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FOREWORD 

This r epo r t is the f i r s t in a s e r i e s of r epor t s which 
will be i s sued from time to t ime under the genera l heading 
Labora tory Invest igat ions in Support of F lu id-Bed Fluor ide 
Volatility P r o c e s s e s . These labora tory investigations will 
be concerned with var ious aspec t s of the p r o c e s s e s and will 
be made to provide information that is needed for the design 
and operat ion of a pi lot-plant facility. 
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LABORATORY INVESTIGATIONS IN 
SUPPORT OF FLUID-BED FLUORIDE 

VOLATILITY PROCESSES 

P a r t I. The Fluor inat ion of Uranium Dioxide-
Plutonium Dioxide Solid Solutions 

by 

R. L. J a r r y , L. J . Anastas ia , 
J . F i s c h e r , L. E . Trevor row, 

T. D. Baker , and J . J . Stockbar 

ABSTRACT 

The exper imenta l work repor t ed here in has been per formed in 
support of the development of fluid-bed fluoride volatility p r o c e s s e s . In 
these p r o c e s s e s , u ran ium and plutonium in spent nuclear fuels a re con­
ver ted into hexafluoride compounds in a fluid-bed r eac to r . The uran ium 
and plutonium hexafluorides a r e volati le and can be separa ted from fission 
p roduc t s , cladding, and alloying m a t e r i a l s by techniques such as vapor iza ­
tion and dist i l lat ion. The exper imenta l work has been di rected toward 
devising a fluorination p rocedure for u ran ium and plutonium dioxides which 
would resu l t in a high degree of removal of uran ium and plutonium as hex­
af luorides . In these exper iments synthetic mix tures made up to simulate 
a charge for a fluidized bed r eac to r (100 kg U, 0.4 kg Pu, ~1 kg F . P . , and 
30 kg iner t sol ids) were used. 

High-puri ty r ec rys t a l l i z ed alumina was found to be a suitable m.a-
t e r i a l for use as the fluidized ine r t solid. After a 10-hr fluorination 
per iod at 450 C, the concentra t ions of res idual u ran ium and plutonium on 
the alumina were 0.01 and 0.03 w / o , respect ively . A react ion t empera tu re 
of 450 C was found to be optimum, since exper iments at 500 and 550 C 
resu l ted in plutonium retent ions on the alumina of 0.060 and 0.090 w/o , 
respect ive ly . At all these t e m p e r a t u r e s , the res idual u ran ium content of 
the res idue was l e s s than 0.01 w / o . When fission product element oxides, 
in quanti t ies that would be expected in a Dresden- type fuel after 
100,000 Mwd/ton burnup and 30 days of cooling, were added to the u ran ium 
dioxide-plutonium dioxide-alunaina and the mixture was fluorinated at 
450 C for 10 h r , the concentrat ion of plutonium on the alumina increased 
to a value of 0.065 w / o . Additional r ecovery of the plutonium retained on 
the alumina was obtained by e i ther pyrohydrolys is followed by ref luorina­
tion at 450 C for 10 h r , or by refluorinat ion alone at 550 C for 10 hr . These 
p rocedure s reduced the res idua l plutonium content of the alumina to l e s s 
than 0.02 w / o . 



Exper imen t s were a lso pe r fo rmed to determine the feasibility of 
using the same batch of alumina as the iner t solid for the fluorinations of 
five batches of the urania-p lu tonia solid solution. The recycle use of alu­
mina did not r e su l t in a g r e a t e r removal of plutonium than that which 
would have resu l ted if a f resh batch of alum.ina had been used with each 
batch of the uranium-plu tonium oxide mix ture . 

E3q)eriments were pe r fo rmed in which the solid solution of plu­
tonium dioxide in u ran ium dioxide was oxidized p r io r to fluorination. The 
oxidation resu l ted in a powdered mix ture of uranos ic oxide and plutonium 
dioxide. Fluor inat ion of this oxide mix ture in alumina resu l ted in the r e ­
moval of essent ia l ly all of the u ran ium in a react ion t ime of 2 hr at 450 C 
when 10 v / o fluorine was used. When this fluorination was followed by a 
second fluorination per iod of 5 hr at 550 C with 75 v / o fluorine, the plu­
tonium content of the alumina was 0.011 w / o . When both fluorination 
per iods were extended to 10 h r each, the retention of plutonium was 
0.007 w / o , which cor responded to a removal of 99.5 pe rcen t of the plu­
tonium contained in the solid mix tu re . 

During the f i r s t p a r t of the fluorination period, in which the major 
port ion of the u ran ium is removed f rom the mixture of u ran ium dioxide, 
plutonium dioxide, alumina, and represen ta t ive fission product e lement 
oxides, a low t empe ra tu r e (450 C) and a low concentration of fluorine 
(10 v / o fluorine in nitrogen) is des i r ab le . However, in order to remove 
the plutonium efficiently during the l a s t port ion of the fluorination per iod, 
it i s des i rab le to use a higher t e m p e r a t u r e (550 C) and a higher fluorine 
content of the gas mix ture (75 v / o fluorine in ni t rogen). 

