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SPIN ZERO EXCHANGE MODEL OF WEAK INTERACTIONS ABSTRACT

A renormalizable model in which weak interactions are
mediated by spin-zero exchange rather than by spin-one ex-

change is studied. The lowest order diagrams for u and 8
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troublesome prediction is a parameter-free value of one for
the ratio u(vu + N » vu +X) / o(\-:u ¢ N = Gu + X). On the
whole, however, the model provides a sensible, renormalizable

alternative te the gauge theories.
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I. INTRODUCTION

The study of weak interactions has blossomed in the
past tive years, on the theoretical as well as on the ex-
perimental side. Of key importance has been the development
of a unified theory of weak and electromagnetic interactionsl
with the attractive feature of renormalizability.2 This has
led to a formidable array of calculations and a great deal
of model building3 to obtain agreement with experiment while
_ operating within the framework of these gauge models. A basic

4 cancellation mechanism based on

ingredient has been the GIM
an SU(4) symmetryS for hadrons.

It seems likely that many of these ideas are correct,
even though all the components of a complete theory of the
weak interactions may not yet be in hand. A good dose of
skepticism, however, is probably healthy and with that in
mind we turn to the predictions of an alternative renormal-
izalbe wodel of weak interactions. Our purpose is not to
propose adoption of the alternative model, tut rather to
show that there is still a good deal of flexibility in de-
veloping a theoretical scheme to fit weak interaction experi-
ments and to demonstrate within the context of the specific
model how improved experimental results will resolve ambi-
guities. The mociel6 we consider is one in which the weak

interactions are mediated by spin zero bosons. FEarlier

versions of this model required a large number of as yet un-
discovered particles to appear in the weak interaction La-
grangian. One of us (G.5.) recently found7 that by using the
GIM4 mechanism, and by allowing the coupling of the spin zero
bosons mediating the weak interaction to be fairly large,
considerable simplifications would occur.

This paper will explore in some detail both the theo-
retical framework and the experimental predictions of the
model of reference 7. We will place particular emphasis on
contrasting our results with those of gauge models,

In section Il we introduce the model and calculate the
lowest order diagram contributing to u decay, in this case a
box diagram in which two spin zero mesons are exchanged. We
thenr calculate some higher order diagrams and discuss the
limits placed on the scalar meson's coupling to hadrons and
leptons by universality, the muon g-2, etc. In section III
we consider the model's predictions for purely leptonic scat-
tering processes, namely v, * e - v, ot e, Vet e v e
and €* = e » u* 4 . The first of these reactions is of
particular interest, as it is forbidden in order G (the Fermi
coupling) in this model, but allowed in the Weinber'g-Salaml
model. Weak effects in the third reaction should soon be
measured and these may be particularly large in the present
model. In section IV we analy:ze neutrino hadron scattering;

the neutral current in cur model has an isovector vector part



and an isoscalar axial vector part. We analyze the conse-
quences of this form of neutral current. Since the coupling
constant of the scalar boson to hadrons is quite large, re-
normalizaticn effects may be appreciable. We examine these
with particular regard to universality in section V. In
section VI we conclude by reviewing the more important ex-
perimental predictions. Finaliy we present two appendices.
In the first scme of the details of the higher order calcula-
tions of section II are given and in the second a model with

manifest universality is displayed.

II. LIMITS ON THE COUPLING CONSTANT

The interaction Lagrangian is7

L = -if ljg u[rz(x-ys)za° + L, (1-v5)v, B}

+ [N (1-yg)P + X (1-vg)P']B’ (2.1)
+ [ﬁc(l-ys)nc + TC(I-YS)AC]Bﬁ} + h.c.

where the values of % are the usual leptons, e and u, while
v, are the usual neutrinos. L, are two massive, charged lep-
tons, and B°, Ea, and B® are the scalar mesons which mediate
the interaction. The interactions with baryons are given in
terms of the quarks 2, n, i, P' where n, = ncos 6 + X sin 8
and AC = -n sin 6 + X cos O,

I'ke lowest order diagrams for u decay and 8 decay are
shown in Fig. 1. If the masses of the scalar mesons are
much larger than those of the heavy leptons and mB, - mBo <
m . or m then these box diagrams reduce to an effective

B B
V-A interaction

O £ i (v )v. T v {1-ve) (2.2)
eff " \FF) ~7 oY (1mvglvey, v Liovglu .2
B
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Therefore we identify

AN
(i?) ;E Vo (2.3)
where G is the usual Fermi coupling constant.

Of course (2.3) is only valid if:(a) the mass of the
charged scalar (m,} is equal to the mass of the rcutral
§calar (mo) and they are much larger than the masses of the
heavy leptons of muon type (Mu) and of electron type (Mex and
{b) f2/4n is small enough that the lowest order diagram is a
good approximation. We are also assuming that the coupling

of the charged scalar, f_, is equal to the coupling of the

4+

neutral scalar, f This assumption can be relaxed in a

o
trivial manner by introducing a factor ¢ where ff = efg. and
in later sections we will do this. For the time being, how-
ever, let us take f = fo and consider (a) and (b) in turn.
If we calculate the diagrams in Fig. 1 more carefully

we have (still to just first order in Mz/mz)

d
/ 21\¢ mZ MZ ‘MZ mZ
L b i 1 In — + & __ ¥ 1 In -2
= d Z2. 2 2 2 7.2 2
Z \ my - mg mg my  my-mg mg
(2.4)
2

S L S M?

