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THERMODYNAMIC STUDIES QF Ga-In, Ga-Sb and Ga-In-Sb
LIQUID ALLOYS BY SOLID STATE ELECTROCHEMISTRY WITH OXIDE ELECTROLYTES
Raymond Pong
Inorganic Materials Research Division, Lawrence Berkeley Laboratory
Department of Chemical Engineering; University of California
Berkeley, California 94720
ABSTRACT

Calcia stabilized zirconia and yttria doped thoria are used as
oxide electrolytes at elevated temperatures to measure the activities
of gallium in Ga-In, Ga-Sb and Ga-In-Sb Tiquid alloys. The measured
Ga activities of Ga-In melts are used to calculate enthalpies of mixing,
which reach a maximum of 226 calories per mole at Xgq © 0.53. The
measured Ga activities in Ga-Sb alloy melts are shown to fit a
chemical reaction model postulating complexes in the melt to explain
siabilization time constants on the order of one day and to result in
large negative enthalpies of mixing. The limited investigation of Ga
activities in Ga-In-Sb showed that Ga activities deviate strongly from
ideality, as expected.

The quasi-chemical model is examined, and the higher order
derivations of Guggenheim are modified to account more fully for the
secand nearest and third nearest neighbor interactions in a cubic
lattice. These higher order extensions more closely approximate the
o parameter or zeroth order quasi-chemical model in predictions of the

activity coefficients than the well known first order quasi-chemical

model.
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I. GENERAL INTRODUCTION

Solid state electrochemical methods were applied to the study of
the thermodynamic properties of Ga-In-Sb 1iquid alloys. The experi-
mental investigations on the ternary required that the available
data on two of the corresponding binaries be verified. The In-Sb
system has been investigated quite thoroughly by Terpi]owsky,]

Hoshino et a].,2 and Chatterji and Smith3 using tiquid and solid
electrolyte techniques. Also, the Ga-Sb system has been experimentally
explored on a limited basis by Danilin and Yatsenko4 using an electrolyte
technique, adding to the earlier study by Schottky and Bever5 through
1iquidus measurements. The Ga-In system has been somewhat more

thoroughly explored by Kliredinst et a1.6 using a solid state electrolyte
technique, by Svirbely et a1.7 using studies of the liquidus as
determined by resistivity measurements, and by Denny et al.” using
cooling and melting studies of given alloy compositions followed by
metallographic examination of the quenched alloy melts.

The 1iquidus in the Ga-In-Sb ternary system has been explored
experimentally by Kdster and Thomas.9 Component activities in the
ternary system have been calculated by Blom and P1askett]o using
activity data for In-Sb, Ga-Sb,and In-Ga,activity data for the
InSb-GaSb psuedo-binary, and liquidus data for the ternary. In this
study, activities of gallium in the Ga-In and Ga-Sb systems were studied
further and the gallium activities in the Ga In,  Sb system studied for

a gallium rich alloy.
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Recent work on the Ga-In-Sb syscem was spurred on by the important
semiconducting properties of the intermetallics GaSb and InSb and by
Gunn-effect device applications of GaxIn]_be solid solutions. The
semiconducting properties of GaSb are much like those of Ge or are superior.
Also, both GaSb and InSb are good candidates for light emitting diode
(LED) materials in the infrared region. The interest in InSb is
mainly due to the Gunn effect exhibited when a magnetic field is
applied. The greatest interest is in GaxIn]_be as a Gunn-effect
device materia].]]_]3 Gunn-2ffect devices are useful for the
amplification of small signals, generation of microwave signals, and
generation of microwave power.

Studies of GaxIn]_be have shown the Gunn effect for the composition
range 0.3<x<0.54.]6 The important characteristics of Gunn effect
materials, such as the bandgap between the valence and conductior bands
and the energy separation of the sub-bands of the conduction band, have
17-22

been studied by a number of methods. From such data, as described

above, and from Monte Carlo calculations of the characteristics important
to the operation of Gunn-effect devices, Hilsum and Rees]2 have
theorized that Ga In;_ Sb with 0.7<x<0.95 will have very favorable
Gunn-effect characteristics due to electron transfer between 3 sub-
bands in the conduction band; in GaAs, the Gunn effec: depends on

ransfer between two sub-bards. As of 1970 efforts to fabricate a Gunn-
effect device from Gaxln]_KSb have failed for values of x>0.55. The
failures have been attributed to the lack of sufficiently 1lightly

12
doped n-type Gaxln1_x5b.
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Because of the interest shown recently in the gquasi-chemical
treatment, a closer examination was accorded this treatment and its
derjvation. By using mathematical prucedures described by Guggenheim,23
the quasi-chemical treatment was extended to next-nearest neighbors
and third nearest neighbors for a simple cubic lattice. Though the
mathematical procedures of Guggenheim were followed, a new method of
bond counting was used. This difference led to a conclusion different
from that reached by Guggenheim regarding the consolute temperature.

In addition, by going to higher order approximations,the quasi-chemical
model was shown to yield activity coefficients approaching thuse of the

a-parameter model (i.e., Dth order quasi-chemical model}.
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I1. THEORY
A. Introduction

The study of the activity of Ga ia Ga-In, Ga-Sb,and Ga-In-Sb melts
was conducted with the use of solid oxide electrolyte. Use of such
oxides for the purpose of determining Gibbs energies at elevated
temperatures was pioneered by Kiukkola and Hagner.] These materials have
since been used for the measurement of the Gibbs energies of formation
of many oxides]'9 and the partial molar Gibbs enerqgies cf components
of al]oy's..]’z’m']5

B. The Merns% Equation

As in emf measurements in aqueous electrolyte applications,
the interpretation of high temperature solid oxide electrolyte emf
measurements utilizes the Nernst equation. In the system used here, the
relevant equilibrium for the development of the Nernst equation is the
one that concerns the formation of Ga203 form 02 and Ga(s). The ceil

is the following:

A B
W|Ga,Ga,0,4solid oxide efectrolyteliGa,0,, Ga Alloy|w .

The Gibbs energy of formation of Gazo3 is expressed for either

half-cell as:
AG® =y + 6y - 2u.. - 3u
Ga203 e Ga 02-

Thus,

(M

6 _-u )= 2{un, mu )+ 3u, -u, ) - (n -n ) (2)
GaB GaA 02 02 Ga203B 63203A

g & B A
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But
W o-u_ = A6 _ = -FE (3)
eg ey e
aGaB (@)
u u =RT In —— 4
Gag 62y *6a,

(s)

In the experimental situation given, the Ga203 remains the only solid
and the Ga and G2-:l.0y are (iquid so thac the following holds: Since
the electrolytes used are pred. “inantely conductors of 02' ions with
transport numbers cf 02' better than 0.99, if the cxternal circuit
represented by the emf measurement circuit has a resistance greater
than a factor of 103 of that of the internal resistance of the cell to
minimize meter lcading, then 02' will equilibrate between the two
half-cells giving: u PRSP Under the abov: conditions, Egq. (2)
reduces to: B A

I 3ca(alloy) = - §§$ . (5)
Thus, the galljum activities can be obtained from the measured concentration

ceil voltages.
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C. Solid Oxide Electrolytes

Solid oxide electrolytes are materials which carry current
predominately i{n ttie form of doubly negatively charged oxygen sublattice
vacancies. The theory for the conductivity of these materials is
presented in several other p]acesls-z0 and only a brief review of th=
material is presented here.

The crystals of interest for use as solid electrolytes are those
ionic crys*t21s with a large band gap between the valence and con-
duction bands, serving to minimize electronic conduction. The conduction
in such cases is due to the existence of charged defects. Ionic
conduction was first studied in pure crystals. In those crystals, the
defects are created by thermodynamic egquilibrium which resuli in
either pairs of interstitial atom and lattice vacancies (Frenkal defects)
or pairs of cationic and anionic sublattice vacancies (Schottky defects).
The interstitials and vacancies are subject to diffusion and thermal
motion. Thus, the motion of these defects is random. However, once
charged and subjected to an external electric field these defects no
longer move randomly but with the field, giving rise tc the ionic
current. In pure ionic crystals where Frenkel defects dominate, the
ionic current can be due to charged interstitials, charged vacancies,
or boti, since the diffusivities of these defects are not in general
equal. The same is true in crystals dominated by Schottky defects.

These crystals, as ionic conductors, are normally highly dependent
on the partial pressure of one of the components over the crystal and
as such are ionic conductors over only a narrow range of partial

pressure of that component, usually the anionic component.
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To be useful for thermodynamic measurements, the charge carrier
must not be ambiguous but rather a single species. In order to
rid the electrolytes of ZrO2 and Th02 of the objection of a narrow POZ
range and tu minimize the ambiguity of the current carrier, Cad and Y203
are used to dope the electrolytes. The effect is to replace the
tetravalent Zr and Th with the divalent Ca and trivalent Y. The effect
is to create oxygen sublattice vacancies. By so doing, the P02 range
is broadened since the concentration of the oxygen vacancies is not
dependent on the P02 over this range. Furthermore, the concentration
of the one defect is increased greatly over that of the ather of the
defect pair, so that this defect when charged becomes the dominant

defect for ionic conduction purposes.

D. EOZ Range of CSZ and YDT

A number of investigations have been conducted on earlier stabilizel
zirconia and yttria -doped thoria to this date concerning the optimal
compositions and accompanying P02 range.2]~25 The main feature of these
studies is the fact that the conductivity of the electrolyte increases
as the doping oxide content is increased until the doping content
reaches about 15 cation percent,at which point the conductivity as a function
of doping oxide begins to decline. This behavior is expected since
the doping initially increases the anion vacancies available for iorization
and conduction and at some point further doping destroys the crystallinity
of the tetravalent oxide lattice leading to a decline in the conductivity.

Of itself, maximum conductivity is highly desirable in a solid

electrolyte. However, increasing tne doping oxide concentration has the

added benefit of extending the useful Py range ¢f the electrolyte,
2
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subject to the same upper dopant concentration 1imit. Thus
Zry a5ty 15%1 .85 (csz) and Th0 g5 0. 150] 925 {YDT) have been the most
studied compositions and are the electrolytes used here.

Figure 1 shows the conservative and 1iberal lower oxygen partial
pressure 1imits to the electrolytic domain of CSZ as derived from the
data of Schma]zreid26 and Patterson et a].z2 by Pattev'son.24 This
figure shows that the P02 in equilibrium with Ga in the temperature
range of interest (T<1000°C) does not lie within the electrolytic domain
of CSZ as defined by the conservative lower limit. This 1imit is derived
from the earlier work of Schmalzreid. 2 The later viork of Pattersen,
Bogren and Rapp,22 Patterson,z4 and Tretyakov def1ne domain boundaries
which place that part of the Gazo3 - Ga - 02 equilibrium of interest
in the electrolytic domain of CSZ. Included in Fig. 1 is the lower
PO electrolytic domain toundavy of YDT as derived from the data of

2
Tretyaknv and Muan, 8 Hardawayz9 et al., and Lavine and Ko\odney 30

by Patterson.24

Plotted alsc in Fig. 1 are the standard Gibbs energies of formation as
a function nf temperature of the vario:s oxides of the species of interest
based on a single mole of 02. The Gibbs energy of formation of the oxide
of gallium and the oxide of indium are obtained from the fata of
Klinedinst and Stevenson.z’3 The data for gaseaus suboxide of gallium,
Guzo(g). is derived by Seybo]t.]5 The data for the solid suboxide of
galijum, GaZO(s), and the most stable oxide of antimony a.< derived from
Cough]in.3] rrom this graph it is obvicus that for the temperature
of interest [600°C<T<1000°C), the sequioxide of gallium, G3203 is by

far the most stable. This implies that the formation of the other oxides
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is so heavily disfavored that Gazo3 is the only solid to exist in the

presence of the Ga and Ga-alloy melts studied here.
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ITI. EXPERIMENTAL APPARATUS AND PROCEDURES
A. Introduction

In order to study the activity of Ga in high temperature melts
using a solid oxide electrolyte technique it is necessary to exclude
weher sources of oxygen by making measurements either in a vacuum or
in a high purity inert gas atmosphere. Since oxygen is the important
component in electrochemical cells using the above technigue,a very
low oxygen partial pressure s necessary over the mclten electrodes.
Because of the simpiicity of building and maintaining a gas tight system
and purifying argon to the requisite purity as compared to an -'guivalent
vacuum system, measurement under an inert atmosphere was choschn

Complicating factors are the need to introduce electrical leads
into the molten electrodes and the necessity to separate the atmospheres

of the two molten electrodes.]

