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ABSTRACT

A general hermitian scalsx Wightman field is considered. On
the Hilbert spece of physical states "maturml” domains for certsin
complex Lorentz transformetions are constructed, and a theorem relating
these transformations to the TCP symmetry is etated and proved. Under
the additional assumption that the field is "locslly” essentially
self-adjoint, duality is comsidered for the algebras generated by
spectral projections of smeared fields. For a class of unbounded
reglons duality is proved, amd for certain bounded regions "locel"
extensions of the algebras are construeted which satisfy dvality. The
reletionship of the arguments presented to the Tomita-Takesaki theory
of modular Hilbert algebras is discussed. A separate analysis for the
free field is also given.
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1. Introduction

In the thecry of local observables and guantum
field theory the duality conditilon states that the
commutant of the von Neumann algebra A(R} locally
associated with a region R (in a suitably selected
family of regions of space-time) is precisely
equal to the von Neumann algebra A(Rc) locally as~
sociated with the causally complementary region RS, b
A systém of local algebras satisfying this condition
is maximal in the sense that it has no precper local
extension. Further consequences of duality have been
2) 3)

discussed by Licht, Doplicher, Haag and Roberts,

-8
and Guenin and Misra. 4 5 6-)

Araki and others
have proved duality for so-called diamond regions

for local algebras generated by a free hermitian scalar
field. In a recent paper Landaulm has found counter-

examples to duality for diamonds in the case of certain



generalized free fields, but it has also been shown
that there exist extended algebras which do satisfy
the condition. In this dissertation we will Investigate
duality for a general hermitian scalar field, not
necegsarily free.

our considerations will be within the frame-
work of quantum field theory as iormulated by Wightman

11-13)

and others. In Section 2 we will discuss this

assumption and the notation we will follow.

In Section 3 we state a variation of the theorem
of Reeh and Schlieder. 14 The remainder of the section
will be devoted to certain complex Lorentz traisforma-
tions and a connection between these and the anti-
unitary inversion transformation TCP. In parti.uiz>

we will be interested in the transformation

1 0 1] 0 ]
0 1 ] 0
Vieg,t) = w
0 ] cosh{t) sinh(t)
0 [} sinh(t) cosh(t)

which maps the "wedge" W = {x] x> lx‘l } of
Minkowski space ontc itself for real t. On the Hilbert
space X of physical states there is a corresponding
unitary operator U(V(g3,t) , 0), and a self~-adjoint

operator K3 such that
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U(V(ga.t) y 0) = exp(—itRB) (2)

Let Po‘wR) be tne polynomial algebra generated by field
operators averaged with test functions with support

in Wy, and let 2 be the unique Poincare invariant
vacuum, We shall show that as a consequence of the
"spactral condition" for the field every vector of

the form X}, X € P (Wg) is in the domain of the normsl
operator exp(-izx3) for the complex variable z in the
closed strip 0 < Im(zl< v, and the vector-valued
function exp(-iz!(3)xn is strongly continuous in 2z

on the above closed strip,and an analytic function of
Z on the interior of the strip. Purthermore, we will

show that for any such vector
exp(ﬂ(a)xﬂ = JX*Q {3}
where J is the antiunitary involution defined by
J = U(R(ey,m),000

where R(93,n) is the rotation by angle m about the

3=-axis and 6 ° is the TCP operator. Other questions

concarning the domain of exp(-izxa) will be discussed.
In Section 4, under the assumption that the field

is "locally" esse~tially self-adjoint, properties

of the von Weumann algebras generated by the spectral

projections of the self-adjoint extensions of the




field are considered. Particularly, the von Neumann
algebras A(WR) and A(WL) generated by field operators
averaged with test functions in WR and WL = -WR,
respectively, are analyzed and it is shown that

exp (1rK3) xR = IX*Q (4)

exp (-1rl<3) YR = Jy*@ (5)

for all X v A(WL)' and Y e A(WR)'. From (4) and (5)
the dnality condition

AW.) ' = AW ) (6)

follows. The algebras generated by smeared fields
for certain bounded regions are discussed, and loca.
extensions are constructed which satisfy duality.

In Section 5 we consider the relation of our
analysis to the Tomita-Takesaki theory of mocdular
Hilbert alge.brns.ls)'fhe equivalence of exp(27K,) and
the Tomita modular operator 4 for A(W,) is demon~
strated.

In Section 6 we give a separate discussion of
duality for wedge algebras generated by a free scalar
field which is based on the well-known vacuum ex-
pectation values of the bounded operators

exp(i¢[£]).



2. Assumptions and Notation

Space~time will be parametrized by the Cartesian

coardinates x = (xl, xz, x3, x‘). The Lorentz invar-

iant scalar product is defined as x'y = x‘y‘-xlyl-xzyz-xay"'.
The elements A = A(M, y) of the proper Poincare group
'i.'o are parametrized by the Lorentz matrix M and a real

four-vector y, suchk that MM, y)x = Mx + y.

we denote by D(R") the set of all complex-valued
infinitely differentiable functions of compact support
on n-dimentional Euclidean space R, and we denote by
S(R") the space of test functions on R" on which tem-
pered distributions are defined.
any f in S(R‘m) or D(R‘n) will be considered as a
function of n four-vectors (xl,...,xn) and will
be denoted by £(x,,...,x ). S(E) is endowed with
a topology defined by a countable set of noms
Let r and s stand for sets of integers (rl,...,rn)
and (Bl,....sn), respectively. Let %x* stand for
+oe.48

T x S 8 -} S
%x3l...xn and D° stand for 371 n/axll...axnn.