-t in 2 + ¥ 1 1n X
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mim, M mimg M™ - Mg Me

as the effective coupling constant for p decay while B decay
is the same with Mu replaced by the quark mass. Now we can
compare the couplings for u and B decay and use universality

to put a lower bound on f2/4n. The least restrictive lower

bound comes about when m_ = m, = m and Mu = M, = M for u decay.
Then
S _ (£2\ 4 M2 M. n?
E=(ﬁ) ’7[1 #?-r—nszln ;2—] (2.5a)
s, _(e2) 1 ? M . n?
7 (r) ;Z[‘ e F] (2503

where we have assumed M2 is much larger than the square of
the quark mass. Thus

6 S [e2) 1w mm

7 7(?‘)77(;7) o
If we now require that there be no more than a 2% difference
(for example) between the coupling constants then we must
have m > 12 M. If we restrict M to be larger than S GeV then
m must be larger than 60 GeV and, from (2.3), fz/dﬁ must be
greater than 0.17. If we alluw a 5% difference in the coupling
constants then m > 27 GeV and fz/dn > 0.08. These last numbers
scem to be reasonable values to take as absolute lower bhounds.

Notice that even 1f higher order diagrams contribute



significantly they will not change this estimate of the lower d) each vertex has a factor of (I-vg); these are commuted

bound on f2/4ﬂ since they will not affect the difference in until they stand next to each other and this gives a
(6) as long as M << m?. power of 2 times (l-vg) since (1-75)2 = 2(1-vg)

As we have said, 0.08 is the least restrictive lower e) there are a number of diagrams in a given order,
bound on f2/4n. In the following sections of the paper we say N,
f) arter the four-dimensional integrations are done we

will use
2 are left with a multiple integral, I, over Feynman
2
G fZ\ 1 m, .
£ =[L. 2. parameters.
vz (4“) m - nZ " mZ (-7 . - .
+ o [¢] Our experieuce is that these combine to give, for graphs

of order 2n,

with m > n, and no> 27 Gev. Ifm > My then (2.6) requires

ledn to be larger than 0.08. Fig. 2 shows the minimum value 2\1 n-2
2 2, 2 - . £ 1 (l) [I, + *+« + I,] (2.8)
of £/4n as a function of R where R = m//m . Since (7) is In ;2 b 1 N .

symmetric in m,_ and m, we only need to consider R > 1. In most
; . where 1 is the integral for a given graph. (We only consider
of the calculations which follow we will have three unknowns, 2

graphs which go as 1/m”~.) Some of the I's will be of order

2 2
£/4n, m and R. We will generall 5 imi 2
s By 8 y use (7) to eliminate m one and, therefore, if £/4n is of order one, the only sup-

: . 2 .
and give the results in terms of £°/47 and R, remembering the pression in higher orders is the (1/1:)"'2 factor.
2 . -
lower bounds on £°/4w shown in Fig. 2. As an example of the above we have calculated the con-
Now consider the question (b) of how big £2/4n can be if tribution to p decay of order £°. The graphs are shown in Fig. 3.

we are allowed to calculate perturbatively. To make the cal- After renormalization subtractions are made, the scalar self

culations simple, we will set m, = m, although this may result energy contribution is zero while the leptonic self energy

in some error. We can estimate the relative magnitude of diagrams give

higher order graphs by performing the following count. 2\3
o1 2 £ 1 —a - . .
3?" (21 - 2m ) (H) ;\7 ey (I'YS)UeVuﬁa(l YS)U (2.9)

a) each vertex has an £

b) every closed loop has (21)4
c) each four-dimensional integration gives “2



There are no vertex corrections in this order if the B par-
ticle is not self conjugate. The sixth order contribution,
(2.9),is less than 10% of (2.3) if £2/4n is less than one,
but this may be accidentally small because of the (21 - an)
factor.

The self energy corrections scem small so we have also
evaluated the contribution to muon decay of order fs shown in

Fig. 4. The result is
24
(i_) L L (168 = .76)& L-vg)v T, v, (1-vgdu  (2.10)

where the error arises because some of the integrals were
done numerically. Combining (2.9) and (2.10) we see that,

through 8th order,

2 . 2
G 2 2 2
7; . (%E) L [1 - 134 (§;> v (L1700 = .077) (g?) ] (2.11)
v m

Therefore, lowest order perturbation theory would seem to be

a very sensible procedure if f2/4n < 1. 1In this range the
contribution from 6th and 8th order is a maximum of -2.5% but
the higher order coatribution grows rapidly when ledn becomes

larger than one.

Details of these calculations are given in Appendix A.

10

I1I. LEPTONIC SCATTERING PROCESSES

In this section we discuss scattering processes in which
only leptons are involved. The conteits of this section are
in part contained in a shorter article written by two of us
(D.A.D. and V.L.T.): promised details are given here. Four
calculations are described; two are processes (vue and Vel
scatzering) currently being measured, while two are combina-
tions of e'e” -~ u'p” amplitudes that should be measured at

SPEAR and PEP in due course.

A, e+ v ~e +V
u [

This process is forbidden7 in lowest {fourth) order be-
cause of the form of (2.1). 1t is allowed in sixth order,
hcwever, and also in order ezfz {(where ¢ i1s the electric
charge) because of the neutrino charge radius. These dia-

grams are shown in ' g. 5. The value of the two diagrams of

order f6 is

3
2
(§;) L2 mdie (-vgen, (-vg)y, (5.1)
where
1 1 el 1 . w)=203-32
](mf,mé) = I dxf dyJ d:f aw YU x) (1 Wiz (1:32)
o o (<} o m,Iwx mSy(l-z)
2 2 <
s (mml) (3.2}
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This integral is elementary but tedious.
The necutrino charge radius is proportional to the romentum
transfer, qz, but that factor is cancelled by the photon propa-

gator leavinz the matrix element ecqual to
(;2) 1], 4Ild (Loy)y 1 Mf, - a?y(1-y)
* y(1-y)y In ———7ag—or

I T
x ey evuvn(l-ys)vu (3.3)

where a is the fine structure constant. 1n the lab system q2
can be written in terms of the kinetic energy of the final

electron T as
2
q" = -2m,T (3.4)
For reasonalle values of m and the heavy lepton mass, M, we
can neglect the qz term in (3.3).

