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1. Introduction

In recent years there has appeared in the literature a 

surge in the number of papers dealing with numerical solutions 

of partial differential equations. And, usually, the difference 

methods employed are of first or second order of accuracy.

This restriction is not an arbitrary one, but rather, is related 

to the fact that computing machines have been relatively slow 

and their high speed memory capacity has been small; hence a 

usable computational scheme must necessarily have the attribute 

of simplicity. In problems of more than one space dimension, 

even greater emphasis is placed on simplicity.

It is anticipated, however, that a new era of computability 

is almost upon us. We are referring to the use of parallel 

processors, i.e. N-serial type computing processors, each of 

which is synchronized and each of which can communicate with 

the other processors through a common memory or central 
controller. The value of N may be from 2^ to 2^ and the 

arithmetic speed of each individual processing unit will be 

in the sub-microsecond range. By proper organizing of the data, 

each mesh point or string of mesh points may have its own 

central processor, which means the solution on the entire mesh 

may be advanced essentially simultaneously. For such a class 

of computing machines the requirement of simplicity for the 

difference scheme may be relaxed.

In this note, we propose a class of difference schemes for 

hyperbolic problems in one and two space dimensions. The
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methods are applicable to nonlinear initial value problems;

they are uniformly third order accurate on both the space variables

and time and are similar to methods proposed by Strang [8].

2. A Third Order Difference Operator

We will construct a difference operator which is uniformly 

accurate to third order in each of the space and time increments 

Ax and At. There are schemes which are third or fourth order 

accurate in the space variable, but second order in the time step. 

Such methods are, therefore, not uniformly accurate in both the 

independent variables. The approximation scheme described here 

is constructed in divergent form — just as the original differ­

ential equation is written in divergent or conservation form.

In order to describe the derivation consider the differential 

equation in one dimension

(2.1)
ut = F(u,x,t,ux)

u(x,0) = Uq(x) _oo < x < CO

in which the flux is computed by evaluating F. Of course, for 

partial differential equations, F cannot be computed exactly 

since it depends on derivatives in the space variables. An 

approximate evaluation of F can be obtained if the space 

derivative, u , Is replaced by a difference approximation 6u.
In this paper we look at Runge-Kutta type approximations to

(2.1) which are third order accurate and for which the algorithm

u(t + At) = u(t) + ^ (^+^2+^)
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where

k1 = At P(t1,u1)

k2 = At P(ti+At/2, u^+k^/2)

k0 = At P(t.+At , u.-k-,+2k0)3 i 5 i 1 2

is a third order Runge-Kutta method of integration for first 

order ordinary differential equations and is analogous to the 

method derived for partial differential equations. Since three 

evaluations of F(x3t) are required, we would expect the same 
number of evaluations of difference approximations to the flux 

for the partial differential equation to be required. The 

form of the function P for the partial differential equation

(2.2) u = ft x

leads to the requirement that the approximation to P, F differ
O ~

only by terms of 0(At ) so that if u is a difference approxima­

tion satisfying

u(t+At) = u(t) + At P 

then |u(t)—u(t)j = OCAt^). Here

~ o
F^Xi 5tn,Ui 5<Su’• • • ^ = • • • ) + 0(AtJ) .

The great advantage of Runge-Kutta methods (one of which is 

Richtmyer’s Lax-Wendroff two step method [1]) is that to achieve 

higher order accuracy in approximating u(t) only repeated 

evaluations of F are required. For complicated F, however,
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this advantage becomes a disadvantage so that it may be desirable 

to use methods which do not require multiple evaluations of F(x) 

having only slight changes in the value of the argument, x, of F.

As in ordinary differential equation theory it is possible 

to construct approximation techniques to partial differential 

equations using Taylor series methods. For high accuracy this 

would require evaluation of higher derivatives of (2.1) and for 

coupled systems of equations, i.e., for systems of the form (2.2), 
these derivatives become more and more complicated to evaluate.

Lax and Wendroff [2] showed, however, that for systems of conserva­

tion laws given by (2.2), Taylor's method can be used to construct 
an elegant second order accurate algorithm. They showed that u^^ 

can be evaluated by using the original differential equation (2.2). 

