0 
771.8 
749.5 
800.5 
775.8 
749.7 
725.3 
700.3 
672.8 
648.9 
752.8 
724.2 
699.3 
670.5 
649.7 

75.0 
77.7 
80.0 
83.8 
88.9 
96.2 
40.7 
41.5 
43.3 
47.5 
20.7 
21.4 
22.5 
8.6 
9.3 
10.9 
12.9 
15.8 
19.0 
23.6 
4.6 
4.8 
5.5 
6.7 
8.2 

0.0873 
0.0753 
0.0654 
0.0534 
0.0416 
0.0294 
0.2682 
0.2526 
0.2292 
0.1901 
0.5101 
0.4905 
0.4657 
0.7577 
0.7340 
0.6905 
0.6380 
0.5688 
0.4967 
0.4108 
0.8555 
0.8449 
0.8212 
0.7816 
0.7339 

0.4368 
0.3767 
0.3269 
0.2672 
0.2078 
0.1472 
0.6706 
0.6315 
0.5730 
0.4751 
0.8503 
0.8178 
0.7763 
0.9474 
0.9177 
0.8634 
0.7677 
0.7112 
0.6211 
0.5136 
0.9507 
0.9390 
0.9126 
0.8687 
0.8156 
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C. Discussion 
The data of this work supports the conclusion that the system 

is highly nonideal, deviating negatively. However, the agreement with 
the data of Danilin and Yatsenko is poor. The differences can be 
attributed to the ambiguity of the ionic carrier in the chloride 
electrolyte since postulating the Ga ion to be the current carrier would 
result in emf values three times the value that were measured in this 
work. Thus, the larger emf values of Danilin and Ytsenko can be 

+1 explained by mixed conduction in the electrolyte by both Ga and 
Ga + 3. 

As suggested by Danilin and Yatsenko, the data of this work can 
be explained by postulating molecular complexes. In this case a minimum 
of three complexes are required. First, let us examine the elements 
themselves. Gallium are a group III metal with two coimion valences, +1 
and +3. Antimony is a group V metal having three common valencies, 
-3, +3,and +5. The electron affinities of Ga and Sb are calculated 
from the electronegativities of Pauling, which are proportional to 
the sum of the electron affinity and ionization potential. These are 
shown in Table 2. Thus, postulating a valence of -1 is not unreasonable 
for either Ga or Sb. 

Postulating valences of -1 for either Ga or Sb suggests the complexes 
GaSb, and Ga 5Sb in addition to GaSb which follows from the examination of 
tne commonly known valences. Using these species in the chemical theory 
of Dolezalek requires that the equilibrium constants K,,, K.-.and IC-, 
be defined by 
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Table 2. Electron affinity calculations. 

Element Electronegativity Ionization Potential Electron 
Affinity 

H 2.1 13.598 eV 0 eV 
Ga 1.81 5.999 eV 5.7 eV 
Sb 1.9 8.641 eV 3.7 eV 

* 
From Pauling. 
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K13 = aG a iSb 3
aGa aSb 

Kll = aGa ]Sb 3
 aGa aSb 

-5 -1 
K51 = aGa 5Sb ]

aGa aSb 

In the chemical theory the chemical species exhibit ideal behavior, and the 
deviations from ideality are due to the differences between the "true" 
and "apparent" mole fractions. Thus, the species activity coefficients 
are assumed equal to unity, and the "apparent" mole fractions "x" are 
related to the true mole fractions "z" in the following manner: 

zGa + zGaSb 3
 + zGaSb + 5 zGa 5Sb 

G a ' + 3 zGaSb 3
 + zGaSb + 5 zGa 5Sb 

zSb + 3 zGaSb 3
 + zGaSb + zGa gSb 

X s b = 1 + 3 zGaSb 3
 + zGaSb + 5 zGa 5Sb 

Using trial and error to fit the data of this work, the equilibrium 
constants were determined as a function of temperature and interpreted 
as Gibbs energy of formation. When these Gibbs energies are assumed 
to vary linearly with temperature, the enthalpies and entropies of 
reaction shown in Table 3 result. Using these values, the x„ were 

ba 
calculated as a function of z G and temperature. The activity coefficients 
Y G = z g a / x

G a
 w e r e calculated for temperatures of 923°K and 1023°K and 

plotted in Fig. 3. 
Notice that the entropies of formation necessary for this model are 

extremely large. This may be due to the narrow range of temperature 
measurement. 
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Table 3. Entholpy and entropy o f formation 
o f melt species necessary to model the 
data o f th i s work. 

Reaction AHf(kcal/g-atom) AS f(eu) 

Ga £ + 3 Sbj, •* GaSb3 0 2.1 
Ga £ + Sb £ •»• GaSb£ -25.3 -22.5 

5Ga£ + Sb £ -*• GagSb̂ , -77.6 -72.3 

Table A. Comparison of enthalpies of mixing. 

xGa AH cal/g-atom ,Q 

According to Hultqren 
AH cal/g-atom 
of this Work 

0.1 -79 -1554 
0.2 -150 -2959 
0.3 -206 -4623 
0.4 -241 -6024 
0.5 -255 -6874 
0.6 -244 -7382 
0.7 -209 -7712 
0.8 -153 -7606 
0.9 -31 -5499 
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The chemical theory assumes that there are no physical interactions 
between the molecular species, only chemical interactions. Thus, the 
enthalpy of mixing will be due entirely to the enthalpies of formation. 
Accordingly, the enthalpies of mixing are calculated for a temperature 
of 997°K and listed in Table 4 and compared to the enthalpies of mixing 

9 of Yazawa et al., measured by reaction calorimetry at 1003°K, as revised 
by Hultgren et al. The more recent work of Predel and Stein indicates 
that AH = -258 cal/g-atom at x_ = 0.5. 

Iheii *re three main explanations for the great discrepancies: The 
first is that the chemical theory is at best just a conceptual formalism 
to account for deviations from ideality, that quantities other than 
activities cannot be calculated from the equations developed from that 
formalism. The second explanation is that due to the very slow 
ec,uilibration of these melts--2 to 5 days at 1073°K for full homogenization 
of the melt as measured by waiting for the cell emfs to reach steady 
state values—reaction calorimetry would be very difficult to perform 
accurately. The third explanation is that a systematic error was 
introduced by some undetermined cause in the experimental method. 

The process of forming the three Ga-Sb complexes would explain the 
slow equilibration times exhibited by these cells. Since the complexes 
are larger molecuVs, the diffusion times necessary for homogenization 
and equilibration are increased. Another possibility is that the rate 
of complexing is low so that the rate of equilibration would be slow. 
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D. Conclusion 
The Ga-S!} liquid alloy system shows large negative deviations from 

the ideal. This can be modeled by postulating complexes of GaSb,, 
GaSb, and Ga rSb. In addition, these complexes can explain the short o 

range order of the III-V liquids near the liquidus reported by other 
observers. However, derived enthalpy of mixing data are much different 
from those reported earlier and, when coupled with the extremely large 
hypothesized entropies of formation, casts some doubt as to the validity 
of the experimental data obtained in this investigation. 
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VI. THE Ga-In-Sb SVSTEM 
A. Results 

The activity of gallium in a Ga-In-Sb liquid alloy with composition 
x. = 0.708, x, = 0.102,and x s b = 0.190 was found to be strongly 
depressed below that of an ideal liquid alloy, as expected from the 
results of Ga-Sb alloy melt activity studies. In this preliminary and 
cursory study of As Ga-In-Sb system,the melt equilibration times were 
found to be extremely long.as in the Ga-Sb studies. Table 1 gives the 
measured emfs and calculated activities and activity coefficients of 
Ga for this cell. 

The time constant for the melt to reach full homogenization and 
equilibration at 800°C was measured to be 3 days. 

B. Conclusion 
The experimental result is a strongly negative deviation of gallium 

activity from ideality,which becomes more negative with decreasing 
temperature. 
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Table 1. Ga act iv i ty data for a Ga-In-Sb al loy. 