We define the nomms oo S(®) by
| . = Fp®s 7
[,f(xl,.. ’xn’”:,s aui |x | "

Convergence in S(R") is defined by



$-linf =0 ®

n+o

if iﬂ”fn”r,s =0 ,forallrands

We denote by (X,D) an ubounded operatar with domein of
definition D. The adjoint of (X,D) is denoted (X,D)*
If {X,D) is closable, we denote its closure by (X,D)*%,
This notation is never employed for bounded operators
which are regarded as defined on the entire Hilbert

space.
For the sake of simplicity we limit the discussion

to a single hermitian scalar Wightman field. The
physical states are described by unit rays in a separable
Hilbert space X which carries a strongly continuous
unitary representation U(A} = U(M, y)} of the Poincare
group L. For any ¥,£ ¢ # , the scalar proguct,
antilinear in ¢ and linear in £ , will be denoted by

b, 8. The subgroup of transiations U{I, y) has

a common spectral resolution
u, g = [P ua'p t9)
)

and the support of the spectral measure ¥ is contained
in the closed forward light-cone V, in momentum

space. This is the “spectral condition.” There
exists a vacuum state 2 uniquely characterized by its
invariance under all translations, and such that

U(A)@ = 9, for all A e '1:0.



The hermitian scalar field ¢ is defined by the
linear mapping of f € S(R‘") . N > 1, to an operator
(4{£1,0,) acting on X . The common domain D, con-
sists of the linear span of the vacuum § and vectors

of the form ¢{glQ., for g € S(R‘m), m> 1.
For any & = Dy, ¢{f}E is a vector-valued tempered

distribution in f, and thus if §~lim £, = 0, then
o

Lin ||ei£ }6]} = 0. The field is hermitian in the

ne+s

sense that for any € e Dl,

(#i£1,0) %8 = oi£M)e (10

where f‘r(xl,...,xn) - f'(x“,...,xl). For f ¢ S(R‘)
we employ the special notation ¢([f] = ¢{£} and note
that for £e b, aml £ e S(&'™ au g ¢ 5(&M)

¢{£1¢{glg = ¢{nl¢ (11)
where h“‘l""'xm'xma-l'""xnﬁn) - f.‘(xl,...,xm)x

g(xmﬂ,....xm_n) . In the literature ¢{f} is usually

expressed as

ole} = (1?‘(xl)...a‘(xn)f(xl,...,xn)¢(x1)...¢(xn)

Under the representation U{A) of the Poincare

group, the field transforms by

U ($LE} , DU = (#IAE} , D) (12)



where Af = f(A'lxl,...,A_lxn) . Locality is expressed
by the condition

¢{£}o{g)E = ¢{gle¢{f}E (13)

for £ ¢ Dl' g € S(R‘n), fe s(n‘m), and the support
of g in any xy space-like separated from the support

of f in any Xy
Define the subset Va of gin as
a —
Vy = 1pyseaeapy) ] fkpr €V, k= 1,...,m) (14)
r=

For £, g ¢ S(an) we have as a consequence of the

spectral condition that
¢{€}E = ¢(a)E, B ¢ Dy {15)

if i(1:'_-,.,...,1%.‘) = §(pgse-esipy) fOr (Pyee.o,py) €V,

where £ is the Fourier +ansform defined by
Epy,-ceum)) =

n
I 64()(1)...64(xn)E(xl,..,xn)exp(ig){r-pr) (16)



3. Complox Loreantz Transtormations

We define the “right wedjse® "R and the “"left
wedge" W, as the open subsets of Minkowski space M

W, - {x] x> lx‘l } a7
W= (x| -x3 > fxf ) 8

associated with these wedge regions are the algebras
Po(“R) and PO(HL) generated by the idantity and the set
{if), Dl)}, where f is any fuaction in S(R‘) with
support in wR and "l.' respectively. Certain subsets
of these algebras will be of particular importance in

our discussicn, Lsat Rl be a b ded, open, t

> {

subset of Woe and let x, € W be such that (x - xo) € W

L
for all x € ®,. For any integer n > 1, define the set

By by
Ry = {x +(n - l)xol x ¢ R} 19

R, is a subset of W, for all n, and if n > k, then
{x* - x") ¢ W for all x' € R, and x* € R . In par-
ticular Rn is space-like separated from Rk if n # k.
Define the subset Qp of PO(WR) as the linear span of
the identity and all operators (q, Dl) of the form

CERYEATILA RS
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vhere n > 1 and supp fi C Ry Similarly define QLCPO(HL)

except that R, is replaced by ﬁ( - {(xd,x 2, ox3,-x4) |

ot X .xs,x‘) =x € Rk} + We have the following

trivial variation of the theorem of Reeh and Schlieder 4

lemma 1: Let QR and Q; be defined as above. Then
the linear manifolas

o®=g@ am D" =qa

are each dense in the Hilbert space X .

Proof: {(E;.....6 )] & = x: & = %°%; 3¢ 121; xieR;)
is a real environment for analytic functions in C‘“.
With this fact a slight modification of the prosf of
Theorem 4-2 in the monograph of Streater and Hightmann)

yields the resuit.