I. INTRODUCTION 

Flu id -bed fluoride volatili ty processesVl) a re being developed for 
the recovery of both u ran ium and plutonium from spent nuclear fuels. 
High-density uraniuin dioxide pe l l e t s , clad in ei ther Zircaloy or s ta inless 
s teel , a r e typical of the fuels that a r e amenable to purification by these 
p r o c e s s e s . 

A conceptual flowsheet for a fluid-bed fluoride volatili ty p r o c e s s 
is shown in F igure 1. In this p r o c e s s , the declad fuels a re converted to 
fluoride compounds by a s e r i e s of ga s - so l i d react ions at elevated t empera 
t u r e s . The reac t ions a re c a r r i e d out while the fuel e lements a re i m m e r s e 
in a bed of iner t solid. The granules of iner t solid a r e fluidized by the 
reac tan t gases and provide a heat t r ans fe r medium for t empera tu re con­
t ro l . The declad fuel e lements a re r eac t ed with fluorine at about 500 C 
to convert the u ran ium and plutonium oxides to the volatile hexafluorides. 
Most of the fission products remain as nonvolatile f luorides in the iner t 
solid bed, which is d i sca rded as solid was te . The plutonium hexafluoride 



and uran ium hexafluoride in the off-gas s t r eam are condensed to solids in 
re f r igera ted t r a p s . The components of this mixture of hexafluorides can 
be separa ted by fractional disti l lation or by selective thermal decomposi­
tion.i^) Uranium hexafluoride is very stable as compared with plutonium 
hexafluoride, which decomposes to plutonium tetrafluoride and fluorine.(•3-5) 

F igure 1 
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Since the iner t solids will be d iscarded as waste , it is important 
for economic reasons that very lit t le of the uranium and plutonium be r e ­
tained on the solids after fluorination. The effect of plutonium retention 
on the economy of the fuel cycle can be i l lus t ra ted by the following ex­
ample: The charge from a power r eac to r , such as the Dresden Reactor , 
will probably consist of 100 kg of uranium, 400 g of plutonium, and about 
one kg of fission products . This charge will be mixed with about 30 kg of 
ine r t solid as the fluidized medium. The cur ren t process ing scheme cal ls 
for process ing a charge every 2 days. Therefore, on the bas is of a 
300-day working yea r , the loss of one percent of the plutonium would mean 
a total loss of 600 g /y r . If the value of the plutonium is assumed to be 
about $10 pe r g ram, the total loss would amount to $6000 per year . This 
es t imate is based on the p rac t ice of discarding the iner t solids after each 
fluorination. 

The exper imental work presen ted in this r epor t has been directed 
toward de\dsing a fluorination procedure which would be applicable to fluid-
bed fluoride volatility p r o c e s s e s and which would resu l t in the optimum 
removal of uran ium and plutonium as their hexafluorides. In this work, 
synthetic mixtures were used to sinaulate the composition of the ma te r i a l 



that will be charged to the fluid-bed reac tor in plant operat ions. Ejqseri-
ments were per formed to se lect a suitable iner t solid, to determine the 
optimum t empera tu re , t ime , and fluorine concentration for the react ion, to 
study the effect of fission product e lements on the retention of plutonium 
on the iner t solid, and to investigate the effect of p r io r oxidation on the 
react ivi ty of the u ran ium dioxide-plutonium dioxide mixture . 

II. MATERIALS, APPARATUS, AND PROCEDURE 

The fluorine used in these exper iments was obtained from the 
Allied Chemical Corporat ion. Before use , the fluorine was passed through 
a heated bed of sodium fluoride pel le ts at about 100 C to remove hydrogen 
fluoride. 

The solid solutions of u ran ium and plutonium dioxides which were 
fluorinated in these exper iments were p r epa red according to the procedure 
recommended by Wilson.(°) The start ing ma te r i a l s were uranyl n i t ra te 
hexahydrate and a plutonium ni t ra te solution, both obtained from AEC 
sources . Aminonium diuranate and plutonium hydroxide were coprecipi -
tated by the addition of aqueous ammonia to a solution of the plutonium and 
u ran ium n i t r a t e s . The prec ip i ta tes were collected by centrifugation, dried 
overnight at 140 C, and then reduced to the oxides by heating at a t e m p e r a ­
ture of 1000 C in an a tmosphere of ni t rogen containing 2 v /o hydrogen. 
A flowsheet for this p repara t ive method is shown in F igure 2. The oxide 
mixture ^vas ground to a fine powder before use . 

F igure 2 
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Several iner t substances were tes ted to determine their suitability 
as iner t solids. Two g rades of rec rys ta l l i zed alumina were used: Type RR 
Alundum* (Blue Label) with a pur i ty of 99-9+ percen t alumina, and Type 38 
Alundum* with a pur i ty of 99+ percen t alumina. Spectrochemical analyses 
showed the following impur i t i e s (expressed in ppm) for the Type 38 Alun­
dum: F e , 300; Mg, 400; Na, 2000; Si, 800, Ti, 400; and Zr , 400; the i m ­
puri ty level for the Type RR Alundum was l ess than or equal to 100 ppm 
for the same e lements . Other iner t solids studied were z i rconium t e t r a ­
fluoride, calcium fluoride, and aluminum fluoride. These substances 
were obtained frora commerc ia l sources and the puri ty of each was about 
99 percent . Nickel f luoride, p r epa red by the fluorination of nickel 
chloride, was also tes ted. 