T(°C) E M F < V > aGa aGa 

797 11.7 0.681 0.962 

772 16.4 0.575 0.813 

747 24.8 0.426 0.601 
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VII. THE QUASI-CHEMICAL MODEL REVISITED 
A. Introduction 

In the system Ga-Sb, the melts are highly non-ideal at temperatures 
below 750°C. In order to take into account the non-ideality, the quasi -
chemical model was examined. Though this model and its extensions are 
not applicable to the Ga-Sb system, it is useful in the In-Sb system. 
The quasi-chemical model was applied to the In-Sb system by Stringfellow 

1 2 
and Greene and the data of Hoshino et al. 

In this study, the quasi-chemical model and its extensions are 
compared to the a-parameter model which Guggenheim refers to as the 
zeroth order approximation and the quasi-chemical model. The a-parameter 
model is used by Hoshino et al., to correlate their data for the In-Sb 
system. The data expressed as a^ = RT In Y.J/0 - x.) show a fairly linear 
dependence of a on composition from x = 1 to x = 0.5 but become highly 
nonlinear for x = 0.5 to x = 0. This kind of behavior is expected 
because the entropy of mixing is ignored in the a-parameter model. The 
quasi-chemical model takes the entropy of mixing into account so that the 
dependence of the quasi-chemical parameter oo on x, applied to the In-Sb 
system, should be less non-linear. As derived by Guggemheim both a and 
ID represent the same quantity, the atomic interaction energy; this is the 
energy change which occurs when an atom or molecule A is replaced by an 
atom or molecule B. 

Since the data for the Ga-Sb system were found to be highly non-ideal, 
this non-ideality was assumed to be due to an interaction of Ga and Sb 
much in the same manner as in the In-Sb system. At the lower temperatures 
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the activities of Ga are so depressed, however, that the first order quasi-
chemical model cannot be utilized to explain them. Closer examination 
of the quasi-chemical treatment showed, however, that the extension of 
the treatment beyond the first order quasi-chemical model might depress 
the theoretical activities of the quasi-chemical model further. 
Guggenheim's extended treatment considers the interaction between next-
nearest-neighbors only. For liquid InSb the number of nearest-neighbors 

4 derived from X-ray data is 5.6, implying that the simple cubic lattice 
is the simplest lattice approximation for that liquid. Thus, the 
simplest configuration to be considered which would take next-nearest-
neighbors into consideration would be the square configuration. 

The extended quasichemical treatment of Guggenheim contains a 
contradiction, which is freely admitted in the presentation. This 
contradiction leads to the ignoring of 3/4 of the interactions of 
next-nearest-neighbors. The treatment presented here for the square 
configurations take into account all of the nearest- and next-nearest-
neighbors. This is compared to the treatment and derivation of Guggenheim. 
Comparison with the Ga-Sb data, however, indicates that theoretical 
activities are still not sufficiently depressed. 

A further extension of the model is to consider third-nearest-
neighbor interactions. This corresponds to using a cube configuration 
for a cubic lattice as the basic unit. This treatment does permit the 
depression of the activities beyond that experimentally found for Ga in 
the Ga-Sb system, though the model gives a poor fit to the experimental 
data. 
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The effect of such a progression to more complex models is that of 
approaching more closely the simple a-parameter model, so that for the 
representation of activity data for small values of the interaction 
parameter the a-parameter model suffices. However, in order to extract 
excess Gibbs energy of mixing, or enthalpy of mixing and excess entropy 
of mixing, using a single parameter model, the more complex quasi-
chemical models are suggested. 

B. Requirements of Extended Quasi-Chemical Models 
The interaction parameter V used by Guggenheim is the same 

quantity as "S2" used by Stringfellow and Greene in their recent correlations 
of thermochemical data on metallic melts using the quasi-chemical model 
and the same as "a" of the a-parameter correlations in popular use. 
These parameters are theoretically related to the energy change 
associated with the substitution of one atom or molecule of species A in a 
lattice of A with one of species B. Thus, <*>/N« (N. = Avogadro's number) 
would be the change in internal energy for the A lattice system with a 
single B. It is important to note here that these models assume that 
the sizes of the species considered are not significantly different in 
order that volume changes due to mixing and variations in the number of 
nearest neighbors are not significant. 

The a-parameter defined by 

a = RT(ln Y A ) / 0 " * A ) 2 

is a measure of excess quantities which vary slowly with composition, 
where y. and x. are the activity coefficient and mole fraction cf species A. 
As pointed out by Guggenheim, when a/RT is less than 1/4, the error incurred 
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in the excess Gibbs energy by assuming a constant a over the whole 
composition range is less than IS!. This holds for mixtures for which 
the species preferentially seek to surround thenselves with their own 
species. The same is true of associating species for which a/RT > - 0.25. 
Thus, forvaluesof a/RT between -1/4 and 1/1,the excess Gibbs energies 
are accurate to within 1%, because the energies for interaction are not 
sufficiently large to cause large deviations in the entropy from the 
ideal values for entropy. 

For values of the interaction energies such that |a/(RT)| > 1/4, 
the excess entropies of mixing become important. For large negative 
values of a such as occur in III-V melts, the association of the two 
species is as to appear to give two distinct regions: (i) x. > 0.5 dominated 
by A and associated A-B, and (ii) x. < 0.5 dominated by B and associated 

5 A-B. Thus, as suggested by Darken and Gurry, binaries would have to 
be represented by different linear functions of x. depending on the 
range of x„. Furthermore, once a is made dependent on x., one must 
differentiate between 

a A B = RT in Y A / 0 - x / 

and 
aBA = R T 1 n V ( x A ) 2 " 

These a's are related through the Gibbs-Duhem equation. 
The first order quasi-chemical treatment assumes 

x 2 = (NA - x)(N„ - x) e - 2 u / R T 
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in contrast with the ideal case, where the total number of nearest 
-2 dissimilar neighbor pairs, x, is given by x = (Nfl - x)(N„ - x). (x is 

the number of pairs composed of dissimilar members. N. and N„ are the 
numbers of A and B, respectively in the total solution.) Such a treatment 
includes an excess entropy of mixing by taking only nearest neighbors 
into account. The first order quasi-chemical model cannot be used to 
model systems with highly depressed activities. This can be explained 
by examining the premise that only nearest neighbors are important. For 
systems where the nearest neighbor interaction is relatively weak it 
suffices to ignore the energies of interaction of more distant neighbors. 
Furthermore, the contribution to the excess entropy by secondary ordering 
is miniscule. (Secondary ordering is defined as ordering of next-nearest 
neighbors by the influence of nearest neighbors.) As nearest neighbor 
interactions become more important, however, so must next-nearest 
neighbor interactions. Thus, such a treatment need not be dependent 
on the composition. 

Guggenheim's treatment takes into account the effect of next-nearest 
neighbors. Hill pointed out a contradiction in Gugi,inheim's treatment 
which states that the number of pairs of next-nearest neighbors is 1/4 NZ. , 
whereas the actual numbe: *<; 1/2 NZ,. (N, Z,, and 1„ are ihe number of 
atoms or molecules in the solution, the number of nearest neighbors for 
each atom, and the number of next-nearest neighbors, respectively, 
(N = N, + N„).) As the systems of interest here are expected to have 
Z, = 6, a cubic lattice will be examined in detail though the treatment 
could be applied to other lattices as well. Since in the cubic system a 
set of sites translates into a square with the next-nearest neighbor 
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interactions corresponding to the square diagonals, a simpler analog would 
be a two dimensional square lattice. This lattice is also treated below. 
1. Square Interaction Model 

The treatment by Guggenheim counts the number of pairs of nearest 
neighbors in the solution, 1/2 NZ,, and the number of nearest neighbor 
pairs associated with a square, I. The ratio of the two gives the number 
of squares in the solution, 1/8 NZ,. Since each square has two diagonals, 
the number of next-nearest neighbor pairs must be 1/4 NZ,. The two 
dimensional analog of this is shown in Fig. la. 

