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ABSTRACT 

A general hermitlan scalar nightman f i e ld 1B considered. On 

the HUhert space of physical s ta tes "natural" domains for cer ta in 

complex Lorentz transformations a re constructed, and a theorem re l a t ing 

these transformations t o the TCP symmetry i s etated and proved. Under 

the addi t iona l assumption tha t the f i e ld i s "locally" e s sen t i a l ly 

se l f -adjoint , dual i ty i s considered for t he algebras generated by 

spectral projections of smeared f i e ld s . For a c lass of unbounded 

regions dua l i ty I s proved, and for cer ta in bounded regions "local" 

extensions of the algebras a re constructed which sa t i s fy dua l i ty . The 

re la t ionsh ip of the arguments presented t o the Tomita-Takesaki theory 

of modular HlXbert algebras i s discussed. A separate ana lys i s for the 

free f i e ld i s a lso given. 
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1. Introduction 

In the theory of local observables and quantum 
field theory the duality condition states that the 
commutant of the von Neumann algebra A(R) locally 
associated with a region R (in a suitably selected 
family of regions of space-time) is precisely 

equal to the von Neumann algebra A(R ) locally as-
c 11 sociated with the causally complementary region R . 

A system of local algebras satisfying this condition 
is maximal in the sense that it has no proper local 
extension* Further consequences of duality have been 
discussed by Licht, 'Doplicher, Haag and Roberts, ' 
and Guenin and Misra. ' Araki ' and others ' 

have proved duality for so-called diamond regions 
for local algebras generated by a free hermitian scalar 
field. In a recent paper Landau has found counter­
examples to duality for diamonds in the case of certain 
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generalized free fields, but it has also been shown 
that there exist extended algebras which do satisfy 
the condition, in this dissertation we will investigate 
duality for a general hermitian scalar field, not 
necessarily free. 

Our considerations will be within the frame­
work of quantum field theory as formulated by Wightman 
and others. 1 I _ 1 3 J m section 2 we will discuss this 
assumption and the notation we will follow. 

In Section 3 we state a variation of the theorem 
of Reeh and Schlieder. ' The remainder of the section 
will be devoted to certain complex Lorentz transforma­
tions and a connection between these and the anti-
unitary inversion transformation TCP. In parti^^lin' 
we will be interested in the transformation 

0 0 

0 0 

coshft) sinh(t) 

sinh(t) cosh(t) 

(1) 

which maps the "wedge" W = {x| x > |x | } of 
Minkowski space onto itself for real t. On the Hilbert 
space H of physical states there is a corresponding 

operator K, such that 



H(V(e 3,t), 0) « exp(-itK3) (2) 

Let P {»_) be the polynomial algebra generated by field 
operators averaged with test functions with support 
in W R, and let a be the unique Poincare invariant 
vacuum. We shall show that as a consequence of the 
"spectral condition" for the field every vector of 
the form X8, X s P 0( W

R>. is in the domain of the normal 
operator exp{-izK3) for the complex variable z in the 
closed strip 0 £ Im(z)5 IT, and the vector-valued 
function exp(-izK3)XSi iB strongly continuous in z 

on the above closed strip ,and an analytic function of 
z on the interior of the strip. Furthermore, we will 
show that for any such vector 

exp(irK3)XQ - JX*n (3) 

where J is the antiunitary involution defined by 

J - U(R(e,,n),0)e_ ~ j o 

where R(e3,ir) is the rotation by angle ir about the 
3-axis and 6 is the TCP operator. Other questions 
concerning the domain of exp(-izK3) will be discussed. 

In Section 4, under the assumption that the field 
is "locally" essentially self-adjoint, properties 
of the von Neumann algebras generated by the spectral 
projections of the Belf-adjoint extensions of the 



field are considered, particularly/ the von Neumann 
algebras M W R ) and A(W_) generated by field operators 
averaged with test functions in w and V»L = -W_, 
respectively, are analyzed and it is shown that 

exp(irK3)X8 » JX*U (4) 
^nd 

exp(-nK3)YB - JY*n (5) 

; >. A l v y and 

the duality condition 

A{WR) • - AOfj) (6) 

follows. The algebras generated by smeared fields 
for certain bounded regions are discussed, and local 
extensions are constructed which satisfy duality. 

In Section 5 we consider the relation of our 
analysis to the Tomita-Takesaki theory of modular 
Hilbert algebras. 'The equivalence of exp(2wK,) and 
the Tomita modular operator A for A(W R) is demon­
strated. 

In Section 6 we give a separate discussion of 
duality for wedge algebras generated by a free scalar 
field which is based on the well-known vacuum ex­
pectation values of the bounded operators 
exp(i*[f]). 
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2. Assumptions and Notation 

Space-time w i l l be parametrized by the Cartesian 
1 2 3 4 

coordinates x - (x , x , x , x ) - The Lorentz invar­
i a n t scalar product i s defined as x*y - x y -x y -x y -x y , 
The elements A = A(M, yj of the proper Poincare group 
L are parametrized by the Lorentz matrix M and a r ea l 
four-vector y , such tha t A(M,y)x = Mx + y . 

He denote by D(Rn) the s e t of a l l complex-valued 

i n f i n i t e l y d i f f e r e n t i a t e functions of compact support 

on n-dimentional Euclidean space R n , and we denote by 

SCR11) the space of t e s t functions on R11 on which tem­

pered d i s t r i bu t i ons are defined. 