Next we consider the Lorentz velocity transformation
along the 3-axis gziven by the matrix V(ga. t} in equation
(). The abelian subgroup {V(ga,t)l t real } of the

Poincare group maps Wy onto Wo and W, onto W, On the

L L
Hilbert space X of physical states there is a strongly
continuous unitary representation {U(v(ea.t), 0) | t real }
of this subgroup. By Stone's theorem there exists

a self~adjoint operator (KB' DK) such that
u(v(g3.t),0) = exp(—iu(a) (20)

In the following we will study the normal operators



exp(-17K;) = fexp{=its) nglas) {21)

where g is the spectral measure in the spectral de-
composition of (Ks, DK) and T € cl. For convenience
we denote axp(-itR3) by v(t}. The domain of the closed
operator V(1) depends only on Im(7) and will be denoted
by D,{Im(r)). If ¥ eDyl), A real, then the vector-valued
function V(t}® of v is well-defined, strongly con-
tinuous and bounded or the closed strip 0 < I_-;{_Q 21,
and is an analytic function ot t on the interior of this
strip.

Common cores exist for V(1) and for later reference
we state as a lemma some well-known facts about a
particular family of cores.
Lemma 2: a)Let c(s) £ D(Rl) and let the bounded op-~
erator c(K3) be defined by

o
c(K,) -_.]: c(s) nglds) (22}

Then c(K,)b & Oy(A) for all A real and for all v ¢ X
b) Let D be any dense linear manifold in ¥}
and let D, be defined by

D, = span {eir D fcte) € D(RY)) (23)

Then Dc is dense in M ., and a core for every operator
Vit), DylIm(t)).



¢) 1 c(m) ¢ D(R"), then c(Ks) is also giver
by

-
clKy) = [ &t elt)v(t) (24)
-~
where &(t} is the Pourlier transform of c{s) defined by

a(t) = 1}- ]st cls) eits (25)
N —
We furthermore note that &(t) is an entire analytic
fur.ction of t and &{t+ip), t and pu real, is in S(R1)
as a function of t.

d) For all p e X
Vi) ek = far e(e=-0vin)y (26)

Next we coneider the transformation j on Minkow-
ski space defined by

jx = j(xl.xz,xs.x‘) - (x",xz.-x:,—x‘) (27)

and note that j = v(93, iw) . Heuristically, this

suggests a relation of the form

VEina(x;) . b(x )0 = Q"jxl)...ﬁjxn)ﬂ (28)

and the remainder of this section will be devoted to
giving (28) rigorous meaning.

Let z be a four-vector and consider the function

z(1) = Viey, 1)z, TeC



i.e,, for Relr) = t and Iafir) =6,

:1(1) = :1

lz(t) = zz

:3(1) - (z3co-h t+ :‘unh t)cosd +

i(tslinh t+ :‘eolh t)siné
3ainh t)coso +

1(2%sinh ¢ + 22cosh t)sine

:‘('r) = (z‘co.h t+z

By inspection we see that
In(z(7)) & '.r+

for 3 ¢ Wp and 0 < Im(T) < 7. Thus the function
expi{ip-z(T)) will be of rapid decrease for p € vV, and
by the mpectral condition we might expect vectors

of the form X0 , ¥ e P (Wp), to be in Dy(2) for

0 <X <y . In the following lemmas we confirm this
suspicion.

Lemma 3: Let u{s) be an infinitely differentiable

function such that u{s) = 1 for » > 0 and u(s) =0

for s < -1. Define a function of the four-vector p by

E(p,z,1) = ulp-plulpblexplip-zit)) (29
Then:

a) E{p,z,1) ¢ S(R‘) in p for z ¢ Wy and
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0 < Im(t) < W,
b) EB(p,z,T) is analytic in t in the sense of the
§-topology of test functions for z ¢ LS and
0 < Im(T) < 7w,
c) Defire a function of n four-vectors Py and
n four-vectors 2y by

En(pl" seePpt Bysvec, st )

n n
- 1 B 0 (30)
kel 1-2-13’-"""

ThenE, ¢ SR in Pyre-+sPy 8nd analytic in 1 in
the §-topology for 2y, € 'R and 0 < Im{t) « w,

Proof: supp B(p.z,T) C {p |p* > 1) N {p| 2% > -1},
The set {p] p* <1} N aupp & is bounded as |B] = 72,

For ?4 > 1 and any integer s > 0,

4 -+
ID;E(p,z.T)li expt ﬂ&.Flﬂ_Im(z‘(T)-zz(T)),x
4 3
exp( T2 Gz (D) )y za,pl (3

where r(z(t), p) is some polynomial in the components
of z(1) and p of gegree s. Part a) follows immediately
from this estimate and Im{z2(t)) € v, for T in strip

0 < Im(t) < 7. For §-analyticity we must show that

for any integers r,s> 0 and complex h,

1im || dE!ngzzt) _E(Ezz!1+h)~E(E,z,T)” = 0

|nj+0 I,s



wWe first note that E(p,z,t} and D:F.(p,z,t) are analytic
in T in the open strip 0 < Im(t) < 1, and D:(dE/dT) =
d/dt (D;B). Let T, be in tke open strip, and let p > 0
be such that t_+h is in the open strip if lh| < 2p.