Oxides of the fission product e lements were commercia l ly obtained** 
and had stated pur i t i es of g r e a t e r than 99 percent . 

Figure 3 

SCHEMATIC DIAGRAM OF EQUIPMENT FOR 
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orides and fluorine by a t rap filled 
t rap cooled with liquid ni t rogen. 

The apparatus used in this 
work was assembled in a glovebox 
of the type descr ibed by Malecha 
et alA'^) F igure 3 is a schematic 
d iagram of the fluorination appara­
tus , which was constructed of nickel 
and Monel; F igure 4 is a photograph 
showing one face of the glovebox. 
The apparatus included a horizontal 
tubular reac to r , in which a nickel 
boat containing the solid sample 
was placed, a bal las t volume of 
about 4 l i t e r s , a diaphragm pumpT 
for circulating the gas phase, a 
thermal flowmeterl^) for sensing 
the flow ra te , and cold t r aps to con­
dense and remove the hexafluorides 
from the gas s t r eam. A mechanical 
pump, provided for evacuation of the 
apparatus , was protected from flu-

with activated alumina as well as by a 

The procedure in a typical fluorination was as follows: A weighed 
quantity of a mixture of iner t solid and ei ther the uranium dioxide-plutonium 
dioxide solid solution or i ts oxidation product ^vas spread in a layer , jj to 
•|- in. deep, on the flat bottom of a shallow, nickel react ion boat, the bottom 

•Produc t of the Norton Company, Worces ter , Massachuse t t s , 

**American Potash and Chemical Corporation, West Chicago, 111. 

iLapp Pulsafeeder No. C P S - 1 , Lapp Insulator Co., Inc. , LeRoy, N.Y. 
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Figure 4 

PHOTOGRAPH OF FLUORINATION EQUIPMENT 
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a r e a of which was about 26 sq cm. The reaction boat was placed inside 
the horizontal , tubular r eac to r , and the systeixi evacuated. When the r e ­
actor had reached the selected t empera tu re , a f luorine-nitrogen mixture 
was admitted to the react ion sys tem to a p r e s s u r e of about one a tmosphere , 
and the gas mixture was c i rcula ted over the sample at a ra te of about 
800 cc /min . The gas phase flowed in se r i e s ac ross the surface of the 
solids in the tubular r eac to r , through two t raps cooled in dry ice, through 
the diaphragm pump, through a the rmal flowmeter, and, finally, back to 
the reac to r . Uranium and plutonium hexafluorides which were formed in 
the reac tor condensed and accumulated in the cold t r a p s . At the end of a 
given fluorination period, the sys tem was evacuated and filled with heliuni. 
After cooling, the react ion boat containing the res idual solids was removed 



f rom the tubular r eac to r and weighed. The entire solid res idue was then 
dissolved in a sodium bora t e - sod ium carbonate flux at 1000 C. The cooled 
resul t ing rnelt was dissolved in n i t r i c acid. The solution was analyzed for 
u ran ium by f luorophotometric analys is . The plutonium content was de t e r ­
mined by alpha counting after the plutonium had been ext rac ted from the 
n i t r i c acid solution with hexone in o rde r to el iminate in terference f rom 
amer ic ium. Because of the smal l quantity of plutonium used in each 
exper iment , no at tempt was made to collect the volati l ized plutoniura 
in o rder to obtain a m a t e r i a l ba lance . Work covering the prepara t ion , 
t r anspor t , and collection of plutonium hexafluoride has been previously 
repor ted . (5) 

III. RESULTS AND DISCUSSION 

An initial exper iment was pe r fo rmed to determine the efficiency 
of fluorination of the u ran ium dioxide-plutonium dioxide solid solution. A 
saraple of 9-95 g of the solid solution powder was placed on a thin nickel 
foil l iner in the react ion boat and fluorinated for 10 hr at 450 C with 
100 pe rcen t fluorine at a p r e s s u r e of about one a tmosphere . The nickel 
foil l iner containing the res idual u ran ium and plutonium was then dissolved 
in n i t r i c acid and the solution analyzed. Only 0.21 mg of u ran ium and 
0.12 mg of plutonium were found in the res idue , represent ing 0.012 and 
0.16 percen t , respect ive ly , of the quanti t ies originally charged to the s y s ­
tem. This resu l t shows that the solid solution of plutonium dioxide in 
u ran ium dioxide does not in itself hinder the fluorination and removal of 
the u ran ium and plutonium hexafluorides . 

Several m a t e r i a l s were tes ted for use as the iner t solid: r e c r y s ­
tal l ized alumina (Alundum), nickel f luoride, z i rconium te t raf luor ide, and 
aluminum fluoride. The study of the iner t f luorides was also of in te res t 
because they might appear in the react ion sys tem as byproducts : nickel 
fluoride from the m a t e r i a l of construct ion, z i rconium tetraf luoride from 
res idua l quanti t ies of z i rconium remaining from a decladding step, and 
aluminum fluoride which would be p r e s e n t on the surface of the fluorinated 
r ec rys t a l l i zed alumina. 