Any f in S(R 4 n ) or D(R 4 n) w i l l be considered as a 

function of n four-vectors { x , , . . . , x ) and wi l l 

be denoted by f ( x 1 # . . . , x n ) . S(R*) i s entowed with 

a topology defined by a countable s e t of nouns 

Let r and s stand for s e t s of in tegers ( r 1 , - . . , r n ) 

and ( 3 . , . . . , s ) , r espec t ive ly . Let x r stand for 

x f l . . . x r n and D s stand for 3 s l + " * + s n / 3 x s l . . . a x V X n i n 

We define the noa» on SCR11) by 

l ! f ( x 1 , . . . , x n ) | | r ^ s = sup | x r D s f | (7) 

Convergence in S(R n) i s defined by 
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3-l im f. - 0 (8> 
n*» 

i f lim 11 f _ 11 _ . » 0 , for all r and s 

Vfe denote by (x,D) an unbounded operator with douia of 

definit ion D. The adjoint of (X,D) i s denoted (X,D>* 

I f <X,D) i s c losable, we denote i t s closure by (X,D)**. 

This notation i s never employed for bounded operators 

which are regarded as defined on the entire Hilbert 

space. 

For the sake of simplicity we limit the discussion 
to a single hermitian scalar Wightman field. The 
physical states are described by unit rays in a separable 
Hilbert space 5* which carries a strongly continuous 
unitary representation U(M = U(M, y) of the Poincare 
group L Q. For any i|i,E e H , the scalar product, 
antilinear in t|i and linear in 5 , will be denoted by 

IVi £) • The subgroup of cranslations U(I, y) has 
a common spectral resolution 

0(1, y) = / e i y - p u(d4p) (9) 

and the support of the spectral measure u is contained 
in the closed forward light-cone v + in momentum 
space. This is the "spectral condition." There 
exists a vacuum state n uniquely characterized by its 
invariance under all translations, and such that 
U(A)S! = 8, for all A e L . 
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The hernitian scalar field • is defined by the 
linear mapping of f e S(R ) , n >. 1, to an operator 
(*{£},D.) acting on K • The common domain o^ con­
sists of the linear span of the vacuum R and vectors 
of the form •{g)0. for g e S(R 4 n) , « > 1 . 
For any t ? D., *{fK is a vector-valued tempered 

distribution in f > and thus if fi-lim f * 0, then 
n~° n 

lim l|*(f K|! - 0. The field is hennitian in the 
n*« n 

sense that for any € e D., 

(10) 

" l ' " - " V - >-n'• ••'«!' 
we enploy the special notation $[f] « ${f} and note 
that for te Dj and f e S(R 4 m) at? g e S(R 4 n) 

*{f}*{g}? = •fh}£ (11) 

w h e r e h ( xl "WSs+l W ' f<xl V 
g ( x m + 1 , . . . , x m + n ) . In the literature ${f} is usually 
expressed as 

*(f} - Jd 4(x 1)...d 4(x n)f(x 1,...,x n)*(x 1)...*(x n) 

Under the representation U(A) of the Poinoare 

group, the f i e ld transforms by 

U(JU(4>{f} , D1)U"1(A) = H U f ) , D^ (12) 
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where /If = f (A" lx l f ...,A x„> • Locality is expressed 
by the condition 

*{f}*{g)£ = *tg}*{f)E (13) 

for g e D L, g e S(R 4 n), f e S ( R 4 m ) , and the support 
of g in any x. space-like separated from the support 
of f in any x. 

V n = {{p 1 (....p n)l I P r e V +, k = l,...,n> (14) 

For f, g e S(R ) we have as a consequence of the 

spectral condition that 

• U H = *CgU. i t D j (15) 

i f f ( P l , . . . , p n ) =• g ( p 1 ( . . . , p n ) for < P l p n ) e v n 

where f i s the Fourier 1-- ansform defined by 

*«»1 Pn> " 

& A n 
/ d* ( x . ) . . .d* (x ) f ( x i r . . , x >exp(i£x «p_) (16) i J- n ••• n r = i r r 
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3. Coaplex Lorents Transturmations 

We define the "right wed'je* N and the "left 
wedge* W as the open subsets of Minkowski space A 

H R - {x| x 3 > )x*| } (17) 

H L - {x| -x 3 > |x 4! } (18) 

Associated with these wedge regions are the algebras 
P 0(W R) and P

Q W L ) generated by ttte identity and the set 
<(*[<]• Oj)} , where f is any function in S(R 4) with 
support in W R and W^, respectively. Certain subsets 
of these algebras will be of particular iaportance in 
our discussion. Lst R, be a bounded, open* nonempty 
subset of H,., and let x. £ H_ be such that (x - x_) e w, 

K OK 0 I* 
for all i c ^ . For any integer n > 1, define the set 
* n b y 

R n - {x +(n - l)x 0| x e B x) (19) 

Rn i s a subset of WR for a l l n, and i f n > k, then 

(x 1 - x") e HR for a l l x 1 e R and x" e Ry. In par­

t icular R i s space-like separated from R, i f n jf k. 

Define the subset Q_ of P.IWJ as the l inear span of 

the identity and a l l operators (g, D.) of the torn 

g « * [ f 1 H l f 2 ] . . . * ! f n J 
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where n > 1 and supp f. C R., similarly define Q. C P (w.) 
•*• •*• It o L 

except that H^ is replaced by ̂  « {tx 1,x 2,-« 3
f-x 4J | 

(x ,x ,x ,x ) - x e Bjj) . We have the following 
trivial variation of the theorem of Reeh and Schlieder,1*' 
Lenna_l: Let Q R and Q L be defined as above. Then 
the linear manifolds 

are each dense in the Hilbert space X . 

Proofs {(e1,...,En)I 5 r - x x: ? i - x i-x ±_ 1, i>l; x ^ } 
is a real environment for analytic functions in c*u. 

Kith this fact a alight modification of the proof of 
Theorem 4-2 in the monograph of Streater and nightman ' 
yields the result. 