We then have the estimate for integers r, s > 0

k,
!(PrD;’[ g_%(Przlto) - E(P:ZITO"?)'E(PIZITO) 1] <

n/2
20jp)%) B, Mip.zet),  in] < p (32)
P
where M(p,z,7,} = max |D2E(p,z.t_+8)}, |8} = p.
3 x U o

From the estimate (31) we see that M(p,z,7.)|p]* 1s
bounded in the variable p by some H(z,ro). Thus for

any ¢ > 0, there exists a § > 0 such that

”95 {p,2, t°)-2(p,z,-r°+h)—E(p,z,to)H < e
dr n r:s

for all h such that |hj < &, and b} is proved. c}

ig a trivial corollary of a} and b).

Lemma 4: let Rlbeas in Lemma 1, and let Ei: D(Rd) and
supp £ [« R;. Define a function of n four-vectors
Pyeeweupp) by

E(pl,...,pn; f1seeeefpin) =

4 4
(‘{) A'xpeedix £ 0n) .. E () x

En(pl""'pn" Ky Xy Kppewnp X=X 15T } (33)
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Then a) E(Dy,ee.rPs £yreenefyit ) € SR in
PyeeresPy in the closed strip 0<Im(t)<n and is an
analytic function of t in the §-topology on the
intericr of the strip.

b) For Re(t) = t and Im(1] = &

eg-%tm E(pl,...,pn; f].""'fn" )y =

0, e r iy (V7 og, t1py) oo B ey R (30

n 5,
here Uy, eerty) = 1 (gt - e utipr. ) )

c) For Re(t) = t and Im{t; = @

8-1im Blpyreearbyr Fovenefizt) =

B+

s - ~j -1
Ulpye-neipy) £ (Y Yagetipy) oo Bl (v he, 00p) (39

where f,:l {p) = fk(jp)
We remark for the Fourier transform of ﬁ,

4
E(yyreene¥pi fpeeearfns ) SR dnoyp iy
and thus may be used to smear the field operators.
Proof: From the support of the £;+ the variables
Rys Ry~XpseserX ~X, o are each in W, throughout the
range of integration. Aas each £;¢ D(R‘) , the inte—
gration is over a compact set, and the analytic
properties of En established . Lemma 3 carry over

to the integral. The rest of the lemma is trivial.



Lemma S: a) The vector-valued function

oE(£,,...£,:T) I8 is a strongly continuous

function of 7T in the closed strip 051!:(1)5_' and
is a strongly analytic function of 1 on the

interior of the strip.
Let Re(7) = t and Im(7) =8 .
b) s-1lim O(B(fl,...,fnrt yin
80+
- v(t)ﬂfll...ﬂfnln (36)
) a~lm #{E{f),..00f 51 ) 1R
[
= vierete] 1...01ed 10 (3
& MHE(E ..t IR
n VIEYH{E(E ..o £ s L0} 1R (38}
Prcof: a)~c) follow immediately from the resulcs of
Lemma 4 and the fact that ¢{£}Q is a vector-valued
tempered distribution in £ satisfying the spectral

condition., d) follows from the fact that

i(pl, ceesPpi Epaeen £p £4D)

17
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= BV igy000p e v ey thp 18y e £ 380 )

on Vn .

et vy ¢ X and c(s) ¢ D(RY).
The function (0.0(!(!1,...,!n:t))n) is a bounded
function of T on the strip 0< Im{(1) < ¥ and analytic
on the interior of tha strip by the results of Lemma 5.

Consider the contour integral in

ar  2(reiw) (¢l BlLyre.-t 000 10) = 0
c1+c2+c3-0c‘
where the contoura are indicated on figure 1.
The contributicns from the coatours c; amd &,
vanish in the limit {Re(t) | + = as &(1) is in
8(rl) in the variable Ra(1).

Thus we have for 0 < € < %/2
-
[ at 2(z-i(v-e)) (¥, HE(E, ..ot strie)10) =
- n
-
! ac Blt+ic) (b, MELL;,..., £ ; t+ils-c))IR)

Taking tiie limit € + 0, and racalling Lemma 2 d) and

Lemma 5 c) and d) we have

fv, V{in)ciXy)d [fll e dTEIR) =

W, ckpetedi.etedin (39)



Lemma 6: Let¢lf;]... 5] ¢ 0y and c(s)¢ D(RL).

Then

v(in)e(K,) ¢if;]... 9[£ 18 =

c(ky) o163 1...0td 10 (40)

J ) =
where £ 0x) = fn(jx).

Proof: In (39) ¢ is an arbitrary vector in the

Hilbert space., The result immediately follows.

Associated with the j operator is an antiunitary
operator J = u(R(Es,n),o)eo where R(53,1r) is the ro-
tation of 7 about the 3-axis and eo is the antiunitary
TCP operator whose existence under our assumptions
is guaranteed by the theorem of Jost.”) J has the

following properties which will be of importance:

a2 =1, ae =p JUM,XT = UG, iR (A1)
Furthermore, JDl = Dl and

206£10v = GI£71,0 )% = oiE941u, ¥ & Dy (42)

For the velocity transformations V(t), in particular,

JV(c)J = v{t) for all t real (43)
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From this relation it follows that
D = Dg. J(Kz,Dx)J = _(K3’DK) (44)
JDy () = Dy(=A} , A real {45)
J(V{7) Dy (Im(7))T = (V(*), Dy(-Im(7})) (46)

We are now prepared for the main theorem of this

section.