The exper iments were pe r fo rmed at 450 C for 10 hr with 100 p e r ­
cent fluorine flowing at a ra te of 8 0 0 m l / m i n . The plutoniuna content of the 
initial u ran ium dioxide-plutonium dioxide solid solution was about 2 w / o , 
corresponding to the concentrat ion that i s normal ly p re sen t in the fluid-bed 
fluoride volatil i ty p r o c e s s after 80 to 90 pe rcen t of the u ran ium has been 
removed. This concentrat ion was based on the previous work by Steindler 
and Steidll9) on the fluorination of mix tu res of u ran ium and plutonium t e t r a ­
fluoride s, who had indicated that about 80 to 90 pe rcen t of the uranium, is 
rem^oved before any appreciable quantity of plutonium is volati l ized. The 
initial solid sannple contained 3 g of the iner t solid and 1-2 g of the u r a ­
nium dioxide-plutonium dioxide solid solution. 



Table 1 l i s t s the r e su l t s obtained in these exper iments . The resu l t s 
a re expres sed in t e r m s of the u ran ium and plutonium contained on the iner t 
solid after the fluorination. It will be helpful in considering these data to 
note that a res idual concentrat ion on the iner t solid of 0.01 w/o would r e p ­
resen t l e s s than 0.1 percen t of the original u ran ium and less than one p e r ­
cent of the original plutonium, corresponding to removal of 99-9 percent 
of the u ran ium and 99"^ percen t of the plutonium. The economics of a 
one percen t loss of plutonium was d iscussed ea r l i e r . F r o m the data of 
Table 1, it is apparent that the only suitable iner t solids a re nickel fluoride 
and high-puri ty r ec rys ta l l i zed alumina. 

Table 1 

URANIUM AND PLUTONIUM RETENTION ON 
INERT SOLIDS AFTER FLUORINATION 

Conditions of Fluorinat ion: 

Tempera tu re : 450 C 
Fluor ine Concentration: 100% 
Fluor ine Recycle Rate: 800 m l / m i n 
Fluor ine P r e s s u r e : 1 a tm 
Reaction Time: 

Iner t Solid 

NiF2 

AI2O3 (high-purity) 

AI2O3 (Type 38) 

CaF2 

AIF3 

Z r F . 

10 hr 

w/o in 

U 

0.001 

0.007 

0.017 

0.034 

0.060 

0.060 

Solid Re sidue 

P u 

0.005 

0.027 

0.108 

0.301 

0.180 

0.167 

Exper iments were also per formed to determine the effect of 
react ion t empera tu re on the retention of uran ium and plutonium on alumina 
over the t empera tu re range from 350 to 550 C in the same manner as those 
previously discussed. The r e su l t s , l i s ted in Table 2, sho'wed that an in­
c rease in react ion t empera tu re from 350 to 500 C produced an increase 
in the u ran ium concentration on the alumina from O.OO6 to 0.011 w/o , and 
an inc rease in plutonium concentration on the alumina from 0.029 to 
0.090 w / o . Although the small inc rease in uranium concentration on the 
alumina would not mater ia l ly affect the economics of the p r o c e s s , the in­
c rease in plutonium retention from 0.029 to 0.090 w/o would ser iously 
affect the economics of this p r o c e s s . Although the removals of uranium 



and plutonium at 350 and 450 C were near ly identical , 450 C was selected 
as the react ion t empera tu re to be used in future exper iments in order to 
take advantage of the higher fluorination ra te at the higher tem.perature. 

Table 2 

EFFECT OF FLUORINATION TEMPERATURE ON 
URANIUM AND PLUTONIUM RETENTION ON ALUNDUM 

F l u o r i n e C o n c e n t r a t i o n : 100% 
F l u o r i n e R e c y c l e R a t e : 800 m l / m i n 
F l u o r i n e P r e s s u r e : 1 a t m 
R e a c t i o n T i m e : 10 h r 

T e m p e r a t u r e 
(C) 