If we write the total matrix element as

T3 (1-vg)vEY, (Cy - Cpvgle (3.5)

Al

the cross section in the lab frame is

dc Gé ' v 2 ] ] 2 72 (¥} 2 ch
It = 7w M| Gy - CR)7 ¢ G+ CY) ("G) LSRN B
(3.6

12

where w is the neutrino energy.

Using (2.7) to write the answers in terms of R we have

v f21 Rl <
CA = ﬁ i- m I(R) {3.73)
v £2 1 R-1
CV *IT vy In K 1(R)
2
m, M
Ryl LR Rl e ey (3.70)
£/4n M.

where 1(R)} comes from (3.2} and is equal to

1R =etedmr-Lmr

k-1 (o2 1
¢ 25 (R%1) I R 1(1 -
2R ( ﬁ)

+ 1n + u
W w ¥

2z (&) 3.9)
Notice that I(R=1) = 1.

C; and the first term in C;. which comes from the f6
contribution, are symmetric in m, « m, (i.e., R » %) but the
neutrino charge radius depends only on m . Therefore, the
second term in C; is asymmetric as R -~ % ard becomes large as

L] L]
R gets small (mo >m.). A plot of Cv and CA is given in
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Fi 6 for various values of R and ranges of f2/4n. We see

L] ¥
that CV and LA

values of R they could be as large as 0.5 in magnitude.

are probably quite small altheugh for exrreme

Therefore, we cannot draw any definite conclusions except

that although the cross section is not zero it is probably
smaller than is predicted by the Weinberg-Salam thcory.l'g
where the process iz of order GF' In section IV we will

astimate R and find R > 1.

B. vore~rv, e

This process is allowed in order f‘. The relevant graph
is shown in Fig. 7. This has the same form as . decay; in
particular it has the exchange of one neutral and one charged
scalar. Therefore the matrix element simply reduces to the
V-A form with no dependence on the relative size of m, and P

f we perfovm a Fier:z transformation and write the matrix

element as

vc‘yu(l"ss)veb-)d(l:v - Cavgle (3.9)

YR

then we have rv = CA = 1. The cross scction, in terms of Cv
and CA' is given by {3.6). The point CV «C, - 1 is well

within the experimentally allowcdlo region in (- CA »pace.

The Weinberg-Salaml theory predicts 1/2 ¢ CV < 5/2 and CA = 1/2.

-~

hl
There will also be graphs of order 276" !iie the ploton
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graphs in Fig. S. Based on our calculations for v, + e

v, * e these should not change C, and C, by more than ~20%.

+ - * -
C. ¢ +e =*unp

Thus far we have secen that there is no neutral current
cffect in vo© scattering and that v, scattering has a neutral
current effect only in order 8. For ¢'e” « u'y” however
there is a neutral current effect in order f‘. The diagram

iv shown in Fig. 8. this graph gives a weak matrix element

2V
Meak © '(I?)

This gives a sigrificant contribution to the cross section

By e, (1-vgle (3.10)

OZI’J —

only through the cross term with the one photon exchange

matriax element

A fg; Evaugvue {3.11}
where E 15 the c. of m. energy of one of the initial parti-
c¢les. The weak neutra’ current can then be ahserveu by look-
ing for terms in the cross ssction thaut are asymmetr:ic in
scattering angle or hﬁ'i:xty}l These effects can be separated
fion the saimijar effccts due to twe photon intermediate states
ax discussed in Ref. 1.0,

Consider electron and position bean~ with equal and



opposite polarizations, s, perpendicular to the direction of
motion. The differentia cross section due to one-photon

exchange is

do (0} a’
- w (3.12)
an 1662 ©
where
Wo=14 2% - s21-2%)cos 20 (3.13)

(4]

The scattering angles are ¢ and © with z = cos 8,

The total cross section may then be written as

o
g% - é%érl (1+68) (3.14)

where ¢ contains all the higher order effects. If we call
§, the part of & that comes from the cress term between

eqns. (3.10) and (3.11) and is odd in cos 0 then (using (2.7))
we have

A 8/2 G py Eﬁf (3.15)

2 eZ In R wo ’
Notice that if R = 1 this is exactly twice as large as the
same quantity in the Weinberg theory.l'u'12 This means

that if sZ is close to unity the asymmetry in the cross sec-

tion

16

do(6) - do(n-8)
Jo(8) + do(7-8) (3.16)

will be 2% if R is 1. If R is larger than one, 5z will be
even larger (almost 8% if R = 10) while if R is less than

one 6: will be smaller than 2%, but it is still bigger than
the h‘cinbergI theory if R > 1/5. In section IV we will see
that (R-1)/1n R = 6 is & rcasonable estimate which gives a

dramatically large value for the asymmetry.