If the matrix A = 8f/9u is introduced, then (2.2) can be written 

by using the chain rule as

(2.2a) u, = A(u)u t x

so that

(2.3)

is found in terms of space derivatives only. If one wished to 

construct a third order method, it would be necessary to compute 

the time derivative of (2.3) for the next term in the Taylor 

series. Unfortunately, it is not possible to then eliminate terms 

containing 9A/3t = A so that terms containing only space 

derivatives remain. It is clear that the dependence
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A = A(u5u )

will occur through time differentiation of each term of A and 

back substitution for the time derivatives of u from the right 

hand side of (2.2) (where the function P is relatively simple).

For the equations of gas dynamics this procedure will result 

in unnecessarily complicated difference methods with the 

associated disadvantage that the form of the algorithm will 

not be conservative.*

Instead of pursuing this approach, we use the alternate 

procedure which we first discussed, and which was first pointed 

out by Robert Richtmyer. He showed that the Lax-Wendroff method 

could be written in two steps. For each step, only an evaluation 

of f is required — just what one would expect from a Runge-Kutta
■A.

type method. The third order method which we now describe was 

first proposed by Rusanov, and we repeat some of the results that 

are contained in his paper [3]. We consider a sequence of 

iterates to the solution u(t). The r-th iterate defines an 

approximation to (2.1), and is given by
r-1

ur = u0 + At ars F(us,ts) 5 r =

The function F is evaluated at time t = t^ + t At, s = 1,2,...,R,S 0 S 5353

*---------------------------------
Gideon Zwas has shown, however, for the scalar case where 
A = a(u), that the £-th time derivative of u can be given by 
the compact expression

ultt = ^Vnx • n =

which preserves the conservation form of the associated 
differential equation.
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and u(0) = uQ is defined at t0>

A solution uR = uCt^) is obtained at t-^ = tg + At. To 

advance the solution from t-^ to the above procedure is

repeated with t^ replaced by t^. The are determined by

requiring that uR satisfy the Taylor expansion

UR u.
3u

+ At (g^-) + At
2!

32u,

3t‘
-) + AtJ

3!

93u
v) + OCAt^)

3t'

up to the required order of accuracy which is three. The 

quantities in parentheses are difference approximations to the 

derivatives of u^. To apply this procedure to the partial 

differential equation (2.2) it is convenient to write out the 

sequence of iterates using the notation u) = u(x^jtn) with 

tn+1 = tn + At and X =At/Ax. We use the following spatial 

difference operators in the derivation

(2.3)

and thus 
Then uf^^

i

U f(x±) = 2 (xi+l/2'> + f(xi-l/2)')

6 f(x1) = f('Xi+l/2') " f(Xi-1/2)

y6 f(x1) = ^ (f(x1 + 1) - f(x._]L)). 

u(x^,tn +T^5At) is given by

-̂
r

C\J

u(1)
i+1/2

ii

C\l3 u(x. , t + To1 i5 n 2

(2.5) (2)u: =i
u.f
1

(0) ,(0)

20
,(0)

21 .(1)
i
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and u.i
n+1 u;i = uCx^, tn+At) is given by

u.i
n+1 u.i

+ a3O{X(I+03162)y6f|O)}

(2.6)

+ a32{Xy6ff2^}

The sequence (2.4) - (2.6) is chosen to be in flux divergent 

form since the original differential equation is in this form. 

Equations (2.4) and (2.5) are generalizations of Richtmyer’s 

two step method; it will be shown that this form will lead to 

a one parameter set of difference methods. Equation (2.6) 

represents a linear combination of central differences of the 

flux at the three previous time levels 0, r.At and r^At. The 
quantity yu2+]y2 rePlaces ui+i/2 for stability of (2.4) (and 

indeed for stability of u^ ').