350 
450 
500 
550 

R e s i d u a l C o n c e n t r a t i o n 

w / o U 

0.006 
0.007 
0 .009 
0.011 

on AI2O3 

w / o P u 

0.029 
0.027 
0.060 
0.090 

The u s e of one b e d of i n e r t s o l i d s for the f l uo r ina t i on of s e v e r a l 
b a t c h e s of the d ioxide m i x t u r e w a s s t u d i e d a s a p o s s i b l e m e a n s of m i n i -
miizing the l o s s of p l u t o n i u m on the i n e r t so l id . If the l e v e l of p l u t o n i u m 
r e t e n t i o n on the i n e r t so l id r e m a i n e d c o n s t a n t o v e r s e v e r a l f l u o r i n a t i o n s 
a t the v a l u e o b t a i n e d a f t e r the f i r s t f l u o r i n a t i o n , a s u b s t a n t i a l r e d u c t i o n 
wou ld be a c h i e v e d in the a m o u n t of p l u t o n i u m r e t a i n e d p e r b a t c h of oxide 
m. ixture f l u o r i n a t e d . (The n u m b e r of t i m e s tha t an i n e r t b e d could be 
r e u s e d in t h i s m a n n e r u n d e r p r o c e s s c o n d i t i o n s would depend on the 
d e g r e e of s e l f - h e a t i n g t h a t wou ld r e s u l t f r o m the a c c u m u l a t i o n of f i s ­
s ion p r o d u c t s . ) An esqse r imen t w a s , t h e r e f o r e , p e r f o r m e d in wh ich the 
s a m e s a m p l e of a lunaina w a s u s e d for the f l uo r ina t i on of five b a t c h e s 
of u r a n i u m d i o x i d e - p l u t o n i u m d ioxide so l id so lu t ion . E a c h f l u o r i n a ­
t ion w a s p e r f o r m e d a t 450 C for 10 h r ; a s m a l l p a r t of the r e s i d u e 
w a s r e m o v e d a f t e r e a c h f l u o r i n a t i o n for a n a l y s i s of u r a n i u m and p l u t o ­
n i u m . Af te r t h e i n i t i a l f l u o r i n a t i o n , the u r a n i u m and p l u t o n i u m c o n c e n t r a ­
t i o n s on the a l u m i n a w e r e 0.009 and 0.029 w / o , r e s p e c t i v e l y . The 
c o n c e n t r a t i o n s of r e s i d u a l u r a n i u m and p l u t o n i u m on the a l u m i n a i n c r e a s e d 
to v a l u e s of 0.029 andO. 104 w / o , r e s p e c t i v e l y , a f t e r the f l u o r i n a t i o n of the 
s e c o n d b a t c h , and r e m a i n e d n e a r l y c o n s t a n t a t t h e s e l e v e l s for the r e m a i n ­
ing f l u o r i n a t i o n s . The r e s u l t s of t h i s e x p e r i m e n t i n d i c a t e t ha t the r e c y c l e 
u s e of a l u m i n a would n o t r e s u l t in an o v e r a l l l o w e r r e t e n t i o n of p l u t o n i u m 
than tha t w h i c h would h a v e r e s u l t e d if a f r e s h b a t c h of a l u m i n a h a d b e e n 
u s e d wi th e a c h of the f ive b a t c h e s of ox ide m i x t u r e . H o w e v e r , an e c o n o m y 
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in the use of the iner t solid and a sma l l e r quantity of solid waste , contain­
ing a l a rge port ion of the fission products to be disposed of, would resu l t 
f rom the recycle use of the iner t solid. 

Table 3 

AMOUNTS OF FISSION PRODUCT ELEMENTS 
FORMING NONVOLATILE FLUORIDES 
EXPECTED IN THE PROCESSING OF A 

SPENT DRESDEN-TYPE FUEL^ 

The p re sence of fission product elements in the spent nuclear fuel 
inight affect the removal of uran ium and plutonium by fluorination. T h e r e ­
fore, a mixture of fission product oxides was added to the uranium-plutonium 
dioxide solution to determine the effect of these fission product oxides on 
the retention of uran ium and plutonium by the iner t solid. Only fission 
product oxides of e lements that form nonvolatile fluoride were used. 
Table 3 l i s t s the e lements that form nonvolatile fluorides and the quantities 
of each that would be expected to be found in a low-enrichment uranium 
dioxide power reac to r fuel after 10,000 Mwd/ton burnup. The values used 
in the table were calculated by R. K. Steunenberg.l^"/ The mixture of f i s ­
sion product e lement oxides employed in the fluorination studies contained 
the following oxides in the relat ive quantit ies shown for the elements in 
Table 3: BaO, ZrOa, Y2O3, LaaOa, Ce02, Pr^Ou, NdzOj, SmjOs, EU2O3, and 
Gd203. The mixture of fission product oxides was blended with the uranium 
dioxide-plutonium dioxide solid solution p r io r to the fluorinations, which 

were ca r r i ed out at 450 C for 10 hr 
on mixtures of 3.4 g of the solid 
solution (containing 3.0 g U ,0 .011gPu , 
and 0.030 g F .P . ) with one g ram of 
iner t solid. A s imi lar experiment 
was performed with a mixture of 
alumina and solid solution blended 
Avith a mixture of fission product 
f luorides. The mixture of fission 
product fluorides was p repa red by 
fluorinating a portion of the fission 
product oxide mixture . 

Table 4 l i s ts the resul ts ob­
tained for these exper iments . Included 
in the table a re values for exper i ­
ments in which no fission products 
were present . The data indicate that 
the p resence of fission product ox­
ides in the solid solution resul ted in 
an increased retention of plutonium 
but not of u ran ium on both alumina 
and nickel fluoride iner t solids. The 
plutonium retention increased from 
0.027 to 0.065 w / o on alumina and 
from 0.005 to 0.366 w/o on nickel 
fluoride. However, in the experiment 
in which the fission product fluoride 
mixture was used, the plutonium r e ­
tention on alumina was reduced to 

Fiss ion Product 
Element 

Rb 
Sr 
Y 
Z r 
Rh 
P d 
Ag 
Cd 
In 
C s 
B a 
L a 
Ce 
P r 
Nd 
P m 
S m 
E u 
Gd 

Grams of Elements 
P e r 

Total 

100 Ki lograms 
Uranium^ 

19.02 
32.96 
20.84 

154.80 
23.08 
11.84 
0.54 
1.52 
0.30 

131.00 
59.60 
48.60 
88.20 
41.60 

170.00 
3.62 

39.40 
1.72 
0.40 

s 849.04 

3-10,000 Mwd/ton burnup, 4 y r in r eac to r , 
30-day cooled. 

