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ABSTRACT

A renormalizable model in which weak interactions are 

mediated by spin-zero exchange rather than by spin-one ex­

change is studied. The lowest order diagrams for u and 8 

decay are box diagrams. Neutrino cross sections off leptons 

and hadrons are calculated for the effective charged and

neutral currents of the model. Wtak corrections to e+e -*■ 

u V  and higher order contributions to ti decay are also cal­

culated. Neutral current effects are predicted to be small 

for neutrinos on lepton targets and large for e+ e’ ■* u*u~;

their strength is fixed hy v-hadron scattering. In particular 

there is a sizeable suppression of v^e scattering and a 

large enhancement of the asymmetry in e+e •* u+p . The only 

troublesome prediction is a parameter-free value of one for 

the ratio o(v„ + N ■* v + X) / a(v ;■ N -*• v ♦ X). On the
U u (J VI

whole, however, the model provides a sensible, renormalizable 

alternative tc the gauge theories.
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The study of weak interactions has blossomed in the 

past five years, on the theoretical as well as on the ex­

perimental side. Of key importance has been the development

of a unified theory of weak and electromagnetic interactions^

2
with the attractive feature of renormalizability. This has 

led to a formidable array of calculations and a great deal 

of model building3 to obtain agreement with experiment while 

operating within the framework of these gauge models. A basic 

ingredient has been the GIM4 cancellation mechanism based on 

an SU(4) symmetry^ for hadrons.

It seems likely that many of these ideas are correct, 

even though all the components of a complete theory of the 

weak interactions may not yet be in hand. A good dose of 

skepticism, however, is probably healthy and with that in 

mind we turn to the predictions of an alternative renormal - 

izalbe model of weak interactions. Our purpose is not to 

propose adoption of the alternative model, but rather to 

show that there is still a good deal of flexibility in de­

veloping a theoretical scheme to fit weak interaction experi­

ments and to demonstrate within the context of the specific 

r.odel how improved experimental results Will resolve ambi­

guities. The model^ we consider is one in which the weak 

interactions are mediated by spin zero bosons. Earlier

I. INTRODUCTION versions of this model required a large number of as yet un­

discovered particles to appear in the weak interaction La-
7

grangian. One of us (G.S.) recently found that by using the
4

GIM mechanism, and by allowing the coupling of the spin zero 

bosons mediating the weak interaction to be fairly large, 

considerable simplifications would occur.

This paper will explore in some detail both the theo­

retical framework and the experimental predictions of the 

model of reference 7. We will place particular emphasis on 

contrasting our results with those of gauge models.

In section 11 we introduce the model and calculate the 

lowest order diagram contributing to p decay, in this case a 

box diagram in which two spin zero mesons are exchanged. We 

then calculate some higher order diagrams and discuss the 

limits placed on the scalar meson's coupling to hadrons and 

leptons by universality, the muon g-2, etc. In section lit 

we consider the model's predictions for purely leptonic scat­

tering processes, namely + e •* v + e’, vc ♦ e" ■* ♦ e' 

and e+ + e ■» u + ■* u . The first of these reactions is of 

particular interest, as it is forbidden in order G (the Fermi 

coupling) in this model, but allowed in the Weinberg-Salam* 

model. Weak effects in the third reaction should soon be 

measured and these may be particularly lar^e in tho present 

model. In section IV we analyze neutrino hadron scattering; 

the neutral current in our model has an isovector vector part
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and an isoscalar axial vector part. We analyze the conse­

quences of this form of neutral current. Since the coupling 

constant of the scalar boson to hadrons is quite large, re­

normalization effects may be appreciable. We examine these 

with particular regard to universality in section V. In 

section VI we conclude by reviewing the more important ex­

perimental predictions. Finally we present two appendices.

In the first seme of the details of the higher order calcula­

tions of section II are given and in the second a model with 

manifest universality is displayed.

4

II. LIMITS ON THE COUPLING CONSTANT 

The interaction Lagrangian is^

£ - [r,,(l-Ys)£B0 + ^ ( I - T s Jv j B-J

♦ [ffc (l-Ys)P + X.(1-y 5)P']B' (2.1)

+ ("c(1’V nc + + h,c-

where the values of I are the usual leptons, e and p, while 

are the usual neutrinos. are two massive, charged lep­

tons, and B°, B°, and B~ are the scalar mesons which mediate 

the interaction. The interactions with baryons are given in 

terms of the quarks P, n, X, p ’ where nc = n cos 0 + A sin 8

and A = -n sin 8 + A cos 8. 
c

l't.e lowest order diagrams for p decay and g decay are

shown in Fig. 1. If the masses of the scalar mesons are

much larger than those of the heavy leptons and m . - m <
B B

m or m + then these box diagrams reduce to an effective 
B B

V-A interaction



Therefore we identify

where G is the usual Fermi coupling constant.

Of course (Z.3) is only valid if:(a) the mass of the 

charged scalar (m^) is equal to the mass of the neutral 

scalar (m0) and they are much larger than the masses of the 

heavy leptons of rauon type (M ) and of electron type (Ml; and
U e

2
(b) f /4ir is small enough that the lowest order diagram is a

good approximation. We are also assuming that the coupling

of the charged scalar, f+ , is equal to the coupling of the

neutral scalar, fQ . This assumption can be relaxed in a

2 2
trivial manner by introducing a factor c where f‘ = efQ , and 

in later sections we will do this. For the time being, how­

ever, let us take f+ * f and consider (a) and (b) in turn.