Theoren 1: a) Let X € QR and c(s) € D(Rl). Then
V{im)e(R,)X 2 = c(Ky)IX*Q (47

b) Let ¥ ¢ QL and let c¢(s) ¢ D(Rl). Then
V{-ime(K,)¥2 = c(K3)J¥*h (48)

€) Let A be any operator with € in the domains of A and A* and
such that (AR, ¥R) = (Y*R, A*R) for allY e Poml.) Then

AR is in Dv(n) and
V(im)A R = JA*R (49)

d) Let B be any operator with f in the domains of B and B* and
and such that (B, X2) = (X*), B*Q) for all X ¢ PO(WR)

Then BR is in Dv(-'n) and

V(-im)BR = JB*Q (50)



2l

e) In particular result ¢) holds for A e Po (WR) ., and

result d) holds for B € P (W ].
Pxoof: We first recall that by definition X € QR
has domain D,. For any (¢ [fll...ﬂfn], Dl) €0y
(@R£ 1. 0L 1,D )% =
OEEL). .. HIE]1Y =
¢[fi]...¢{f;]¢ y Y E Dy

as supp fj is space-like separated from supp fj' i#3.

Thus
JGLE)] .. HIE ] -D*TY =
ole] 10080 20 FvEL

and 2} then follows from Lemma 6. As Y ¢ Qr is equal to
JxJ for some X € Qp, (48) is a consequence of a)

and relation {(46). To preve c¢) we first note

that

Dg = span {c(K3)Qp0} c(s) e o(rY)}

1g a core for V(ir} by Lemma 2 b). The following

string of egualities yields the desired result. Let XeQp.

(AR, V{imic(Ky)XR) =



(Ag, ¢ (R)Jx*32) =

£ at &ty @R, av(nxw lyamy =

_oerewm v Heran, ae) =

: ~1
(since JV(L)R*V ~(£)J ¢ P,W))

@

[ at a(t) (IV(L)x, A*R)

@

| at 2(v) (JA*Q, V(t)xQ)

-

#

(Ja*Q, ¢ (K3) XxR)

d) is similarly proved and e) is trivial.

22



4, Local von Neumann Algebras and Duality

In the theory of local observables there is a
correspondence between certain regions R of space~
time and von Neumann algebras A(R). R is selected
from & collection X oz regions of Minkowski space
which is invariant under Poincare transformations.
Let A(R)' denote the commutant of A(R) and let R®

denote the caugal complement of R, i.e.,

B = {x] (x=y)? < 0 for all yeR } (1)
A physically reasonable system of local algebras
should minimally satisfy the zonditions:
1) locality, i.e..
a(r®) C a(R' ,R= ¥ (52
ii) covariance, i.e.;

AR = aaR) S Re) 53

where U{A) is the unitary operator associated with

the Poincare transformation A and
AR = {Ax] xeR }

Ih this dissertation we wish to discuss the duality

condition

23
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a(K®%) = A(R)' (54)

for svstems of local algebras associated with a
hermitian scalar field. In view of same results of Arakim)
duality is usually conjectured only for regions R
such that R°® = R. We also note that the causal
complement ¢f R is often defined in the literature
as the interior of the set RC. This issue will be
clarified in the course of the discussion.
Unfortunately, it is not known in general whether
a nontrivial system of local algebras exists which is
relatively local to a hermitian scalar field ¢ in

the sense that

(XE, ¢[£12) = ($[£*1E, X*), E,0 € Dy

for R any open subset of Minkowski space, X £ A(R),

fe S(R4) and supp £ C R°. One condition which
guarantees the existence of such systems is as follows:
Special Condition: For every real f ¢ S(R4) the
operator (¢[£], D) is essentially self-adjoint.
Furthermore, if r ¢ S(Rd) and real, and supp r &

{supp £)°, then
EF = FE (55)

for any spectral projection E associated with
($Lrl, Dl) ** and any spectral projection F assoclated

with (${£], By)**.
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In the remainder of this section we shall discuss
duality under the assumption of the Special Condition
using the results of Section 3. 1In the £ollowing
lemma we establish that for any nonempty open subset R
of Minkowski space the von Neumann algebras A(R)
generated by the spectral projection of {(Mf],Dl)“l
fe S(Rﬂ) and real, and supp £ € R} are local aigebras.
Lemma B: Let ¢ he a hermitian scalar field satisfying
the Special Condition. For any nonempty open subset
R of Minkowski space the von Neumann algebras A(R)
generated by the spectral projections of {{(¢{f}, D,) hid'|
fe S(R‘) and real, and supp £ C R} form a local
system of algebras in the sense that:

a) For any two nonempty open subsets Ry and R, of
Minkowski space

N =c
A(Rl) [ A(Rz)' if Rl C Ry {56)

b) For any nonempty open subset R of Minkowski space
UNARUN(A) = A(AR), for all A e B (57)

Furtiermore,

c} JA(R)T = A(JR) (58)

where jR = {jx| x ¢ R}

a) {x0 | X € A(R)} is dense in }
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Prgof: Under the Special Condition by is a core for

{${f}, D.}**, £ ¢ S(Ré) and real. By the maximality
1

of self-adjoint operators, we have
ULA) ($1£3,D)) **0TH 1Ay =

{B1A£) , D) **
and
T(6i£1,0 %3 = (oigd), D)
for any veal £ e S(rY),
Let Vge Uper and uf(ije the associated spectral measures.

By the uniqueness of the spectral resolution we have

g tn = wy, (59
and

Tugl = ve () (603

b) and ¢) immediately follow from (59) and (€0}, and
a) is trivial.