Next we consider the Lorentz velocity transformation 
along the 3-axis given by the matrix V(e 3 < t) in equation 
(1). The abellan subgroup (V(e,,t) | t real } of the 
Poincare group maps W R onto W_ and W L onto W, . On the 
Hilbert space H of physical states there is a strongly 
continuous unitary representation {U(v(e3,t), 0) | t real } 
of this subgroup. By Stone*s theorem there exists 
a self-adjoint operator (K„, D K) such that 

u(v(e3,t),0) • exp(-itK3) (20) 

In the following we will study the normal operators 
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exp{-iiK3) « /expl-iteJiijjCde) (21) 

where |i. is the spectral measure in the spectral de­
composition of (K-f D.) and T e C . For convenience 
we denote expC-ixK.) by V(r). The domain of the closed 
operator V(T) depends only on Im(t) and will be denoted 
by tUImh)). if 41 c U i * real, then the vector-valued 
function V(t)# of T is well-defined, strongly con­
tinuous and bounded on the closed strip 0 < I»(T) < 1 , 

A "* 
and is an analytic function of T on the interior of this 
strip. 

Common cores exist for V(T) and for later reference 
we state as a lemma some well-known facts about a 
particular family of cores. 
lemma 2: a)Let c(s) c D(R ) and let the bounded op­
erator c(K,) be defined by 

w 
c(K 3) • I c[i| UK(ds) (22) 

Then c(K3>* c DyO) for all I real and for all (1 e K 

b) Let D be any dense linear manifold in X 
and let D = be defined by 

D c - span (c(K3)D |c(s) e D(R X)) (23) 

Then D c is dense in H , and a core for every operator 
!V(T), D v(Im(T)). 
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c) If Ola) £ OCR 1), then c(Kj) is also given 
by 

C(K 3) « / dt e(t)V(t) (24) 

where Sit) is thfa Fourier transform of c(s) defined by 

c(t) - jL j ds c(s) e i u (25) 

He furthermore note that c(t) is an entire analytic 
function of t and e(t+iu), t and u real, is in SCR 1) 
as a function of t. 

d) For all * e X 

V(T)C{K3)I|I - /dt c(t-t)V(t)t (26) 

Next we consider the transformation j on Minkow­
ski space defined by 

jx - jfx 1,* 2,* 3,* 4) - lxl,x2,-x3,-**) (27) 

and note that j « Vie,, in). Heuristically, this 
suggests a relation of the f o m 

V(in)$(x1)...*(xn)a . •(jx1)...*(jxn)B (28) 

and the remainder of th is section wi l l be devoted to 

giving (28) rigorous meaning. 

Let z be a four-vector and consider the function 

i(T) • V(e,,T)z , t e c 
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i.e., for Red) - t and IB(T) - 6, 

Z 3 ( T ) - (23coih t + r4»inb t)co»9 + 

**(x) • (z4cosh t + z3sinh t)cos0 + 

By inspection we see that 

lad (i)) e v. 

exp(ip-z(x)) will be of rapid decrease for p e v +, and 
by the spectral condition we might expect vectors 
of the form XO , X e P O ( W B ) , to be in D y(X) for 

0 < X < i . In the following lemmas we confirm this 
suspicion. 
Lemma 3; Let u(s) be an infinitely differentiate 
function such that u(s) » 1 for s £ 0 and u(s) * 0 
for s ̂  -1. Define a function of the four-vector p by 

B(P,Z,T) = u(p-p)u(p4)exp(ip-z(T)) (29) 

Then: 
4 

a) E(p,z,x) e S(R ) in p for z e W n and 
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o < lm(t) < *. 
b) E(p,z,T) is analytic in T in the amnae of the 

£-topology of test functions for z e "_ and 
0 < IB(T) < w. 

c) Define a function of n four-vectors p. and 
n four-vectors i ± by 

n 
(30) 

k»l 
n E( j P 4.S,,,T) 

k»l i«k 1 K 

TnenE n e S(R ) in p,,...,pn and analytic in T in 
the S-topology for z f c e W R and 0 < IB(T) < ir. 
Proof: supp B(p,z,T) C (p |p* > -1) fl {p| p 2 > -1}. 
The set {p| y ^ U D supp J5 is bounded as |p| <_ /2. 
For ? > 1 and any integer i > 0 , 

ID*E(P,Z,T)| < exp( ~lP |'1P1 Im(z4(T)-z3(T)))» 

exp( ° " ' V ' 3 I ' " ) «|r(ztT),p)| ( 3 1, 

where r(z(?j, p) is some polynomial in the components 
of Z(T) and p of degree a. Part a) follows immediately 
from this estimate and Im(z(t}) e V for T in strip 
0 < Im(T) < it. For g-analytioity we roust show that 
for any integers rf s > 0 and complex h f 

lira 11 °E(P.*.T> - E(p.z.T+h)-E(p.2.T),, _ „ 
|hl-0 " ** K r.s 
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We first note that E(p,z,t) and D5E(P,Z,T) are analytic 
in T in the open strip 0 < lm(t) < 1, and DJ?(dE/dT) « 
d/dtCDpB). let T Q bo in the open strip, and let o > 0 
be such that -tQ+h is in the open strip if lh| < 2p. 
He then have the estimate for integers r„ s >_ 0 

l ( P V ) t ^ P ^ ' V • B ( P . « . T 0 + $ ) - E ( P . Z . T 0 I j i < 
p dT H72 

2<|p|r) 5, H(p,z,T ), |h| < p {32) 
P 

where M(p,z,T,.) = max |D°E(p/z,t +s) |, |s| = p, 
s P 

From the estimate (31) we see that M(p,z,t0) |p] r is 
bounded in the variable p by some M(Z,T ) . Thus for 
any s > 0, there exists a 6 > 0 such that 

I idE (p,z, t0)-E(p,z,To+hi-B(p,z,T0>|| < e 
~~ h r :s 

for a l l h such tha t |hj < 6, and b) i s proved, c) 

i s a t r i v i a l corol lary of a) and b ) . 