The prescription to find the a is to use operators (2.3)
10 s

in (2.4)-(2.6), and then expand each term in the brackets as a 

Taylor series; for example

2

(2.7) Vi ix +
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We use the symbol [=] to Indicate that the expressions (2.7)
4

are correct modulo terms C>(Ax ). In order to compare the 

resulting expression with the third order expansion

2 3n+1 n , / -j nN., , /, nNAt , /, nxAtJ,,-,/A.4xu = u + (d-^u + (d^^u )—2— + (d^^^u ^— + 0 (At )

(2.8)
= un + (dxfn)At + (atxfn}^e + (dttxfn)^ + OtAtt

function f(tQ+t^At) and f^2^(t0+x2At) must be expressed

as a Taylor expansion about fn = f^^tg). For instance, since

(2we want to find y6f) , first use (2.7) and then apply Taylor's 

formula to the result to obtain

y«f'2) = (dxf{0))Ax + T2At(dxtf<0))Ax + (dxttf'0))Ax

+ | (d,3,ff0)) Ax3 .
x i

In a similar fashion, we obtain the required expansion for each 

of the bracketed expressions in equation (2.6). The expression
J7L+1for u results in

Un+1 = un + (0^0+0122 ) (^xf) At + 022^2 ^dxtf^At2

(2.9) + (dxttf)At3 + a31(dxxu)Ax2

(c^q + 6 + 0(22) At Ax'
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The terms containing are at most second order accurate so
,, „ n+1 nto preserve the accuracy of u , = 0.

n+ ^]_

Comparing (2.8) with (2.9) we see that for u to be third 

order accurate, equation (2.6) must have coefficients and

which satisfy

(2.10)
a^g + Oto2 =

a^Q + 6 a30®31 + a32 = ^

1
a32T2 2 5 

2
a32T2 1

= F •

These relations imply that =: 3/^, = l/^j = 2/3

and = -2/3. Again, by using this expansion procedure on

the bracketed expressions in equation (2.5), we obtain

(2.11) u(2) = un + a20(dxf) At + a21((dxf)At + (d^f^At2)

(2)For the above equation for u to differ from the Taylor
,2)

expansion for u^ ^ about un by only terms of 0(AtJ), the a0(— s
must satisfy

(2.12) a2o a2l T2 5
1 2

a21Xl 2 T2

Similarly, for equation (2.4) to yield first order accurate data 

for ,

(2.13) a10 T 1 •

Hence, we have specified the coefficients to within one parameter, 

namely t,.
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For x-j- = 1/3j we have o^q = 0 and = 2/3. In this case 

the difference equations become

(2.l4a) (1) 1 / n , nv , 1 , _n ^ns-,ul+l/2 2 ul+l+ul + 3 ^X^fl+1 fi^

(2.14b) (2)u.i ui + 3 {A(fi+l/2 f(D NT. i-l/2^

(2.14c) u.^n+11
uj + x {|(-2f5;+2+ 7fj+1- 7f5;_1+ 2fj_2)

3 r 1 / f. ( 2 ) f(2)u ^ {2(fl+l - fl-l)}

These equations are the analog of the Integral of the 

conservation law. To see this we use the figure to define 

Integral quantities:

Figure 1
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Integrate (2.2) over the shaded region in the space time

domain to obtain
t 1

U1 = U0 + j f(x2,t3u2) dt - J f(x1,t,u1) dt.

In the above expression u^Ct) and ii2(t) are the values of u at 
the net points x^ and x2; the time dependency is indicated. The 

values of u computed by system (2.14) yield a sequence u(t^)5 
tQ <_ t^ <_ t, which allows the integrals of the flux over the 

time interval to be approximated more accurately. The

sums U-^3 Uq are seen to be telescoping sums in f cancelling in 
pairs over all net points between x^ and x2.

We show in the next section the stability properties of 

system (2.14); indeed, (2.l4) is unconditionally unstable 

(after all this effort!). If the right hand side of (2.14c) 
is denoted by Rn, then a stable scheme is obtained by subtracting 

an undivided difference quotient of fourth order from Rn, i.e.

(2.15)

The net point 

below

i]n+1 - T?nUi ~ R “ 2?co ~ 4 n6 u± , co > 0

cluster of the difference scheme (2.14) is shown

-11-



The points designated ° are first order accurate data, 

a -points are second order accurate data, and the x-point is 

the third order accurate solution. The schematic indicates 

the operator defined by (2.14a) is applied five times;

(2.l4b) is applied three times, and (2.l4c) and (2.15) are 

applied once. Another scheme is obtained for = 2/3 

(a2Q = a21 = 1/3); for this choice of the difference scheme 

is given by

(2.16a)

(2.16b )

u (1)
i+1/2

1
2 ( n (ui+i ui) 2

3 U(fn
i+1 - fj)}

u (2) = u.n If [(f (1)
i+1/2

- f(1) )
i-l/2; + I(fn _fn )1} 2 ^1i+1 i-1;jj

and equations (2.l4c) and (2.15).