If we calculate the diagrams in Fig. 1 more carefully 

we have (still to just first order in M“/mZ)

6

as the effective coupling constant for y decay while B decay

is the same with replaced by the quark mass. Now we can

compare the couplings for u and $ decay and use universality
2

to put a lower bound on f /4n. The least restrictive lower 

bound comes about when m+ = mQ = m and » Me = M for p decay.

Then

GB . ( f2V  1 f, M Z M 2 m 2_| ,, s ,7= - u ?  t  1 t  ~z ln rri (2>5a)
/ 2 \ / m L  m m M J

G 

~/2

7
where we have assumed M is much larger than the square of 

the quarJ: mass. Thus

G

/I

If we now require that there be no more than a 2% difference 

(for example) between the coupling constants then we must 

have m ^ 12 M. If we restrict M to be larger than 5 GeV' then 

m must be larger than 60 GeV and, from (2.3), f2/-)* must be 

greater than 0.17. If we allow a 5% difference in the coupling 

constants then m * 27 GeV and f2/4u ^ 0.08. These last numbers 

seem to be reasonable values to take as absolute lower bounds. 

Sotjce ihat oven if higher order diagrams contribute
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significantly they will not change this estimate of the lower

bound on f2/4it since they will not affect the difference in 

2 2
(6) as long as M << ra .

As we have said, 0.08 is the least restrictive lower 
2

bound on f /4n. In the following sections of the paper we 

will use

n I, Z\Z , ml
= (fvj in -4 (2.7)

/2 \ 7  ».f-«o %

with m > m and m„ > 27 GeV. If > m „ , then (2.6) requires
♦ —  0 0 — + 0

f2/4u to be larger than 0.08. Fig. 2 shows the minimum value

2 2 2 
of £ /4ir as a function of R where R = m^/m . Since (7) is

symmetric in m+ and mQ we only need to consider R > 1. In most

of the calculations which follow we will have three unknowns,

2 2
f /4ir, , and R. We will generally use (7) to eliminate m Z 

and give the results in terms of fZ/4ir and R, remembering the 

lower bounds on fZ/4n shown in Fig. 2.

2
Now consider the question (b) of how big f /4n can be if 

we are allowed to calculate perturbatively. To make the cal­

culations simple, we will set m + * mc although this may result 

in some error. We can estimate the relative magnitude of 

higher order graphs by performing the following count.

a) each vertex has an f

b) every closed loop has — x
(2^) 2

c) each four-dimensional integration gives n

8

d) each vertex has a factor of (I-Yj); these are commuted

until they stand next to each other and this gives a
2

power of 2 times (1-y s) since (1-Yj) = 2(1-y s)

e) there are a number of diagrams in a given order, 

say N,

f) after the four-dimensional integrations are done we 

are left with a multiple integral, I, over Feynman 

parameters.

Our experience is that these combine to give, for graphs 

of order 2n,

( £ )  i ? ® " ' 2 fl1 + + ^  (2’8)

where I is the integral for a given graph. (We only consider 

graphs which go as l/mZ .) Some of the I's will be of order 

one and, therefore, if fZ/4n is of order one, the only sup­

pression in higher orders is the (l/n)n 2  factor.

As an example of the above we have calculated the con­

tribution to p decay of order f®. The graphs are shown in Fig. 3. 

After renormalization subtractions are made, the scalar self 

energy contribution is zero while the leptonic self energy 

diagrams give
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There are no vertex corrections in this order if the B° par­

ticle is not self conjugate. The sixth order contribution,

(2.9),is less than 10$ of (2.3) if f /4n is less than one,
2

but this may be accidentally small because of the (21 - 2n ) 

factor.

The self energy corrections seem small so we have also
g

evaluated the contribution to muon decay of order f shown in 

Fig. 4. The result is

( £ )  -r -T (1-68 4 • ^ « Y a (i-T5) v V « ( 1-r5^  (2 -10>
\ / m i

where the error arises because some of the integrals were 

done numerically. Combining (2.9) and (2.10) we see that, 

through 8th order,

Therefore, lowest order perturbation theory would seem to be 

a very sensible procedure if f /4n < 1. In this range the 

contribution from 6th and 8th order is a maximum of -2.54 but 

the higher order contribution grows rapidly when f2/4r becomes 

larger than one.

Details of these calculations are given in Appendix A.

10

III. LEPTONIC SCATTERING PROCESSES

In this section we discuss scattering processes in which 

only leptons are involved. The contexts of this section are
g

in part contained in a shorter article written by two of us 

(D.A.I). and V.L.T.); promised details are given here. Four 

calculations are described; two are processes (vye and vge 

scattering) currently being measured, while two are combina­

tions of e*e ■» amplitudes that should be measured at 

SPEAR and PEP in due course.

A. e + v -*• e + v 
p P

This process is forbidden^ in lowest (fourth) order be­

cause of the form of (2.1). It is allowed in sixth order,

2 2
however, and also in order e f (where e is the electric 

charge) because of the neutrino charge radius. These dia­

grams are shown in ' %. 5. The value of the two diagrams of 

order f6 is

( £ )  (3.1)

where

.. 2 2, f 1 , f 1 , f 1 , f l , v(l-x) 11-k)z2 (4-5z)
I (m tm ) - I Jx I dy | d z I dfc •— t-------- ---------------

* 0 Jo o o m“:wx ♦ m“y (1 -^)

♦ (m‘ m‘) (3.2)
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This integral is elementary but tedious.