I.emma 4: Let R. be as in Lemma I, and l e t f^e D(R ) and 

supp t ± C R i - Define a function of n four-vectors 

( P r . - . , p n ) by 

*<Pl Pn' f l V T > ' 

( i , A J l . . .a 4

X n f 1 u 1 ! . . . f n (x n ) * 

E n ( P l Pn x r x 2 - x l ' - ' x n - V l i T > ( 3 3 > 
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T h e n a ) E(Pi V fi-
p l ' " " p n i n t h e o l o s e a s t r i p 0<Im(T)£n and i s an 
ana ly t ic function of T in the §-topology on the 
i n t e r i o r of the s t r i p . 

b) For Re(x) = t and IM(T) = 9 

g - l i » iip-.,...,*; f , , . . . , £ ; t > -
e+ o+ * n n 

HCpj p ^ C v ^ l g j . t j p ^ . . . f n ( v " 1 < e 3 , t ) p n ) (34) 

n A f 2 
where u f t ^ , . . . ^ ) = n [u(pk+...-tpJu<fy+...-)p l l) )] 

c) For Re(t) = t and Im(i; = 8 

§ - l i » i ! p , , . . . , P „ ; f , , . , . , f ; T ) -
B+v- 1 n l n 

U!Px,...,Pn)'J <v" 1(?3.«Pi)—*i «V - 1 «! 3 '«P E ) ( 3 S ) 

where ijj (p) = ik<JP> 

We remark for the Fourier transform of E, 

*<»! YB» H «»• >« S(R 4 n ) i n Y l y n 

and thus may be used to smear the field operators. 
Proofs From the support of the f^, the variables 
x ^ x 2-x 1 (...,x n-x n l are each in W H throughout the 
range of integration, as each fjE D(R ) , the inte­
gration is over a compact set, and the analytic 
properties of E established . Lemma 3 carry over 
to the integral. The rest of the lemma is trivial. 
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Lemma 5: a) The vector-valued function 

*fe(f1,...f » T ) }Q is a strongly continuous 

function of T in the closed strip (KIIS<T)£II and 
is a strongly analytic function of i on the 
interior of the strip. 

Let ReU) - t and II»(T) • e . 

b) s-lim •{E(f,,...,* IT )}!! 
6-.0+ * n 

- v(t)#If1)...»[fn]n (36) 

c) s-lia *{E(f, f_tt ) 19 

- V(t)*(f£ J...#ffl 113 (37) 

d) 4{E(f1,...,fnI T)}« 

'• v<«*<E< t l fn» isj Ja (3«; 

Proof: a)-c) follow immediately from the results of 
Lemma 4 and the fact that ${£}!! is a vector-valued 
tempered distribution in f satisfying the spectral 
condition, d) follows from the fact that 

s<Pr....Pn> h f n! t+i«) 
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« i(v"1t»3,t)p1,...,v"a(«3,t)pnif1,...,f!iiie ) 

on V„ . n 

Lat i e K and c(«) c DlR 1). 
Tha function (•.•taCf,,...,f i*»fl) ii a bounded 
function of r on th« atrip 0<, IB(T) <_ i and analytic 
an tin interior of tia atrip by tha results of Laaaa 5. 
Consider tha contour integral in 

j dx c(T-iw) (•,•< B«,,...* it))S1) « 0 
c 1 +c 2+c 3+c 4 

whara the contoura axa indicated on figure 1. 
The contribution* fro» tha aoatoura c^ and c 2 

vanish in tha liait 1RO(T) | •* - as c(T) is in 
SIR 1) in tha variable Re(i). 
Thus we have for 0 < c < */2 

/ dt 8(t-i(*-e)) (*, *tE(f, f_jttie))i>) . 
„ in 

w } dt 6(t+iE) (*, *«B(f.,...,f ; t+U*-e)))B) 
v x a 

Taking tlie Unfit e -• 0, and recalling Laooa 2 d) and 
Lemma 5 c) and d) we have 

t*, V(in)c!K3)4K1]...*ffIl)n) -

<•, c<K3H[fJ)..,*tfnJa) ! 3 9 ) 
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Lemma 6: L e t ' t l f . J . . . 4>[fnl e Q R a n d c ( s ) £ D(R ) . 

Then 

v(in)c(K 3 ) M ^ l . . . + [ f n ! a = 

c ( K 3 ) » t 4 ]. . .*tf D

n in ( 4 0 ) 

where fjjix) = f n<jx). 

Proof: In (39) i|i is an arbitrary vector in the 
Hilbert space. The result immediately follows. 

Associated with the j operator is an antiunitary 
operator J = D(R(e,,ir) ,0)9 where R(e3,u) is the ro­
tation of IF about the 3-axis and 0 is the antiunitary 
TCP operator whose existence under our assumptions 
is guaranteed by the theorem of Jost. J has the 
following properties which will be of importance: 

J 2 = 1, Jfl =0, JU(M,X)J = U(jMj,jx) (41) 

Furthermore, JD, = D. and 

J*[f]J* = (•[f3J,D1>*» = *[f̂ *Ii(i, * c D 1 (42) 

For the velocity transformations V(t), in particular, 

JV(t)J - V(t) for all t real (43) 
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From t h i s r e l a t i o n i t f o l l o w s t h a t 

J D K = DK' J d W J = ~ ( K 3 'V < 4 4 ) 

J D v ( i ) = D v ( - J ) , X r e a l (45) 

J ( V ( T > , D v ( I m < T ) ) J = ( V ( x * ) , D v ( - l m ( t ) ) ) (46) 

We are now prepared for the main theorem of this 
section. 
Theoren 1; a) Le t X e Q and c ( s ) e D(R ) . Then 

V( i i r )c (K 3 )X ft = c(K 3 )JX*n (47) 

b) Le t Y e Q L and l e t c ( s ) e D t R 1 ) . Then 

V(- i i i )o(K 3 )Yft = c (K 3 )JY*n (48) 

c) L e t A he any o p e r a t o r w i t h ft i n the domains of A and A* and 

such t h a t (AR, YI!) = <Y*!1, A*n) f o r a l l Y £ ^0Wj) Then 

Aft i s i n D„(Tr) and 

V(in)A ft = JA*ft (49) 

d) L e t B be any o p e r a t o r w i t h ft i n the domains of E and B* and 

and such t h a t (Bft, xft) = (X*B, B*D) for a l l X e P O ( W R ) 

Then Bft i s i n D (-it) and 

V(-iir)Bft = JB*!1 (50) 
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e) In particular result c) holds for A e P Q (WR) , and 
result d) holds for 8 £ P Q Wh). 