" P r o c e s s mixture (2-dayproduction) to be 
used initially in fluorination step: 100 kg U 
(as UO2), 0.4 kgPu(asPuO2) ,30kgAl2O3, 
0.88 kg fission product e lements as their 
respect ive oxides. 
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0.017 w / o , a va lue w h i c h i s s o m e w h a t l o w e r than the f o r m e r l e v e l of 
0.027 w / o . T h e s e r e s u l t s a p p e a r to i n d i c a t e t h a t s o m e i n t e r a c t i o n o c c u r s 
b e t w e e n the f i s s i o n p r o d u c t e l e i n e n t o x i d e s , the p l u t o n i u m ox ide , and the 
a l u m i n a d u r i n g the f l u o r i n a t i o n p e r i o d . 

T a b l e 4 

E F F E C T OF ADDITION OF FISSION P R O D U C T S ON THE 
R E T E N T I O N O F URANIUM AND P L U T O N I U M ON I N E R T SOLIDS 

T e m p e r a t u r e : 450 C 
R e a c t i o n T i m e : 10 h r 

I n e r t Sol id 

AI2O3 

AI2O3 

AI2O3 

NiFa 

NiFg 

F i s s i o n P r o d u c t s 

N o n e ^ 

Oxide s^ 

F l u o r i d e s ^ 

N o n e ^ 

O x i d e s ^ 

w / o U 

0.006 

0.009 

0.006 

0.001 

0.003 

Re s idue 

w / o P u 

0.027 

0.065 

0.017 

0.005 

0.366 

aSee T a b l e 1. 

^ F i s s i o n p r o d u c t m i x t u r e c o n t a i n e d : B a O , ZrOg, Y2O3, La203, 
C e 0 2 , P r e O i p NdjOj , SmaOj , EU2O3, and GdgOj. 

' ' F i s s i o n p r o d u c t m i x t u r e w a s p r e p a r e d by f l uo r ina t i on of 
the ox ide m i x t u r e . 

E x p l o r a t o r y f l u o r i n a t i o n s w e r e p e r f o r m e d a t 450 C for 5 h r wi th 
m i x t u r e s con t a in ing plutonium. d iox ide and ind iv idua l ox ides o r f l u o r i d e s 
of s o m e of the f i s s i o n p r o d u c t e l e m e n t s . The r e s u l t s o b t a i n e d by X - r a y 
d i f f r ac t ion and c h e m i c a l a n a l y s i s of the so l id p r o d u c t s f r o m t h e s e e x p e r i ­
m e n t s i n d i c a t e d t h a t so l id s o l u t i o n s f o r m e d b e t w e e n p l u t o n i u m t e t r a f l u o r i d e 
and z i r c o n i u m t e t r a f l u o r i d e and b e t w e e n p l u t o n i u m t e t r a f l u o r i d e and c e r i u m 
t e t r a f l u o r i d e . The a n a l y s i s a l s o i n d i c a t e d t h a t com.pounds w e r e f o r m e d 
b e t w e e n p l u t o n i u m t e t r a f l u o r i d e and the f l u o r i d e s of b a r i u m and c e s i u m : 
B a P u F ^ ( i s o s t r u c t u r a l w i th BaUF^) , and CsgPuF^ (the c o m p o u n d CsaPuCl^ 
i s known) . The f i s s i o n p r o d u c t e l e m e n t o x i d e s , s u c h a s La203 and Nd203, 
w h i c h f o r m t r i f l u o r i d e s , d id n o t show any i n d i c a t i o n of i n t e r a c t i o n wi th 
p l u t o n i u m . 



Two p r o c e d u r e s w e r e t r i e d in an ef for t to r e c o v e r add i t iona l 
a m o u n t s of the p l u t o n i u m r e t a i n e d on the i n e r t so l id a f te r a l O - h r f l u o ­
r i n a t i o n a t 450 C: The f i r s t p r o c e d u r e e m p l o y e d p y r o h y d r o l y s i s of the 
r e s i d u e a t 1000 C, fo l lowed by r e f l u o r i n a t i o n at 450 C for 10 h r ; the s e c ­
ond e m p l o y e d r e f l u o r i n a t i o n of the r e s i d u e a t 550 C for a 1 0 - h r p e r i o d . 
A s shown in T a b l e 5, p y r o h y d r o l y s i s - r e f l u o r i n a t i o n o r the r e f l u o r i n a t i o n 
a lone a t 550 C r e d u c e d the p l u t o n i u m con ten t of the a l u m i n a to 0.020 w / o 
o r l e s s . In the c a s e of n i c k e l f l u o r i d e , h o w e v e r , the p y r o h y d r o l y s i s -
r e f l u o r i n a t i o n p r o c e d u r e only s u c c e e d e d in r e d u c i n g the plutoniumi con ten t 
of the n i c k e l f l u o r i d e to 0.177 w / o f r o m the o r i g i n a l va lue of 0.366 w / o . 
On the b a s i s of t h e s e r e s u l t s , i t a p p e a r s t h a t a r e f l u o r i n a t i o n s t ep a t 550 C 
for 10 h r wi l l r e d u c e the p l u t o n i u m con t en t of a l u m i n a to a s a t i s f a c t o r y 
l e v e l of about 0.02 w / o . T h e s e r e s u l t s a l s o show t h a t n i c k e l f l uo r ide i s 
no t a s u i t a b l e i n e r t so l id for p r o c e s s u s e . 