The neutrino charge radius is proportional to the momentum 

transfer, q 2 , but that factor is cancelled by the photon propa­

gator leaving the matrix element equal to

(” )?{■ ■ '£
h* - q2yd-y)

dy(l-y)y In ------- ,------

x CYaewlIYall "YjJVy (3.3)

where a is the fine structure constant. In the lab system q* 

can be written in terras of the kinetic energy of the final 

electron T as

q 2 - -2meT (3.4)

For reasonable values of m and the heavy lepton mass, M, we 

can neglect the q Z tern in (3.3).

If we write the total matrix element as

Gp _

M * —  vy (l-vs)veya(Cv - CAY5)e (3.S)

the cross section in the lab frame is 

2

3? = Z? -o[(CV - CA )2 * (CV * CA )2 0  * I)' * (CV2 CA 2 ' ¥ ]

(3.61

12

where u is the neutrino energy.

Using (2.7) to write the answers in terms of R we have

-3 -7a)

r ’ f~ 1 R-l IfR1 
CV TS- * TiTE I(R)

* . [i - I 1» ^
f /4n L  3 M‘ 

where 1(R) comes from (3.2) and is equal to

H R )  * 1  * H  * J ln R • 1  m  R

♦ ^  (RZ+1) In R ln(l - ^

♦ 5l» l n 2 * ♦ B=1

4R* 2R j

2..

i m  <3 -7b>

R-l

i?
(R2*1) Z  (3.8)

n*l n VK;

6
Notice that l(R“l) * 1.

I I ,
CA and the first term in Cy, which comes from the f 

contribution, are symmetric in m+ «» m0 (i.e., R -• jj) but the

neutrino charge radius depends only on m+ . Therefore, the
* 1

second term in Cv is asymmetric as R •» g and becomes large as
I I

R gets small (mQ > m+). A plot of Cv and CA is given in
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Fi b for various values of R and ranges of H/4*. Ke see
I f

that Cy ar.d are probably quite small although for extreme

values of R they could be as large as 0.5 in magnitude.

Therefore, we cannot draw any definite conclusions except

that although the cross section is not zero it is probably

1 9
smaller than is predicted by the Weinberg-Salam theory, 

w!iere the process is of order Gf . In section IV wc will 

estimate R and find R > I.

B. ve + e - ve * e

This process is allowed in order f . The relevant graph 

is shown in Fig. 7. This has the sane form as j decay; in 

particular it has the exchange of one neutral and one charged 

scalar. Therefore the matrix element siaply reduces to the 

V-A form with no dependence on the relative si:e of and mo .

If we perform a Fieri transformation and write the matrix 

element as

M * |  (3-9) 

then we have C„ « C. * I. The cross section, in terms of C.V A ’ *

and C^, is given by (3,6). The point Cy * C,f * ! is well 

within the experimentally allowed*0 region in Cy • space.

The h'einberg-Sslan* theory predicts 1/2 < Cy 5/2 and a 1/2.
> ■*

There will also bc graphs of orJvr a~f~ ii*e ;'ir ph.»t«n

14

graphs in Fig. 5. Based on our calculations for * e •» 

v ♦ e these should not change Cy and C^ by more than -201.

♦  -  *  -
C . e ♦ e • u

Thus far we have seen that there is no neutral current 

effect in vee scattering and that v^e scattering has a neutral 

current effect only in order f6 . Por c*e’ - u*u' however 

theic is a neutral current effect in order f . The diagram 

it. shown in Fig. 8; this graph gives 3 weak matrix element

"weak ‘ - ( & )  p  u'c‘(I-Ys)ucYQ (l-Ys)e (3.10)
\ / '"0

This gives a significant contribution to the cross section 

only through the cross term with the one photon exchange 

matrix element

2
•V * u rayey e (3.11)
> 4U7 a

where F. is the c. of n. energy of one of the initial parti­

cles. The weak neutra’. current can then be observeu by look­

ing for terns in the cross section that are asymmetric in 

scattering angle or hc'::ity?* These effects can bc separated 

lion the simitar effects due to two photon intermediate states 

a* discussed in Ref. I.'.

C o n s i d e r  e l e c t r o n  and p o s i t i o n  be an-  w i t h  e q u a l  and
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opposite polarizations, s, perpendicular to the direction of

motion. The differential cross section due to onc-photon 

exchange is

do(o) „ a2 w ,, ,,,

where

W0 «■ 1 ♦ z2 - s2 (l-’.2)cos 2# (3.13)

The scattering angles are ♦ and 0 with z * cos 8. 

The total cross section may then be written as

where 6 contains all the higher order effects. If we call 

6Z the part of 6 that comes from the cross term between 

eqns. (3.10) and (3.11) and is odd in cos 6 then (using (2.7)) 

we have

8/1 Gc „ , ,c2

6z " ' w r  <3 -15>

Notice that if R = 1 this is exactly twice as large as the 

same quantity in the Weinberg theory.* '*2 This means 

that if s2 is close to unity the asymmetry in the cross sec­

tion

16

do(0) - do(ii-e) 
do(6) ♦ do(tf-d) (3.16)

will be 2\ if R is 1. If R is larger than one, S, will be 

even larger (almost 81 if R ■ 10) while if R is less than 

one 4. will be smaller than 21, but it is still bigger than 

the Weinberg1 theory if R > 1/5. In section IV we will see 

that (R-l)/ln R : 6 is » reasonable estimate which gives a

dramatically large value for the asymmetry.