Proof; We first recall that by definition X e Q_ 
has domain D,. For any (* [f,]. ..# [f ], D.,) c Q 

C*lf 1!-..*[f n1,D 1)** = 

*tf*]...*!f*l* = 

*[£*]...* [f J]* ,1(1 e D 1 

as supp f. i s space-l ike separated from supp f̂ , i ^ j . 

Thus 

*[fji l..A[ii )* , * E l>x 

dnd a) then follows from Lemma 6. As Y E Q i s equal t o 

JXJ for some X E Q R , (48) i s a consequence of a) 

and r e l a t i o n ( 46). To prove c) we f i r s t note 

t ha t 

D* = span {c(K 3)Q Rn| o(s) E DIE 1)} 

i s a core for V(ifr) by J-emma 2 b ) . The following 

strir .g of e q u a l i t i e s y i e l d s the desired r e s u l t . Let X£Q. 

(Ai!, V(ilT)c(K3>XSl) = 
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IAS, c(K3)JX*J3) » 

/ dt 6(t) (At!, JV(t)X*V~1(t)jSJ) = 
_ OB 

J at a<t) (jv(t)xv_1(t)ja, A*SI) . 

(since JV(t)X*V~1(t)J E P ( W ) ) 

j at 6(t) (av(t)xa, A*fl) = 

/ at a(t) (JA*JI, v(t)xii) = 

(jA*n, o(K3)xn) 

d) is similarly proved and e) is trivial. 
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4. Local vou Hemmana Algebras and Duality 
In the theory of local observables there is a 

correspondence between certain regions s of space-
time and von Neumann algebras A(R). R is selected 
from a collection X of regions of Minkowski space 
which is invariant under Poincare transformations* 
Let A(R) * denote the coMsutant of A(R) and let R c 

denote the causal complement of R, i.e., 

R c = lx) (x~y) 2 < 0 for all y E R } (51) 

A physically reasonable system of local algebras 
should minimally satisfy the conditions: 

i) locality, i.e., 
A(RC> C A{R}» ,R.)( (52? 

ii) covariance, i.e., 

U<A}A(R)0"1(A) = A(AR) f * ^H (53) 

where 0(A) is the unitary operator associated with 
the Poincare transformation A and 

AE - {Ax| xeR > 

16 t h i s dissertation we wish to discuss the dual i ty 

condit ion 



AIR1") = A(R)' (54) 

for systems of local algebras associated with a 
hermitian scalar field. In view of sane results of Araki ^ 
duality is usually conjectured only for regions S 
such that R c c = R. We also note that the causal 
complement of R is often defined in the literature 
as the interior of the set R c. This issue will be 
clarified in the course of the discussion. 

Unfortunately, it is not known in general whether 
a nontrivial system of local algebras exists which is 
relatively local to a hermitian scalar field $ in 
the sense that 

(XE, *[fK> = (4>[f*]S, X*C), E,C E D^ 

for R any open subset of Minkowski space, X 6 A(R), 
f e S(R 4} and supp f C 5°. One condition which 
guarantees the existence of such systems is as follows: 
Special Condition: For every real f e S(R > the 
operator (•[f], D,) is essentially self-adjoint. 
Furthermore, if r e S(R ) and real, and supp r C 
(supp f ) c , then 

EF = FE (55) 

for any spectral projection s associated with 
(Mr], D ^ " and 
with (tlfl, Dj^* 
(4[r], D ^ ** and any spectral projection F associated 
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In the remainder of this section we shall discuss 
duality under the assumption of the Special Condition 
using the results of Section 3. In the following 
leinma we establish that for any nonempty open subset R 
of Minkowski space the von Neumann algebras A(R) 
generated by the spectral projection of {(<t>[f]rD. ) * * ! 
f e S(R ) and real, and supp f C R} are local algebras. 
Iiemma 8; Let $ be a hermitian scalar field satisfying 
the Special Condition. For any nonempty open subset 
R of Minkowski space the von Neumann algebras A(R) 
generated by the spectral projections of {(4>[f], D.)**| 
t e S(R ) and real, and supp £ C S) form a local 
system of algebras in the sense that: 

a) For any two nonempty open subsets R, and R, of 
Minkowski space 

A O ^ ) C A(R2)» if R L C S£ (56) 

b) For any nonempty open subset R of Minkowski space 

U(A)A(R)U~1(A) = A(AR), for all A e L Q (57) 

Furthermore, 

C) JA(R)J = A(jR) (58) 

where jR = {jx( x e R} 

d) {Xft | X e A(R)} is dense in H 
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Proof: under the Special Condition D, is a core for 
(#[fj, D 1!*», f e S(R4} and real. By the maxiraality 
of self-adjoint operators, we have 

U(A)W[f],D 1)**u" 1(A) » 

{•IAXI.DJ)** 

and 
J C + l f l . D j ^ J = (4 1 ( f ' i ,D 1 )** 

for any real f e S(R4). 

Let v f , u « f , and V|£j)be the associated spec t r a l measures. 

By the uniqueness of the spec t ra l reso lu t ion we have 

0<A)ii£0"1<A) = V A f (59) 

and 

Jw f.J = »t (1) (60) 

b) and c) immediately follow from (59) and (60), ana 
a) is trivial. 