B. Ga-In Cell

1. Apparatus

An unscaled schematic of the cell is shown in Fig. 1. The main cell
body was an 18 in. long tube of high purity recrystallized alumina
11/2 in. 00, 1 1/4 in. I0, closed at one end. The open end was sealed
to a water-cooled stainless steel head with a buna rubber 0-ring. Three
ceramic tubes were passed through the lead at the vertices of an
equilateral %riangle inscribed in a 3/8 in. radius circle centered on

the head. These ceramic tubes were sealed to the head with viton 0-ring.

u
Morganite refractories.
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The inner ceramic tube,which served as the reference electrode
compartment, was a slip cast high purity calcia stabilized zirconia,
Zr0.856a0.150]_85, (CSZ) tube.* Centered in this tube was a 1/8 in. 0D
high purity alumina thermocouple insulator through which the high
purity argon was introduced at a point near the closed bo*tom
of the CSZ tube, as shown in Fig. 1. A tungsten electrode lead
was also run through this insulator to the bottom of the CSZ tube. The
open top of this CSZ tube was sealed to a 1/4 in. stainless steel
Swagelok tee with a teflon front ferrule backed with a nylon back
ferrule. The 1/8 in. tube was run through the tee and sealed also with
teflon and nylon ferrules to a1/8 in. Swagelok reducer swaged to the tee
(see Fig. 1 ). The side port from the straight run of the tee was the
gas outlet for the CSZ tube venting the gas to a mercury vapor trap.

The 1/8 in. tube was sealed to a second 1/8 in. reducer swaged to a
second 1/4 in, 3Swagelok stainless stegl tee, then the 1/8 in. tube was
run through the straight run of the tee. Tre second run of the straight
run was sealed to a short length of pyrex tubing. The 1/8 in. pyrex
tube was ended within the pyrex tube with the tungsten wire extending
completely through the pyrex tube. The open end of the pyrex tube was
then sealed with black sealing thus forming a seal through which the
tungsten lead was extended but which did not seal the 1/8 in. tube.

The inlet gas was introduced through the side port of the second tee,
routed by the tee configuration to the pyrex tube and into the 1/8 in.

alumina tube. This configuration allowed a positive gas circulation

*
Zircoa Corporation.
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in the CSZ tube electrode leads which were isolated from the stainless
steel swagelok parts, and seals which were vacuum tight.

The second ceramic tube was made of high purity alumina.* This
tube had both ends open and serves to transport the high purity argon
blanket gas to a point near the bottom of the main cell body. 1In
addition, the second electrode lead was threaded through this tube. The
top end of this tube was sealed to one arm of the straight run of a
1/4 in. stainless steel swagelok tee. The other arm was sealed to a
short piece of pyrex through which the tungsten lead was threaded. This
pyrex tube was sealed as in the assembly of the CSZ electrode. The
electrical lead for the sample electrode was warpped around the tip of
the £SZ tube to insure good electrical contact with the sample liquid
alloy. The side arm of the tee was the inlet for intrcducing the high
purity argon to the tube.

The third ceramic tube was similar to the second tube except that
the bottom end was closed. This tube served as the thermocouple well.

The gas outlet for the main cell compartment was a 1/8 in. tube
welded to the center of the lead. This also led to a mercury vapor
trap.

As the bottom of the main cell body was hemispherical, a flat
platform made of alumina was placed at the bottom. On this platforn
was placed a crucible made of high pu»ity crystallized aluminaf* 26 mm

in height and 18 im in diameter, containing the alloy electrode.

—
McDanel Refractory Porcelain.
h

Morganite Refractories.
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The furnace was wound with Kanthal A-1 wire and powered by a proportional
controller utilizing a triac gate, which controlled the temperature of
the region of the sample to 0.5°C. The cell was maneuvered in a position
such that with shunts across the appropriate section of the furnace
windings, the region of the crucible had a vertical temperature
variation of *0.5°C in the sample region. In later runs to alleviate
the laterial :emperature variation which must exist in a cell of this
geometry due to natural convection of the gas, two baffles were used.
These created a small compartment for the crucible, a second small
compartment above that compartment. and finally, a compartment which
was the remainder of the main compartment. Also, initial runs indicated
the necessity of a ground shield which was installed to alleviate
pick-up of noise from the furnace windings.

The temperature was measured with a chromel-alumel thermocouple
referenced to the melting point of ice. The thermocouple and cell
emfs were read with a Leeds and Northrup K-3 potentiometer. Figures 2
and 3 show the temperature control and gas manifold systems.

The high purity argon gas was provided by purifying argon with a
“entorr gettering furnace. This furnace purified argon at rates of
Z0 standard cubic feet per minute to less than 0.001 ppm by gettering
the argon over titanium at 800°C. The total flow of argon through
the gettering furnace for this experiment was less than 1 standard cubic
feet per minute. Since the equilibrium partial pressure of 02 over
titanium at 800°C is 10'39 atmospheres, and the equilibrium partial
pressures of other impurities are equally low, the argon purity
is considerably lower than 0.001 ppm due to the increased residence time

in the gettering furnace.
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The distribution system for the argon was made of 1/4 in. stainless
steel tubing using stainless steel Swagelok fittingz where necessary.
The gas flows were metered to the two electrode compartments.

The gas flow-rates were 0.12 and 6.0 cc/min in the reference and sample
compartments respectively, values selected to provide one cumpartment
volume at 23°C per hour. The compartments were isolated from the gas
source by Nupro bellows shut off valves. The final connections, from

the shut-off valve to tha compartment gas inlets, were made with corrogated,
flexible stainless steel tubing with 1/2 in. nominal 0.D.

2. Procedures

The reference electrode was formed by dropping first Ga203 powder of
4-9's purity* and second molten Ga of 6-9's purity** into the bottom of
the CSZ tube. The reference electrode was placed in position in the
head, and the gas delivery and lead feed-through assembly was sealed
to the top of the tube.

The other two tubes were positioned similarly, with the sample
electrode lead fed through the appropriate tube. The end of the sample
electrode lead was wrapped around the tip of the CSZ tube. The tip of
the CSZ tube was placed in the crucible containing carefully measured
amounts of Ga203 and In of 5-9's purity.‘* To secure the positioning
of the crucible, the crucible was wired to the thermocouple tube with a
short piece of tungsten wire. This assembly was then placed in
position in the main cell body and sealed to the main cell body by the
0-ring seal.

*
Ventron Corporation.
Commco American,
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The assembled cell was positioned in the furnace, and the gas
connections were made using teflon and nylon ferrules to alleviate the
need for large torques on the ceramic tube. The cell compartments were
then purged for 2 hr with the purified argon at rates of at least
50 compartment volumes per hour. Since argon is slightly denser than
the major components of air, Ar was delivered to a point near the bottom
of the respective compartments. Since the gas outlet was at the top
of the compartments, the gas atmosphere at the end of the purge period
had the purity of Ar delivered by the gettering furnace.

At this point the gas flows were reduced to values corresponding
to a single compartment volume per hour and shut off. The cell
temperature at this point was raised to the cell operating values.

Initially, the cell temperatures were raised and lowered ranidly,
but problems due to the Tow value of thermal shock resistance of CSZ
necessitated much lower temperature elevation rates.

No set procedure for making measurements was established sir.e for
this system there did not appear to be any dependence on the thermal
state af the previous measurement. However, in order to facilitate
comparison with the data of Klinedinst, cell emfs were measured at
temperatures of 800°, 850°, 900° and 950°. One difference was that
in this study no gas flow was used except when initially purging the
cell and when the cell temperature was being lowered. Thus, in general,

all data points represented a condition of no gas flow in the system.
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C. Ga-Sb, Ga-In-Sb Cells

1. Apparatus
The c.ils containing Ga-Sb and Ga-In-Sb differed from those for

Ga-In alloy studies in several important details. The mrjor problem,
reported by Chatterji and Smith, was antimony reacting slowly with
tungsten electrode contacts. That difficulty is minimized by allowing
the tungsten to contact the alloy melt only when a measurement was being
made. To accomplish this the pyrex and black wax feed-through of the alloy
electrode lead feed-through assembly of the Ga-In cell was replaced
with a sliding lead feed-through assembly. This assembly consisted
of a 1/8 in. pyrex and black wax feed-through placed within a Swagelok
union bored thrcigh to slightly over 1/8 in. This union was sealed to
a length of 1/8 in. stainless steel tubing with the back ferrule
inverted and the front ferrule replaced with an O-ring with a approximately
1/8 in.x1/12 in. wall, greased with vacuum grease. Thi+ formed the
s1iding seal for moving the tungsten lead in and out of the stainless
tubing. In ovder to prevent grounding of the tungsten lead, the
1/8 din. tubing was connected to a 1/4 in. pyrex tube with a 1/4 in.
to 1/8 ‘in. bored-through unien. This 1/4 in. pyrex tube was then sealed
tc the port previously occupied by the pyrex and black wax feed-through
(Fig. 4). The seal was tested with a He leak detector and was found
not to leak within the detector range.

The tungsten lead was threaded through the alloy compartment gas
inlet tube, now shortened to a point close to the cell head. The

lead was then threaded th.ough a 1/8 in. alumina insulator wired
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to the electrolyte tubes. This 1/8 in. alumina tube was positioned
Just above the crucible so that when the sliding seal was pushed
down the lead would move down through the tubes and into the alloy
melt. When the seal was r'shed up the tungsten lead was withdrawn
from the melt.

Because it was generally desirable to minimize electrode lead
and me't interactions, the sliding seal was also used on the reference
electrode lead. Since the electrode lead path was straight in this case,
1o special changes were made in this electrode to insure that the lead
contacted the melt.

A second change in the cell involved the chanae in solid oxide
electrolyte material. Since the lower P02 limit of CSZ is not sufficiently
lower than the Ga203-Ga—02 equilibrium, a YOT tube* 18 in. long and
1/4 in. ir diameter was used as a solid oxide electrolyte.

Another difficulty encountered in the Ga-Sb cells was the high
internal ceil resistances. The internsl resistances were measured to
be as large as 104 ohms. For source impedances of this magnitude with

potentiometers, small cell currents can flow. In order to minimize

2

cell currents during measurements a Keithley electrometer with 10] ohms

input impedance was used in place of a potentiometer to determine the
approximate cell emf as shown in Figs. 5 and 6a. Accurate measurements
of the cell emf were made by using the potentiometer in series with

the electrometer (Fig. 6b}. This arrangement used the potentiometer

as a source of bucking voltage to the cell and the electrometer as a null

meter. The circuit impedance was essentially that of the electrometer.