The second way neutral currents may raanifest themselves 

in this process is through a non-zero polarisation for the 

final particles. If the polarization of the final u is 

called h, then we define the polarization from the square of 

the matrix clement as

l < - * i  -

Using (3.10) and (3.11) we find

iMi£

4/1 GpE2 ^  

72 In R
1 ♦

(3.17)

(3.18)

At ♦ * 0, I and

P has a maximum

ri-s2l 1/2 (3.19)

4/? GpH R-l 4-1 / ?— r-n rV 1 * (3.20)
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This can be compared with the prediction in the Weinberg 

theory

PWeinbergl x * t3 sin\  ' + d - V 1'2]

(3.21)

2
where 6W is the Weinberg angle. For s * .924, E = 3.S GeV, 

and R = 1, (3.20) gives

Pmax = 3 '1% (3'22)

This value is much large.' than the value predicted by the 

Weinberg theory, given current estimates of 9^. If the es­

timate (R-l)/ln R = 6 of the next section is correct, the 

muon polarization is also dramatically large in this model.

The parameters of a weak interaction model are also 

constrained by the experimental limits on the weak correction 

to the muon’s magnetic moment. In the present model the

weak correction comes from the diagram in Fig. 9. Its con-
13

tribution to (g-2)/2 is

2
W _ 3f2 \  r 1 dx X 2( l - X )  r , , , ,

a - — ^ — t J ----------7--  — 2--------
p 8iT Vo M m

® 1 ■ X + ~~2 X " "7 (l-x)x 
it; m ~
o o

where m^ is the muon mass and, as before, My and m0 are the 

masses of the heavy lepton and the neutral scalar. Since, as

18

we saw in section II, universality requires M /MQ t0 be 

small we have

_W _ f2 my _ 1 GF _2 R-l 1 ,,

»* * 7 i  » c -24)

where the second equality comes from using (2.7).

14
The experimental bounds on the weak correction are

2 2

ajj - (2.8 * 3.1) x 'O'7 (3.25)

2
As long as f /4n is larger than the lower bounds derived in 

section II the weak correction of (3.24) is smaller than the 

present experimental bound.
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IV. NEUTRINO-HADRON INTERACTIONS diagrams in Fig. 10. which lead to

The effective lowest order weak Lagrangian for inclusive 

neutrino scattering with a muon in the final state, u ♦ N ■* 

u ♦ X, is the same as in ordinary weak interaction theories

G

/chargedN r= 
\current/

F [WY°(l-vs)wIJJI?YaCl-r5)n] (4.1)

where we have set the Cabibbo angle, 0C , equal to zero, and 

P and n are quarks.

The counterpart for muonless events is

£/neutral\ “ £  fvya (l-Ys)vJ 
\current/ /2 (4 -2>

x ( ? Ya ( a ( l - Y s ) ♦ h ( l * Y s ) J P  ♦  ffY0 ( c ( l - Y s )  ♦ < l ( J * Y s ) ) n )

assuming the couplings to be V - A or V ♦ A. For example in 

the Weinberg-Salam model* we obtain, with 8^ the Weinberg 

angle,

a ' 7  • f si«Z0w

b - - § sinZBw d - * sin20M

(4.3)

In our model,7 £ (neutral) .g generatej by the two bo*

neutral

I current - 1  (VYY (1-Yt)v){HY-(Ie)n - ?Y„(J-Yc)P? (4.4) 
off. fl b a s u :>

i.e., a ■ -1 and d * 1 with b and c equal zero. Using (4.1)
1 c

and (4.4) one can calculate in the usual way " the ratio of 

muonleKs to muonfull v and v induced events, obtaining.

o(v ♦ N - v ♦ X) 4

-- ---------- B------- I
o (v ♦ N -* ti X)

O (V • .V
R_ . — y-----

j ♦ X)
Jl---- 1 - A

o(v * N 
ii X)

(4.5)

(4.6)

where N is a target with equal number of P and n quarks and X 

means we sum over all allowed final states.

The values ot Ry and R- so obtained are too large to 

agree with experiment*^ so a suppression factor mast be intro­

duced. The easiest way to do this without affecting univer­

sality is to multiply all B" couplings by a factor c
1/2

leaving B° couplings unchanged as mentioned in section II. 

Since v » N ♦ y ♦ X proceeds by a B*, B° exchange and v ♦ N 

v ♦ X by B*. B* exchange we find

4-  e 2 
3

R-
v

4c‘ (4.7)
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and c may be adjusted to experiment. A similar effect could
+ O

also be obtained by having the B~ mass ba larger than the B 

mass in such way as to decrease the effective coupling when 

two charged B's are exchanged. We will discuss this in detail 

at the end of this section.

The ratio

o(v + N ■» v + X)
o - — -h------- -------  = 1  (4.8)

o(v + N -*• v, + X)
U

2 ,
is however independent of e (or +/nio) and hence appears to be

a good test of the model, de Rujula et a l . ^  quote a value of 

Q = 0.53 ± 0.15, in disagreement with (4.8), but we believe 

it is premature to rule out the model on this basis.

We can also calculate the ratio of elastic neutrino

• 17
proton scattering to the charge exchange reaction

S = do(v t P » \> ♦ p)/dq2 (4.9)

do(v + P -* y + N)/dq

If we assume the ratios of form factors are independent of 
2

q , then the cross section ratio is

S = . 4e2 (1 + (g°)2) (4.10)

where is the form factor at q2 = 0 for the proton matrix 

element of the isoscalar, axial vector current in (4.4).

22

This result is effectively the cross section ratio at

2 18 
q = 0  and, as Sakurai and Urrutia have shown, there are

2
large corrections away from q = 0 .

o
A third process that we can calculate i s v + p - » \ >  + p + n . 