The secoad way neutral currents may marifest themselves
in this process is through a non-zero polarization for the
final particles. If the polarization of the final u  is
called h, thén we define the polarization from the square of

the matrix element as

2 2
oo Mhaer - Ml

(3.17)
2
Mlpasy + MG
Using (3.10) and (3.11) we find
2
- 4/2 GFE R-1 [ . 357 (3.18)
3 In R W J :
e (4]
At ¢ = 0, m and
rl-s2 1/ (3.19)
< = —-—7 D
L1+s
P has a maximum
877 6B o 4,-172
Prax > 77— mkt* (1-s7) ] (3.20)
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This can be compared with the prediction in the Weinberg

theory
2/7 GgE? 2 2, , 4,-1/2
PWeinberg nax s -——;7——-[3 sin ew - cos Bwjll + (1-87) ]
(3.21)
where 6, is the Weinberg angle. For s = .924, E = 3.5 GeV,
and R =1, (3.20) gives
P = 3.1% (3.22)

max

This value is much large. than the value predicted by the
Weinberg theory, given current estimates of 8,. If the es-
timate (R-1)/1n R = 6 of the next section is correct, the
muon polarization is also dramatically large in this model.
The parameters of a weak interacticn model are also
constrained by the experimental limits on the weak correction
to the muon's magnetic moment. In the present model the
weak correction comes from the diagram in Fig. 9. Its con-

13
tribution to (g-2)/2 is

G 3R My fl ax x4(1-x) (3.23)
L 5;7 ;Z [ Mz z
° 1-x+ —x- 25 (1-x)x
my m;

where mu is the muon mass and, as before, Mu and m, are the

masses of the heavy lepton and the neutral scalar. Since, as

18

we saw in section II, universality requires M&/Mg to be

small we have

2
Mo 2™ 1% ar1 1 (3.24)
Vgl al Tz v TNR (2

where the second equality comes from using (2.7).

. . 14
The experimental bounds on the weak correction are

a: = (2.8 ¢ 3.1) x 1077 (3.25)

As long as f2/4n is larger than the lower bounds derived in
section Il the weak correction of (3.24) is smaller than the

present cxperimental bound.
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IV. NEUTRINO-HADRON INTERACTIONS

The effective lowest order weak Lagrangian for inclusive
neutrino scattering with a muon in the final state, v, + N~

p + X, is the same as in ordinary weak interaction thcories

G

F (~a 5.

L(charged) = 7% [uy (I‘YS)VH)IPYQ(I-YS)nl {4.1)
current

where we have set the Cabibbo angle, 8., equal to zero, and

P and n are quarks.

The counterpart for muonless events is

Gp
= [ (1-vg)v)

L(neutral = I

current (4.2)

x (Fyu(a(l-ysl + h(l*vs)}P + ﬂﬁu(c(l'vs) ¢ d(1eyg)in)

assuming the couplings to be V - A or V + A. For example in
the Weinberg-Salam modcll we obtain, with 8" the Weinberg

angle,

a = % - % sin e" c = - ; . % sinzew
(4.3)

In our modei,7 Légg?tral) is generated by the two box

20

diagrams in Fig. 10, which lead to

newvtral GF
L SUTTenRt o T Sy ey dvltAv, (v dn - Py (1-v )P (3.4)
off. /s 5 (Y- S a 5

i.c.,a=-1>and d = ] with b and ¢ equal zero. \Using (4.1)

<

. . . 1 .
and (4.4 one can calculate in the nsual way the ratio of

muoniless to muonfull v and v induced events, obtaining,

o{v,. ¢ N = + X)
w17 - 3 (4.5)

ofv, + N = ul o X)

o(;u o N . 3“ + X)

R_. - >
o(vu ¢« N s +X)
where N is a target with equal number of P and n quarks and X
means we sum over all allowed finzl states.

The values ot R, and R5 so obtained are too large to
agree with cxperiment’5 so & suppression factor must be intro-

duced. The casiest way to do this without affecting univer-
/2
1

<

sality is to multiply all # couplings by a facter ¢
leaving 8° couplirgs unchanged as mentioned in section II.
Since v ¢« N + u + X proceceds by a B'. B° exchange and v + N »

v + X by 8", B~ exchange we find

R .32 Re = 4¢° (4.7)
3 v
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and ¢ may be adjusted to experiment. A similar effect could
also oe obtained by having the B* mass be larger than the B°
mass in such way as to decrease the effective coupling when
two charged B's are exchanged. We will discuss this in detail
at the end of this section.

The ratio

ofv + N+ v + X)
Q= L -1 (4.8)

a(\al_l + N » vu + X)

is however independent of ¢ (or mz/mg) and hence appears to be
a good test of the model. de Rujula et a1.16 quote a value of
Q@ = 0.53 + 0.15, in disagreement with {4.8), but we believe
it is premature to rule out the model on this basis.

We can also calculate the ratio of elastic neu£rino

proton scattering to the charge exchange reaction

_do(v + P > v + BYfdg? (4.9)
do{(v + P+ u + N)/dq

S

If we assume the ratios of form factors are independent of

qz, then the cross section ratio is
s = .ae?@ + @H (4.10)

where g: is the form factor at q2 = 0 for the proton matrix

element of the isoscalar, axial vector current in {(4.4).

This result is effectively the cross section ratio at
q2 = ¢ and, as Sakurai and Urrutia havs shovm,l8 there are
large corrections away from qz = 0.

A third process that we can calculate is v + p+ v + p + n°.
Adler19 has given & detailed treatment of this in the (3.3)

20
resonance region and Lee, using Adler’s results, calculated

the ratio

g(v + p > v +p+ ﬂo) +# (v + N+ v + N+ ro) (4.11)
2a(v + N+ p +p +1°)

R =
in the Weinberg-Salam model. He found

R > 0.6 (4.12)

It is easy tc take his calculation over to our case and we

find, in our model,

R > 0.76 €2 (4.13)

Here corrections?! must be made for the nuclear interactions

within the target.