Let Ik be an arbitrary real elemernt of S(R"]
with support in R. Among the operators in A(R) are
those of the form (exp(itk¢[qk]) = 1), £, real. Since

vectors of the fomm
¢lgy1dig,l...00q,1 , n > 0, supp g; C R (63)

may be approximated arbitralily closely by vectors of

the form
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(exp (it dlg,1)-1). . fexp (it ¢lg D-1) o
1t1 !.tn

and since the linear manifold generated by R and the
vectors of (1) are dense in K , 4} holds.

We are now in a position to extend the results
of Section 3 for Po (WR) and PO(WL) to the associated
local von Neumann algebras A(WR) and A(WL; .

Theorem 2: a) Let X ¢ A(WR). Then the vector X
is in  Dy(r) end

v{ir)xn = Ja*R (62)
b) Let Y e A(W ). Then the vector Y@ is in Dv(-1r) and
V(wimT)}¥YR = JY*Q (63)

c) Thesets of vectors MWR)n and A(WL)YI are
cores for the operators V(im) and V(-im), respectively.

d) Let 2 ¢ A(WL)'. Then the vector 28 is in Dv(w)and

Viimze = Jz%a (6)

e) Let W ¢ A(WR)'. Then the vector Wl dis in Dy(-m)
and

Vi(=im)wa = Jw*q (65)



Proof: a} and b} are a consequence of the Special

condition and Theorem 1 ¢) and d). Since

- - b j
v(ga,i:)wR = WR and v(ga,t)wL X Lemma B implies
that V(EAMRV L) = A(fy) and VIHAMIV () =

A(WL). Thus, operators of the form

X, = [ atd(n v e
o
are in A(Wp) for X el\(wR) and c(a} € D(R). Since
¥R = C(K)¥2 remmas 8 e) and 2 b) imply o).
Let Z € A(WL)‘ and X € A(WR). Then
(. viimix Q) = (28, IX 4IQ) =

(Ix g0, 2%Q) = (I2*R, X Q)

which follws from IX T € AW, ), together with c)
implies d). A similar argument yields e).
From Theorem 2 the duality condition for

wedge regions, in particular
V=
A(WR) A(WL)

will now follow.

Theorem 3: a) LetY ¢ A(WR)' and X & A(WL)'_ Then

P (66)

b) ML) ' = AW} 67



Proof: Since X € Dv(rr) and Yl eQ,(-7) , we have
(¥, xR) = (V(-im)¥R, v{im)x) =
(JY*Q, JX*R) = (X*Q, Y*R)
Let M, R & A(W) C A(Hy)'. Then
(M2, YXNQ) = (Y*Q, M*XNR) =
(N*X*MR, ¥R) = (MO, X¥N®)
as XN € A(W,)'. Since {MR [M e A(Hp)} is demse in X
XY = ¥X
and a) is proved. Reexpressing this result as
A(Wp) CaW)' C AW = a(W)

we also have part b).

We define the set W' of "wedge regions® as
W = (AHRIAe fol (68)

and the associated local von Neumann algebras

-1
A(AWR) =U(AJA(HR)U (A)
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As a corollary to Theorem 3 we have

A(W)' = AF®) Wl {69)

Next we wish to consider the duality condition
for bounded regions of space~time, and in particular,
for so-called double-cones. For any two points *y and
Xy of space-time such that Xy € v+(xl) s (where V_'_(xl)
is the forward light cone with %y as apex) , we define
the double-cone C = c(xl,x?_) by

Clxy %) = V, (%)) N V(x5

wheze V_(x,) is the backward light cone with x, as

apex. The double~cones so defined are thus open and
non-empty. We denote by C the set of all double~cones.
Again under the assmption of the Specisl Qundition, there exists
for each ¢ ¢ € the locally associated algebra

A{C). In his discussion of generalized free fields,

Landau 1@ )

constructs counter-examples to the duality
condition for double-cones. However, he also
exhibits local extensions of these algebras which

do satisfy duality. It is in this spirit that we

3¢



proceed in the more general case.
For any double-cone C we define the von Neumann
algebra B(C), which we regard as ausociated with the

closed, convex set C, by
BE@ = N{amlwe W ,w DE (70)

B(C) is an extension of the algebra A(c), and in
the following theorem we demonstrate that the set
cUsc{ 8@, s} form a local system of algebras which
satisfy the duality condition.

Theorem 4: Let B(C) be defiped as above. Then:
a) The algehras B(C) ara local in the sense that
for any C;, C, € @, such that ¢, C T,

B(E) ¢ B(E,)’ (71)
b) For any C e Canda AeT_,

UBE@ TN = BUD (72)
c) Forany C ¢ C,

B(@)' = A (73)
i.e., the duality condition is satisfied.