19
Adler has given a detailed treatment of this in the (3.3) 

resonance region and Lee, using Adler’s results, calculated 

the ratio

r = Pfv + T> •» v + P * ff°) + P(y + N •» v ♦ N ♦ r°) (4 .H) 

2o(v + N y + P + n0)

in the Weinberg-Salam model. He found

R > 0.6 (4.12)

It is easy to take his calculation over to our case and we 

find, in our model,

R > 0.76 cZ (4.13)

Here corrections^1 must be made for the nuclear interactions 

within the target.

A more interesting conclusion can be drawn by observing 

that the effective hadronic neutral current, in (4.4), can 

be rewritten as
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jUQ-O) = -[(pYap . nYan3 . CPraYsP * nyaYsn)J (4.14)

i.e., the spacial vector current is pure isovector while the 

axial vector current is isoscalar. This implies that v + N -* 

v + A-*-v + N + n° proceeds only through the vector current 

and hence may be compared directly to electroproduction 

e + N-*-e + A - * e  + N + Tr°. In the region of the A, we have

^  , N + „o g2 / 2 Y »  (4 is)

o(e + N e + N + n°) F \e /

where q is the difference in the momenta of the final and initial 

leptons. This is an exact result with no structure corrections.

Finally, we note that the vector current does not lead

to coherent scattering of neutrinos off massive nuclei since

it is an isovector current and an isoscalar vector current is
22

required to obtain this effect.

A second means of generating apparent neutral current 

effects at high incident neutrino energies exists in the 

model, namely the production and subsequent decay of real heavy 

leptons (L),

vM + N •* Lw * X (4.16)

+ hadrons 

' +  hadrons

24

Since the branching ratio, neglecting the muon mass, is 

ri." ■» v + X 7
— U---- 1!----  *> e (4.17)

\  - » + X

the ratios Rv , R- and Q given in (4.7) and (4.8) remain

unchanged though the cross sections all increase as the

incident neutrino energy crosses the L production threshold.
23

The present mass limits on heavy lepton production are not 

directly applicable since they are relevant to a neutrino 

producing an L*, not an L", but it is clear that the mechanism 

of (4.15) will be important unless the 1 mass is very large. 

This will be particularly true since L production is propor­

tional to f2/m2 not Gp aivd f2 »  (f2/4n)2 fOT f2 << 4n.

Since the exchange mechanism that leads to L production 

is S - P Tather than V - A, the differential cross section
24

for e.g. + N -* |i + X will change its angular distribution 

as well when we cross the L threshold.

Rather than scaling the charged to neutral couplings by 

e we could take the mass of the charged B to be laTger than 

the mass of the neutral B. In terms of

■;

mo

as defined in section 11,we would then replace c by
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(To be completely general we could consider both e t 1 and 

R i 1, but the net effect would be somewhere between the 

R = 1, e  f 1 and e = 1, R t 1 extremes.)

The need to suppress the hadronic processes of this 

section has a profound effect on the leptonic processes of 

section III. The asymmetry and polarization in e+e 

are enhanced by l/r. (if R = 1} or by the (R-l) /In R factor 

shown in (3.15) and (3.20) (if e = 1). If Rv and R—  in (4.7) 

need to be suppressed by a factor of 10 as indicated by Ref.

16, then the e e ■‘U P  effects are enhanced by a factor between 

vlO (R - 1) and 19/3 (s - 1) . This is the large enhancement 

refered to in Sec. III. At the same time v e scattering 

is not significantly enhanced as wp can see by the R dependence 

of (3.7) as shown in Fig. 6.
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V. RENORMALIZATION AND UNIVERSALITY

Since f /4u is of order one, we might expect large parity 

violi ̂ ing effects due to diagrams an which a single quark 

emits and then re-absorbs a B particle. These appear as wave

function and mass renorraa!izations, and the parity violating

25 •part may be transformed away by suitable renormalization.

Our concern, however, is that, in the process of doing so, we

may destroy universality, namely the equality of G^ and Gg,

because of the fact that hadrons and leptons do not appear

symmetrically in the original interaction, i.e., there is no

hadron analogue of 1, * L . (See however Appendix B, in which 
e v*

a model with manifest universality is displayed by introducing 

the hadron analogues of Lg , Ly .)

To examine this question in more detail, let us consider 

a fermion field ip coupled to a spin one gluon, with coupling 

constant g. The Lagrangian for the \Ji field is

L.̂  = iRir“(3a - isAa) - M}* (5.1)

If we also allow i|> to coupleby a f(liy5) coupling to a spin 

zero boson, fermion self energy diagrams due to this coupling 

and their iterations modify I to

L' = - igA )(a + b>-,) - M;&
3 (3 J

(5.2)
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with a-1 and b being power series in f . By defining
2

X = /a + bys ^ (S.3)

we can write a new Hamiltonian for the system in terms of the 

X field in which the only effect of the diagram will be to

rescale the mass by l//a - b2

♦ W  ‘ x’ ~  x ; Y M 1 X - — CS.4) 
/a * b^S •*» * bYs /a2 . b2

Allowing to have several components, each one of which we 

renormalize, we find that the effective non-diagonal coupling 

to the spin zero boson changes by e.g.

f*i(l-Y5)*2 = fxx 7 L j J = =  (1-y5) 1

* 1  - V s  /a2 + V s

- fjCjCl-Yj) - - ---- X2 (5.5)
' ^ l  ' V s ,(a2 * V s 5

Since CliYj) are projection operators, the form of the weak 

coupling will be unchanged; its magnitude will however be 

altered.