-
Zirconia Corporation



23

The final modifications on the system were in the gas delivery
system (Fig. 7). Because of the shortening of the main compartment
gas inlet tube and the greater reliability of vacuum evacuation,a
mechanical vacuum pump was added to the system to purify the cell
atmosphere. Additional bellows shutoff valves were added to isolate
the two cell compartments, the argon source, the vacuum pump, and
mercury gas traps from each other. The very fine metering valves were
relocated in order that atmospheric gases might not be pulled into the
system through packed seals. The last modification to the gas handling
system was cold trapping the gas outlet lines in trichloroethylene
and dry ice prior to tne mercury vapor traps in order to minimize
any possibility of back diffusion of mercury to the cell compartments.
2. Procedure

The reference and ailoy electrode preparation was the same as in
the Ga-In cells. The antimony used was 5-9's purity.*

The compartment atmospheres were purified by evacuation to 200 microns
and back filling with purified argon five times.

After purifying the cell atmospheres, the temperature of the cell
was slowly raised to 800°C at the rate of 70°C per hour. This raie was
convenient since a rate of 150°F per hour was recommerded by Zircoa
to avoid thermal stress cracking and recrystallization problems common

in YDT.

* .
Cominco American.
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Liquid alloys of Ga and Sb, ano of Ga, In and Sb were found to
equilibrate very slowly. Thus, once the cells reached 800°C it was
necessary to monitor pericdically the cell emf until a constant value
was obtained. This typically required 2 to 3 days, though 5 days was
necessary in some cases in order to obtain values constant to within
0.01 millivolt. This was in great contrast with the Ga-In alloys which
equilibrated very quickly--in less than a day. After the cell emfs had
stabilized in this fashion, the allcy melts were assumed to have become
completely mixed,and data were then taken at various temperatures. Even
the measurements at various temperatures required a great deal of time,
the time requived being a strong function of temperature, so that it was
necessary to monitor periodaically the emfs at each temperature until
they stabilized in order to obtain the equilibrium values of the emfs.
Again, the emfs at the various temperatures were independent of how

the temperatures were reached.
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IV. The Ga-In System
A. Results

The emf measured as a function of temperature in the Ga-In system
is plotted in Fig. 1 for the compositions investigated, along with the
comparable measurements of the study by Klinedinst et alﬁ These results
demonstrate the reproducibility of the emf emthod.

A number of sources of instabilities in cell emf were encountered.
The main instability was characterized by a rapid drop-off in the cell
emf with tiwe. In runs showing this effect, measurements of the internal
cell resistance before emf drop-off gave resistances of the order
of 10,000 ohms and after emf drop-off resistances of the order of 10 ohms.
This change suggests electrolyte failure. Thus, improvements in equipment
and operating procedure were implemented to minimize this problem.
Further improvements were implemented prior to the initiation of
measurements on the Ga-Sb system based on experiences gained in the
Ga-In system. These improvements have been outlined in the Equipment
and Procedures Section III-C.

The emf data are reduced to YaInS® defined by
o 1n = (I0vg, )1 - xg, )2
Galn Ga Ga

This parameter can be expected to have the formﬁ'g

Gpain = @ + bxGa +c/T + dea/T . ()

Utilizing a least square fit on the data obtained from the emf

measurements gives:
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%aIn = 0.2862 + 0.0352)(Ga + 398.3/T + 220.0xGa/T . (2)

The rms deviation of data from this equation is +0.016 for the range

0.05<x a<0.40 (see Fig. 2). The activities of Ga at 1223°K are

G
presented graphically in Fig. 3 along Qith the activities predicted by
Eq. (2) and compared to the data of Klinedinst, et al.4 Using the
Gibbs-Duhem equation and assuming Eq. (2) for the whole composition
range, the activities of In were calculated for the experimental
compositions and are presented in Table 1.

By using Eq. (2) and fundamental thermodynamic identities, the
following equations for AHGa and AEE: at 800°C to 950°C are derived from

the data of this work:

. = 2
ARy, = (791.4 + 437.1xGa)(1 - xGa) cal/g-atom (3a)
- i )

Asé: = -(0.5657 + 0.0699x;,)(1 - xg,)° cal/g-atom (3b)

By extrapolating cqs. (3) over the whole composition range the following

equations are derived, again using the Gibbs-Duhem equation.
Mo
AH = (791.4 + 218.6xGa) xGa(l - xGa) (4a)
Xs _ _ _
AS™® = -(0.5687 + 3.0350xGa) xGa(l xGa) (4b)
Equation (4a) shows that the integral heat of mixing has a maximum at

Xea = 0.53 with a value of 226 cal/g-atom. AHGa and AHM are plotted in

Fig. 4.
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Table 1. Experimental emf measurements.
X{GA} T{K}) EMF(MV)  A(GA) A(IN)
0.0499 1073.8 73.816 0.0913 0.9514

1n23.2 77.322 0.0910 0.9514
1174.8  81.532 0.0893 0.9513
1224.5 85.880 0.0870 0.9513
0.1003 1073.4 53.898 0.1741  0.9048
1124.4  56.537 0.1737  0.9047
1174.0 59.495 6.1713  0.9046
1223.9 62.335 0.1698  0.9045
0.7009 1073.7 35.941 0.3118 0.8182
1124.2 38.129 0.3070 0.8177
1174.5 40.316 0.3027 0.8173
1224.0 42.325 0.3000 0.8169
0.4083 1073.9 19.357 0.5339 0.6573
1124.2  20.509 0.5299 0.6556
1174.3  21.629 0.5266 0.6540
1224.4 22.729  0.5240 0.6526
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B. Discussion
The Ga-In system has been investigated by Macur, Edwards,and

Wahlbeck using Knudsen effusion,] by Bros2a and Bros, Castanet, and

Laffitte using microcalcrimetry at 150°Cgb by Predel and Stein using
microcalorimetry at 350°C,3 and by Klinedinst, Rao and Stevenson using
solid electrolyte techniques from 800°C to 95C°C.4 From their data,
Bros et al., conclude that the heats of mixing are symmetrical about
Xga = 0.5. The data of Predel and Stein are not in apparent agreement
concerning the symmetry of the results of Bros et al., t~ ugh the data
of Predel and Stein are not as comprehensive as those of Bros et al.
The heat of mixing data derived from Gibhs energy measur:aments
by Klinedinst et al., are also not in agreement with the conclusion
of Bros et al. However, the scatter in the Gibbs energy data of
Klinedinst et al., is such as to render questionable the derived heats
of mixing.

The data of Klinedinst werefitted to Eq. (1) giving

Ogaln - 9.1700 - 0.91B4XGa + 470.5/T + 1186.1xGa/T . (5)

The rms deviation is *0.044 for the range 0.05<xGa<0.80. From this
equation AHM is derived:
aH = (934.9 + 1178.4xg,) 1, (1 - xg) - (6)
The conclusions reached from the data of Bros et al., Predel and
Stein, and Klinedinst et al., contradict those reached from the data
of Macur et al., that the heat of mixing at Xga = 0.5 is 2200 cal/mole.

The heats for Xea ° 0.5 are found by Bros et al., and Predel and Stein
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to be 265 cal/mole and 288 cal/mole respectively. The heats calculated
from an equatirn, of the fora of Eq. (1) with d set equal to O,

fitted to the data of Kiinedinst et al. These values are symmetricai about
XGa = 0.5 with a maximum heat of 472 cal/mole. Relaxing the symmetry
requirement gives Eg. {5) which has a maximum of 395 cal/mole at

Xga = 0.59 and which has the value 381 cal/mole at Xga © 0.5.

A comparison of heat of mixing data is shown in Fig. 4. Thus, the
heats derived from high temperature emf measurements bracket the heats
measured at lower temperatures by microcalorimetry. The values at
x = 0.5 are all in fair agreement excent those obtained by Macur et al.,
2200 cal/mole, obtained by Knudsen effusion. In additicn, the high tempera-
ture emf data and the data of Predel and Stein suggest that the maximum
heat of mixing is shifted towards the Ga rich side rather than at
Xga © 0.5 as suggested by Bros and by Bros et al.

C. Conclusion

The use of solid oxide electrolytes is auite reproducible. However,
derived data are extremely sensitive to the .,solute errors in measure-
ment. Nevertheless, the enthalpy of mixirg derived from the data of
this work is consistent with the data of earlier works. Though, along
with the data of two of those works, the data of this work contradicts
the conclusion of Bros and Bros et al., that the enthalpy of mixing

is symmetric about the composition X6a ~ 0.5.
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V. THE Ga-Sb SYSTEM
A. Introduction

The study of the Ga-Sb system was motivated by the dearth of
thermochemical information on this III-V system. Closer examination of
the existing data revealed indirect contradictions in conclusions and
derived data. Il has been pointed out by Sirota4 that the liquid metals in
close proximity to the liquidus in com.ound semiconductor systems
exhibit short range order. This observation is contradicted by the
low values of heats of mixing selected by Hultglr'en]0 for the Ga-Sb
system, which are more consistent with a more randomly mixed liquid. The
derived results of this study show large negative heats of mixing, which
are more consistent with 1iquids with short range order.

The activities in the Ga-Sb system have been previously studied
by use of a chloride electrolyte. This technique, as pointed out by
Chatterji and Smith} has the disadvantage of being ambiguous with
regard to the charge of the ionic carrier in the electrolyte. For the
3 3

cells of Danilin and Yatsenko™ the ijonic carrier can be Ga+] or Ga+ .

Thus, the value of "n" in the Nernstequation (RT In a = nFE) can not

be definitely stated. Nevertheless, Danilin and Yatsenko have used n = 3,
i.e., assumed Ga+3 is the ionic carrier, to arrive at the conclusions

that the Ga-Sb 1iquid alloy system has very strong negative deviations
from the ideal. This led them to suggest that these deviations can be
accounted for by complexes resembling molecules. This conclusion is

in contrast to the conclusion of Schottky and Bever5 that the system is
close to ideal. Schottky and Bever pointed out that the liquidus

measured by Kdster and Thoma2 is very nearly that predicted by an ideal

mixing model.
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B. Results

The emfs measured as a function of tempzrature in the Ga-Sb system
are given in Table 1 and plotted in Fig. 1 for the compositions investi-
gated. Table 1 also contains the activities and activity coefficients
of Ga. Since the emf data were reproducible to 0.5 wV, the error in
the activities and activity coefficients are +2%. The acltivity coefficients
are shown in Fig. 2 as a function of composition.

In making these measurements care was taken to remain in the single-
phase 1iquid region. For this reason measurements at the lower tempera-
tures were not made for those compositions near Xga - 0.5. Furthermore,
measurements were not made at temperatures higher than 800°C as Sb has
a significant partial pressure for those temperatures.

It is important to note that equilibrium was assumed to have been
reached when the emf values remained constant over a period of several
hours. The time for initially homogenizing the components of the melt
varied from 2 to 5 days. The time constant for equilibration after a
temperature change was 1.4 hrs at 997°K and 14 hrs at 922°K. Because
of the long equilibration times, at least one data point was repeated
for each composition.

It should be pointed out that the depolarization rate is rapid.