A more interesting conclusion can be drawn by cbserving
that the effective hadronic neutral current, in (4.4}, can

be rewritten as
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JCEAQ=°) = ~[(Py, P - Wygn) - (Py,ygP + Ay ven)] (4.14)

i.e., the spacial vector current is pure isovector while the
axial vector current is isoscalar. This implies that v + N -
V+A+v+N+q° proceeds only through the vector current
and hence may be compared directly to electroproduction

e+ N+e+A+e+N+1% Inthe region of the A, we have

2
o 2
Qo rN>v e Nrw) g2/, (4.15)
og(e + N+ e+ N+ 1) e

where g is the difference in the momenta of the final and initial

leptons. This is an exact result with no structure corrections.

Finally, we note that the vector current does not lead
to coberent scattering of neutrinos off massive nuclei since
it is an isovector current and an isoscalar vector current is
required to obtain this effect.>’

A second means of generating apparent neutral current
effects at high incident neutrino energies exists in the

model, namely the production and subsequent decay of real heavy

leptons (L},

v, * N> L+ X (4.16)

u~ + hadrons

v, * hadrons

24
Since the branching ratio, neglecting the muon mass, is
r. -
I v + X
w T, 2 (4.17)
TLos w e X

H
the ratios R,, Ry and Q given in (4.7) and (4.8) remain
unchanged though the cross sections all increase as the
incident neutrino energy crosses the L production threshold.
The present mass limits on heavy lepton productionz3 are not
directly applicable since they are relevant to a neutrino
producing an L*, not an L, but it is clear that the mechanism
of (4.15) will be important unless the L mass is very large.

This will be particularly true since L production is propor-
2

tional to f2/m2 not Gp and fz >> (f2/4“)2 for €7 << 4w.

Since the exchange mechanism that leads to L production
is § - P rather than V - A, the differential cross section
for e.g. v + N>y + X will change its angular distribution24
as well when we cross the L threshold.
Rather than scaling the charged to neutral coupiings by
€ we céuld take the mass of the charged B to be larger than

the mass of the neutral B. In terms of

=
»
B\

Ot\4+sm

as defined in section II,we would then replace ¢ by



€ R R

(To be completely general we could consider both ¢ # 1 and
R # 1, but the net effect would be somewhere between the
R=1,c#1and e=1, R#1 extremes.)

The need to suppress the hadronic processes of this
section has a profound effect on the leptonic processes of
section III. The asymmetry and polarization in ete” » v
are enhanced by 1/« (if R = 1} or by the (R-1) /In R factor
shown in (3.15) and (3.20) (if ¢ = 1). 1If Rv and Rg in (4.7)

need to be suppressed by a Factor of 10 as indicated by Ref.

+ - + -
16, then the e'e = pu'u effects are enhanced by a factor between

— N = - c .
v10 (R = 1) and 19/3 (¢ = 1). This is the large enhancement
refered to in Sec. III. At the same time Ve scattering

is not significantly enhanced as we can see by the R dependence

of (3.7) as shown in Fig. 6.
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V. RENORMALIZATION AND UNIVERSALITY

Since f2/4n is of order one, we might expect large parity
viol. .ing effects due to diagrams in which a single quark
emits and then re-absorps a B particle. These appear as wave
function and mass renormalizations, and the parity violating
part may be transformed awayz5 by suitable renormalization.
Our concern, however, is that, in the process of doing sa, we
may des.troy universality, namely the equality of Gu and GB’
because of the fact that hadrons and leptons do not appear
symmetrically in the original intevaction, i.e., there is no
hadron analogue of Loy Lv' (Sce however Appendix B, in which
a model with manifest universality is displayed by introducing
the hadron analogues nf Le, Lu’)

To examine this question in more detail, let us consider
a fermion field ¢ coupled to a spin one gluon,Au,with coupling

constant g. The lagrangian for the ¢ field is

z, = FLiYt (o, - igA) - My (5.1)

If we also allow ¥ to coupleby a f{1*Yc) coupling to a spin
zero boson, fermion self energy diagrams due to this coupling

and their iterations modify L to

It = E{iw“(aa - igA )(a * by;) - Miv (5.2)
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with a-1 and b being power series in £2. By defining
X = /a ¥ byg ¢ (5.3)

we can write a2 new Hamiltonian for the system in terms of the

x field in which the only effect of the diagram will be to

rescale the mass by 1//a° - bz

1 M 1 X = My (5.4)

Y,
o
/a + by, /a"+ by, é? _ bz

Allowing ¢ to have several components, each one of which we

My = "

renormalize, we find that the effective non-diagonal coupling

to the spin zero boson changes by e.g.

- - 1
£, A-vg)v, = fx; ————— (1-v¢) X
1 5772 1 (—F—al 5,7, 5 3, s 2
= ffl(l'Ys) L XZ (5.5)

/(ay - dyvg)(a; * byvg)

Since (lzys) are projection operators, the form of the weak
coupling will be unchanged; its magnitude will however be
altered.