Let g f c bt an arbitrary real element of S(E*) 
with support in R. Among the operators in M R ! are 
those of the form (exp(it *[tĵ l) -1)# t real, since 
vectors of the form 

*!g 1] + (g2l-.-*f9nl . n > 0, supp g 4 c 8 (61) 

may be approximated arbitralily closely by vectors of 
the form 
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(expCitj* fe^l)-!).. <exp(itn* [gn))-l) 

and since the linear manifold generated by a and the 
vectors of (61) are dense in Jf , d) holds. 

We axe now in a position to extend the results 
of Section 3 for P„(W„> and P„(W,) to the associated 

O K O b 
local von Neumann algebras A(w„) and A(W I. 
Theorem 2: a) Let X e A(W R). Then the vector XS1 

is in D^dt) «na 

V(iir)H2 = JX*C (62) 

b) Let Y E A{V»L). Then the vector YD i s i n QyHO and 

V(-in)Yn = JY*8 (63) 

V 
cores for the operators V(i7r) and v(- in) , respec t ive ly . 

A(H T >'. Then th> it 

vuirjzn « jz*n (64) 

e> Let w e A(WRS', Then the vector «8 i s in D y(-ir) 

and 

V(-iir)HI) = JW*R (65) 
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Proof; a! and b! are a consequence of the Special 
Condition and Theorem 1 c) and d ) . Since 

V(e 3,t)W R = H R and v(e 3,t)W L = W L , Lemma 8 «> implies 
that V(t)A(wR)v"X(t) = A(W R) and v(t)A(wL)v"1(t) -
A(W ) . Thus, operators of the form 

X c = f dtSSt) V<t)XV _ 1(t) 

are in ACWR) for X e A(WR! and c ( s ! s DIM. Since 

XQn = c(K3)XB Lemmas 8 e) and 2 b) imply c ) . 

Let Z s h(Sh) ' and X « A(WR> . Then 

<2ft. V(iir)xfl) = tzfi, JX*J<2) = c c 
(JX JO, z*s) = (jz*n, x si) 

C C 
which follws from JX CJ e M » t ) , together with c) 
implies d). A similar argument yields e). 

From Theorem 2 the dgalitv condition for 
wedge regions, in particular 

A(W R) • = A(H L) 

w i l l now follow. 

Theorem 3: a) L e t Y e A ( w l • and x £ A ( W . ) ' Then 
K Ij • 

XX = XX < 6 6 ' 

b! A « R ) ' - &Wh) (67) 
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Proof: Since XP c t^(ir) and Yfl £l^(-ir) , we have 

(YB, xn) - (v(-iir)yft, vunxso =* 

(JY*O, JX*K) = (x*a, y*n) 

Let H, N e A(WR) C a < M

L ) ' • Then 

(Ml, YXNS1) = (Y*a, H*Xt»a) = 

(H*X*Hn, Yfl) =r {MO, XYHO) 

as M*XN e A(W L ) ' . Since {H!i |H e A(WR)} i s dense in H 

XY » XX 

and «) i s proved. Reexpressing t h i s r e s u l t as 

MWt> CA(WR)' C A(WL)" = A(WL) 

we also have part b). 

We define the set W of "wedge regions* as 

V - {AWR I A e E 0 } , 6 8) 

and the associated local von Neumann algebras 

A<AWR) « B(A)A(WR)B"l(A) 
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As a corollary to Theorem 3 we have 

A{ff)' - A$°) , W c V (69) 

Next we wish to consider the duality condition 
for bounded regions of space-time, and in particular, 
for so-called double-cones. For any two points x, and 
x 2 of space-time such that x 2 e v + ( x 1 ) , (where V +(x 1) 
is the forward light cone with x. as apex) , we define 
the double-cone C = C(x.rx,J by 

C(x a,x 2) * V +( X ; L> n V_(x2) 

where V__(x2) i s the backward l i g h t cone with x , as 

apex. The double-cones so defined are thus open and 

non-empty. We denote by C the se t of a l l double-cones. 

Again under the assumption of the Special addition, there exists 

for each c t Q the loca l ly associated algebra 

A(C). In h i s discussion of generalized free f ie lds* 

Landau const ructs counter-examples t o the dua l i ty 

condition for double-cones. However, he a l so 

exh ib i t s local extensions of these algebras which 

do sa t i s fy dua l i t y . I t i s in t h i s s p i r i t t h a t we 
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proceed in the more general case. 
For any double-cone c we define the von Heumann 

algebra B(C), which we regard as associated with the 
closed, convex set c, fay 

B(c) « O { A(W)| W e ff , W D C ) (70) 

B(C) i s an extension of the algebra A(c) , and in 

the following theorem we demonstrate t h a t the se t 
l J

/ > { B(C), &CC?)} form a local system of algebras which 
C E O 
sa t i s fy the dua l i t y condi t ion. 

Theorem 4 ; Let B(C) be defined as above. Then: 

a) The algebras 8{c) are l oca l in the sense t h a t 

for any Cj , C 2 e Q , such t h a t c^ C f£j, 

B(CX) c B(C 2 ) ' (71) 

b) For any c e C and A e i" 

0(A)B<C)0"1(A) - B(AC> (72) 

o) For any C e C , 

B(C) 1 = Afc") (73) 

i . e . , the dua l i ty condition i s s a t i s f i e d . 