Ke now compare the basic box diagrams for 6 decay and 

for y decay, as calculated however with the lepton and hadron 

fields renormalized as indicated in (5.3). Universality re­

quires that

or, using the projection properties of (liYs) ,

+ V 2<«p * V 2 = (an + V ^ P  - V ^ n  + V 2 (5 7)

where of course = ay and b^ equals by .

The fermion one loop self energy diagram for, say, a

proton of momentum k, equals C(l-Yj) with C, being a logarithmi-
2 2

cally divergent integral. Neglecting terms of order k /m^ be­

cause of the largeness of the B mass, £ is only a function of

2 2
A /Og, where A is a cutoff. Calculating the corresponding 

contribution for the other hadrons and leptons, we find

l*e aL = 1+2? an = l+3£ ap = 1+5

(5.8)

b„ = bv * bL = 25 bn = 5 bP '

Substitution of these values into (S.7) shows that the two sides 

are equal and that universality holds. Furthermore, suppose 

B+ and B° have different coupling strengths fj and fj, leading 

to different 5's which we call C-j and £2. We then have



Universality holds, as one can verify by substituting the 

above values into (S.7). Khat we have proved is that a 

class of diagrams, namely the one loop and iterated one loop 

wave function and nass renormalization diagrams, do not alter 

the validity of universality in the model.

Since, with a little bit of work, one can see that

there are no one loop vertex corrections, Fig. 3 of Ref. 7

vanishes. This then completes the proof that there are n£

corrections of order f2/ir- to the universality statement

Gj * G of (2.6). Two loop vertex corrections to both hadron

and lepton vertices exist as displayed in Fig. 4C and we have 

2 2r.ot established that (f /4it) and higher order corrections 

to universality do not exist in the model.

Fmailv we would like to comment on the possibility of 

strong interaction corrections on the hadron line altering 

universality. Imagine the strong interactions to be mediated 

by spin one gluons: external hadrons exchanging such a gluon

30

would not affect universality since the exchange would be in 

the nature of a strong correction to an effective CVC inter­

action. What would cause tiouble is a diagram such as the 

one of Fig. 11. This diagram is of order g 2 Gp/4n ■* G 

where g is the gluon coupling constant and apparently leads 

to a violation of universality. We must recognize however, 

that the significant contributions to the box diagram come 

from internal momenta of order mg. This is true because the 

box diagram has two B meson propagators so that lew momentum con­

tributions go as CM2/uig} (1/mg) and it is momenta of order
2

mR which give the dominant contribution, '1/mg. Hence, in 

Fig. 11, the gluon is coupled inside the box to an r. quark 

with momentjm ~mg. This suggests that g should be replaced 

by an effective coupling constant, which may in fact be very 

small if asymptotic freedom26 holds for gluon quark coupling.

If this were correct universality would still hold.
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The most obvious important tests of the scalar exchange 

aodel in the form given here (Eq. (2.1)) and in Ref. 7 are:

(a) Q ■ o(wu ♦ N wu + XJ/ofv^ ♦ N - * v jj+ X ) “1

(b) o(v ♦ N - v ♦ A)/o(e ♦ N - e * A) = (Gq2/e2)2c2

(c) the large asymmetry and ration polarization in e+e ->• jj+p"

(d) Cy, CA «  1 in ♦ e ♦ ♦ e

» CA ■ 1 in ve ♦ e -► ve ♦ e

(a) and (b) follow from the fact that the neutral cur­

rent in this model has only vector I « 1 and axial vector 

1 * 0  parts. The resulting absence of vector, axial vector 

interference (after averaging over isospin) make the predic­

tion (a) of equal v and v neutral inclusive scattering model 

independent.*^ Deviations from equality could not be remedied 

by varying parameters in the Lagrangian (2.1), i.e., taking 

c (or R) different than one. A different form would be re­

quired.

The large effect (c) results from the data of references 

16 (R- • .4) which indicates suppression of charged B exchange 

relative to neutral B exchange by a factor of e2 : 1/10 or 

R = 20. Since e*e” -► ii*u* proceeds by 2B° exchange this has 

the effect of c.jhancing the predictions for &z and P by ap­

proximately a factor of 3 to 6 (depending on whether wc take

V I . CONCLUSIONS
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e j* 1 or R f 1) to a maximum of 6% to 121 for &z and lOt to 

204 for P. These values are, of course, dramatically larger 

than those of the Weinberg-Salam theory.

At the same time the Ry < 1 data does not give signifi­

cant enhancement of \)̂ e scattering (at least in lowest non­

vanishing order) which should therefore be much smaller than
1 f

the Weinberg-Salam minimum (CA = 1/2, Cy = 0).

The previous sections contained other results but these 

four seem the most likely to provide critical t^sts of the 

model in the near future. It would not be surprising if 

the Lagrangian of (2.1) should fail one of these tests and 

require modification. At the present time, however, it gives 

sensible predictions and demonstrates the possibility of 

viable alternative approaches to the weak interactions.
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Appendix A. Higher Order Terms in Mu Decay

To simplify the calculation of the higher order diagrams 

we will set m+ = mQ and M (the mass of the heavy leptons) 

equal to zero. We know from the discussion of universality 

that M/m must be small. Setting the masses of the charged 

and neutral scalars equal will result in some error, however, 

if they are indeed very different.