By passing current through the cell momentarily and watching the emf
return to the initial value, it was found that the largest time

constant measured was less than 10 min.
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Table 1. Experimental data.

XGa (JE) ?mz) 3Ga Yga
0.2000 797.9 75.0 0.0873 0.4368
772.6 77.7 0.0753 0.3767

747.8 80.0 0.0654 0.3269

723.1 83.8 0.0534 0.2672

699.6 88.9 0.0416 0.2078

676.8 96.2 0.0294 0.1472

0.4000 803.1 40.7 0.2682 0.6706
775.1 41.5 0.2526 0.6315

749.7 43.3 0.2292 0.573¢0

721.9 47.5 0.1901 0.4751

0.5998 797.0 20.7 0.5101 0.8503
771.8  21.4 0.4905 0.8178

749.5 22.5 0.4657 0.7763

0.7998 800.5 8.6 0.7577 0.9474
775.8 9.3 0.7340 0.9177

749.7 10.9 0.6905 0.8634

725.3 12.9 0.6380 0.7677

700.3 15.8 0.5688 0.7112

672.8 19.0 0.4967 0.6211

648.9 23.6 0.4108 0.5136

0.8998 752.8 4.6 0.8555 0.9507
724.2 4.8 0.8449 0.9390

699.3 5.5 0.8212 0.9126

670.5 6.7 0.7816 0.8687

649.7

8.2 0.7339 0.8156
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C. Discussion

The data of this work supports the conclusion that the system
is highly nonideal, deviating negatively. However, the agreement with
the data of Danilin and Yatsenko is poor. The differences can be
attributed to the ambiguity of the ionic carrier in the chloride
electrolyte since postulating the Ga+] ion to be the current carrier would
result in emf values three times the value that were measured in this
work. Thus, the larger emf values of Danilin and Ytsenko can be
explained by mixed conduction in the electrolyte by both Ga+] and

Ga+3.

As suggested by Danilin and Yatsenko, the data of this work can
be explained by postulating molecular complexes. In this case a minimum
of three complexes are required. First, let us examine the elements
themselves. Galliumare agroup III metal with two common valences, +1
and +3. Antimony is a group V metal having three common valencies,
-3, +3,and +5. The electron affinities of Ga and Sb are calculated
from the electronegativities of Pauh‘ng,7 which are proportional to
the sum of the electron affinity and ionization potentia].6 These are
shown in Table 2. Thus, postulating a valence of -1 is not unreasonable
for either Ga or Sb.

Postulating valences of -1 for either Ga or Sb suggests the complexes
GaSb3 and GaSSb in addition to GaSb which follows from the examination of
tne commonly known valences. Using these species in the chemical theory

of Dolezalek requires that the equilibrium constants K]3, K]],and K5]

be defined by
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Table 2. Electron affinity calculations.

Element Electronegativity lonization Potential Electron

Affinity
H 2.1 13.598 eV 0 eV
Ga 1.81 5.999 eV 5.7 eV
Sb 1.9 8.641 eV 3.7 oV

*From Pau]ing.7
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_ -1.-3
K13 = 2Ga b, Ga%sb
- -1 -1
K11 = %a,sb, 26a b
1773
B -5 -1
K51 = 3Ga sb,%Ga 2sb
5711
In the chemical theory the chemical species exhibit ideal behaviur, and the
deviations from ideality are due to the differences between the "true“

and “appavent" mole fractions. Thus, the species activity coefficients
H,D

are assumed equal to unity, and the “apparent" mole fractions “x" are

related to the true mole fractions "z" in the following manner:

%6a ¥ %Gasby * “Gash ' SZGaSSb

. =
Ga V¥ 3zgagp, * Zgash * SZGaSSb

Zsb * 32gash, * Zeash * ZGagsh
. =
Sb 1+ 3ZGaSb3 * Zgash * %Zga_sb

5

Using trial and error to fit the data of this work, the equilibrium
constants were determined as a function of temperature and interpreted
as Gibbs energy of formation. When thece Gibbs energies are assumed
to vary linearly with temperature, the enthalpies and entropies of
reaction shown in Table 3 result. Using these values, the X, Were
calculated as a function of 6o and temperature. The activity coefficients

Yea © zGa/xGa were calculated for temperatures of 923°K and 1023°K and
plotted in Fig. 3.

Notice that the entropies of formation necessary for this model are

extremely large. This may be due to the narrow range of temperature

measurement.
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Table 3. Entholpy and entropy of formation
of melt species necessary to model the
data of this work.

Reaction AHf(kcal/g-atom)  AST(eu)
632 + 3 Sbl > GaSb3 0 2.1
Gal + Sbl > GaSbl -25.3 -22.5
5G32 + Sb2 > Gassbl -77.6 -72.3

Table 4. Comparison of enthalpies of mixing.

XGa AH cal/g-atom AH cal/g-atom
According to Hultgren of this Work

0.1 -79 -1554

0.2 -150 -2959

0.3 -206 -4623

0.4 =241 -6024

0.5 -255 -6874

0.6 -244 -7382

0.7 -209 -7712

0.8 -153 -7606

0.9 -31 -5499
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The chemical theory assumes that there are no physical interactions
between the molecular species, only chemical interactions. Thus, the
enthalpy of mixing will be due entirely to the enthalpies of formation.
Accordingly, the enthalpies of mixing are calculated for a temperature
of 997°K and listed in Table 4 and compared to the enthalpies of mixing
of Yazawa et al.,g measured by reaction calorimetry at 1003°K, as revised
by Hultgren et al.]o The more recent work of Predel and Stein]] indicates
that AH = -258 cal/g-atom at Xea " 0.5.

Ihe:c are three main explanations for the great discrepancies: The
first is that the chemical theory is at best just a conceptual formalism
to account for deviations from ideality, that quantities other than
activities cannot be calculated from the gquations developed from that
formalism. The second explanation is that due to the very slow
equilibration of these melts--2 to 5 days at 1073°K for full homogenization
of the melt as measured by waiting for the cell emfs to reach steady
state values--reaction calorimetry would be very difficult to perform
accurately. The third explanation is that a systematic errov was
introduced by some undetermined cause in the experimental method.

The process of forming the three Ga-Sb complexes would explain the
slow equilibration times exhibited by these cells. Since the compiexes
are larger molecu'cs, the diffusion times necessary for homogenization
and equilibration are increased. Another possibility is that the rate

of complexing is low so that the rate of equilibration would be slow.
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D. Conclusion
The Ga-55 1iquid alloy system shows large negative deviations from
the ideal. This can be modeled by postulating complexes of GaSb3,
GaSb, and GaSSb. In addition, these complexes can explain the short
range order of the III-V liquids near the liquidus reported by other
observers., However, derived enthalpy of mixing data are much different
from those reported earlier and, when coupled with the extremely large

hypothesized entropies of formation, casts some doubt as to the validity

of the experimental data obtained in this investigation.
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VI. THE Ga-In-Sb SYSTEM
A. Results

The activity of gallium in a Ga-In-Sb liquid alloy with composition
Xga = 0.708, X[p = 0.102, and Xgp = 0.190 was found to be strongly
depressed below that of an ideal liquid alloy, as expected from the
results of Ga-Sb alloy melt activity studies. In this preliminary and
cursory study of As Ga-In-Sb system,the melt equilibration times were
found to be extremely long,as in the Ga-Sb studies. Table 1 gives the
measured emfs and calculated activities and activity coefficients of
Ga for this cell.

The time constant for the melt to reach full homogenization and
equilibration at 800°C was measured to be 3 days.

B. Conclusion
The experimental result is a strongly negative deviation of gallium

activity from ideality,which becomes more negative with decreasing

temperature.
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Table 1. Ga activity data for a Ga-In-Sb alloy.
0,

T(°C) EMF(V) 3a O
797 11.7 0.681 0.962
772 16.4 0.575 0.813
747 24.8 0.426 0.601
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VII. THE QUASI-CHEMICAL MODEL REVISITED
A. Introduction

In the system Ga-Sb, the melts are highly non-ideal at temperatures
below 750°C. In arder to take into account the non-ideality, the quasi-
chemical model was examined. Though this model and its extensions are
not applicable to the Ga-Sb system, it is useful in the In-Sb system.
The quasi-chemical model was applied to the In-Sb system by Stringfellow
and Greene1 and the data of Hoshino et a].z

In this study, the quasi-chemical model and its extensions are
compared to the a-parameter model which Guggenheim3 refers to as the
zeroth order approximation and the quasi-chemical model. The a-parameter

model is used by Hoshino et al., to correlate their data for the In-Sb

system. The data expressed as a; = RT 1n Yi/(1 - x1.)2 show a fairly linear

dependence of a on composition from x = 1 to x = 0.5 but become highly
nonlinear for x = 0.5 to x = 0. This kind of behavior is expected
because the entropy of mixing is ignored in the a-parameter model. The
quasi-chemical model takes the entropy of mixing into account so that the
dependence of the quasi-chemical parameter w on x, applied to the In-Sb
system, should be less non-linear. As derived by Guggemheim both « and
w represent the same quantity, the atomic interaction energy; this is the
energy change which occurs when an atom or molecule A is replaced by an
atom or molecule B.

Since the data for the Ga-Sb system were found to be highly non-ideal,

this non-ideality was assumed to be due to an interaction of Ga and Sb

much in the same manner as in the In-Sb system. At the lower temperatures
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the activities of Ga are so depressed, however, that the first order quasi-
chemical model cannot be utilized to explain them. Closer examination

of the quasi-chemical treatment showed, however, that the extension of

the treatment beyond the first order quasi-chemical model might depress

the theoretical activities of the quasi-chemical model further.

Guggenheim's extended treatment considers the interaction between next-

nearest-neighbors only. For liquid InSb the number of nearest-neighbors
derived from X-ray data is 5.6? implying that the simple cubic lattice
is the simplest lattice approximation for that liquid. Thus, the
simplest configuration to be considered which would take next-nearest-
neighbors into consideration would be the square configuration.

The extended quasichemical treatment of Guggenheim contains a
contradiction, which is freely admitted in the presentation. This
contradiction leads to the ignoring of 3/4 of the interactions of
next-nearest-neighbors. The treatment presented here for the square
configurations take into account all of the nearest- and next-nearest-
neighbors. This is compared to the treatment and derivation of Guggenheim.
Comparison with the Ga-Sb data, however, indicates that theoretical
activities are still not sufficiently depressed.

A further extension of the model is to consider third-nearest-
neighbor interactions. This corresponds to using a cube configuration
for a cubic lattice as the basic unit. This treatment does permit the
depression of the activities beyond that experimentally found for Ga in

the Ga-Sb system, though the model gives a poor fit to the experimental

data.
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The effect of such a progression to more complex models is that of
approaching more closely the simple a-parameter model, so that for the
representation of activity data for small values of the interaction
parameter the a-parameter model suffices. However, in order to extract
excess Gibbs energy of mixing, or enthailpy of mixing and excess entropy
of mixing, using a single parameter model, the more complex quasi-
chemical models are suggested.

B. Requirements of Extended Quasi-Chemical Models

The interaction parameter "w" used by Guggenheim is the same
quantity as "Q" used by Stringfellow and Greene in their recent correlations
of thermochemical data on metallic melts using the quasi-chemical model
and the same as "«" of the a-parameter correlations in popular use.
These parameters are theoretically related to the energy change
associated with the substitution of one atom or molecule of species A in a
lattice of A with one of species B. Thus, m/NAv (NAv = Avogadro's number)
would be the change in internal energy for the A lattice system with a
single B. It is important to note here that these mo’els assume that
the sizes of the species considered are not significantly different in
order that volume changes due to mixing and variations in the number of
nearest neighbors are not significant.