Proof: a) follows from the fact tha t for any two d i s ­

j o i n t , space- l ike separated double-cones C, and C~ 
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there exists a wedge W, such that C. C w and C, C W°. 
By definition B(CXJ C A(W) and B(C2> C A(W°), and 
A(W)' = M W 0 } by (691- Thus 8(0^' 3B{C 2>. b) is 
a trivial consequence of the definitions. To prove c) 
we first note that 

B(C) f = {A(W) • | W E TV* * W D C } " 

By duality for wedges, we have 

B(C)' *= (A(W) | tfe^ , i^Dc}" 

Sinoa C ioplies W C ? / we have 

8(C) 1 - U(W) I W eYC , S C c c }" 

ana 

B(C) • C afc") 

To prove the reverse inclusion, we turn to the definition 
of A(c°). Ate 0) is generated by the spectral pro­
jections of (if {f], D^)**, where f c S(R ), f real, 
and supp f e e 0 , let X e B(E)" » BtC). Let y e C°. 
Then there exists a wedge w and an open neighborhood 
N of y such that B C 5° and N C H. under the 
assumption of the Special Condition we have 
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(4>tgl* , xS) « ( X**, *[g*K>. *,C e Dĵ  (74) 

4 
for a l l g e S(R ) and supp g C H . I t immediately 

follows that (74) holds for a l l g= SIR) and supp g 
C c . As we have assumed that D. i s a domain of 
essent ia l self-adjointness for t smeared with real test 
functions 

XC»[g), D j ) " C ( » l 9 ) . D1)**X 

for all X e B(C), and g e SIR 4), g real, and 
supp g CC°. This relation implies that for any 
spectral projection E associated with ($[gl, l^)**, 

XE - EX 

and similarly for all elements of Ate 6), which is 
generated by such spectral projections. Thus, we have 

B(C) C A(C°>' 
and 

B(E)' D Ale") 

which completes the proof. 



5. Relation to Tomita-Takesaki Theory 

The analysis of sections 3 and 4 is closely re­
lated to the Tomita-Takesaki theory of modular Hilbert 
algebras. ' As the extensive results of this 
approach yields information concerning factors, types, 
and symmetries of von Neumann algebras, we wish to 
establish the precise nature of this relationship. 
The main theorem (from our point of view) is due to 
Tomita, and we will state the facts in the following 
form: 

Let A be a von Neumann algebra on a separable 
Hilbert apace with a cyclic and separating vector n. 
and let A' denote its coamutant. Then there exists 
a unique antiunitary involution J.,, and a unique 
self-adjoint operator (A,D(A)), which satisfy the 
conditions: 
a) J TO - a , a e D(&) , to <• a (75) 

b) J_AJ_ - A> ' (76) 

c) J TD (A) = DW" 1), JT(A,D(AI) J T - (A - 1, OUT1)) 

(77) 
d) A ^ A A - 1 ' - A (78) 

(79) 

for all real t. 
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e) If (S, Ail) is the antilinear operator defined by 

SXa = X*0 , for all X e A (80) 

then 

a 1/ 2, D<a 1 / 2)) - (S, Ail)** (81) 

In the literature on the subject, a is called 
the modular operator, and the automorphism in d) 
is the nodular automorphism. The relationship of 
the analysis of Section 4 and Tomita-Takeaaki theory 
for wedge algebra A(W„) is established in the 
following theorem: 
Theorem 5 - Let • be a hermitian scalar field satisfying 
the Special audition and Jet A(W„) be the associated von 

Neumann algebra of the "right wedge" W R. Iiet 3^, S, 
and (A , D (a)) be the Tomita operators associated 
with A(W R). Then 

J T - J (82) 

(S, D(a)> - !V(2iir), D„(2w!) (83) 

involution, A(WR)S) is also a core for J(V(in),Dv(n>), 
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From the relation 

and the uniqueness of the polar decomposition wa haw 

J T = J and <A l / 2, D(A X /*) - (V(i»), DvOr)>and the 

theorem follows. 

AW R, A ( E Q . 
the Tomita J T and (A, D(o)) for *(» A) - U U U O y t T ^ A ) 
are respectively tKAIJU^M) and 0(A) (V(2i*), D v(2»))q" 1(A). 
Also, we note the similarity of our discussion in 
Section 4 to that of SUag, Bogenholtz and Ninaink I 0 ) 

and Kastler, Pool, and Thue Poulsen 2 1'. 

Finally, we state as a lean a paraphrase of 
Theorem 13.2 of Takesaki 2 2 ) which gives another 
set of conditions which characterizes the modular 
operator A. This lemma will be used in the next 
section for a separate discussion of the free hersittan 
scalar field. 



Kama 9 : Let A be a von Neumann algebra with 

a cyc l ic and separating vector 0. Let Oft) , t real , 

be a one-paraaeter group of unitary operators such 

that D(t)Q - 8 , and such that 

0<t)Atf ^ c ) - K, for a l l real t < 8 

Furthermore, for a l l a, b e A let there exist a ftnctioa 

F(») continuous in the closed s tr ip 0 <_ ImU) <_ 1 

and analytic i n the corresponding open s t r ip with 

boundary values 

m i - (fl. aO _ 1(t)bH) (85) 

*Jt*i) - (B, so(t)aO) (»6j 

for t real. Then Oftt • a 1*, where a is the self-
adjoint Modular operator for the von Neumann algebra A. 
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6» Duality for Free Field 

For a free hermitian scalar field we consider 
the von ;:«.-.iaiann algebra A_(W R) generated by the 
unitaiy operators exp(i$[f]), where f e:S(B ) , f real, 
and supp f C W_. Since the vacuum expectation values 
of these operators are now explicitly available, 
we present a separate proof of duality for "wedge" 
algebras by direct computation. 