The net point cluster of this difference scheme is also 

shown in the accompanying figures.

FIRST STEP SECOND and THIRD STEPS

(Five applications of (2.16a)) (Three applications of (2.l6b)

and one application of (2.l4c) 

and (2.15))

Figure 3
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j as well as(2)Since (2.l4c) requires second order data

initial data, f01, evaluation, in principle any second order

difference operator can be used to generate this data; in
(2)particular u. ' could be obtained from

u!2) = un
i i

- ^(fn -fn )+ 3Ui+l i-l;
2X‘ '{Ai+l/2(fi+l fi) Ai-l/2^fi fi-l)}

which is the Lax-Wendroff method.

In addition, a simple method can be used to obtain first 

order accurate data other than (2.l4a) or (2.l6a). The

only requirement is that the overall scheme be stable. In 

choosing a10 = x1 we have considered only values which result 

in positive weights in (2.5) and a value for the time step of

(2.4) which is less than or equal to the time step of (2.5). 

The permissible range of a-^Q required to satisfy these 

conditions is 1/3 £ ct-^Q £ 2/3.

3. Stability of the One Dimensional. Difference Operator

Let M be the amplification matrix obtained by first letting 

f(u) = Au and then substituting (2.l4a) and (2.l4b) into (2.l4c) 

subject to the viscosity expression (2.15). The amplification 

matrix of this combined system, obtained by substituting 

uQ exp (Ikx) for u!? is

-13-



(3.1)

= I - sin2? - £ (1-cos ?)2

+ 1XA sin ?(1 + i (1-cos ?)(1-X2A2))

where ? = k Ax and 0 <_ ? £ ^ •

Call m the eigenvalues of M (see Figure and a = Xp

p the eigenvalues of A. Construct the function g(?,a,to) from 

the real, R, and Imaginary, I, parts of (3.1) by

Since It takes so much effort to compute g we shall state Its 

value here.

(3.2a)
/1 ^ /1 r \ 2. 2 2/-, 2 % . 2 p. /,(1-cos ?) - 1—cos ?) + ^ a (l—c )sm ?(l-cos ?).

2Now |m | < 1 If and only If g < 0. Allow ? = tt and observe that

(3.3)

If and only if 0 w £ 3.

For small values of ?, m can be written as

-14-



Geometrically one sees that g will exceed one, in the complex 

plane, unless

(3.5) a) > 4a2 * - a4 * .

That is, the operator (2.14) will not be stable. Hence
2 4combining (3.3) and (3.5) we conclude that 4a -a £ w <_ 3

2 2which in turn implies that 0<a £1, 3£cr £4. To show
2that a takes on allowable values only in the interval 

prescribed by the Courant-Friedrichs-Lewy condition [4], it is 

necessary to show that for any value of o such that 3 £ cr £ 4, 

there exists a £ = £q such that g(£Q3a,m) >_ 0 for co given by

(3.5) . In equation (3.2a) set £ = tt/2:

§(■2 j(7,(o) = tw(6o —12) + (4a —23o +28a ))

>35- ((4a2-a4)2+ (4a2-a4)(6a2-12)

+ (4a6-23a4+28a2))

2
= jg (a2-l)(a2-4)(a2-5) > 0 for 3 £ a2 < 4.

2We see g < 0 only if 0 £ a £ 1.
2 4It is clear that if co = 4a -a and if 0 < a < 1, then g < 0. 