The a-parameter defined by

a = RT(In v, )/ (0 - xA)2

is @ measure of excess quantities which vary slowly with composition,
where Ya and X, are the activity coefficient and mole fraction cf :jecies A.

As pointed out by Guggenheim,when o/RT is less than 1/4, the error incurred
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in the excess Gibbs energy by assuming a constant o over the whole
composition range is less than 1%. This holds for mixtures for which
the species preferentially seek to surround thenselves with their own
species. The same is true of associating species for which o/RT > - 0.25.
Thus, for valuesof o/RT between -1/4 and 1/4, the excess Gibbs energies
are accurate to within 1%, because the energies for interaction are not
sufficiently large to cause large deviations in the entropy from the
ideal values for entropy.

For values of the interaction energies such that |a/{RT)| > 1/4,
the excess entropies of mixing become important. For large negative
values of o such as occur in III-V melts, the association of the two
species is as to appear to give two distinct regions: (i) X, > 0.5 dominated
by A and associated A-B, and (ii) Xy < 0.5 dominated by B and associated
A-B. Thus, as suggested by Darken and Gurry.5 binaries would have to
be represented by different linear functions of X depending on the
range of Xp- Furthermore, once a is made dependent on Xy One must

differentiate between

apg = RT Inyy/(1 - xp)?

and

2
aga = RT In vg/(x,)

These a's are related through the Gibbs-Duhem equation.

The first order guasi-chemical treatment assumes

52 = (Ny - KN - %) e /AT
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in contrast with the ideal case, where the total number of rearest
dissimilar neighbor pairs, x, is given by %2 - (NA - i)(NB - x). (x is
the number of pairs composed of dissimilar members. NA and NB are the
numbers of A and B, respectively in the total solution.) Such a treatment
includes an excess entropy of mixing by taking only nearest neighbors
into account. The first order quasi-chemical model cannot be used to
model systems with highly depressed activities. This can be explained

by examining the premise that only nearest neighbors are important. For
systems where the nearest neighbor interaction is relatively weak it
suffices to ignore the energies of intiraction of more distant neighbors.
Furthermore, the contribution to the excess entropy by secondary ordering
is miniscule. (Secondary ordering is defined as ordering of next-nearest
neighbors by the influence of nearest neighbors.) As nearest neighbor
interactions become more important, however, so must.next-nearest
neighbor interactions. Thus, such a treatment need not be dependent

on the composition.

Guggenheim's treatment takes into account the effect of next-nearest
neighbors. Hi116 pointed out a contradiction in Gugyz2nheim's treatment
which states that the number of pairs of next-nearest neighbors is 1/4 NZ],
whereas the actual numbei < 1/2 NZZ' (N, Z], and Z2 are the number of
atoms or molecules in the solution, the number of nearest neighhors for
each atom, and the number of next-nearest neighbors, respectively,

{N = N, + NB).) As the systems of interest here are expected to have

A

1, =6, a cubic Tattice will be examined in detail though the treatment

could be applied to other Tattices as well. Since in the cubic system a

set of sites translates into a square with the next-nearest neighbor
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interactions corresponding to the square diagonals, a simpler analog would
be a twe dimensional squaice lattice. This lattice is also treated below.

1. Square Interaction Model

The treatment by Guggenheim counts the number of pairs of nearest
neighbors in the solution, 1/2 NZ], and the number of nearest neighbor
pairs associated with a square, 4. The ratio of the two gives the number
of squares in the solution, 1/8 NZ,. Since each square has two diagonals,
the number of next-nearest neighbor pairs must be 1/4 NZ]. The two
dimensional analog of this is shown in Fig. la.

In the two dimensional analog Z] = 4 and Z2 = 4, giving 2N nearest
neighbor pairs, 1/2 N squares, and N next-nearest neighbor pairs. It

is obvious *hat this counting system for the two dimensional case skips

half of the squares and half of the next-nearest neighbor pairs.

This counting problem can be alleviated by noting that each
nearost-neighbor pair is shared by two squares. Thus, the average
number of nearest-neighbor pairs associated with a square is 2 implying
that (1/2 NZ])/Z = N squares are associated with the lattice. This
leads to 2N next-nearest neighbor pairs being associated with the lattice
which is equal to 1/2 NZ,, the correct value. This sharing of pairs
also extends o the sharing of the energy of interactions. Thus, in
the two dimensional case, a nearest-neighbor pair contributes 1/2 its
interaction energy to each of the two squares of which it is a part.
The energy used in the Boltzmann factor in the partition functiogns are
these "hared energies and :iot the whole energy of interaction. It is
to be noted that, since the next-n=arest neighbors are not shared, their
energies are likewise not shared, and the whole energy of interaction is

used in the Boltzmann factor.
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In the three dimensional case of a cubic latticeseach nearest-
neighbar pair is shared by four squares leading to an averay:s of one
nearest neighbor pair associated with each square and giving a total
of 3N squares associated with the lattice. Since the square diagonals
are not shared between squares and there are two diagonals ta a square,
there must be 6N next-nearest neighbor pairs. Since in a cubic lattice,
Z] =6 and Z2 = 12, the above values are the correct ones.

The equivalent quantities according to Guggenheim's treatment are

3/4 N and 3/2 N for the number of squares and next-nearest neighbor pairs.

As in the treatment used by Guggenheim Tet:

w./Z;RT
n=el !

and
wn/Z,RT
6= e 2’2
where w1/Z1NAv and wZ/ZZNAv are the interaction energies of nearest

and next-nearest neighbor pairs of dissimilar atoms. Then the Boltzmann

factors associated with single pairs of dissimilar atoms in the

Guggenheim treatment are n1 and ¢! and in this treatment are n”/* and

¢'1. The difference in nearest neighbar Boltzmann factors result because
only one quarter of _Lhe energy of a nearest neighbor pair of dissimilar
atoms is associated with any one square.

An immediately obvious point to note is that the excess entropies
will be smaller for this treatment than for Guggenheim's treatment
because of the Targer number of squares being considered, i.e., the

randomness will be increased.
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Complete derivations of both treatments are found in the
Appendixes. In general, the principles set forth by Guggenheim
for these derivations are used in the treatment advanced here.

In Table 1 the differences of the bases for the derivations of
the two treatments are shown. The number of squares in a particular
configuration is broken down into three parts; the total number of squares,
the number Of orientations of that configuration, and the variable
representing the fraction of sauares in that particular orientation
and configuration.

In order to simplify the expressions that occur in the partition
function, Van der Waal's law, E = EO/rG, is assumed for the interaction
energy between dissimilar atoms as a function of distance. Since the
separation of next-nearest neighbor pairs is vZ times that of nearest

neighbor pairs, the associated energies are related by:
wy/ (ZMy ) = (wy/2 NAV)/(/‘) = w /(B4 Ny,)

This gives the relation

¢ = n1/8

Furthermore, the energy change of placing a B atom in an A lattice becomes
w=w 1.25 Wy for a cubic lattice.

These two treatments give different distributions of the configurations.
In addition the activity coefficients have different forms. The

Guggenheim treatment gives:

LA
B A
B



Table 1. Configurational degeneracy and Boltzmann factors for sgquare interactions.
Guggenheim's Treatment This Treatment
Number in this Boltzmann'c Factor in  Number in this  Boltzmann's Factor in
Configuration Configuration Partition Function Configuration Partition Function
A A
><l (374 )Not Na 1
A A .
[}
~d
A A !
2. - -2/4 1
>< (3/8)Nag 2! gz "%
A B
A A ) .2
>< (3/8)Nav Rk Y ¥4
8 B
4 N2y 43

(374)N2v!



Table 1. Continued.
Guggenheim's Treatment Tnis Treatment
Number in this Boltzmann's Factor in  Number in this  Boltzmann's Factor in
Configuration Configuration Partition Function Configuration Partition Function
B
-2 - -2/4, -1
>< (3/8)Na¢ %! I 0y
8 A '
(=23
o=
B_____B i
>< (3/8)N8 1 N8 1
B B
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and the present model gives

where 8 is the fraction of square configurations with all sites occupied
by B. Because the B's have different values between the two treatments,
the differences between the two predicted activity ccefficients are not
very large for w less the 1/4.

Other thermodynamic quantities can easily be derived for each
models such as AGm and AHm. For example, the Gibbs energy of mixing
is given by

AGm = RT(xBlanyB + xAlnxAyA)

The enthalpy of mixing is determined by summing the energies of
configurations in the solution.

2. Cube Interaction Model

The counting of the next-nearest neighbor interactions can be
extended to include third nearest neighbors in a cubic lattice. The
third nearest neighbor pairs span the body diagonals of the cubes.

A cube has 12 edges which represent nearest neighbor pairs. Each
edge is shared by 4 cubes so that the average number of nearest
neighbor pairs associated with a cube in a lattice is 3. Since the
cubic lattice has 3N nearest weighbor pairs there must be N cubes. Each
cube has 12 face diagonals representing second nearest neighbor. Each
face diagonal is shared by 2 cubes implying the total number of second
nearest neighbors as 6N. Body diagonals, representing third nearest
neighbcr pairs, are not shared. There are four to a cube giving a total

of 4N third nearest neighbor pairs. Since in a cubic lattice Z] =6,
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22= 12, and 23 = 8 (numbers of nearest, next-nearest,and third nearest
neighbors, respectively), the values derived are correct.

As before, let

= eml/(Z'IRT)
i emz/ (ZZRT)

and
wa/ (Z,RT)
v=e 373

where w3/(Z3NAv) is the interaction energy of a dissimilar third nearest
neighbor pair. Now since nearest neighbor pairs are shared by 4 cubes

and next-nearest neighbor pairs by 2 cubes, the energies contributed to

a cube are m]/(4leAv) and mz/(ZZZNAv) by nearest and next-nearest neighbor
dissimilar pairs respectively. Consequently the Boltzmann factors
associated with these pairs in a cube are n-]/4 and ¢']/2. Since the
third nearest neighbor pairs are not shared among cubes, the interaction
energies of such pairs of dissimilar species are contributed wholly to
the associated cubic configuration; the Boltzmann factor for such

are w'].

The simplification using Van der Waal's model gives
wyl (ZgNy ) = w1/(27 ZlNAv)

since the separation of third nearest neighbor pairs is /3 times
that of nearest neighbor pairs. Therefore, the functions ¢ and n are
related by ¢y = n]/27. The total energy of interaction,uw,for placing

a B atom in an A lattice is then
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B . 12 8

W=ty g =l * 508y * §127Y )

The derivation of the thermodynamic quantities based on this model
depends on the solution for values of 23 configurational variables just
as the values of 6 configurational variables must be determined in the
case of the square configurations. The problem is reduced to one of

h

solving for a value K which is of 4t order in an equation in the square

cases and ath order in the cubic case. Once determined, K is used to
calculate the values of the configurational variables. The details of
this derivation are in the Appendix.