In the two dimensional analog Z, = 4 and Z_ = 4, giving 2N nearest 
neighbor pairs, 1/2 N squares, and N next-nearest neighbor pairs. It 
is obvious t h*+ this counting system for the two dimensional case skips 
half of the squares and half of the next-nearest neighbor pairs. 

This counting problem can be alleviated by noting that each 
nearest-neighbor pair is shared by two squares. Thus, the average 
number of nearest-neighbor pairs associated with a square is 2 implying 
that (1/2 NZ,)/2 = N squares are associated with the lattice. This 
leads to 2N next-nearest neighbor pairs being associated with the lattice 
which is equal to 1/2 NZ,, the correct value. This sharing of pairs 
also extends o the sharing of the energy of interactions. Thus, in 
the two dimensional case,a nearest-neighbor pair contributes 1/2 its 
interaction energy to each of the two squares of which it is a part. 
The energy used in the Boltzmann factor in the partition functions are 
these hared energies and not the whole energy of interaction. It. is 
to be noted that, since the next-nearest neighbors are not shared, their 
energies are likewise not shared,and the whole energy of interaction is 
used in the Boltzmann factor. 
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In the three dimensional case of a cubic lattice.each nearest-
neighbor pair is shared by four squares leading to an avera^r. of one 
nearest neighbor pair associated with each square and giving a total 
of 3N squares associated with the lattice. Since the square diagonals 
are not shared between squares and there are two diagonals to a square, 
there must be 6N next-nearest neighbor pairs. Since in a cubic lattice, 
Z, = 6 and Z, = 12,the above values are the correct ones. 

The equivalent quantities according to Guggenheim's treatment are 
3/4 N and 3/2 N for the number of squares and next-nearest neighbor pairs. 

As in the treatment used by Guggenheim let: 
<yz,RT 

n = e 
and 

UJp/Z-RT 
$ = e 

where u-./1-.li. and " V Z 2 N A v a r e t h e l n t e r a c t i ° n energies of nearest 
and next-nearest neighbor pairs of dissimilar atoms. Then the Boltzmann 
factors associated with single pairs of dissimilar atoms in the 
Guggenheim treatment are n" and $" and in this treatment are n" and 
<(>" . The difference in nearest neighbor Boltzmann factors result because 
only one quarter of -he energy of a nearest neighbor pair of dissimilar 
atoms is associated with any one square. 

An immediately obvious point to note is that the excess entropies 
will be smaller for this treatment than for Guggenheim's treatment 
because of the larger number of squares being considered, i.e., the 
randomness wilt be increased. 
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Complete derivations of both treatments are found in the 
Appendixes. In general, the principles set forth by Guggenheim 
for these derivations are used in the treatment advanced here. 

In Table 1 the differences of the bases for the derivations of 
the two treatments are shown. The number of squares in a particular 
configuration is broken down into three parts; the total number of squares, 
the number of orientations of that configuration, and the variable 
representing the fraction of squares in that particular orientation 
and configuration. 

In order to simplify the expressions that occur in the partition 
function, Van der Waal's law, E = E /r , is assumed for the interaction 
energy between dissimilar atoms as a function of distance. Since the 
separation of next-nearest neighbor pairs is -Jl times that of nearest 
neighbor pairs, the associated energies are related by: 

V ( Z2 NAv» = (VZlNAv)/(^>6 = V ^ l V 
This gives the relation 

V 8 
<t> = n 

Furthermore, the energy change of placing a B atom in an A lattice becomes 
u) = w, + id- - ^-25 u, for a cubic lattice. 

These two treatments give different distributions of the configurations. 
In addition the activity coefficients have different forms. The 
Guggenheim treatment gives: 

-ar 



Table 1. Configurational degeneracy and Boltzmann factors for square interactions. 

Guggenheim's Treatment This Treatment 

Number in this Boltzmann': Factor in Number in this Boltzmann's Factor in 
Configuration Configuration Partit ion Function Configuration Partition Function 

(3/-:-)Na 3No 

x (3/4)N4c - 2 * - l 3N4? -2 /4 .1 

!X 
B B 

(3/4)N4v 3N4v „ -2 / ^ -2 

A B 

B A 

(3/4)N2v' -4 3N2v' -4/4 



Table 1. Continued. 

Guggenheim's Treatment This Treatment 
Number in this Boltzmann's Factor in Number in this Boltzmann's Factor in 

Configuration Configuration Partition Function Configuration Partition Function 

(3/4)N4£ n'V 1 3N4? n'^V1 

B A 
B B 

\f (3/4)NB 1 3NB 1 
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and the present model gives 

where 6 is the fraction of square configurations with all sites occupied 
by B. Because the B's have different values between the two treatments, 
the differences between the two predicted activity coefficients are not 
very large for m less the 1/4. 

Other thermodynamic quantities can easily be derived for each 
model, such as AG and AH . For example, the Gibbs energy of mixing 
is given by 

AG m = RT(x Blnx BY B + x Alnx Ar A) • 

The enthalpy of mixing is determined by summing thfl energies of 
configurations in the solution. 
2. Cube Interaction Model 

The counting of the next-nearest neighbor interactions can be 
extended to include third nearest neighbors in a cubic lattice. The 
third nearest neighbor pairs span the body diagonals of the cubes. 

A cube has 12 edges which represent nearest neighbor pairs. Each 
edge is shared by 4 cubes so that the average number of nearest 
neighbor pairs associated with a cube in a lattice is 3. Since the 
cubic lattice has 3N nearest iieighbor pairs there must be N cubes. Each 
cube has 12 face diagonals representing second nearest neighbor. Each 
face diagonal is shared by 2 cubes implying the total number of second 
nearest neighbors as 6N. Body diagonals, representing third nearest 
neighbor pairs, are not shared. There are four to a cube giving a total 
of 4N third nearest neighbor pairs. Since in a cubic lattice Z, = 6, 
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Z, = 12, and Z, = 8 (numbers of nearest, next-nearest,and third nearest 
neighbors, respectively), the values derived are correct. 

As before, let 

<y(Z,RT) n = e 

<t> = e £ 

and 
V ( Z 3 R T ) 

ty = e 
where o)3/(Z,N. ) i s t n e interaction energy of a dissimilar third nearest 
neighbor pair. Now since nearest neighbor pairs are shared by 4 cubes 
and next-nearest neighbor pairs by 2 cubes, the energies contributed to 
a cube are ID./(4Z,N. ) and uJ(21„N. ) by nearest and next-nearest neighbor 
dissimilar pairs respectively. Consequently the Boltzmann factors 
associated with these pairs in a cube are n" and 41" . Since the 
third nearest neighbor pairs are not shared among cubes, the interaction 
energies of such pairs of dissimilar species are contributed wholly to 
the associated cubic configuration; the Boltzmann factor for such 
are "̂ . 

The simplification using Van der Waal's model gives 

u3'< Z3 NAv> = V ( 2 7 Z l N A v » 

since the separation of third nearest neighbor pairs is /T times 
that of nearest neighbor pairs. Therefore, the functions iji and n are 

1/27 related by ^ = n . The total energy of interaction,10,for placing 
a B atom in an A lattice is then 
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The derivation of the thermodynamic quantities based on this model 
depends on the solution for values of 23 configurational variables just 
as the values of 6 configurational variables must be determined in the 
case of the square configurations. The problem is reduced to one of 
solving for a value K which is of 4 order in an equation in the square 
cases and 8 order in the cubic case. Once determined, K is used to 
calculate the values of the configurational variables. The details of 
this derivation are in the Appendix. 

The activity coefficient as derived from this model is given by 

'• = ( « 

where e represents the fraction of cubic configurations with all of the 
sites occupied by B. 