Once the renormalization subtractions have been made the

scalar self energy is zero (really of order M/m which we set

2 4to zero) in order f and there are no f scalar self energy

diagrams. There are also no vertex corrections in order f3

if the B° particle is not self conjugate. This considerably

reduces the number of diagrams.

The leptonic self energy is non-zero after the substruc­

tions have been made so the diagrams of Fig. 3 contribute to 

order f®. Each heavy leptcn self energy graph contains both 

an electron-B° and a neutrino-B intermediate state. The 

total 6th order correction is

where
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This integral can be done analytically; the result is

I « - ^  (21 - ZirZ) (A3)

Thus the 6th order correction is very small for fZ/4i. less 

than, or equal to, one.
g

In order f there are five types of corrections to mu 

decay; the ladder diagrams shown in Fig. 4a, the ladder with 

crossed rungs as in Fig. 4b, the ladder in the crossed 

channel with the lepton or quark box in the middle as in 

Fig. 4c, the vertex correction of Fig. 4d, and the leptonic 

self energy graphs of Fig. 4e. The ladder graphs of Fig. 4a 

and 4b are finite and given by

where

jo ■ <a s >

with

N(x,y,z,w,v) ■ xyzw|xz ♦ 4xv(l-z) ♦ 2v(l-x)(l-z)(l-v)J (A6a)

D(x,y,i,w,v) « xzvfl-x)(1-w) ♦ xv(l-x)fl-i) ♦ xz(l-y)(l-z)(l-v) 

♦ z(l-x)(l-z)(l-v) (A6b)
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The integrand of (A4) has integrable singularities at the end 

points. We evaluated the w and y integrals analytically and 

the final three integrals numerically. The result is

JQ = 1.30 i .11 (A7)

where the error is an estimate based on how fast the integral 

converges as we keep doubling the number of points starting 

at 3 points per integral and ending with 129 points per inte­

gral.

is a seven dimensional integral over Feynman param­

eters. Two of the integrals can be done analytically leaving

r 1 *1 # 1 |*1J 1 * J dxJ dyJ duJ dvJ dz N(x,y,u,v,z)G(x,y,u,v,z) (A8)
o o o a o

where, if we define

4 = vx(l-x) * x(l-y)(1-v)(1-x+xy) - ux(l-x)(1-y+vy)2 (A9a)

Oj « u(l-y*vy)

oij * x(l-y) ♦ (l-x)aj

(ASb)

(A9c)

(A9d)

» 1-x*xy-Oj(1-x) (A9e)



then

X(*,jf.u,v,l) • x2>uv ♦ | xJ(l-*)yvaja2

♦ 6xyu‘v(l-v)(1-x) ♦ if :2x3y(l-v) (l-i)a,a,a,a
«- * ‘ 3

• f *'jrvu(l-v)|o3a4 • 2o,a4 (l-x) - 2a2a3 (l-x)

• ’ajOjd-x) ♦ 2ajaj(l-x) ♦ Oj

c (*.y.u,v,s) is defined as

1 A>*F D»E»F . D-E*F F , E+F'l
b \~r ,n * w  ln T ? r  ‘ e ln ~rj

wiicrc

D » -vxt(l-x)

F. * -xy:(J-v)

F * vx(l-x) ♦ s(l-v)(1-x«xy) ♦ x(l-y)i1-v)(1-z)(1-x*xy)

- u*{l-x)(l-:)(ly«»y)‘

At 17 points per integral Jj has the value 1.02 t .09.

The fernion loop in the cross channel (Fig. 4c) diverges

37

4V

«2 U - x ) 2]

CA10)

(All)

(A12a)

CAl’b)

(f 12c)
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and a subtraction must be made (a renormalization of the B'1 

coupling constant). After this subtraction the diagram has 

the value

■fir) - T 7  tJ2 + J3) V a(l' V *  • (A13)
\ J ttl Tl H

where we have included two different lepton and two different 

quark loops. If we define

ax 5 y(l-xy) (A14a)

a2 5 (1-y) (1-x+xy) (A14b)

a3 5 xy(l-y) (A14c)

B i a2 (l-z)2 - ajajd-z) (A14d)

Dj ■ Bv - zwajd-v) (A14e)

Dz ■= Dj (w=l) (A14f)

then

J2 - J dx j  <lyj d z j  dv 4xyzv(l-z) gjp
o o o o

l(l-x)[yB - 2a1aJ (l-y)(l-2 )(l-v) - 4yaj(l-z)-(l-v)! - a.£}

(A IS)
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J 3 * f  dx f d y j  d; f dw f dv 2wvz2a.
3 J 0 -0 J 0 Jo J 0 1 erD1

<■ I3xa1 l£ ♦ 4a|ci-z)(l-v)] ♦ 6B(l-x)(l-z)2 (l-v)a2

♦ 12(l-x)C]-s)4 (l-v)2aj} (A16)

Again the integrands have only integrable end point singularities 

and the integrals were done numerically using 17 points for each 

variable in Jj and 33 points for each variable in J 2> The 

result is

J2 - -.19 (A17a)

J3 - +0.17 (A17b)

The s u b  of J 2 ♦ Jj is snail and did not vary appreciably as 

we varied the nunber of points per integral over 3, 5, 9, 17. 

Thus the sun has a small error

J2 ♦ Jj » -.02 i .OS (A18)

The vertex correction of Fig. 4d, after subtraction, is 

also large, in part because all four vcitices must be corrected. 

It is given by

' (£) ^ 7  J4 e V 1* ^  ( M 9 )
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is a seven dimensional integral over Feynman parameters. 