The activity coefficient as derived from this model is given by

= (B
()
B

where B represents the fraction of cubic configurations with all of the

sites occupied by B.
C. Evaluation of the Models

To evaluate the usefulness of these models in systems with highly
depressed activities, the 1imiting values of the activity coefficients
are plotted in Fig. 2. The 1imiting values were attained by allowing
w to approach -=. Granted,for values of w very large and negative,
the assumption that the only significant interactions are those of
nearest enighbors is faise. The assumptions that only next and third
nearest neighbors in the square and cube models need be considered
are also false for large negative values of w. Yet such an examination

can provide insight into the properties of a model compared to other models.
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Note that the a-parameter model predicts vy = 0 for all x as
w(or a) + -=. The progression from 15t order to square and cube quasi-
chemical models suggests that as one considers interactions of ever more
distantly separated pairs the more closely the predictions for the
activities will approach those predictions of the a-parameter model.
wggenheim has shown that the 1st order model reduces to the
a-parameter model when the number of nearest neighbors Z1 approaches

infinity. In the situation encounted here as w » -=» the dependence

of the interaction energy on distance effectively disappears. Thus,
by increasing the complexity of the approximation by including the
interaction with more distant atoms, the effect of w approaching -= is
to increase the effective number of nearest neighbors.
This trend is reflected by the activity coefficients of the
different models for finite values of w. Figures 3 and 4
demonstrate this by comparing the activities computed from the 1st
order and the square models to those computed from ihe a-parameter model
for %T = -3.0. A plot of the activity coefficients computed from the
cube model would be indistinguishable from the plot of the square model.
This indicates that though the more complex models tend to approach
the predictions of the o-parameter model, they do not become identical
with it for the case of infinite complexity and finite values of w.
Further, since the energy of interaction is assumed to drop off as
r'6, the energies of interaction become small compared to thermg] energies
and do not make significant contributions to the energy of mixing or to
the ordering of the species. Since, this is to be applied to liquids,

thermal motion would certainly randomize the pairs interacting over
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large distances, obliterating any order due to interaction over large
distances. Thus, to consider more complex systems than second order
would be of little value. The caomplexity of the computations do not
justify the small grain in accuracy.

Though the activity coefficients do not differ greatly between
the 1st order and the square models, the difference between the
enthalpijes of mixing is considerable. Again, the effect of the
difference is a tendency to approach the values predicted by the
o -parameter model. This can be seen by comparing Figs. 6 and 7. As
before, the plot of the enthalpy of mixing calculated from the cube
mode! is indistinguishable from that derived from the square.

This difference in the enthalpy can be seen to a much smaller
extent in the entropies. The 1st order model considers the interaction
energies of nearest neighbors and the ordering of nearest neighbors. It
does not take into account the secondary ordering of next nearest
neighbors by the nearest neighbors preferentially pairingwith its
other nearest neighbors.

In order to explore the implications of secondary ordering,consider
a system consisting of A and B and assume that only nearest neighbor
interactions exist and that the interaction parameter is positive so
that at temperature TC {consulate temperature) the solution separate
into two phases below TC and remains a single solution above Tc. Now
given w, the a-parameter model predicts TC = %ﬁ,and the 1st order model
predicts Tc = Efﬁgiﬁ'for Z1 = 6. Suppuse that the ordering of next-

nearest neighbors in a 1st order liquid solution is allowed to take
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place due to the nearest neighbors, A2 and A], of A]. Then the next
nearest neighbor of A] preferentially will be A] and not B1, since B1
will be repelled away by A2 and A]. What this will do is make A
associate more preferentially with A and likewise B with B despite
thermzl action to randomize the solution. Therefore, the consolate
temperature must be greater than Tc = ?Tﬁ%?ﬁ for Z1 > 6. In general,
then, Tc should be greater than that predicted by the 1st order quasi-
chemical model. Inclusion of energies of interaction for next and
third nearest neighbors was considered. These energies can only make
more orobable that B will not be a neighbor to A. Thus, the thermal
action to randomize the solution is again thwarted, making the predicted
consolute temperature higher. The effect of these considerations is
less because of the complex routine for influencing that neighbor.
Relations between Tc and w given by the different nodels are summarized
in Table 2.

In Figs. 9 and 10,activity coefficient data for the In-Sb system
at 900°K as taken by Terpilowski7 and Hoshino et a1.,2 are plotted.
Plotted on the same graphs are the activity coefficient curves as
predicted by the 1st order and square models and fitted to minimize
the error. The Terpilowski data fit well with both the 1si order
model and the square model, though the square model may have a slightly
better fit to the data. The data of Hoshino et al., do not fit well with
either model at low In mole fractions. However, the square model does

obviously fit better than the 1st order quasi-chemical model.
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Table 2. The ratio of the interaction energy
w and the consolute temperature as
predicted by the various revised
quasi-chemical models.

Model -
RTc
1st order quasi-chemical 2.433
Square model
Nearest neighbor interactions 2.088
only
Include next nearest neighbor 2.065
interactions
Cube model
Nearest neighbor-interactions 2.089
only
Include next nearast neighbor 2.062
interactions
Include third nearest neighbor 2.058
interactions

a-Parameter model 2.000
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D. Conclusions

Guggenheim's derivation for the second order quasﬁ-chemica]
models is found to be neglecting three guarters of the second order
interactions. A method has been proposed to correct this for the specific
case of cubic Tattices.

In addition, the higher order quasi-chemical models are found to
give a better fit to the available data on the In-Sb alloy melt system
than the first order guasi-chemical model. These higher order models
give calculated activities guite similar to those predicted by the
a-parameter mode]. Due to the complexity of thoce higher order models
the a-parameter model is preferred for the calculation of activities.
Enthalpies and entropies of mixing, however, should be calculated by the

higher order quasi-chemical models.
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of the counting treatment advanced here.
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The limiting activity coefficients for various models for increasingly
large negative interaction parameters.
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Fig. 3. The activity coefficient predictions of the o parameter and the
quasi-chemical (first order) models are comparaed for w/RT = -3.0.
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Fig. 4. The activity coefficient predictions of the o parameter and the
quasi-chemical {second order, this derivation) models are compared
for w/RT = -3.0.
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are compared for w/RT = -3.0.
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Fig. 6. The enthalpy ¢f mixing predictions of the o parameter and the
quasi-chemical (first order) models are compared for «/RT = -3.0.
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Fig. 7. The enthalpy of mixing predictions of the u parameter and
the quasi-chemical (second order, this derivatica) models are
compared for /RT = -3.0.
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Fig. 8. The enthalpy of mixing predictions of the o parameter and the
quasi-chemical {second order, Guggenheim's derivation) models
are compared for w/RT = -3.0,
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The activity coefficient dats of Terpilowsky for In-Sb alloy melts
at 900°K compared with the first order quasi-chemical predictions

for w/RT = -2.8 and compared with the second order (this derivation)
quasi-chemical predictions for «w/RT = -3.0.
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The activity coefficient data of Hoshino et al., for In-Sb alloy
melts at 900°K compared with the first order guasi-chemical
predictions for w/RT = -2.2 and compared with the second order
(this derivation) quasi-chemical predictions for w/RT = =2.3.



VIII. GENERAL CONCLUSIONS

The use of oxide electrolytes, calcia stabilized zirconia and yttria
doped thoria in particular, is shown to be viable for the measurement
of Ga activiiies in Ga-In-Sb liquid alloys by solid state electro-
chemistry. The activities of Ga in Ga-In alloy melts were measured and
used to calculate heats of mixing which correlate quite well with the
heats of mixing of Ga-In alloy melts measured by different techniques.

The Ga activity measurements were extended into the Ga-Sb system.
The activities of Ga were found to be highly depressed and correlating
very well with a model postulating GaSSb, GaSb, and GaSb3 complexes. The
activity coefficients of Ga show a very marked drop at Xga = 0.8, the
reason for postulating GaBSb, and show quite low values at Xpa T 0.2,
necessitating the postulation of GaSb3. In order to shift the inflection
points of the model, the existence in the melt of GaSb was necessary.
These complexes together form a system which explains the large
negative deviation from Raoult'sLaw, long equilibration times, and
earlier observations by other investigators showing short range order.
The ramifications of the model are large negative heats of mixing
with a minimum of -7.8 kcal/gram-atom at 997°K for Xga = 0.7.

Activities of Ga in the ternary alloy Ga-In-Sb melt were then
measured for one composition, xGa = 0.7, X © g.1, be = 0.2. The
measurements show a depressed Ga activity which decreases rapidly with
decreasing temperature.

The higher order extensions of the quasi-chemical model were then
examined in relation to the In-Sb alloy melt system. The derivation of

Guggenheim for the second ord2r model was modified for a cubic lattice
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to account for the second nearest neighbor interactions,which are
ignored in that derivation. That derivation ignored 3/4 of those
interactions. The modified second order and the derived third order
models are found to follow very closely the activity coefficient pre-
dictions of the o parameter madel, though not eractly. These higher
order quasi-chemical models and, thus, the o parameter model, are found

to give a closer fit to the measured In activity data for the In-Sb

alloy melts than the first order quasi-chemical modetl.
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APPENDIX: QUASI-CHEMICAL MODELS
A cubic lattice is the si- ~1est structure for which the number of
nearest neighbors equals six. Therefore, assume a cubic lattice.
Further, especially for the ligquid state, assume Van der Waals forces
between atom pairs, i.e., interaction energies proportional to r's.*
In a cubic latiice, the ratio of next nearest neightor separation
¥, to nearest neighbor separatiun " is rz/rI = /2, and the ratio of
third-nearest neighbor separation ry to nearest neighbor separation is
r3/r] = /3. Therefore, the ratio of next-nearest neighbor interaction
energy I; and nearest neighbor interaction energy I? is I%/I? = 1/(/.2_)6 = 1/8.
Also, the ratio of the third-nearest neighbor interaction energy 13
to the nearest neighbor interaction energy is Ig/I? = 1/(/5)6 =1/27.
This leads to the following relationships among the Boltzmann factor
for nearest neighbors n_], next nearest neighbors ¢-1, and third-
nearest neighbors w']:
/8 v = n1/27

The interaction energies above refer to interactions for pairs of atoms of
differing species.
Assume now that the atomic radii of the two species are equal so
that coordination numbers do not change with composition. Further
assume that there is no change in volume with mixing. Then

AUm'ixing - AHmixing'

*It has been suggested that the Leonard-Jones potzntial would be more
appropriate. I agree, but at the time of my original work, I did not
think of it.
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Now imagine the enthalpy of mixing involved in replacing an atom
of species A in a lattic: of species A with an atom of species B.
Considering only nearest, next-nearast, and next-next-nearest neighbors:

AH = Z]I$ +2,19 + Zzlg, where Z], ZZ and 23 are the numbers

mixing 2°2

of nearest, next-nearest, and third-nearest neighbors, respectively.

Call this enthalpy of mixing Q, i.e.. Q = Z]I? + Zzlg + 2313. Thus,

a measurement of Q immediately yields I?, Ig and Ig, provided Z], 22‘

2, and the relationships betwaen I?, Ig and Ig are known. For the case of
a cubic lattice 2, = 6, Z, = 12, Z, = 8, 13/17 = 1/8, and I3/1] = 1/27,

implying 1? = Q/(6 + 12/8 + 8/27). Therefore,

o = &*/{6+12/848/27) RT

when one considers the three nearest levzls of neighbors in a cubic
lattice.

Now let us consider a cubic lattice as a case of interest since
the coordination number of the III-V melt of In-Sb has been measured
to be 5.7 or approximately 6, the coordination number of a cubic lattice.
The cubic lattice hL-s a unit cell consisting of 8 atems (in the case of
a metallic melt) arranged at the vertices at a cube. Each atom also
is at the vertex of B cubes or unit cells and, therefore, is shared by
8 unit cells, making the effective number of atoms associated with
each unit cell equal to 1. Therefore, for N atoms there are N cubes
or unit cells.