C. Evaluation of the Models 
To evaluate the usefulness of these models in systems with highly 

depressed activities, the limiting values of the activity coefficients 
are plotted in Fig. 2. The limiting values were attained by allowing 
u to approach -•». Granted,for values of u very large and negative, 
the assumption that the only sign-'ficant interactions are those of 
nearest enighbors is false. The assumptions that only next and third 
nearest neighbors in the square and cube models need be considered 
are also false for large negative values of u. Yet such an examination 
can provide insight into the properties of a model compared to other models. 
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Note that the a-parameter model predicts Y = 0 for all x as 
u(or a) -+ -°°. The progression from I s order to square and cube quasi-
chemical models suggests that as one considers interactions of ever more 
distantly separated pairs the more closely the predictions for the 
activities will approach those predictions of the a-parameter model. 

Guggenheim has shown that the 1st order model reduces to the 
a-parameter model when the number of nearest neighbors Z, approaches 
infinity. In the situation encounted here as u> * -= the dependence 

of the interaction energy on distance effectively disappears. Thus, 
by increasing the complexity of the approximation by including the 
interaction with more distant atoms, the effect of ui approaching -«° is 
to increase the effective number of nearest neighbors. 

This trend is reflected by the activity coefficients of the 
different models for finite values of u. Figures 3 and 4 
demonstrate this by comparing the activities computed from the 1st 
order and the square models to those computed from the a-parameter model 
for S T = -3.0. A plot of the activity coefficients computed from the 
cube model would be indistinguishable from the plot of the square model. 
This indicates that though the more complex models tend to approach 
the predictions of the a-parameter model, they do not become identical 
with it for the case of infinite complexity and finite values of u. 

Further, since the energy of interaction is assumed to drop off as 
r" , the energies of interaction become small compared to thermal energies 
and do not make significant contributions to the energy of mixing or to 
the ordering of the species. Since, this is to be applied to liquids, 
thermal motion would certainly randomize the pairs interacting over 
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large distances, obliterating any order due to interaction over large 
distances. Thus, to consider more complex systems than second order 
would be of little value. The complexity of the computations do not 
justify the small grain in accuracy. 

Though the activity coefficients do not differ greatly between 
the 1st order and the square models, the difference between the 
enthalpies of mixing is considerable. Again, the effect of the 
difference is a tendency to approach the values predicted by the 
a-parameter model. This can be seen by comparing Figs. 6 and 7. As 
before, the plot of the enthalpy of mixing calculated from the cube 
model is indistinguishable from that derived from the square. 

This difference in the enthalpy can be seen to a much smaller 
extent in the entropies. The 1st order model considers the interaction 
energies of nearest neighbors and the ordering of nearest neighbors. It 
does not take into account the secondary ordering of next nearest 
neighbors by the nearest neighbors preferentially pairingwith its 
other nearest neighbors. 

In order to explore the implications of secondary ordering,consider 
a system consisting of A and B and assume that only nearest neighbor 
interactions exist and that the interaction parameter is positive so 
that at temperature T (consulate temperature) the solution separate 
into two phases below T and remains a single solution above T . Now 
given u, the a-parameter model predicts T = 5o>and the 1st order model 
predicts T = 2"~4l£3R f o r zi = *>• Suppose that the ordering of next-
nearest neighbors in a 1st order liquid solution is allowed to take 
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place due to the nearest neighbors, A, and A,, of A,. Then the next 
nearest neighbor of A, preferentially will be A, and not B,, since B, 
will be repelled away by A~ and A,. What this will do is make A 
associate more preferentially with A and likewise B with B despite 
thermal action to randomize the solution. Therefore, the consolate 
temperature must be greater than T = , .—,, for Z, > 6. In general, 
then, T should be greater than that predicted by the 1st order quasi -
chemical model. Inclusion of energies of interaction for next and 
third nearest neighbors was considered. These energies can only make 
more probable that B will not be a neighbor to A. Thus, the thermal 
action to randomize the solution is again thwarted, making the predicted 
consolute temperature higher. The effect of these considerations is 
less because of the complex routine for influencing that neighbor. 
Relations between T and u given by the different .nodels are summarized 
in Table 2. 

In Figs. 9 and 10,activity coefficient data for the In-Sb system 
7 2 

at 900°K as taken by Terpilowski and Hoshino et al., are plotted. 
Plotted on the same graphs are the activity coefficient curves as 
predicted by the 1st order and square models and fitted to minimize 
the error. The Terpilowski data fit well with both the 1st order 
model and the square model, though the square model may have a slightly 
better fit to the data. The data of Hoshino et al., do not fit well with 
either model at low In mole fractions. However, the square model does 
obviously fit better than the 1st order quasi-chemical model. 
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Table 2. The ratio of the interaction energy 
to and the consolute temperature as 
predicted by the various revised 
quasi-chemical models. 

Model CO 
R T c 

1st order quasi-chemical 2.433 
Square model 

Nearest neighbor interactions 
only 

2.088 

Include next nearest neighbor 
interactions 

2.065 

Cube model 
Nearest neighbor-interactions 

only 
2.089 

Include next nearest neighbor 
interactions 

2.062 

Include third nearest neighbor 2.058 
interactions 

a-Parameter model 2.000 
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D. Conclusions 

Guggenheim's derivation for the second order quasi-chemical 
models is found to be neglecting three quarters of the second order 
interactions. A method has been proposed to correct this for the specific 
case of cubic lattices. 

In addition, the higher order quasi-chemical models are found to 
give a better fit to the available data on the ln-Sb alloy melt system 
than the first order quasi-chemical model. These higher order models 
give calculated activities quite similar to those predicted by the 
a-parameter model. Due to the complexity of those higher order models 
the a-parameter model is preferred for the calculation of activities. 
Enthalpies and entropies of mixing, however, should be calculated by the 
higher order quasi-chemical models. 
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(a) 

X X X X 
X X X X 
X X X X 

(b) 
X B L 7 5 2 - 5 7 3 9 

Fig. 1. (a) This is the two dimensional analog of Guggenheim's 
quasi-chemical treatment for counting second nearest 
neighbor pairs, (b) This is the two dimensional analog 
of the counting treatment advanced here. 
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Fig. t. The a c t i v i t y coe f f i c ien t predict ions of the a parameter and the 
quasi-chemical (second order, t h i s der iva t ion) models are compared 
fo r u/RT = -3 .0 . 
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Fig . 5. The a c t i v i t y coe f f i c ien t predict ions of the a parameter and the 
quasi-chemical (second order, Guggenheim's der iva t ion) models 
are compared for u/RT = -3 .0 . 
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Fig. 6. The enthalpy of mixing predictions of the a parameter and the 

quasi-chemical (first order) models are compared for m/RT = -3.0. 



-84-

1 1 1 1 1 1 1 
a Parameter Model 
Second-Order Quasi-Chemical 
Model of the This Derivation 

0.8 
(tf/RT = - 3 . 0 

// 
// 

/ > 
\ 

s \ 

0.6 // 

0.4 

0.2 

J L I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Mole Fraction X 
0.8 0.9 1.0 

XBL752-5745 
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VIII. GENERAL CONCLUSIONS 
The use of oxide electrolytes, calcia stabilized zirconia and yttria 

doped thoria in particular, is shown to be viable for the measurement 
of Ga activities in Ga-In-Sb liquid alloys by solid state electro­
chemistry. The activities of Ga in Ga-In alloy melts were measured and 
used to calculate heats of mixing which correlate quite well with the 
heats of mixing of Ga-In alloy melts measured by different techniques. 

The Ga activity measurements were extended into the Ga-Sb system. 
The activities of Ga were found to be highly depressed and correlating 
very well with a model postulating Ga 5Sb, GaSb.and GaSb, complexes. The 
activity coefficients of Ga show a very marked drop at x« = 0.8, the 
reason for postulating Ga,-Sb, and show quite low values at x„ = 0.2, 
necessitating the postulation of GaSb,. In order to shift the inflection 
points of the model, the existence in the melt of GaSb was necessary. 
These complexes together form a system which explains the large 
negative deviation from Raoult'sLaw, long equilibration times, and 
earlier observations by other investigators showing short range order. 
The ramifications of the model are large negative heats of mixing 
with a minimum of -7.8 kcal/gram-atom at 997°K for x- = 0.7. 