Setting gs(£,a) = g(C ,cr, 4a2-a4 ), and noting sin2£ =(l-cos £)

'(1+cos ?), we compute
2

(3.6) g*U,a) = (1-cos ?)2(4-a2) (1-a2)-P2(cos ?) ,
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where the quadratic polynomial

(3.7)

P2(x) = ax2 + bx + c 

a = - (1-a2) 

b = 2(3-cr2)

c = - (5-a2)

It can be shown that P2(x) < 0 if x < 1, which implies

P2(cos ?) < 0 if 0 < ? <_ it . Clearly, < 0 since
20 < a <1. One also observes that gs(0,cr) = 0. At this 

point we have shown that the right hand side of (3.2) is 

negative definite for tt >_ £ > 0 and

(3.8)
i) 0 < a < 1

. . \ ,.2 4n) co = 4a - a

We exclude the case where a = 1, since if that occurs, co = 3 3
2and g(£,l,3) = 1, which leads to |m | = 1, i.e. the associated 

difference operator is not dissipative.

We look at the quantity |m|. It can be bounded (using (3.4)) 

for small £:

(3.9) | m | £ 1 + (4a2-a)-ai<) + O(^) .

One can show that for any o e (0,1) there exists an e > 0 such 
' 2 4that if co = 4a -a +e and 0 < £ £ tt, g(^,a,co) < 0, which is 

equivalent to |m| < 1. There exists a pair 6^,n , each greater
i i 4than zero, such that 0 <_ £ £ n implies |m| £ 1-6-^ . Since
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[n,TT] is compact and since |m| < 1 on there exists a
i i 4positive 6p such that if n <_ £ <_ tt, then |m| <_ • Let

6 = minimum we see that the difference scheme associated

with the amplification matrix (3.1) is dissipative for 0 £ 5 fT 

in the sense of Kreiss since

(3.10) |m| < 1 - 6 , 6 > 0 .

Since the accuracy is of order 3, (3.1) is stable [5].

4. Two Dimensional Methods

For two dimensional hydrodynamic flows in which x and y are 

the cartesian coordinates, the equations of motion can be 

written in conservation-law form

(4.1) u, = f + gt x toy

where g is the vector representing the flux of the mass, momentum 

and energy per unit volume in the y direction. We carry out 

differentiation of (4.1) using the chain rule to obtain

(4.2) u, = A(u)u + B(u)uu x y

In general the matrices A and B do not commute and are not normal.

If one considers the class of linear problems where Aq = A(Up) 

and Bq = B(uq), u^ the state about which the motion is linearized, 

then (4.2) may be integrated to yield

u(t + At) = P u(t) ,
(4.3)

P = exp [ (AQ TjY + Bq gy)At] .
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Equation (4.3) is also valid even if and vary; however, 

the variation must be independent of time. With the obvious 

change in notation P may be written as

(11.4) P = eA+B .

This operator is called the exact solution operator of 

equation (4.2). The Fourier transform of P, P = exp (i(A5+Bp)) 

is called the symbol of the operator P (see ref. [5]).

By multiplying the initial data u(x,y,0) = u(0), r successive

times using the operator P, we can map u(0) into u(T), T = r At.

In forming difference approximations to (4.1) or equivalently 

in approximating the operator P, the question of stability arises. 

The analysis of stability of the difference operator becomes 

difficult, especially as the order of accuracy (and corresponding 

complexity) of the difference scheme increases. Indeed, in 

Strang's paper [6] on the construction of accurate difference 

methods, he is motivated in the construction of difference methods 

by approximating P to the desired degree of accuracy.

It is well known, for instance, that a first order approxima­

tion to the matrix P can be written as

(4.5) P = eAeB + C)(At2)

since A and B are of order At. The error in (4.5) goes to zero
A Bwhen A and B are scalars. The operators e and e can be 

thought of as exact solution operators to the one dimensional 

differential equation of the form (2.2a) defined separately

-18-



for the x and y directions. Let L(A) and L(B) be difference
A Bapproximations to the operators e and e respectively. If 

L(A) is the symbol of the x-difference operator and

(4.6) | L (A) - em| = 0 (Atp+1)

then we conclude that the difference operator is accurate to 

order p.

Strang has shown [6,7*8] that if one considers an operator 

L1(A,B) formed from the product of the one dimensional operators

L1(AJB) = L(A) L(B)

then

(4.7) \\ (L1(A,B) + L1(BJA)) - P| = d(?33n3)

where P has been defined previously. Strang has also noted 

recently [8] that it is possible to satisfy (4.7) with the product

(4.8) L(A/2) L(B) L(A/2) ,

replacing the sum in (4.7); hence (4.8) provides the structure 

for another difference scheme of second order accuracy.