Proof: a) follows from the fact that for any two dis~

joint, space~iike separated double-comnes c1 and c2



there exists a wedge W, such that El CwWand T, C ac.
By definition B(C;) C A(W) and B(E,) € A(W), and
A = A@°) by (69). Thus B  DB(E,). b is
a trivial consequence of the definitions. To prove c)

we first note that
B(T)* = {(AW)' | We W, wdDCr
By duality for wedges, we have

B(©)' = (AW) {weW , o0

since @ D T implies ¥ ¢ T, we have

B = (AW |weW ,FCE )

B@ ' C a@®
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To prove the reverse inclusion, we turn to the definition

of A(T%). A(T®) is generated by the spectral pro-
jections of (¢ [f}, Dy)**, where f ¢ S(R‘) , £ real,
and supp £ CT°. Let X ¢ B(G)" = B(C). Let ye C°.
Then there exists a wedge W and an open neighborhood
Ny of y such that # € € and "y C W. Under the

assumption of the Special Condition we have
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lgle , X5 = ( X%, ¢igvIE),  ¥,§ & By (74}

for all g ¢ S(R‘) and supp g C Ny. It immediately
follows that (74) holds for all g€ S(RY) and supp g
€ ©° s we have assumed that D, is a domain of

essential self-adjointness for ¢ smeared with real test
finctions

X{¢pigl, DyI** C(olg), DyI¥*X

for all X ¢ B(C), and g ¢ S(R‘), g real, apd
supp g CE°. This relation implies that for amy
spectral projection E assoclated with (glgl, D))**,

XE = EX

and similarly for all elements of A(C®), which is
generated by such spactral proiections. Thus, we have

B(@® C AT

B(E)* D AT

which completes the proof.
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5. Relation to Tomita-Takesaki Theory

The analysis of sections 3 and 4 is closely re-
lated to the Tomita-Takesaki theory of modular Hilbert
algebras. 15,19 As the extensive results of this
approach yields information concerning factors, types,
and symmetries of von Neumann algebras, we wish to
establish the precise nature of this relationship.
The main theorem (from our point of view) is due to
Tomita, and we will state the facts in the following
form:

Let A be a von Neumann algebra on a separable
Hilbert space with a cyclic and separating vector g,
and let A' denote its commutant. Then there exists
a unique antiunitary involution ‘11" and a unigue

self-adjoint operator (4,D{A})), which eatigfy the

conditions:
a) J8=0, RebW), AR =R (75)
b) TpAT, ~ A T (16)
) 3o @ =o'l I 0N, = 071, ol
T . T [ T r
. N
a) altap=it 5 (78)
altpepit a0 (79)

for all real t.




e) If (S, AR) is the antilinear operator defined by
SXQ = X*Q , for all X e & (80)
then

@ a2, /) = (s, anye (81)

In the literature on the subject, A is called
the modular operator, and the automorphism in d)
ig the modular automorphism. The relastionship of
the apalysis of Section 4 and Tomita-Takesaki theory
for wedge algebra A(WR) is established in the
following theorem:
Theorem 5 : Let ¢ be a hermitian scalar field satisfying
the Special Condition and let AWy be the agsociated von

Neumann algebra of the "right wedge® WR. Let J,, S,

T
and (A, D (A)) be the Tomita operators associated

with A(Wo). Then
JT =J (82)
A, D@)) = (v(2in), Dv(h)) (83)

Proof: By Theorem 2 we have that A(Hn)n is a core for
the oparator (V(in) ,Dv(w)) . As J is an antiunitary

involution, A(Wp)2 is also a core for J(V{ir),Dy(m),
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and by definition is a core for the operator (S, AWp) Q)



From the relation
SXQ = X*Q = JV(imXR , for all X € A(HR)

and the uniqueness of the polar decomposition we have

3, = 7 and (812, p(al?) « (vtin), Dytx))and the

T
theorem follows.

We remark that for Wy = AWy, A ¢ fo,
the Tomita Jy and (4, D(2)) for ANy} = B(AIAMIU"(A)
are respectively U(A)JU™1(A) and (A} (V(2im), Dytzmnien.
Also, we note the similarity of our discussion in
Section 4 to that of Haag, Hugenholtz and Winnink 2%
and Kastler, Pool, and Thue Poul.unzn.

Finally, we state as a lemsa a paxaphrase of
Theorem 13.2 of Takesaki 2 wvhich gives another
set of conditions which characterizes the modular
operatrr A. This lexma will be ussd in the next
section for a separats discussion of the free hermittan

scalar field.



Lewma 9 : Let A be a von Neumann algebra with

a cyclic and separating vector Q. Let D(t), t real,
ba a one-parameter group of unitary operators such
that U(t)C = §, and such that

ve)AU ) = A, for all real t (84)

Furthersore, for all a, b ¢ A let there edst a finction
F(z) continucus in the closed strip 0 ¢« Im(z} < 1
and analytic in the corresponding open strip with
boundary values

P(e} = (2, avl(e)pm) (8s)

Fit+l) = (0, bu(t)an) (86)

for t real. Then U(t) = 4l%, whare & ia the serf-
adjoint modular operator for the von Neumann algebra A.
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6. Dpuality for Free Field

For a free hermitian scalar field we consider
the von :'cumann algebra AO(WR) generated by the
unitary sperators exp(i¢(f]), where f B:S(R‘), £ real,
and supp f CWR. Since the vacuum expectation values
of these operators are now explicitly available,
we present a separate proof of duality for "wedge"
algebras by direct computation.