Activities of Ga in the ternary alloy Ga-In-Sb melt were then 
measured for one composition, x- = 0.7, x. = 0.1, x-. = 0.2. The 
measurements show a depressed Ga activity which decreases rapidly with 
decreasing temperature. 

The higher order extensions of the quasi-chemical model were then 
examined in relation to the In-Sb alloy melt system. The derivation of 
Guggenheim for the second ord?r model was modified for a cubic lattice 
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to account for the second nearest neighbor interajtions, which are 
ignored in that derivation. That derivation ignored 3/4 of those 
interactions. The modified second order and the derived third order 
models are found to follow very closely the activity coefficient pre­
dictions of the a parameter model, though not e/actly. These higher 
order quasi-chemical models and, thus, the a parameter model, are found 
to give a closer fit to the measured In activity data for the In-Sb 
alloy melts than the first order quasi-chemical model. 
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APPENDIX: QUASI-CHEMICAL MODELS 
A cubic lattice is the si' M^st structure for which the number of 

nearest neighbors equals six. Therefore, assume a cubic lattice. 
Further, especially for the liquid state, assume Van der Waals forces 

-6 * between atom pairs, i.e., interaction energies proportional to r . 
In a cubic la^Lice, the ratio of next nearest neighbor separation 

r, to nearest neighbor separation r. is r„/r. = J2, and the ratio of 
third-nearest neighbor separation r, to nearest neighbor separation is 
r,/r, = /J. Therefore, the ratio of next-nearest neighbor interaction 
energy I- and nearest neighbor interaction energy I. is I ?/I, - ]/(/2) = 1/8. 
Also, the ratio of the third-nearest neighbor interaction energy I, 
to the nearest neighbor interaction energy is I./I, = 1/(1*5) = 1/27. 
This leads to the following relationships among the Boltzmann factor 
for nearest neighbors iT , next nearest neighbors <J>~ , and third-
nearest neighbors <l>~ : 

. . 1/8 , . 1/27 
• - n > v = n 

The interaction energies above refer to interactions for pairs of atoms of 
differing species. 

Assume now that the atomic radii of the two species are equal so 
that coordination numbers do not change with composition. Further 
assume that there is no change in volume with mixing. Then 
Ml . . = AH . . . mixing mixing 

It has been suggested that the Leonard-Jones pot3ntial would be more 
appropriate. I agree, but at the time of my original work, I did not 
think of it. 
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Now imagine the enthalpy of mixing involved in replacing an atom 
of species A in a lattice of species A with an atom of species B. 
Considering only nearest, next-nearest, and next-next-nearest neighbors: 
AH . . = Z. I- + Z„I° + Z 1° where Z Z and Z are the numbers 
of nearest, next-nearest, and third-nearest neighbors, respectively. 
Call this enthalpy of mixing £2, i.e., a = 1^1° + Z 2I° + Z 3i°. Thus, 
a measurement of fi immediately yields I?, I- and I?, provided Z Z 
2- and the relationships betwaen I?, I? and 1° are known. For the case of 
a cubic lattice Z 1 = 6, Zj = 12, Z 3 = 8, I°/I° = 1/8, and I°/I° = 1/27, 
implying 1° = Q/{6 + 12/8 + 8/27). Therefore, 

n = e+fi/(6+12/8+8/27) RT 

when one considers the three nearest levels of neighbors in a cubic 
lattice. 

Now let us consider a cubic lattice as a case of interest since 
the coordination number of the III-V melt of In-Sb has been measured 
to be 5.7 or approximately 6, the coordination number of a cubic lattice. 
The cubic lattice U s a unit cell consisting of 8 atoms (in the case of 
a metallic melt) arranged at the vertices at a cube. Each atom also 
is at the vertex of 8 cubes or unit cells and, therefore, is shared by 
8 unit cells, making the effective number of atoms associated with 
each unit cell equal to 1. Therefore, for N atoms there are N cubes 
or unit cells. 

Let us now consider the energy contributions of the various 
interactions to the enthalpy of a cubic cell. Suppose a pair of 
nearest neighbors consist of atoms of differing species. Then the 
energy of interaction is I,. Now the line connecting the two atoms 
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is an edge of the cube and is shared with three other cubes. Thus, 
the energy of interaction of that pair is shared by four unit cells, 
and the contribution to the unit cell of interest is I./4, implying 
that the associated Boltzmann factor is r\~ ' . Similarly, the interaction 
energy for next nearest neighbors is shared by two unit cells, and the con­
tribution of this interaction to the enthalpy of the unit cell is I 2/2; 

-1/2 implying that the corresponding Boltzmann factor is d> The 
interaction energy for third-nearest non-identical neighbors is not 
shared but belongs wholly to the unit cell within which the interaction 
resides; implying chat \\i~ is the associated Boltzmann factor. 

Table 1 contains all the different possible configurations for atoms 
of two species arranged at the vertices of a cube. The second column 
is a term representing the total number of cubes corresponding to the 
configuration in the first column. This term is composed of a term 
N which is the total number of cubes in a cubic matrix. The second 
term is a variable multiplied by an integer. The variable repesents 
the fraction of cubes in one orientation of the configuration in the 
first column. The integer is the number of possible orientations of 
that particular configuration. The third column lists t!ie Boltzmann 
factor associated with the particular configurations. 

The above basis is used to evaluate the thermodynamic properties 
of a system having a cubic lattice. Several degrees of complexity are 
used to develop models for which a partition function may be derived. 

In order that the partition function be determined, it is necessary 
to solve for the variables listed in the preceding table using the 
constraints of the system. One of these constraints is the conservation 
of species. Let us count the number of B atoms associated with each 
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Table 1. Boltzmanri factors and configurational degeneracies 
for cubic groups in a binary system. 

Configuration Number in this Configuration Boltznann Factor 

Net 

N86 - 3 / 4 - 3 / 2 - 1 
n * if 

<M 
\£ 

NT 2 -0 
- 4 / 4 - 6 / 2 - 2 

n • i|i 

N12C, - 6 / 4 . - 4 / 2 - 2 
n • iji 

N4C, , -6/4^,-6/2 

N24v„ - 5 /4 . - 7 /2 . - 3 
n $ \|j 

N24v, - 7 / 4 . - 7 / 2 - 1 
n * i|i 
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Table 1. Continued. 

Configuration Number in this Configuration Boltzmann Factor 

N8v, -9/4,-3/2.-3 
n <t> H> 

N6^ ^-4/4^-8/2^-4 

*q *f N24?, n-8/4^-6/2^-2 

N125, n-6/4^-8/2^-2 

N12S, , f 6 'V 8 / V 2 

trt Nse, -6/4 -6/2 -4 
n • I|I 

N65 c 

-8/4,-8/2 

7f N2?c 

-12/4,-4 
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Table 1 . Continued. 

Configurat ion Number in t h i s Configurat ion Boltzmann Factor 

N24pn n" 5 / V 7 / V 3 

N24P, n-^V^V1 

N8p, , f 9 ' V 3 / V 3 

N12(J„ -4/4.-6/2,-2 

N12o, - 6 /4 . - 4 /2 , - 2 
t l * <l> 

N4a„ -6/4.-6/2 

N8T -3/4.-3/2,-1 n • i|) 

NS 
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of the configurations; the total must be N„. In the accounting we 
note that the average number of atoms associated with a unit cell is one; 
therefore, the fraction of B atoms associated with a configuration -"s 
equivalent to the average number at B atoms associatec' with one unit cell 
of that particular configuration, as shown in Table 2. Thus, we have that: 

N B = Nt. + 3N? 0 + 3N?1 + N? 2 + 9Nv Q + 9Nv] + 3Nu 2 + 3N£ 0 + 1 2 ^ 
+ 6NC 2 + 6NS 3 + 4NC 4 + 3N£ 5 + NSg + 15Np Q + 15Np] + 5Np 2 

+ 9No 0 + 9No-j + 3No 2 + 7NT + N 

or 
x B = c + 3s Q + 3C 1 + ? 2 + 9v Q + 9v} + 3v 2 + 3? Q + 12^ + 6? 2 (1) 

+ 6? 3 + 4C 4 + 35 5 + C 6 + 15p Q + 15 P l + 5p 2 + 9a n + 9o 1 

+ 3a ? + 7T + 8 

Similarly for A: 

x A = a + 76 + 9C Q + 9C, + 3? 2 + 15v 0 + 15v, + 5v 2 + 3? Q + 12C, (2) 
+ 6€ 2 + 65 3 + 4? 4 + 3? 5 + $ g + 9p Q + 9p, + 3p 2 + 3o n 

+ 3a. + o. + T 

Now following the procedure outlined by Guggenheim in Mixtures, we 
write the approximate partition function and maximize to determine the 
values of the variables. The partition function is S2n: 
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Table 2. Fraction of B component in binary 
configurations of a cubic lattice. 