We now compare the basic box diagrams for B decay and
for p decay, as calculated however with the lepton and hadron
fields renormalized as indicated in (5.3). Universality re-

quires that
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(-v9) 775 )gé 7y 1-vg 1
ALY B Y O Ys) AT LT /&, b)), - BiY)
n n

(5.6}

or, using the projection properties of (1:75),

2 2

2 = -
(EL + bL) (au - bu) - (an * an(aP bp)!aﬂ * bn) (5.7)

v
The fermion one loop self energy diagram for, say, a

proton of momentum k, equals E(l-ys) with £ being a logarithmi-

cally divergent integral. Neglecting terms of order kz/m§ be-

where of course a, =a and bu equals bv'

cause of the largeness of the B mass, £ is only a function of
Azlmg, where A is a cutoff. Calculating the corresponding

contribution for the other hadrons and leptons, we find

"

a =a, = 1+¢ a = 1+2g a 1+3¢ ap = 1+Z

Substitution of these values into (5.7) shows that the two sides
are equal and that universality holds. Furthermore, suppose
8% and B® have different coupling strengths f; and fZ’ leading

to different £'s which we call & and £y- We then have



29 30

a = 1051 a = 1052 ap = 1»51*52 would not affect universality since the exchange would be in
the nature of a strong correction to an effective CVC inter-
b o= -4y b, = -¢, by = £+, action. What would cause tiouble is a diagram such as the
(5.9) one of Fig. 11. This diagram is of order gZ Gp/4m + G
ap = 1052 a, = 10251*52 where g is the gluon coupling constant and apparently leads

to a violation of universality. We must recognize however,

bP = -EZ bn £, that the significant contributions to the box diagram come

from internal momenta of order mg- This is true because the

Universality holds, as one can verify by substituting the box diagram has two B meson propagators so that lcw momentum con-

above values into (5.7). What we have proved is that a tributions go as (lemg)(llmgl and it is momenta of order
cldss of diagrams, namely the one loor and iterated one loop my which give the dominant contribution, *l/mﬁ. Hence, in
wave functicn and mass renormalization diagrams, do not alter Fig. 11, the gluon is coupled inside the box to an n quark
the validity of universality in the model. with momentum ~mg. This suggests that g should be replaced
Since, with a little bit of work, one can see that by an effective coupling constant, which may in fact be very
there are no one loop vertex corrections, Fig. 3 of Ref. 7 small if asymptotic freedom®® holds for gluon quark coupling.

vanishes. This then completes the proof that there are no If this were correct universality would still hold.
corrections of order f2/4r to the universality statement

G, = GJ cf (2.6). Two loop vertex corrections to both hadron

8
and lepton vertices exist as displayed in Fig. 4C and we have
rot established that (ledn)z and higher order corrections
to universality do not exist in the model.

finallv we would 1like to comment on the possibility of
strong interaction corrections on the hadron line altering
universaiity. Imagine the strong interactions to be mediated

by spin one gluons; external hadrons exchanging such a gluon
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VI. CONCLUSIONS

The most obvious important tests of the scalar exchange
model in the form given here (Eq. (2.1)) and in Ref. 7 are:

(a) Q = a(vu tN-v X)/u(GL + N~ Gﬁ +X) =1

(b) a{v + N+ v + 8)/o(e + N+ e + 4) = (GgZ/e?)2%e?

(c) the large asymmetry and muon polarization in ete” » v
1] 14
) Cv. CA << 1 in vytery, re

CV = CA = 1 in Vo tEr vV, te

(a) and (b) follow from the fact that the neutral cur-
rent in this model has only vector I = 1 and axial vector
I = 0 parts. The resulting absence of vector, axial vector
interfcrence (after averaging over isospin) make the predic-

tion (a) of equal v and V neutral inclusive scattering model

independent}s Deviations from equality could not be remedied

by varying parameters in the Lagrangian (2.1), i.e., taking

¢ (or R) different than one. A different form would be re-

quired.
The large effect (c) results from the data of references

16 (R; » .4) which indicates suppression of charged B exchange

relative to neutral B exchange by a factor of cz = 1/10 or
R = 20. Since e'e” » u*u” proceeds by 28° exchaage this has
the effect of eshancing the predictions for 6, and P by ap-

proximately a factor of 3 to 6 (depending on whether we take
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e#1orR#1) toa maximum of 6% to 12% for &, and 10% to
20% for P. These values are, of course, dramatically larger
than those of the Weinberg-Salam theory.

At the same time the R“ < 1 data does not give signifi-
cant enhancement of v,e scattering (at least in lowest non-
vanishing order) which should therefore be much smaller than
the Weinberg-Salam minimum (C; =1/2, C; = 0).

The previous sections contained other results but these
four seem the most likely to provide critical tests of the
model in the near future. It would not be surprising if
the Lagrangian of (2.1) should fail one of these tests and
require modification. At the present time, however, it gives
sensible predictions and demonstrates the possibility of

viable alternative approaches to the weak interactions.
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Appendix A. Higher Order Terms in Mu Decay

To simplify the calculation of the higher order diagrams
we will set m_ = m, and M (the mass of the heavy leptons)
equal to zero. We know from the discussion of universality
that M/m must be small. Setting the masses of the charged
and neutral scalars equal will result in some error, however,
if they are indeed very different.

Once the renormalization subtractions have been made the
scalar self energy is zero (really of order M/m which we set
to zero) in order fz and there are no f4 scalar self energy
diagrams. There are also no vertex corrections in order f3
if the B° particle is not self conjugate. This considerably
reduces the number of diagrams.

The leptonic self energy is non-zero after the substrac-
tions have been made so the diagrams of Fig. 3 contribute to
order fﬁ. Each hkeavy leptcn self energy graph contains both
an electron-8° and a neutrino-8" intermediate state. The

total 6th order correction is
2\3
f 1 4 - — . .
<I;) ;7 T I l? (1'Y5)U e Yull'YSJve (A1)

where

1 1 1
= . L, xyz{4 - Sx - 2z + 2x1z)
1= jo d"L d’L T I R e T (A2)
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This integral can be done analytically; the result is
1= - 35 (2 - 219 (A3)

Thus the 6th order correction is very small for fz/4w less
than, or equal to, one.