T a b l e 5 

THE R E M O V A L OF P L U T O N I U M F R O M F L U O R I N A T I O N RESIDUES 
BY PYROHYDROLYSIS A N P / O R R E F L U O R I N A T I O N 

P y r o h y d r o l y s i s : 1000 C, 3 h r 
F l u o r i n a t i o n T i m e : 10 h r 
F l u o r i n e R e c y c l e R a t e : 800 m l / m i n 
F l u o r i n e P r e s s u r e : 1 a t m 
F l u o r i n e C o n c e n t r a t i o n : 100% 

T e m p 
(c) 

450 

450 

550 

R e s i d u e 
P y r o h y d r o l y z e d 

Yes 

Y e s 

No 

I n e r t 
Sol id 

AI2O3 

NiF2 

AI2O3 

w / u jru. Ill 

In i t i a l 

0.287 

0.366 

0.105 

x n e r i 0 0 1 l a 

F i n a l 

0.018 

0.177 

0.010 

A r ae thod p r o p o s e d for the d e c l a d d i n g of u r a n i u m d ioxide fuel d e ­
p e n d s upon the c o n v e r s i o n of the d iox ide to u r a n o s i c oxide (UsOg), wh ich i s 
f o r m e d a s a f inely d iv ided , f r e e - f l o w i n g p o w d e r . T h i s c o n v e r s i o n m a y be 
a c c o m p l i s h e d by p a s s i n g a i r o v e r the u r a n i u m d ioxide at 450 C. If the 
ox ida t ion i s c a r r i e d out in the l o w e r s e c t i o n of a f l u i d - b e d r e a c t o r , the 
u r a n o s i c oxide f ines a long wi th p l u t o n i u m dioxide m a y then be c a r r i e d by 
the g a s s t r e a m to the u p p e r p o r t i o n of the r e a c t o r w h e r e the oxide m i x ­
t u r e c a n be f l u o r i n a t e d . 

In an a l t e r n a t i v e p r o c e s s , the ox ida t ion r e a c t i o n could be c a r r i e d 
out in one r e a c t o r and the u r a n o s i c o x i d e - p l u t o n i u m dioxide p o w d e r t r a n s ­
p o r t e d in to the f luid bed of a n o t h e r r e a c t o r for con tac t ing wi th f l u o r i n e . 
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Fluorinat ion exper iments were per formed with uranosic oxide-plutonium 
dioxide mix tures p r e p a r e d by oxidizing the uranium dioxide-plutonium 
dioxide solid solution with air for 3 hr at 450 C. The uranos ic oxide-
plutonium dioxide powder was mixed with 60 mesh alumina and fluorinated 
twice, f i r s t at 450 C and then at 550 C. The gas phase in these exper iments 
contained about 25 v /o oxygen, since oxygen Avould accunaulate in the gas 
phase to about this level as a resu l t of the fluorination of the oxides under 
p r o c e s s conditions. F o r the fluorination at 450 C, the initial concentrations 
of fluorine, oxygen, and nitrogen in the gas phase were 10, 25, and 65 p e r ­
cent, respect ively . Fo r the fluorination at 550 C, the initial composition 
of the gas phase was 75 v /o fluorine and 25 v /o oxygen. Essent ia l ly all of 
the uran ium and a la rge port ion of plutonium were removed from the mix­
ture during the f i r s t fluorination; the res idual plutonium was removed dur­
ing the second fluorination. 

The re su l t s obtained in two s e r i e s of t es t s a re shown in Table 6. 
In one s e r i e s , the duration of each fluorination per iod was 10 hr . In the 
other s e r i e s , the f i r s t fluorination per iod was 2 hr and the second was 
5 hr . The resu l t s of these t e s t s show that the uranos ic oxide-plutonium 
dioxide mixture is more readily fluorinated than is the solid solution of 
plutonium dioxide and uran ium dioxide. Retention of 0.011 w/o of plu­
toniumi on the alumina, which corresponded to a removal of 98.7 percent 
of the plutonium, resu l ted when the total reaction time was 7 hr . When 
both fluorination per iods were extended to 10 hr each, the retention of 
plutonium was 0.007 w / o , which corresponded to a removal of 99.5 p e r ­
cent of the plutonium contained in the solid mixture . 

Table 6 

FLUORINATION OF URANOSIC OXIDE-PLUTONIUM DIOXIDE 

Fluorinating Gas Mixtures: v /o F> v /o ©2 v /o Nj 

1st Per iod (450 C): 10 25 65 
ZndPeriod (550 C): 75 25 

Gas Flow Rate; 800 ml /min 
System P r e s s u r e : 1 atm 

Temp 
(C) 

450 
550 

450 
550 

Time 
(hr) 

10" 
1 0 / 

5_ 

Residue 
w/o Pu 

0.007 + 0.001 

0.011 + 0.005 

Percen t of 
Initial Pu 
Removed^ 

99.st* + 0.1 

98.7C X 0.3 

as.42 g UO2-PUO2 (3 g U, 0.011 g Pu, 0.03 g fission product e le­
ments) were oxidized by air at 450 C for 3 hr to form the U3O8-
PUO2 mixture used. The UsOg-PuOa was mixed with 0.90 g of 
AIP3 . 

^These resul ts a re average values for seven experiments. 

'^These resul ts a re average values for three experiments. 