Let us now consider the energy contributions of the various
interactions to the enthalpy of a cubic cell. Suppose a pair of
nearest neighbors consist of atoms of differing species. Then the

energy of interaction is I]. Now the l1ine connecting the two atoms
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is an edge of the cube and s shared with three other cubes. Thus,

the energy of interaction of that pair is shared by four unit cells,

and the contribution to the unit cell of interest is 11/4, implying

that vhe associated Boltzmann factor is n"]/4. Similarly, the interaction
energy for next nearest neighbors is shared by two unit cells, and the con-
tribution of this interaction to the enthalpy of the unit cell is 12/2;
implying that the corresponding Boltzmann factor is ¢']/2. The
interaction energy for third-nearest non-identical neighbors is not
shared but belongs wholly to the unit cell within which the interaction
resides; implying .hat w'] is the associated Boltzmann factor.

Table 1 contains all the different possible configurations for atoms
of two species arranged at the vertices of a cube. The second column
is a term representing the total number of cubes corresponding to the
configuration in the first column. This term is composed of a term
N which is the total number of cubes in a cubic matrix. The second
term is a variable multiplied by an integer. The variable repesents
the fraction of cubes in one orientation of the configuratiion in the
first column. The integer is the number of possible orientations of
that particular configuration. The third column lists tiie Boltzmann
factor associated with the particular configurations.

The above basis is used to evaluate the thermodynamic properties
of a system having a cubic lattice. Several degrees of complexity are
used tc develop models for which a partition function may be derived.

In order that the partition function be determined, it is necessary
to solve for the variables Tisted in the preceding table using the
constraints of the system. One of these constraints is the conservation

of species. Let us count the number of B atoms associated with each
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Table 1. Boltzmann factors and configurational degeneracies
for cubic groups in a binary system.

Configuration Number in this Configuration Boltzmann Factor

Ne 1

-3/4 -3/2 1
n / ¢ / ¥

N8§
-4/4 -6/2 -2
\ N'IZ;O n /¢6/w
K N12c1 n-6/4¢-4/2¢-2
L
f N452 n-6/4¢-6/2
v
- N24vo n-5/4¢'7/2¢'3
.
- N24v] n-7/4¢~7/2¢-1
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Table 1. Continued.

Configuration Number in this Configuration Boltzmann Factor

J - N8, 918 3123

R e N6£0 n—4/4¢_3/2w_4

v}r—» N24g, n'8/4¢'6/2¢'2

! Ni2g, n674,-8/2,-2

N12¢, n'6/4¢'8/2w'2

j NBE, n'5/4¢—6/ 2w_4
gj_&j N6E n~8/4,-8/2
@‘j N2g, no12768,-4
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Table 1. Continued.

Configuration Number in this Configuration Boltzmann Factor

E:;?B
-5/4 -7/2 -3
1 B & N24po n ¢ ¥
/ B"

- N24o, W12

@ f Neo, 9/4,-3/2,73

ht

486122

N12¢, ¢

N120 n-6/4¢-4/2w-2

ﬁ?

A

i L

ﬁé Nao 61447672
2

x—}

n—3/4 -3/2w-1

N8t ¢

N8 1
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of the configurations; the total must be NB‘ In the accountirg we

note that the average number of atoms associated with a unit cell is one;
therefore, the fraction of B atoms associated with a configuration s
equivalent to the average number at B atoms associatecd with one unit cell

of that particular configuration, as shown in Table 2. Thus, we have that:

=
1

= Ng + 3NCO + 3NC] + NCZ + 9Nvo + 9N\J.| + 3Nv2 + 3NE,o + IZNE]
+ GNE2 + 6NE3 + 4NE4 + 3N£5 + N£6 + 'ISND0 + 15Np] + 5Np2

+ 9NUD + QNU) + 3NU2 + JNT + NB

or

b
1

!
z+ 3;0 + 3;1 +g, 9“0 +9up + 3u2 + 350 + 1251 + 652 {m
+ 653 + 454 + 355 + 56 + 'ISpo + 159] + 592 + 900 + 901

+ 302 +71 +8

Similarly for A:

Xg = ot 76 + 9:0 + 90, + 3, ¢+ 15v0 + 15u) + sz + 350 + 1251 (2)
+ 6, + 65, + 454 *+ 365 + Eg + 90y * 90; + 3p, + 30,

+ 30] + % + T

Now following the procedure outlined by Guggenheim in Mixtures, we
write the approximate partition function and maximize to determine the

values of the variables. The partition function is 90:



Table 2. Fraction of B component in binary
configurations of a cubic lattice.

Table Number in  Number B in Total B in

Configuration Configuration Configuration
No 0 0
N8z 1/8 NZ
N18C0 1/4 N3C0
N]Z;] 1/4 N3;]
N4c2 1/4 Nz
N24v0 3/8 NQvO
N24v] 3/8 N9v0
N8v2 3/8 N3v2
N6£0 1/2 N3€0
N24E] 1/2 NIZE]
N]ZE2 1/2 N6£2
N]Zg3 1/2 H6£3
NBE4 1/2 N45,4
N6€5 1/2 N3£5
NZE6 1/2 Ngﬁ
N24p0 5/8 lepo
N24p] 5/8 N15p]
N8p,, 5/8 N502
leco 3/4 N9c0
NlZc1 3/4 Ngo]
N402 3/4 N302
N8T 7/8 N7T

No 1 N8
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In the partition, function the term in front of the Boltzmann factors

represent. the number of grientations for a given set of values of the

configurational variables. The starred configurational variables are

the values of these variables in a completely random solution and have
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the following values:

u* = xg = (1 - x)8

6* = xeé = x(1 - x)7
N
% T T % T xR T
1* = xkx; = x7(: - x)
B* = xg = xB

Note now that there are 23 confi
and (2) are two constraints so that ¢
variabies (provided s 25y Zgy My ¢
pletely the state of equilibrium we m
respect to the 21 independent variabl
excluding o and B. An equivzlent ope
Gibbs energy of mixing or RT In Qo.
in QG with respect to the independent

approximation we obtain:

gurational variables. Equations (1)
here are now 21 independent

and | are known)}. To specify com-
ust minimize the Gibbs energy with
es, the configurational variables
ration is the minization ~f the tutal

Therefore, it suffices to minimize

variables. Utilizing the Stirling
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3 1n 8
——%-9
T
2,2, 2
a7B/C8 =n ]¢ 2w 3
5 22y 32, 3z

a933/ét.= n 1¢ 2‘lJ 3

3z] 222 3z3

et el

Z, Z
aaﬁ/ig =n 1¢ 2

5z, 7z, 9z,
I <Ny 2y

7:1 7z2 3z3

1569528 - 1,70,

82/

3z, z, 3z
a583/V2 =n ]¢ 2w 3

3.3,,6_ 2

2z, 3z
a’B C/o =n ]¢ Zw 3

12,.24

8z, 6z, 62
a1ZB /E] =n 1 2‘p 3

o®e8/e)? - AR
oPa/c )2 RN
a'sh/el - 214,
o%8%ef = R

as/E2 = n o
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With appropriate algebraic manipulations and
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%515/28 - n5?1¢722w923
ERL T 3
o38%/65 = 211572,
o%6%01% - AR
a83/cg = nz]¢zz

u389/012 ) n3z]¢222w3z3
o8/ = n 1o 23

the substitution oo/va

the following relationships can be derived.

1t

ke noly’ g, - e
e a2 g e 12
K'250¢w2 £ = Eon']¢4
VPR ol
K'zgﬂn']/z¢1w4 0, = KEOn-]/4¢]/Z¢
Clea V812 o o ke 12
TR LACE BN IR
e S0% o = s gi?

K

{5)

2
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bk o) = e 72272

g = g0 0l o, = K2;6n"/2¢uv4

£y = g0 402 v = K n'/16%/2)3
8 = K mo’?

Let us now digress to Eqs. (1) and (2}. In order to simplify the
mathematics, let Ii represent the ith configurational variable ot the
23. let asy and a, represent the corre,pond’ng constants of Eqs. (1)

and (2}, respectively. Thus:

23
xg = ]E 3k

POLIPI

X
A g

To further simplify, let 59> 34y A5 and ae be the exponents of K, n,
¢-and ¢ in Egs. (5) for the respective variables. Substitutina into

Egs. {1) and (2).

3. a,
xB = Za K 73 74¢‘ 15w i6 (]a)

.. a,
Xp = 2: a K 13 14¢ 15w i6 (2a)
Factoring out and isolating Eo’ we can equate the two eguations to obtain

23 8., a., .. a. 23 a., d., A, 4,
i3, 714 715 Ti6 _ i3 _"i4.7i5 "i6
xg 2K U e Pw = xg Z] 3K T e e
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or

23
L(xgagy - X! €137946718,716 - g
1

or with x = Xg»

23 A, a., 8:p A,
Z(a.ﬂ - X(a_” + a12)) K 13n '|4¢ 15[» i6 =9
1

With n, ¢, ¥»and x given, it is then possible to solve for K, and then
possible to calculate the values of the configurational variables.
Further, simplification can be attained by assuming Van der Waals behavior

in which case, as pointed out earlier:

23 +_§
oy - wlagy o)) K E -
1

N,
\JU\
H

(=]

—

k=]

—

Dioressing again, let the exponents of the Boltzmann factors in
Table be designated by €10 Bior B3 for n, ¢,and ¥ respectively

for the ith configuration. Let
EL; = &g + e;0/8 re;o/27

Noticing that the number of orientations for each configuration is equal

to ai1 + aiZ’ we may then write for the molar enthalpy of mixing

Z(a va ) L) e+ gt + &) (7)
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The molar Gibbs energy of mixing may also be calculated and is

given by

AG = RT n Q
m N 0

0
where NO is the number of moles used in calculating Qo as contrasted
with N, the number of atoms used in calculating ﬂo. The partial molar

Gibbs energy of B is then

5 BNOAG - 3 In 2
a6, = = RT ———=
B g aNg

Now all of the confiqurational variables starred or unstarred are functions

of x or NB’ therefore,

*
23
A =rT (Y E_Jflfil Eii.+ E~12_82 Fli
B o * dr oI, dN
1 aIi B i B

BIn 9 4y a1nszo_|
W dhg o |

+

*
Now assigning values to Ii appropriate for a completely random arrangement
(reqular solation) is equivalent to maximizing Q. Therefore, for the starred

* *
configyrational variables excluding o and B , we find

alnf
—2%=9
aI_i
Similarly, in determining the equilibrium values of the unstarred

configurational variables, it was necessary to minimize In @ with respect

to these variables excluding o and B, implying
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31n 90

BIi

=0

*
Using Eg. {2) we find that Nau and No are functions of NA and the
variables already discussed and, thus, coritribute to making those
differentials equal to 0. Thus, the only terms not irrelevant are
N, NB’ B*,and 8. Performing the indicated operations, we get:
ZEB = RT(]n x + 1In g;)

Similarly for ZEA

16, RT[]n('I - x)+ 1n E;J
o

Thus, a simpler expression for Zq“ is

-
a6 = RT[{x 1n 26+ (1 - x) 1n11—‘j‘;)—“-I
B -1

' ]

m

* * .
Substituting for a and 8 from Eq. (4) we also obtain

.
AGm=RTx]n»B—7+('I - x) In —2—
X 1 - x)

Furthermore, the activities and activity coefficients are

= &
VWE——g Yg°
A8 B

cnkn

o
 ——— a, =
a B

A (1 - x)7 X

<l

(8a)

{8b)

(9)

(9a)

(10)
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This particular model may be used to evaiuate the effect of
allowing for third-nearest neighbors. Those terms taking that
interaction may be eliminated from this model by just ignoring the
interaction energy and its Boltzmann factor for third-nearest
neighbors. Then to evaluate the effect of allowing for next-nearest
neighbors, their associated interacticn energy and Bcltzmann factor
is just ignored in this model.
Discussion

In principle,in a case of one to one correspondence if, it is possible
to calcuiate some quantity given some initial infdrmation,then it must
be possible to derive the initial (nformation if the desired quantity is
known. That is the case here. The activities have already been calculated
for a given Q. Thus, 1f the activities are known,Q may be deduced.
The Initial Model

The method requires that the number of nearest neighbors be establisked
first. If Z] is independently determined to be 6,then the equations
developed here may be used: one can assume a cubic lattice and a
Van der Waals relationship for interaction energy as a function of distance.