In order £8 there are five types of corrections to mu
decay; the ladder diagrams showr in Fig. 4a, the ladder with
crossed rungs as in Fig. 4b, the ladder in the crossed
channel with the lepton or quark box in the middle as in
Fig. 4c, the vertex correction of Fig. 4d, and the leptonic
self energy graphs of Fig. 4e. The ladder graphs of Fig. 4a

and 4b are finite and given by
4
) L2 s T eron v (1ev) (A8)
vy ;I ;f o 1 UuY “vglp e Yu(l-vg Ve
where
1 1 1
= N(x v
3, 2 La;L dyL dzI duf dvo—(;%’n—:—-fvg- (AS)
with

N(X,¥,2,¥,V) = xyzw[xz ¢ 4xv(1-2) + 2v{1-x)(1-2)(1-v)] (A6a)

D{x,Y.2,%,v) = x2v(1-x)(1-w) + xv(i-x)(1-2) & xz2(l-y)(1-2}(1-v}
s z(1-x)(1-2)(1-v) (A6b)
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The integrand of (A4) has integrable singularities at the end
points. We evaluated the w and y integrals analytically and

the final three integrals numerically. The result is
J, = 1.30 + .11 (A7)

where the error is an estimate based on how fast the integral
converges as we keep doubling the number of points starting
at 3 points per integral and ending with 129 points per inte-

gral.
J, is a seven dimensional integral over Feynman param-

eters. Two of the integrals can be done analytically Ieaving
1 1 ] 1 1
J, = J;dxj dy,{’ dqu dv!o dz N(x,y,u,v,2)G(x,y,u,v,z) (A8)
[+

where, if we define

§ = vxil-x) + x(1-y) (1-v)(1-x+xy) - ux(Ll-x)(1-y+vy)? (A9a)
a, = u(l-y+vy) (ASb)
a, = 1-a; (A9¢)
ag = x(1-y) + (1-x)a, (ASd)
ag = 1-x+xy-a;(1-x) (Age)
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then
. . . 3
and a subtraction must be made (a renormalization of the B

, ) : 3 coupling constant). After this subtraction the diagram has
N{x,v,u,v,3) = x"yuy » f x (l-x)yvnluz

the value
2 2 .23 4
o 6xyu v(l-v)(1-x}) ¢ 5 2%x"y(1-v)(1-Xx)a,x,a,a,v 2
2 H 3%3 £ 1 4 . P -~ v
[ £ i ;z ;f (Jy J3) vuY (1-vglu e Y (1 Ysiv, (A13)
- rd
o 5 x*yvu(l-v)foza, * 2a,a,{1-x) - 2a,a.{(i-x)} .
z 374 273 2 3( where we have included two different lepton and two different

2 quark loops. If we define
- 2uxn‘(l-x) . Zulus(l-x) . uluz(l-x) ]

(A10) a, = y(-xy) (Al4a)
G(x,v,u,v,3) is defined as 1
1 [DeF | DeEoF DeEsE _ F | EoF 3z = (1-y) (-x+xy) (A14b)
Byt P heF I EE cE IR (A11)
2, = xy(1-y) :
waere 3 b y (Alic)
D= -vyxz(l-x) (Al12a) 2 2
8 = a3(1-2)" - aja;(1-2) (Al144d)
E = -xyz(1-v) {A12b) 2
D, = Bv - zwal(l-v) (Alde)
F = vx(l-x) ¢ 2{1-v)}(l-x¢xy) ¢ x(1-y){l-v}(1-2)(1-x*xy)
D2 = Dl(u=1) (Al14F)
(1-x)(1-2)0 )2 R L .1 1
- ux{l-x)(3-2)(1-yevy (*12c) I 1
J, = dx | dy d:j dv dxyzv(l-2) zn—~
2 [] 'L ‘L (] 8DZ
At 17 points per integral Jl has the value 1.02 = .09. < {(1-x)[y8 - 23133(1-y)(1-z)(1-v) - 4ya§(1-z)2(l-v)] - ase}
(Al13)

The fermion loop in the cross channel (Fig. 4c) diverges
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1 1 1 1 1 2 1
Je = dx r dy) dz] dw|] dv 2wvz®a cn J, is a seven dimensional integral over Feynman parameters.
3 1 4
o ‘o [ (-] o BZD1
Two of the integrals can be done analytically leaving five
< i3xa (8 + 4a3(1-2)(1-v)] + 68(1-x) (1-2)%(1-v)a] to be done numerically. Define
- 213 1-v12a? = uil- 1-x ]
4+ 12(1-x)(1-2)"(1-v) as) (A16) by = uil v) + Ty uv A20a)
Again the integrands have only integrable end point singularities bZ Z u(l-v) + ?T%Eé?T uv (A20b)
and the integrals wcre done numerically using 17 points for each
variable in J, and 33 points for each variable in J,. The by 21 -u-+ ;?:; (A20¢)
result is
- w2
D = hl - bz + b3 (A204)
J, = -.19 (A17a)
Then the five dimensional integral is
Jy = +0.17 {A17b)

1 1 1 1 1 xu
J, = j de dyI dzI duI dv ——
4 o o () o o I-xy

The sum of Jz . J3 is small and did not vary appreciably as
. {;} [1-by) (-143x+2b; -3b;xy) + uv(-2x-3b; (1-xy) + 6b;x(1-b;¥))

we varied the number of points per integral over 3, 5, 9, 17.