IV. SUMMARY 

The esqjerimental work descr ibed in this r epor t was per formed in 
support of the work that is being c a r r i e d out on the development of fluid-
bed fluoride volati l i ty p r o c e s s e s . In the conceptual flowsheet of one such 
p r o c e s s , spent u ran ium dioxide fuel e lements , after decladding, will be 
fluorinated in a fluid-bed r eac to r to convert the uran ium and plutonium to 
their respec t ive hexafluorides . The labora tory work was di rec ted toward 
devising a fluorination scheme to achieve the removal of u ran ium and plu­
tonium as their hexafluorides from synthetic mix tures that sijmulated the 
spent r eac to r fuel which will be used as feed ma te r i a l in p lan t - sca le op­
era t ions of the fluid-bed f luorinator . Since the iner t solids that will be 
used as fluidized media a r e to be d i scarded after u se , it is economically 
impor tant that methods for the opt imum removal of plutonium and uraniura 
from the iner t solids be developed. 

It -was f i r s t demons t ra ted that u ran ium and plutonium could be 
removed from a solid solution of plutonium dioxide in u ran ium dioxide, in 
which the plutonium content was about 4 w / o , by fluorination at 450 C for 
10 hr . A solid solution was used since this approximated the physical 
condition of the u ran ium and plutonium in the spent nuclear fuel. More 
than 99-9 pe rcen t of the u ran ium and 99 percent of the plutonium were r e ­
moved during the fluorination. 

Several m a t e r i a l s were tes ted for use as fluidized iner t solids: 
r ec rys t a l l i zed alumina (Alundum), nickel fluoride, z i rconium te t raf luor ide , 
aluminum fluoride, and calcium fluoride. Of these m a t e r i a l s , high-puri ty 
alumina and nickel fluoride showed the most p romi se . The alumina r e ­
tained 0.01 w / o u ran ium and 0.03 w / o plutonium, whereas the nickel 
fluoride re ta ined l e s s than 0.01 w / o of each of u ran ium and plutonium. 

The effect of react ion t e m p e r a t u r e on the retention of u ran ium and 
plutonium on alumina was examined over the t empera tu re range from 
350 to 550 C. Uranium retent ion on alumina inc reased slightly from a 
value of 0.006 w / o at 350 C to 0.011 w / o at 550 C. Plutonium retention 
on alumina, however , i nc reased f rom a value of 0.029 w/o at 350 C to 
0.090 w / o at 550 C. 

When a mixture of 10 fission product e lement oxides* which form 
nonvolatile f luorides was added to the u ran ium dioxide-plutonium dioxide 
solid solution, i nc reased retent ion of plutonium on the iner t solid resul ted . 
F o r alumina, the plutonium retent ion was inc reased from 0.027 to 0.065 w / o 
of the res idue ; for nickel f luoride, the plutonium retention was inc reased 
froiTi 0.005 to 0.366 w / o of the res idue . The addition of the same fission 
product e lements as f luorides did not r e su l t in an inc rease in plutonium 
retention on the alumina. 

*BaO, ZrOz, Y2O3, LazOa, CeOj, P r^On , Nd203, SmjOj, EU2O3, andGdaOs-



Reduction of the plutonium reta ined on the alumina after f luorina­
tion to l e s s than 0.02 w / o can be accomplished effectively by ei ther of 
two additional t r e a tmen t s of the res idue . One involves a pyrohydrolysis 
of the res idue at 1000 C followed by a refluorination at 450 C for 10 hr . 
The other involves a refluorination at 550 C for 10 hr . 

Exper imen t s were a lso pe r fo rmed to determine the feasibility of 
using the same batch of alumina as the iner t solid for the fluorination of 
seve ra l batches of a solid solution of u ran ium dioxide-plutonium dioxide. 
The recycle use of alumina in the fluorination of five batches of the solid 
solution did not r e su l t in a g r e a t e r removal of plutonium than that which 
would have resu l ted if a separa te batch of alumina had been used in each 
fluorination. 

Exper iments were pe r fo rmed in which the solid solution of pluto­
nium dioxide in u ran ium dioxide was oxidized p r io r to fluorination. The 
oxidation resu l ted in a powdered mixture of uranos ic oxide and plutonium 
dioxide. Fluor inat ion of this oxide mixture in alumina resul ted in the r e ­
moval of essent ia l ly all the u ran ium in a react ion t ime of 2 hr at 450 C 
with 10 v / o fluorine. When this fluorination was followed by a second 
fluorination per iod of 5 h r at 550 C with 75 v / o fluorine, the plutonium 
content of the alumina was 0.011 w/o . When both fluorination per iods 
were extended to 10 hr each, the retention of plutonium was 0.007 w / o , 
which cor responded to a removal of 99.5 percen t of the plutonium. con­
tained in the solid mix tu re . 

Fu tu re work on the fluorination of mix tures of u ranos ic oxide and 
plutonium dioxide will be pe r fo rmed in a l - | - - in.-diameter fluid-bed r e a c ­
tor . Before s tar t ing work with an oxide mixture containing plutonium, 
exper iments will be pe r fo rmed with only uranos ic oxide. Work with plu­
tonium will begin after the fluid-bed appara tus has been tes ted and the 
exper imenta l conditions have been defined. 
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