Table Number in Number B in Total B in 
Configurat ion Configurat ion Configurat ion 

Na 0 0 

N8t 1/8 NC 

N18C0 1/4 N 3 C Q 

N12C1 1/4 N3C1 

N 4 ; 2 1/4 NC 
N24v Q 3/8 N9v Q 

N24v ] 3/8 N9v Q 

N8\>2 3/8 N3v £ 

N65 n 1/2 N3f,Q 

N 2 4 ^ 1/2 N12C, 

N125 2 1/2 N65 2 

N12£ 3 1/2 f l 6 « 3 
N8? 4 1/2 N4S 4 

N6? 5 1/2 m5 

N2S 6 1/2 Hi6 
N24p Q 5/8 N15p Q 

N24P, 5/8 N15pj 

N8p, 5/8 N5p 2 

N i 2 ; 0 3/4 N9o 0 

N12o1 3/4 N9o ] 

N4a2 3/4 N3o 2 

N8T 7/8 N7T 

Np 1 NB 
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N! (No.*)! [(N«*).']8 [(N?*)!]12 t(N?*)!]12 [(NC*)!]4 (3 
W (No.)! [(N6)!]6 [(NC o)!] 1 2 [W^)!] 1 2 [<NG2)!]* 

* 24 * 24 * 8 * 6 * 24 * 12 t(NVo)!l" K H V ^ ! ] " [(NV2)!] [(»€„)!] [(%)!) [(N52)!] 
[(Nv 0)!] 2 4 [(Nv^!] 2 4 [(Ny2)!]8 [(NSo)!)6 [(N^)!] 2 4 [(N^)!] 1 2 

[(N5*)!] 1 2[(N?*)!] 8 [ ( N O ! ] " [N5")!]" [ C N p J ! ] " [(Npl")!] * 6 * 2 
55)i] [N? 6> 

*,.,24 ,,...*,.,24 
l' 

[CNC 3)!) 1 2 [(NC4)!]8 t(N?5/!]6 ( « 6 ) ! ) 2 [NP Q)!] 2 4 [(Np^!] 2* 

[(Np*)!]8 [(No*)!]12 [(NO*)!]12 [(No*)!]4 [(Nx*)!]8 (NB*)! 
[(Np2)!l8 [(NO o)!] 1 2 [(No^'J 1 2 [(Na2)!J4 f(NT):)8 [NB)! 

"V 
6 + 2 ? Q + 35 + £ 2 + 5V Q + 7v + 3\>; 

£ o + 85° + 3C2 + 3C 3 + 2 5° + 2? 5 + ^ 
+5p„ + 7p. + 3p, + 2a + 30 + a + X 0 X 2 o L 2 

-*-N 
6 + 3? Q + 25 x + 5 2 + 7\) Q + 7vx + v 2 

+2? o + 6S a + 4S 2 + 45 3 + 2£ 4 + 2t 5 + 
+7p + 7p, 4 p + 3a + 2a, + a, + T 

0 X 2 o 1 2 

6 + 3? o + 3C + 9V Q + 3v + 3V 
+ 3 S o + 6«° + 3 ? 2 + 3i° + 4C 4 + Cfi 

+9p„ + 3p, + 3p, + 30 + 3o, + T o 1 2 o 1 
X ijj 

In the partition,function the term in front of the Boltzmann factors 
represents the number of orientations for a given set of values of the 
configurational variables. The starred configuration^ variables are 
the values of these variables in a completely random solution and have 
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the following values: 

a* = x® = (1 - x ) 8 (4) 

<5* = x^xj = x( l - x ) 7 

* * * X6 X2 , „ 2 n . x , 6 
S C l " C 2 A XB x l l x ' 
* * * 5 3 3,, ,5 

v o = v l " u 2 = XAXB " * { 1 " x ) 

* * * * * * * A A A A 

^ o - ^ - h ' h - ?4 = «5 = k '- XAXB = x <! " x> 
* * * 3 5 5,, ,3 

po = p l = p 2 = XAX8 = x (1 - x) 
* * * 2 6 6 , , ,2 

°o = c l = °Z = XAXB " « 0 - *) 

T = X f l X B = X ( i - x ) 

„* 8 B 8 = x B = x 

Note now that there are 23 configurational variables. Equations (1) 

and (2) are two constraints so that there are now 21 independent 

variables (provided z. , z„ , z , n, <f> and $ are known). To specify com­

pletely the state of equilibrium we must minimize the Gibbs energy with 

respect to the 21 independent variables, the configurational variables 

excluding a and B. An equivalent operation is the minization of the total 

Gibbs energy of mixing or RT In 9. . Therefore, I t suffices to minimize 

In n with respect to the independent variables. Uti l iz ing the St ir l ing 

approximation we obtain: 
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3 In aQ 

—sr"' 

r o 

7 0 / , 8 z l , 2 2 , z 3 

V / , - 1 ? - 2 z l J . 3 z 2 , 3 z 3 

9 .3 , 12 3 z l 2 z 2 , 3 z 3 

a B/C2 = n * 

15.9. 24 5 z l . 7 z 2 . 9 z 3 a B / v = n * <|< 
0 

15.9, 24 7 z l . 7 z 2 , 3 z 3 
a B / v 1 = n * * 

a5B3/v!j = n V Z ¥ * 3 

aVc/S-nVV*3 

12.12..24 8 z l A

6 z 2 , 6 z 3 

6.6. r12 3 z l , 4 z 2 3 z 3 

6.6. r12 3 z l A

4 z 2 3 z 3 
a B /C 3 n 4> i); 

V / , 8 . 2 Z l / Z 2 , 4 z 3 

3.3. r6 _ 2 z l 2 z 2 

2 z l Z 3 
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9„15. 24 . 5 z l 7 z 2 , 9 z 3 
P 0 a B /P Q - n * * 

9 D 15 , 24 . 7 z l / z 2 3 z 3 P1 a 6 / P 1 - n <f> * 

P 2 a V / P g = n ' * 2 * 3 

3 Q 12 2 z l 3 z 2 3 
a c

 a B / ° 0

 = n * * 

3 4 Z l Z 2 
o 2 a6 /(Jg = n * 

3 9 , 1 2 3 z l 2 z 2 3 z 3 ^ a " r / o , = n ' * > 

T O Z-. 2r j Z.3 
T a8 / T = n ' • ii 

With appropriate algebraic manipulations and the subs t i t u t i on 0 Iv 

the fo l lowing re la t ionsh ips can be der ived. 