Two of the integrals can be done analytically leaving five 

to be done numerically. Define

b. = u(l-v) + uv
1 v J 1-xy

b 7 = u(l-v) + 1-x
y(l-xy)"

bT S 1 - u +
3 1-xy

D = b2 - b2 * b3

/A20a)

(A20b)

(AZOc)

(A20d)

Then the five dimensional integral is

,1 ,1 f 1 ,1 f 1
J4 = I  dx/q d y ^  d z ^  du/Q dv

• [1-bj) (-l+Sx+abj-SbjXy) + uv(-2x-3bj (1-xy) ♦ 6b1x(l-b1y)) 

+ fl-x) - xfl-xjfl-Sbjy)]^ + xy(l-uv)-lj R,

. 1 uv_______ 1 D
I y(l'xy) £ . b 2 3

2 D1

[(l-b1)(l-b1y)fl-x-b1xy)(l-x-b1+b1xy)]J (A21)
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where

. ■ i - H V )

( V 1)-r2 = bl ^ h  (*X'J± ) - in b, (A22b^

n . 1 b3 . - b 2> ln b2 ' bl fA22cl

R3 - 3W ?  * -----? ----- ln “ V ”

Notice that Rj, Rj,, Rj all have finite limits when b 2 - b^ « bj. 

J4 converges nicely to the value .19 t .0] as the number of 

points per integral is increased.

The total of the three self energy graphs, Fig. 4e, is

where Jj is a six dimensional integral. Two of the integrals 

can be done analytically. If we define

Cj = uv(l-x)(1-z) CA24a)

c2 = u(l-v)(l-z) (A24b)

Cj h (l-u)(l-x) (A24c)
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• 1  r  1  , 1  < > 1

then

•2v
Js " I dx/Q dz/0 du J[ dv I xz“2

- [(2-3x)(2-3z) ♦ 6u(l-v)(2-3z)Cl-X) + 12C2Cj ]

* f 5 c k  [C! + 2C2 + 2C3]“2 3 
v

] / ^1 + ^2 + ^3^
- [C, - 3C, - 3C7] In' 1

“3

-ij LJ°i ’
6Ci 1 ■*

- Z  ^  ^  ^  c1+-c2 -  -y

/ c. + c2 + c3\
[3C, ♦ 2C,] ln f

C1 / C 1 (C1 + C2 * C3} \ 1
a g r  ln ( x r ^ n q ^ p - J j  ca» )

c3

6C

Notice that the { } bracket is finite unless all of Cj, C2 , 

C3 are zero.

J 5 has the value .001 t .001.

Now the sum of (A4), (A13), (A19), and (A23) give the 

result (2.10) in section II.
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Appendix B. A Mouel with Manifest Universality

We display here a weak interaction Lagrangian in which, 

cxcept for hadron-lepton mass differences, v decay and B decay 

arc equal in strength to all order in f2/4it. This may also 

bc true in the model of (2.1), hut we have not been able to

prove it as of yet.

The model requires an SU(2) group under which the four

quarks and the four known leptons transform as doublets:

*■(.') M i )

* '( * . )  ' " i d

(Bl)

In addition we have a doublet of heavy spin zero muons 

B *' (go) and four SU(2) singlets, two of them, L° and L°, 

leptons and the other two, r° and F° , baryons. The weak 

interaction Lagrangian has the form

£int.° ' ♦ i(ins)F° ♦ 5* ( l n s)F°' 1)

(B2)

which is obviously SU(2) invariant and has full hadron lepton 

symmetry. The Cabibbo angle may now be introduced by the 

usual GIM^ mixing of n and s. The hadron-lepton symmetry is 

sufficient to insure universality to all orders of f2/4it

44

except for mass difference effects.

Neutral current strangeness changing, i.e., semi-leptonic 

AS ■ 1, AQ * 0 terms have an effective Hamiltonian of the form

"eff. = ■'GF CsY“(l-Ys)n)(vY0 (l-Y5)v) (B3)

2 2 mp - m_,
with t proportional to — ----—  .

m
If nip equals mp, a higher order diagram gives

An additional consequence of this model is that to lowest 

order, the amplitudes for elastic neutrino - P quark scatter­

ing vanish so neutrinos only scatter off n quarks in nucleons.
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FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE CAPTIONS 

Lowest older diagrams for v and 8 decay.

f2
The minimum value of /4u vs. R where R * -j-

m
o

and we require nt >27 GeV. If ra >m then 
n o 7

m
this figure is still correct with R = — ^ and

m+
m+>27 GeV. Thus we only need to consider 

R > 1.0.

Sixth order corrections to y decay. There aTe 

no vertex corrections or scalar self energy

corrections in this order.

The eighth order corrections to mu decay.
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FIGURE 5 The lowest order contributions to v +e •* v +e.
P V

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

The vector and axial-vector coupling constants

for the reaction v +e -* v +e for various values 
-P P

mi
of the ratio R= __ . The curves (a) - (e) have

m2o
R = 0.01, 0.1, 1.0, 10.0, and 100. For a given 

f 2
carve /4tt ranges from its minimum value,

given by Figure 2, at the lower left end of the

curve, to 1.0 at the upper right end of the 

ni;
curve. The factOT In — ^ in the neutrino charge 

M 2 
V

radius was set equal to 4.0.

The lowest order contribution to v +e ■* v +e.e e

Lowest order weak contribution to e++e •+

Weak correction to the muon magnetic moment.

Diagrams which generate the effective neutral 

current.
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FIGURE 11 A possible source of strong interaction correc­

tions to universality. The wavy line is a vec­

tor gluon.
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