The stability of (4.8) follows immediately from the stability 

of each one dimensional operator L(A) and L(B). For (4.8) to be 

second order accurate and stable each one dimensional operator, 

given by
2

(4.9) L (A/2) = I - | A<5 + £- A2S2 ,

which is the Lax-Wendroff operator, need be stable; this
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requirement is fulfilled if the eigenvalues of A and B, y(A) 

and ii(B) satisfy

X y(A) < 1
(4.10)

X y(B) < 1 .

Equation (4.8) can be used with a second order two step procedure 

rather than (4.9), i.e. equations (2.14a) and (2.14b) or system 

(2.16) (with the appropriate time step). The advantage is the 

elimination of the evaluation of the matrix A in the difference 

scheme.

Gourlay and Morris [9] have performed some computations 

with such schemes. They have adopted the operator in (4.7) 

for practical computations by also using two step versions of 

L(A) and L(B).

We wish to look for difference schemes of the form given by 

(4.8) which are of uniform third order accuracy. The structure 

of the difference operator will then be based on the third order 

one dimensional operators discussed in Section 2.

We have considered generalizations of the operators given 

in (4.7) and (4.8) of the form

(4.11)

T a.. = T B.. = 1 with each a,B > 0. ^ ij L ij -and

Clearly if one chosses 0-^ = 1 with a-^ = = $21 = a3i =
and a2-L = 0 = B^p then (4.11) becomes

(4.12) S1(A,B) A/2 B A/2 = e e e

-20-



With the constants = 1/2 and a^ = 1, and = 1/2

and a12 = 0 = $22’ ^12 = 1 = a22 5 becomes

(4.13) o 1 / A B B Av S2 = 2 (e e + e e ) .

The operators S1 and S2 are the operators Strang has investigated. 
It is interesting to consider the operator formed from linear 

combinations of (4.12) and (4.13), i.e.

u S, (A,B)+Sn (B,A)
(4.14) S3 = ------2— ^ S2 •

If the one dimensional differential operators in (4.14) are 

replaced by corresponding one-dimensional difference operators 

defined by

2 3(4.15) L(A) = I + AAy6 + A2S2 + A362y6 ,

then it may be verified by direct computation that the resulting 

difference approximation to the differential operator 

satisfies

2 3(4.16) = I + A(A+B) + — (A+B)2 + yy (A+B)3 .

Here, for simplicity we have used the abbreviations 

A = A(u)6 , B = B(u)6 for the centered difference operatorsx y
and X = At/Ax, A = Ax = Ay. This is precisely the expansion 

for (4.4) up to cubic terms. This operator was first found 

by J. Dunn.

The procedure used to derive the third order approximation 

to (4.4) which is in some sense computationally optimal follows.
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The operator defined by (4.14) is complicated and inefficient 

as it requires ten sweeps through the mesh — five in the 

x-direction and five in the y-direction — to advance the 

solution one time step. It is clear that more compact forms 

resulting in economical algorithms suggested by (4.11) are 

desirable. Consider the differential operator

(4.17) A B , aA 3B (l-a)A (l-B)B c^e e + c^e e e e

If the constants are chosen correctly (4.17) can be made 
to differ from (4.4) by terms of O(At^). To do this first 

expand each of the exponential forms up to terms involving 

cubic powers of the matrices A and B. This allows the evaluation 

of the term corresponding to the coefficient c^

I + (A+B) + | (A2+B2) + [a+(l-a)(l-B)AB

+ [ B (l-a) ]BA + £-(A3+B3)+ |[a2+2a(l-a) (l-B) + (l-a)2(l-B)]A2B
(4.18)

+ a3(l-a)ABA + | 3(l-a)2BA2 + I B2(l-a)B2A 

+ B(l-a)(l-B)BAB + |[aB2+ 2aB(l-8) + (1-B)2]AB2 ,

and the evaluation of the term corresponding to the coefficient c^

(4.19) I + (A+B) + |-(a2+B2) + AB + |(A3+B3) + |-(A2B + AB2) .

For simplicity we just equate the coefficients of the matrices 

BA, ABA and BAB in (4.18) to their proper values:
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c23(l-a) = | ,

c2a3(l-a) = ,

and
c2B(l-a)(1-B) = | .