-4 2 4 -1/2 2 
a = K ^ n * V 5 3 = S 0n " V 

? 0 - K-hy 
v - l r -1 /2 .2 ,2 

5 2 - K - 2

V - 1 / 2 * S 4 

- ic-lr - 5 /4 .5 /2 , 

V 

V 

V - e0Ti * 

p o : - Kt, n $ * 

p l ' 
. „ r -3/4.1/2.: 

P2-
. .. -5/4.5/2 
• KC0n 9 

% " 
? 2 
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K0 - 5 0 o, = K C cn * * 

C1 = C 0 n " V 2 o 2 = K 2 , n " 1 / Z # 4 

, -.,'<Lo,2 „3.. 1M5/2.3 
? 2 = ^o n * * t = U 0 n • • 

i 4 4 
8 = K-5 0 n*V 

Let us now digress to Eqs. (1) and (2). In order to simplify the 
mathematics, let I, represent the i configurational variable ot the 
23. Let a., and a.- represent the corre.pond'ng constants of Eqs. (1) 
and (2), respectively. Thus: 

23 

23 
XA = piz'l 

To further simplify, let a-,, a.., a.,- and a., be the exponents of K, n, 
$>and t|i in Eqs. (5) for the respective variables. Substituting into 
Eqs. (1) and (2). 

23 a., a., a. c a., 
x B - 2- a i i K 5 Qn * * (la) 

1 
23 a., a.„ a._ a.. VE^'V'VV6 (2a) 

Factoring out and isolating £ , we can equate the two equations to obtain 

23 a., a., a... a., 23 a., a., a.- a., 

1 1 
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23 a . , a . . a . c a . , 
^ ( x ^ . , - x B a . 2 ) K l 3 n , 4 $ 1 5 * l 6 = o 
1 

or wi th x = x „ , 

23 
Z{au - x ( a n + a 1 2 ) ) K 1 J n "% 1 0 « / 1 D « 0 . 
1 

With n. 4>, if'.and x g iven, i t is then possible to solve fo r K, and then 

possible to calculate the values o f the conf igurat ional var iab les . 

Further, s i m p l i f i c a t i o n can be at ta ined by assuming Van der Waals behavior 

in which case,as pointed out e a r l i e r : 

a . r a . , 
23 a a + — + —1-& 
E ( a n - x ( a i l + • )) K " V 1 4 8 ' 2 7 - 0 . (6) 
1 

Dioressing again, l e t the exponents of the Bolt^mann factors in 

Table be designated by e - , , e-o, e . , for r i , <t>,and \\> respect ively 

f o r the i con f igura t ion . Let 

E L i = e i l + e i 2 / 8 - e i 3 / 2 7 " 

Noticing that the number of or ienta t ions fo r each conf igurat ion is equal 

to a . , + a . , , we may then wr i te fo r the molar enthalpy of mixing 

23 
AH m = E ( a n

 + a i 2 ) I , ( E L i ) n / ( 6 + ^ t f y ) . (7) 
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The molar Gibbs energy of mixing may also be calculated and is 
given by 

AG = ~ In a m N Q o 

where N is the number ot moles used in calculating Q as contrasted 
with N, the number of atoms used in calculating fl . The partial molar 
Gibbs energy of B is then 

3N AG 3 In 0n 

AG„ = — 2 = RT B 3N B ' 3N B 

Now all of the configurational variables starred or unstarred are functions 
of x or N B > therefore, 

AG"D = RT 
23, h In BQ 

V 31* 

d l * 8 l n f i o d l A 
d.NB 3K dNBy 

3 in a0 d N a in n 0"| 
3N d"Ng 3Ng 

Now assigning values to L appropriate for a completely random arrangement 
(regular solation) is equivalent to maximizing ft. Therefore, for the starred 

* * configurational variables excluding a and B , we find 

a In ft o 
al. 

Similarly, in determining the equilibrium values of the unstarred 
configurational variables, it was necessary to minimize In 12 with respect 
to these variables excluding a and 6, implying 
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a in a 
o 

31.-
= 0 

Using Eq. (2) we find that Na and Ha are functions of N„ and the 
variables already discussed and, thus, contribute to making those 
differentials equal to 0. Thus, the only terms not irrelevant are 

* N, N„, g , end B. Performing the indicated operations, we get: 

AG B = RT(ln x + In M 

Similarly for AG. 

AGft = RT ln(l - x) + 1 "rf 

(8a) 

(8b) 

Thus, a simpler expression for AG is 

A G m = R T 1„«| + (1 - x) m U-^^i-Si] . (9) 

Substituting for a and B from Eq. (4) we also obtain 

AG = RT m x In 2j + (1 - x) 1 (1 - x)7J (9a) 

Furthermore, the act ivi t ies and act iv i ty coefficients are 

Y f t J (1 - x ) 8 Y B = x 8 

(10) 

(1 - x ) ' 



-107-

This particular model may be used to evaluate the effect of 
allowing for third-nearest neighbors. Those terms taking that 
interaction may be eliminated from this model by just ignoring the 
interaction energy and its Boltzmann factor for third-nearest 
neighbors. Then to evaluate the effect of allowing for next-nearest 
neighbors, their associated interaction energy and Bcltzmann factor 
is just ignored in this model. 
Discussion 

In principle,™ a case of one to one correspondence if.it is possible 
to calculate some quantity given some initial information, then it must 
be possible to derive the initial information if the desired quantity is 
known. That is the case here. The activities have already been calculated 
for a given a. Thus, if the activities are known,n may be deduced. 
The Initial Model 

The method requires that the number of nearest neighbors be established 
first. If Z, is independently determined to be 6,then the equations 
developed here may be used: one can assume a cubic lattice and a 
Van der Haals relationship for interaction energy as a function of distance. 

Suppose that the activity of B for a given mole fraction of B is 
known. Then from Eq. (15), B may be calculated, 

6 - x 7 a B . 

But from Eq. (10) we have 
4 4 4 3 = IC5 n*V 

http://if.it
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euW)" 1 (ioa) 
If we substitute this £ into Eq. (la), we obtain 

1 

V a / « ai4. ai5, ai6 . L x\ „4 .4,4 n 

or 

^ a K a i 3 n a i 4 + a i 5 / 8 + a i 6 / 2 7 / x\ 4 1+4/8+4/77 

^ a i l K n + h - |J K V + 4 / 8 + 4 / 2 7
 = Q { ] o b ) 

Thus, Eqs. (10b), ar.d (6) are two equations in two 
unknowns, K + n. These two equations can be solved simultaneously 
by numerical techniques to obtain «, sine ; Q = (6 + 12/8 + 8/27) RT In n-
Square Interation Model 

A second model is simpler and allows for the nearest and next-nearest 
neighbors only. Thus, in this model I? = £2/(6 + 12/8) as is true in all 
models presented here for the cubic lattice which take only these two 
interactions into account. This model considers only those atoms at 
the corners of a square. The number of such squares may be determined 
by considering the unit cell, a cube. A cube has six square faces; but 
in a unit cell each face is shared with another unit cell, implying that 
each unit cell may be associated with three faces. Now in a cubic lattice, 
one atom may be associated with each unit cell, implying that for N 
atoms there are 3N squares. 
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To determine the Boltzmann factors for each configuration, let us 
consider the relationship of the squares to each other. The edges of 
the squares represent the nearest neighbor interactions. Each edge is 
shared by four squares so that the interaction energy of dissiinilar atoms 
is shared by the four squares. Thus, each dissimilar atom's nearest-
neignbor interaction contributes 1/4 of the interaction energy of the pair 
to each of the squares. Thus, the Boltzmann factor for a dissimilar 

-1/4 edge pair will be n . The diagonals of a square are net shared so 
that dissimilar diagonal pairs (next nearest neighbors) will contribute 
the whole of the interaction energy to the associated square. This 
implies that the associated Boltzmann factor will be $~ . 

Table 3 contains all the different possible configurations 
for the square model. The second column contains terms representing 
the total number of each configuration. These terms are composed of the 
total number of squares, 3N, the number of orientations of the con­
figuration, multiplicative constant, and the variable representing the 
fraction of squares in one orientation of the corresponding configuration. 
The third column lists the Boltzmann factors of the configurations. 

Thus, we have a total of six configurational variables. It is 
necessary to develop the relationships between these variables in order 
to derive meaningful thermodynamic data from this model. The simplest 
relationships are those of the conservation of the species involved. 
Together all of the equations of species conservation state implicitly 
the conservation of mass equation, so that this equation would be 
dependent on the species conservation equations and, thus, unnecessary. 
The species conservation equations are 
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Table 3. Boltzmann factors and conf igurat ional 
Degeneracies fo r square-grouss i n a binary system. 