For any f, g e S(R*) and real 

(0, exp(i+[f])exp(i*tgl)fl) -

exp( -*[f,fj -tf,g] -%fa,g]) ( 8 7) 

where, for example, 

3 

Si T u>„ - /p* + m* P 

Let supp f C " R and supp g C W
H - Consider the function 

P(t) = (S, exp(i$[£])V(+2trt)exp(it[g])8) 

= (n,V(-irt)exp(ii|.[f])V(+iit)V(+iit)exp(it[g])V(-lit)n) 



= (0, exp(iif[V(e3,-Tit)fl)exp(i4>[V(e3,+itt)gI)n) 

(89) 

From equation (87) we have 

P(t) » »?:p( -f CV(e3,-irt)f,v(e3,-rt)fJ 

-[Vlgj.^af .v(e 3 ,+ut) g] 

-| [V(e3,+it)g,V(e3,+wt)g]) SO) 

By Lorents invariance the first and third terns in the 
exponential are actually constant functions of t and 
the second term is explicitly 

— - K - t ^ i(V(e,,+nt)(-5.-«U)g(V(e-f-ira(p,u_)) (91) 
16ir3<»> P " p -J p 

Consider the equation 

f(V(g3, it) (-p,-io )> = 

/ d 4x exp(-ip-V(e,,-lrt)x)f(x) (92) 
(•) 

where p - ( p , w ) . For x e W R , -Im(v(e 3,-wt)x) e V + 

for 0 < Im(t) < 1. Thus for f e S(R 4) and supp f C " R, 
f (V(e 3,nt) (-p,-u ))t S(R 3) in p for 0 ̂  Im(t) <. 1, and 
is analytic in t in the corresponding open strip. 
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By a similar argment for g(V(e,,,-ut) ( p , u ) ) w e 

3 p 

have that (91) i s well-defined for t in the closed 

str ip 0 < Im(t) 5 1, and i s aontinuousin t in the closed 

s tr ip and analytic in t in the open s tr ip . For Im(t) « 1 

i t has the boundary value 

(!) \ E *' v <« 3 > + "S)(p,li> p ))g(V(S3,-*S)(-p,-u p )) (93) 

where s = Re Itj. But since (93) is just the expression 
for [V(ej,+irs)g, V(§3,-»s)f), we have 
Lemma 10; Let f, g e S(R ), real, and supp f C M

R 

and supp g C "»• Then there exists a function F(z) 
continuous in the closed strip 0 < Ia(z) £ 1, and 
analytic in the interior of the strip with boundary 
values 

F(t) - <U, exp(it£f])V(2»t)exp(i*Ig])a) (94) 

F(t+i) - (n, exp(i*[g))V(-2nt)exp(i*If))f!)(9S) 

for all real t. 
Thus, for operators of the form exp(i*[f)) e * Q ( H

R ) 
we have the conditions of Lenma 9 satisfied with 0(t) • 
V(-2nt), since V(-2irt)A0(WR)V(2»t) - * 0< H

R> £ <> r a 1 1 

real t. He will now extend this result to all operators 
in a o ( » R ) . 

First consider operators of the form 



41 

X - | a ner ! i * l f n ] ) (96) 
n*i 

with a n ooaplex, and real J Q E SIR4) and sujp f C WR. 

This se t of operators i s in fact a polynomial algebra 

since 

exp(i*>tf])exp(i+(g]) - (con»tant)exp(i*[f+gl) 

and we denote this set by G Q (H R). 
La—la 11: Let X, ¥ e G Q(W R). Then there exists a 
function Ftz) continuous in the closed strip 
0 £ Im(s)£ 1 and analytic in the interior of the strip 
with boundary values 

F(t) - (0, XV(2wt)Yfi) (97) 

P(t+i) - (0, YV(-2wt)XD) (98) 

for ell real t. 

Proof: Since X and ¥ are of the form (96), this lemma 
is a trivial consequence of Lenrja 10. 
Theoree 6: Let X, ¥ e & 0 ( H R ) . Then: 
a) There exists a function F(2) continuous in the 
closed strip 0 <_ Im(z) 5 1 and analytic in the interior 
of the strip with boundary values 

P(t) - (n, XV(2itt)Y!i) (99) 
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F(t+i) = (n, Yv(-2nt)xa) (loo) 
for a l l real t . 

b) V(-2nt) « & 1*, where a i s the mo?uj3r operator 

for the algebra &0(WR>. 

<101) 

there exist boundec" sequences o'i operators X , Y e G O ' W R ' 
such that 23) 

s-lira x a = Xfl s - l im XJS! - X*£l 
n-M» ™ n * » 

s- l im YD = YD s - l im i*a - Y*(l 
n*<» n * " 

? h u s we have 

(ft, XV(+2itt)Y(l) « l i m (X*ft, V(+2*t)Y ft) 

(ft, YV(-2ltt)XB) « l i m (Y*8, V(-2nt)X i)> 
n-w n B 

By Iemna 11 there exults a function F (z) continuous in the 

closed strip 0 5 S»(z)<^ 1, and analytic in the interior of 

the s t r ip , with boundary values !t real) 

F n ( t ) = (Xjn, V(+2irt)Ynn) 

F (t+i) = (Y*fl, V (-2ntK n) n n n 

F (t) and F (t+i) are uniformly bounded with respect 
to t , and converge uniformly. Therefore 
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F (z) converges to a function F(z) which is continuous in 
closed strip, and analytic in the interior o£ the strip 
with boundary values (t real) 

F(t) = (n,XV(+2nt)YS!) 

F(t+i) - (8, YV(-27it)X!!) 

Finally noting that V(t)ft (V»K)V - 1(t) = *_(WR) < for 

a l l real t , the conditions of Lemma 9 are sat i s f ied 

and V(-2fit) « 4 i f e , and a) aid b) are proved. ttxsover, A - V(2ni). 

By direct confutation i t i s seen that V(iir) enp(i£ [f ]) n . 

exp(i*[f 3 ] )a , for expCi*(f))e * 0 W R ) . From tile defining relation 

J T (exp<i*[f]))R - a 1 / 2 ( a x p ( i « [ f ] ) ) * a 

for the Tonita J T associated with the algebra A (« ) , 
we have 

JT<exp(i<Hf)))8 • V(iir)(exp(-ilft*l>)8 

- exp(-i$[f ̂ lf! 

- J texpU+tf l l in 

Therefore, J T = J, and c) follows iranediately from 
(76). 
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