Suppose that the activi%ty of B for a given mole fraction of B is
known. Then from Eq. (15), B8 may be calculated,

B = x7aB

But from Eq. (10) we have

8= Keneht
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or
£ = 8(Khnghyh (10a)

If we substitute this £ into Eq. (1a), we obtain

23 B:n 8.y Bsp A,
XK4H¢4w4/B > ailK 13n 14¢ 15llJ i6
1

or
22 A:n 3., A, B,
3K Py iy 18,106 (]- ) %) nstid = 0
1
or
2 d., a.,ta, +a.
i3 _“i4 "i5/8 “1i6/27
%:aﬂx n ' (1 ) %) KA H/BHI2T oy
Thus, Egs. {10b), ard (6) are two eguations in two
unknowns, K + n. These two equations can be solved simultaneously
by numerical techniques to obtain @, sinc: 2 = (6 + 12/8 + 8/27) RT in n.

Square Interation Model

A second model is simpler and allows for the nearest and next-nearest
neighbors only. Thus, in this model I? = Q/(6 + 12/8) as is true in all
models presented here for the cubic Tattice which take only these two
interactions into account. This model considers only those atoms at
the corners of a square. The number of such squares may be determined
by considering the unit cell, a cube. A cube has six square faces; but
in a unit cell each face is shared with another unit cell, implying that
each unit cell may be associated with three faces. Now in a cubic lattice,
one atom may be associated with each unit cell, implying that for N

atoms there are 3N squares.
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To determine the Boltzmann factors for each configuration, let us
consider the relationship of the squares to each other. The edges of
the squares represent the nearest neighbor interactions. Etach edge is
shared by four squares so that the interaction energy of dissimilar atoms
is shared by the four squares. Thus, each dissimilar atom's nearest-
neignbor interaction contributes 1/4 of the interaction energy of the pair
to each of the squares. Thus, the Boltzmann factor for a dissimilar
edge pair will be n']/4. The diagonals of a square are nct shared so
that dissimilar diagonal pairs (next nearest neighbors) will contribute
the whole of the interaction energy to the associated square. This
implies that the associated Bgltzmann factor will be ¢'1.

Table 3 contains all the different possible configurations
for the square model. The second column contains terms representing
the total number of each configuration. These terms are composed of the
total number of squares, 3N, the number of orientations of the con-
figuration, multiplicative constant, and the variable representing the
fraction of squares in one orientation of the corresponding configuration.
The third column lists the Boltzmann factors of the configurations.

Thus, we have a total of six configurational variables. It is
necessary to develop the relationships between these variables in order
to derive meaningful thermodynamic ddta from this model. The simplest
relationships are those of the conservation of the species involved.
Together all of the equations of species conservation state implicitly
the conservation of mass equation, so that this equation would be
dependent on the species conservation equations and, thus, unnecessary.

The species cunservation equations are
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Table 3. Boltzmann factors and configurational
Degeneracies for square-grouss in a binary system.

Configuration Number in this Configuration Boltzmann

m INa n° ¢o
i ! Ndz n"2/%"1
! INgv n~2/%-2

n-4’4¢°

N2

INdE n 204"
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NA = Na +3NL + 2Nv + Nv' + NE (i1a)

NB = Ng + 2Nv + Nv' + 3NE + NB {11b}
or

Xp =at g+ 2v+ vt g (12a)

Xg =T+ 2v+ v+ 3+ B . (12b)

In order to cut down on the writing,let I,i represent the ith configur-

ational variable and ai] and biz represent the corresponding constants

of Eqs. (12a) and (12b), respectively, giving:

6

Xy = ? a1IIi
6

Xg = ? a1211

Inspection of Eqs. (11a) and (11b) reveals that two of the six configurations
are now no longer independent. For convenience let « and B be the too
variables dependent on the other four.

Equations (11a) and (11b) are derived by determining the total
effective number of atoms of the respective species in eqch of the con-
figurations and summing and equating to the total number of each specie.
For example, consider species B. Each atom is shared by 12 squares in
a cubic lattice, therefore, the faction of that atom which is associated
with a single square is 1/12. Therefore, the effective number of B in
a particular configuration is the number of B at the corners multiplied
by 1/12. Multiplying the effective number of B in a configuration by the
total number of squares with that configuration then gives the total

effective number of atoms of B associated with that configuration. These

values are given in Table 4.
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Table 4. Configuration numbers.

Total Number Cffective Number
In Configuration B in Configuration Total Effective B

3MNat 0 0
3Nz 1712 Ne
3Ndv 212 2Nv
ey 212 Ny’
NaE 312 3INE

3Ng 4/12 N8
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In order to derive the relationships between the fcur presently
independent variables, it is necessary to determine the values of these
variables when in the state of equalibrium. This is done by determining
the minimum Gibbs energy for each variable. With the six variables it
is possible to develop an approximate partition function fiom which
the Gibbs energy of mixing is easily obtainable as a continuous function
of the four independent variables. Differentiating that function with
respect to each of the independent configurational variables and equating
with zero will give the remaining relationships between all of the
configurational variables at the state of equilibrium.

Keeping in mind that 7, = 6 and z, = 12,we can write the partition
function Qo by following the procedure outlined by Guggenheim in

Mixtures and in Table 3, as

* * 4 * 4 * 2 L &
Q = Nr!{ : [{3Na )1I[{3Nr )1T [(3Nv )} T[(3Nv g!] {(3NE )117[(3nB )!]
o Na™Ng! [ (ane) 130 (aNe) 1100 (3w ) 11 (a1 19 (3ne) 1 10 (3N) 1]
13
-z N(g+v +v' + E) -z,t{g + 2v + &) (3)
1 2
x N ¢
In the partition function the term in front of the Boltzmann factors
represents the number of orientations for a given set of values of the
configurational variables. The starred variables are values of the con-

figurationa) values in a completely random solution and have the following

values with x = Xg 1 -x= Xp'
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*
a = x: = (1 - X)4 (13a)
*
r = x:xB = x(1 - x)3
*
v o= o= x:xg = xz('l - x)z
* (L3 3 L
£ = ApXp = X (1 - x)
A
B* = xg =X
Now the total Gibbs energy of mixing AGm is given by
AGm = RT In ﬂo
Thus, minimizing this function with respect to the independent con-
figurational veriables results in
31nQ
o _
I 3 0
z o3t = oo
v Ol232/\)4 - n?¢8
v' mB/\J'2 = nz
£ AR
With the appropriate algebraic manipulations and the substitution
E/r = K2, the following relationships can be derived.
- K'zvn]/2¢2 (14)
g = K%
v = vn°¢°
vo=un 3
£ = kun%

6 = KBon /2,2
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Let a9 ai4,and L be the exponents of k, n, and ¢, respectively, for the
ith component of Eq. (14) and substitute Eq. (14) into Egs. (12a) and {12b).
Then,

a,
- i5,

a., a.
i3 _"i4
X ai]K n ¢

A, A0 Ay
aiZK 13n 14¢ 15v

6
z
1
6
Xp = L
B

Factoring out and isolating v, we can equate the two equations to obtain

6 ., Ay, B 6 Aiq A:p A
i3 %44 15 _ i3 “i4 %15
g kaggk T e T s xg RagK T e

or
6 ., d,, a.
_ i3 _“i4 "i5 .
I lagg - x(agy *ahk Tn Te 00
With n, ¢.and a given, it is then possible to solve for K, and then
possible to calculate the values of the configurational variables.
Firther simplification can be attained by assuming Van der Waals
behavior, in which case as pointed out earlier:
a .
i5
6 d;, a4, ¥ 7=
- i3 "14 8 -
f lag, - x{ajy + a;,)] K n U {15)
Now that the configurational variable values have been determined
for equilibrium, the enthalpy of mixing may be calculated by summing
up all the energies of interaction of differing species. Designating
the exponent of n and ¢ under the Boltzmann column of Table 3

as ey and P respectively, for the ith configuration, we now

define Q as
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Ei = ey *ey,l8

Noticing that the number of orientations for each configuration is

equal to a9 + ai2’ we may then write for the molar enthalry of mixing ,

6

AH 3{:(.-:1.] *+a5,) L(E;) /(6 +12/8)

W

fhe molar Gibbs energy of mixing may also be calculated and is
given Ly
RT

AGM = No n 90

where NO is the number of moles used in calculating Qo as contrasted
with N, the number of atoms used in calculating K%. The partial

molar Gibbs energy of B is then

3N _AG 2 InQ
= oM 0
AG, = —=—11=RT —
B BNB BNB

A1l of the configurational variables starred or unstarred are functions

of x or NB
*
6/3InQ dI, 2in @ dI.
B = RTIN—2 o+ ——
1 aIi B i B8
. jilp Qo N s 3 In ﬂo
N dNB 5NB

*
Now assignino values to Ii appropriate for a complietely random

arrangement (regular solution) is equivalent to maximizing Qo' Therefore,
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L L
for the stirred configurational variables excluding a and 8 which are
dependent on the others, we find
3 1n Qo .
8[1.
Similarly, in determining the egquilibrium values of tne unstarred
variables, it was necessary to minimize 1In 90 with respect to these

variables implying

31n Qo -0
311.
such that Ii here does not include o and 8. Now by Eq. (11a)
it is known that o and a* are independent of NB. Therefore,
3 1n SZO
)
and
2ing
—2=0
3a
Thus, the only relevant terms are those involving N, NB’ B*, and B.

Performing the indicated operations we get:

— 8 3
AGB = RTlEn x + ln(g-;) . (15a)

Similarly for EA:

56, = RTI-]n(I -x) + 'In(—*—) J . (15b)

L o
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Thus, a simpler expression for AGrn is
A& = RT[x Tn x('i):i +(1-x)n (1 - x)("‘—)3 (16)
m B* a* )

Substituting for a* and B* from Egs. (13a), we find

. 3 3
_ pT B
A6 = Rl{% n x(x4> +(1-x)1n (0 - X)(E;—Eijziz) } . (16a)

Furthermore, the activities and activity coefficients are:

3 3
welmd ()

(1
3
e

These expressiors are useful in describing deviations from ideality in

a = (1 - x) (21 f x4)) ap

liquid alloys known to exhibit square and cube clustering.