Conf igurat ion Number in th i s Conf igurat ion Boltzmann 

3Na 

3N4? -2 /4 . -1 

3N4v r ," 2 /V 2 

4 B 

B A 

n 
3N2v' 

3N45 

1 
-4 /4 .0 

- 2 / 4 A - l 

9 ? 
3N3 

8 B 
r i <(> 
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Na + 3N? + 2Nv + Nv' + N? (ila) 

Nc + 2N\> + Nv* + 3N5 + NB (lib) 

a + 3c + 2v + v'+ £ (72a) 

5 + 2v + v' + 35 + 6 - (12b) 

In order to cut down on the writing,let I. represent the i configur-
ational variable and a. and b. represent the corresponding constants 
of Eqs. (12a) and (12b), respectively, giving: 

6 
h '- \ ail!i 

6 
XB = ] a i 2 I i 

Inspection of Eqs. (11a) and (lib) reveals that two of the six configurations 
are now no longer independent. For convenience let a and 6 be the too 
variables dependent on the other four. 

Equations (Ila) and (lib) are derived by determining the total 
effective number of atoms of the respective species in eqch of the con­
figurations and summing and equating to the total number of each specie. 
For example, consider specifls B. Each atom is shared by 12 squares in 
a cubic lattice, therefore, the faction of that atom which is associated 
with a single square is 1/12. Therefore, the effective number of B in 
a particular configuration is the number of B at the corners multiplied 
by 1/12. Multiplying the effective number of B in a configuration by the 
total number of squares with that configuration then gives the total 
effective number of atoms of B associated with that configuration. These 
values are given in Table 4. 

\ -

XA = 

XB = 
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Table 4. Configuration numbers. 

Total Number Effective Number 
In Configuration B in Configuration Total Effective B 

3Na 0 0 
3N4c 1/12 Nc 
3N4v 2/12 2Nv 
3N2v' 2/12 Nv' 
3N4E 3/12 3N5 
3N6 4/12 N6 
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In order to derive the relationships between the fcur presently 
independent variables, it is necessary to determine the values of these 
variables when in the state of equalibriuro. This is done by determining 
the minimum Gibbs energy for each variable. With the six variables it 
is possible to develop an approximate partition function from which 
the Gibbs energy of mixing is easily obtainable as a continuous function 
of the four independent variables. Differentiating that function with 
respect to each of the independent configurational variables and equating 
with zero will give the remaining relationships between all of the 
configurational variables at the state of equilibrium. 

Keeping in mind that z. = 6 and z, = 12,we can write the partition 
function fi by following the procedure outlined by Guggenheim in 
Mixtures and in Table 3, as 

a , HI [(3Ha*)!ir(3N;*)i1 4r(3Nv*)!3 4f(3NV*H] 2r(3NS*)!] 4[(3NB*)!] 
0 W [(3Na)!][(3N?)!] [(3Nv )!r[{3Nv')!] 2[(3NC)!r[(3NB)!] 

-z,NU + v + v' + 0 -z 2K(c + 2v + 5) (' 3 ) 

x n <t> 
In the partition function the term in front of the Boltzmann factors 
represents the number of orientations for a given set of values of the 
configurational variables. The starred variables are values of the con­
figurational values in a completely random solution and have the following 
values with x = x-, 1 - x = x f t: 
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(1 - x ) 4 

XA*B = x(l - x ) 3 

v* = V = x 3 x 2 = x2(l - x ) 2 

C = xj^x3 = x3(l - x) 

Now the total Gibbs energy of mixing AG is given by 

AG = RT In n m o 

Thus; minimizing this function with respect to the ir.oependent con-
figurational veriables results in 

I 

? 

With the appropriate algebraic manipulations and the substitution 
2 

5/C = K , the following relationships can be derived. 

a - K" V V 
t, = K^vn 0 * 

o.o 
v = vn <|> 

-1 /2 .2 

v - vn $ 

C = Kvn°<(> 

B = K 2 v n 1 / 2 * 2 

8 In fl 
0 = 0 

«h/S = 2*4 

«hW = n <t> 
aB/V2 = z 

n 
:>3/r4 2*4 
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Let a.,, a..,and a. g be the exponents of k, n, and *, respectively, for the 
1 t h component of Eq. (14) and substitute Eq. (14) into Eqs. (12a) and (12b). 
Then, 

6 a . , a . . a . 5 

x A = £ a n K 1 J n ™<|> 1 3 v 

6 a . , a . . a . g 

x B = I a. 2 K 1 J n " • 1 3 v • 

Factoring out and isolating v, we can equate the two equations to obtain 

X T . It'",,"1**'15 " « T » / " n " 1 4 * ' 1 5 

A 12 * " S il 

6 
I (a 1 2 - xfa., + a.2))K 1 J n "* 

With n, *.and a given, it is then possible to solve for K, and then 
possible to calculate the values of the configurational variables. 
Further simplification can be attained by assuming Van der Waals 
behavior, in which) case as pointed out earlier: 

Z [a, 2 - x(a., + a i 2)] K i 3 n < 4 8 = 0 . (15) 

Now that the configurational variable values have been determined 
for equilibrium, the enthalpy of mixing may be calculated by summing 
up all the energies of interaction of differing species. Designating 
the exponent of n and <t> under the Boltzmann column of Table 3 
as e., and e.,, respectively, for the i configuration, we now 
define E. as 
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E. = e i l + e. 2 /8 

Noticing that the number of orientations for each configuration is 

equal to a., + a . , , we may then write for the molar enthalpy of mixing 

AHM = 31(3^ + a i 2 ) I^E _.) !2/{6 + 1,2/8) 

Che molar Gibbs energy of mixing may also be calculated and is 
given L,y 

RT 
iGM u l n "„ N 0 0 

where N is the number of moles used in calculating Q as contrasted 

with N, the number of atoms used in calculating a . The partial 

molar Gibbs energy of B is then 

i G B = 
3 N A G U 0 M 

B 

3 In a 
3N, = RT 3N, B 

All of the configurational variables starred or unstarred are functions 
of x or N 0 "B 

AG B = RT 
6/aln n dl. 31n a dl. 
ll 31* NB 3 I i NB 

31n £2 'o dN 
3 S - dN, B 

3 l n f l
0 

Now assigning values to I. appropriate for a completely random 
arrangement (regular solution) is equivalent to maximizing ft . Therefore, 
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for the stirred configurational variables excluding a and 6 which are 

dependent on the others, we find 

3 In a 
i u 

3 I i 

Similarly, in determining the equilibrium values of the unstarred 

variables, i t was necessary to minimize In SI with respect to these 

variables implying 

3 In a 
3 i i 

such that I. here does not include a and B. Now by Eq. (11a) 
it is known that a and a are independent of N-. Therefore, 

3 In £2 
0 = 0 3a 

and 
3 In a„ 

^ = 0 
3a 

* Thus, the only relevant terms are those involving N, N„, 6 ,and S. 
Performing the indicated operations we get: 

&G B = RT In x + Inf^l I . (15a) n x • ln(l,J 

RT ln(l - x) + Infe-] 1 . (15b) 

Similarly for AG.: 
_ ,3 
AG. 
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Thus, a simpler expression fo r AG is 

r 3 3 
AGm = RT x In x0~\ + (1 - x) I n (1 - x ) ( % ) ( 1 6 ) 

Substituting for a and 6 from Eqs. (13a), we find 

AG = RT [x in ,Qf + (1 - x) in (1 - x ) ( ^ f ^ ) 3 ] • d6a) 

Furthermore, the activities and activity coefficients are: 

" L -\^ (1 - x ) H 

(17) 

a A -(1 - x ) fcrhO" >*-<$ 
. 3 , nS3 

Hi - xV ** 
These expressiors are useful in describing deviations from ideality in 
liquid alloys known to exhibit square and cube clustering. 