Thus the sum has a small error
+ (1 X x(1-x 1-3 R + X 1-u -1
—"], - ) - —]X]' ( - ]( - b])')] 1 7 Y( = V) R-,

= - A18
Iy ¢ Jg .02 £ .05 (A18)

+ 1 uv 1 R
7 y(I-xy} b, - Be 3
The vertex correction of Fig. 4d, after subtraction, is 1

also large, in part because 211 four vestices must be corrected. . [(l-bl)(l-bly}(l-x~b1xy)(l-x-b1+b1xy)]} (A21)

It is given by

4
2
f 1 16 -, 0 -
- (z-) ;Z ;f Js vuY (d-vglu e Yu(l‘YS)ve (A19)



a
where
2
b b -b»
= 1 3 2 3 A22
“1-0’71"(—5;‘, (A22a)
2 2
b - b b, - b
.2 2 2 " P1) . A22b
R, : 5 ln( 5 ) In by ( )
2 2
I U TR 1 Wy L Tl (A22¢)
3 ° oZ .2 b5

Notice that Rl' Rz. R3 all have finite linmits when bz - bf = bs.

J‘ converges nicely to the value .19 ¢ .0) as the number of

peints per integral is increased.

The total of the three self energy graphs, Fig. 4de, is

4
2
3 1 4 - -
(ﬁ') 22 vuvu(l-\rs)u e Ya(l-vglv, (A23)

where Jg is a six dimensional integral. Two of the integrals

can be done analytically. 1If we define

€, = uw{l-x)(1-z) (A24a)
Cz z u(l-vj(1l-2z) (A24b)
C, £ (1-u)(1-x) (A24c¢)
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1 1 1 1 3 2
Js=jdxj dzj duj dv-z-xzuv
(<] (+) o

o [(2-3x)(2-32) + 6u(1-v)(2-32) (1-x) * 12C,Cq]

1

\
C, + €y + Co\
1 1 2 3
+ {c, - 3¢, - 3¢,] In
;c'g 2 1 2 <'—C_—1+C—2"/
c, +C, +C
1 1 2 3
- [3C *2C]1n T =c
6cz 1 3 1*%
cf €€ + €, + Cy)
PP 7 RN B (Y | (o ol (A25
6c2c.§ ( TR LA A (Az5)

Notice that the { } bracket is finite unless all of Cl’ CZ'

C3 are zero.
JS has the value .001 * .001.
Now the sum of (A4), (Al13), (A19), and (A23) give the

result (2.10) in section II.
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Appendix B. A Mouel with Manifest Universality

We displav here 3 weak interaction Lagrangian in which,
except for hadron-lepton mass differences, v decay and 8 decay
are equal in strength to all order in lean. This may also
be true in the model of (2.1), but we have not been able to
prove it as of yet.

The model requires an SU(2) group under which the four

quarks and the four known leptons transform as doublets:

() ()

() )

u

(81)

In addition we have a doublet of heavy spin zero muons
L d
B = (go) and four SU(2) singlets, two of them, L: and Lz,
’
leptons and the other two, #° and F° , baryons. The weak

interaction Lagrangian has the form

Line™ - SEIBIE(ARD * FUrrg)L0 + 1oy B o B (1o )P 1)
(B2)
which is obviously SU(2) invariant and has full hadron lepton
symmetry. The Cabibbo angle may now be introduced by the
usual GIM4 mixing of n and s. The hadron-lepton symmetry is

sufficient to insure universality to all orders of fz/dn

a4

except for mass difference effects.
Neutral current strangeness changing, i.e., semi-leptonic

AS = 1, AQ = 0 terms have an effective Hamiltonian of the form

Hogg. = 6 (3Y% (1-vg)n) (By, (1-v5)v) (B3)
nl - n,
with 7 proportional to —_— .
m
If mp equals Mg, a higher order diagram gives
ng - ml (e2\
T =7z (84)
m

An additional consequence 4f this model is that to lowest
order, the amplitudes for elastic neutrino - P quark scatter-

ing vanish so neutrinos only scatter off n quarks in nucleonms.
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FIGURE CAPTICNS
Lowest order diagrams for w and 8 decay.
f2 mf
The minimum value of = /41 vs. R where R = ~—5—
m
o
and we require m°>z7 Gev, If m>m, then
2
"o
this figure is still correct with R = -3 and
m
4

m _>27 GeV. Thus we only need to consider

R >1.0,

Sixth order corrections to w decay. There are

no vertex corrections or scalar self energy

corrections in this order.

The eighth order corrections to mu decay.

The lowest order contributions to vu+e - vu*e.

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

5¢

The vector and axial-vector coupling constants
for the reaction v _te - v, te for various values

2
m
of the ratio R= _% . The curves {a) - (e) have

"

R=0.01, 0.1, 1.0, 10.0, and 100. For a given
curve f2/411 ranges from its minimum value,
given by Figure 2, at the lower left end of the
curve, to 1.0 at the ugger right end of the

+
curve. The factor 1n GE in the neutrino charge
£

radius was set equal to 4.0.

The lowest order contribution to vte * v re.

. . + - +, -
Lowest order weak contribution to e +e + p +n
Weak correction to the muon magnetic moment.

Diagrams which generate the effective neutral

current.

4 possible source of strong interaction correc-
tions to universality. The wavy line is a vec-

tor gluon.
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Figure 3
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Figure 7
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Figure 10
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