For any £, g ¢ S(R) ana real

(8, exp(i¢ [f])exp(id[g])n) =

exp( %lf,£] ~[£,9] -%lg,g]) (87)

where, for example,

3
1 aQ -~ > -
9] = —— SB 1P )iku)
9 2(zm)° & G 9P (a8

2 2
= /p°+
up B m

Let supp £ CW, and supp g CW,y. Consider the function

F(t) = (8, exp(i¢ [£)V(2mt)exp(i¢ig])q)

38

= (Q,v(-rt)exp(i¢ (1) V(mt)V(+rtlexp(i¢ (gl N (-1t} Q)



= (8, explid [V(e,,~mE])exp(is (Viey, +rtigha)
(89)

From equation (g7) we have

F(t) = mup( —% IV(g3,-art)f.v(:3.-nt)fl
—[v(g:,.ent)f.v(g:, Antigl

-1 Wigqimtla,Viggintigh  30)

By Lorentz invariance the first and third terms in the

exponential are actually constant functions of t and

the second term is explicitly

3 - -~
i p 4
To% (.{, o £V (g5, +nt)-Bru)) g(Vie; i (p,ug))  (61)

Consider the eguation
E(v(g, ™ (=B, =
(J')d‘x exp(-ip-V(g;, -1t} x) £(x) (92)
€]
where p = (B,mp). For X € W, -Im(V(e,,~TH)x) € V,
for 0 < Im(t) < 1. Thus for f ¢ S(RA) and supp £ CW_,

£(V(g3,%8) (-B,-u )€ SRY) in B for 0 < Im(e) < 1, and

is apalytic in t in the corresponding open strip.
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By a sinllar argment £ g(Vi(gy, ~Tt) (Bou ), we
have that (91) is well-defined for t in the closed
strip 0 < Im(t) < 1, and is contimousin t in the closed
strip and analytic in t in the open strip. For Im(t) = 1
it has the houndary value

& -";li E(V(03,+98) (B,0.)) 5 (V(ey,-¥8) (-Fimg,)) (93)
where s = Re(tj. But since (93) is just the expresaion
for [V(g,,+¥8)g, V(gy,-ns}f], we have

Lomma 10: Let £, g € S(R‘), real, and supp £ C wR

and supp 9 C "R' Then there exists a function F(z)
continuous in the closed atrip 0 < Im(z) < 1, and
analytic in the jnterior of the strip with boundary

values
F(t) = (R, exp(i¢ [£))V(2nt)exp(id[g])R) (94)

F(t+i) = (@, exp(i¢(g])V(-2nt)exp(i¢[£]}0)(95)

for all real t.

Thus, for operators of the form exp(igif]) ¢ AO(HR)
we have the conditions of Lemma 9 satisfied with U(t) =
v(-2mt), since V(-2nt)A°(WR)V(2nt) = AO(HR) for all
real t. We will now extend this result to all operators
in AO(WR) .

First consider operators of the form
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»
X= nZJ, ajer {i¢ [fn]) (96)

with a, coplex, aod real £ ¢ S(Y) and swp £C W,
This set of oparators is in fact a polynomial algebra

since

oxp(i¢(f))exp(i¢{g]) = (constant)exp(i¢[f+g])

and we denote this set by Go(wn).

lemma 11: Let X, Y € Go(wn). Then there exists a
function F{z) continuous in the closed strip

0 < Im(z)< 1 and analytic in the interior of the strip

with boundary values
F(t) = (8, XV(2wt)¥YR) (97
P(t+l) = (8, YV(-2nt)X) (98)

for 211 real t.

Proof: Since X and Y are of the form (96), this lemma
is a trivial consequence of Lemma 10.

Theorem 6: Let X, ¥ el\o(wn). Then:

a) There exists a function F(2) continuous in the
closed strip 0 < Im(z) < 1 and anpalytic in the interior

of the strip with boundary values

F(t) = (R, Xv(2nt)¥Q) (99
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EF(t+i) = (9, yv(-2nt)x2) (100)
for 11 real t.

b) V(-2nt) = Ait, where A is the mo3al2r operator

for the algebra Ao (WR) .
e) A (W)' = JA (WQ)T = A (W} (103)

Proof: Since AO(WR) = GO(WR)", for any X, Y e AO(WR)

there exist bounded segquences 0% operators xn, Yne GO(WR)

such that 23
s-1im X8 = R 8-1lim xn = x*q
n+e ne
8-1im ynn =¥ B-1im Y;D = Y*
n+e n+e

Thus we have
(R, XVE27)YD) = Lim (X%, VE-276)Y Q)
n+s
(1, YV (-2rt)XQ) = lim (Y*Q, v(-2nt) X )
P

Bymauﬂmaduuaﬁmtimrn(z) continuous in the
closed strip 0 < Im(z)< 1, and analytic in the intericr of
the strip, with bomndary values (t real)

F,(€) = (X, vis2me) Y @)
E‘n(t+1) = (Y;ﬂ, v(-21rt)xnn)

E‘n(t) and Fn(t+i) are uniformiy bounded with respe:ct

to t , and converge unifcxrmly. Therefore
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E‘n(z) conveiges to a function F(z) which is continuows in
closed strip, and analy.ic in the interior of the strip
with bomdary values {t real)}

P(t) = (R,XV{(+2nt)¥Q)

F(t+i) = (Q, YV(-2nt)XQ)

Finally noting that V(t)no (WR

all real ¢, the conditions of Lemma9 are satisfied

Whie) = a ), for

and vi-2rt) = alt, and ) and b) are proved. Moreover, 8 = V(2ni).
By direct computation it is seen that V(in) exp(i¢[£))Q =
exp(161£9)01 , for expiip(£])e A (4. Fram the defining relation

I, (exp(161£1))0 = 82 (axp(iole)))*a

for the Tomita I associated with the algebra Ao(wn v

we have

Tn(exp(id(£]))Q = V(in) (exp(~-1e(£]1))Q
= exp(-i$([£ Ipa

= J(exp(i¢{f]))n

Therefore, Jp = J, and ¢) follows immediately from
. (78,
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