These equations yield the values a = 1/3, 3 = 2/3, c2 = 9/8
and c1 = -1/8. We again observe the appearance of the nonpositive 

weight in our difference scheme. The difference equation becomes

(4.20) S3 = | L(A/3)L(2B/3)L(2A/3)L(B/3) -^L(A)L(B) .

Each one dimensional difference operator in (4.20) is defined

by (4.15). The proof of stability of (4.20) (and that of (4.14))

does not follow from the fact that the norm of each one

dimensional operator |L| < 1. If each coefficient c^ in (4.17)

were greater than zero then would be a convex operator and

one could conclude in that case that had norm less than one.

We defer this question until later.

It appears that (4.20) is most efficient in the sense that

the number of one dimensional sweeps is a minimum for a third

order operator. One needs at least six applications of the
A Bexponential operators e and e to match the noncommutative 

terms that result from the third order term in the Taylor
a I TD "j O

expansion for e ; i.e. -g/A+B) . The proof of this statement

involves consideration of linear combinations of products of 
A Be and e taken two at a time and three at a time. All such 

combinations fail to yield simultaneously the matrix operators 

ABA and BAB. Next consider product combinations of the one
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dimensional operators taken four at a time:

aA 6B (l-a)A (l-B)B e e e e

Expanding and considering the requirement that second order

accuracy implies 3(l-a) = 1/2, we find that for third order

accuracy a = 1/3, 3 = 2/3. Hence there is a contradiction.

Finally operators formed from products taken five at a time

are of the general form

a-,A 3nB a-A 3QB aQA
(4.21) e e e e e ^

For (4.21) to be third order accurate a1 must satisfy 
212a-L - 6a1 + 1=0. This polynomial however has only complex 

roots.

Hence a third order splitting method of the form (4.11) 

must have at least six terms. We state that the linear combina­

tion of the form (4.12), i.e.

aA 3 (l-a)A ^ 3B A (1-3)B c1e e e + c^e e e

cannot differ from e^+^ by terms of O(At^). Satisfying 

consistency requires that a and 3 must satisfy

|(a-3)(a+3-1) = 0 .

If a = 3 we can show that a must satisfy a quadratic in a with 

complex roots. If a+3 = 1, a satisfies (a-l/2)(a-l) = 0.

Now a / 1 so a = 1/2 and therefore 3 = 1/2 which is a contradiction. 

If one were to only consider operators with c^ > 0, then
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third order accuracy could still be obtained but with a relaxa­

tion of the condition that all cu, > 0. Although the analysis 

of stability would be trivial, one would have to accept multistep 

difference methods with operators having a negative time step.

For flows which contain shocks or other irreversible phenomena 

the problem is not well posed. If the flow is smooth and 

thermodynamically reversible there may be no drawback to such 

methods. We indicate in section 7 some results using (4.20).

5• Asymptotic Operators

It is possible to generate a positive difference operator but 

only asymptotically. Consider the differential operator

S(A,B;N) E eA/N e2B/N eA/N

and its conjugate SN(B,A;N). Then

N/4
(5.1) SN = (S(A,B;N) S(B,A;N)) , N=4,8,...

is called an asymptotic third order difference operator. SN 

would be an exact third order operator if the coefficient <5-^ 
of the terms (A^B,B^A), (BA^,AB^) and the coefficient 6^ of 

the terms (ABA, BAB) satisfied = = Instead these

coefficients are functions of N. We have computed bounds on 

the coefficients and show them below for several values of N:

N |61-1/6| < |62-1/6| <

4 .0053 .0105
8 .0013 .0026

12 .0006 .0012
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It appears, that using (4.4),

|lim Sw - P| = 0(At4) .

Since |S^(A,B)| < 1 and |S^(B,A)| < 1, then |S^| < 1 which 

shows the stability of (5.1). The operator defined by (5.1) 

achieves its accuracy by using finer and finer time steps,

At/N, as N 0O; indeed it is the form assumed for that gives 

the rapid convergence of coefficients 6-^, The operator
(eA/NeB/N)N/2, ^ _ 2,4,... will also give asymptotic high 

order accuracy (greater than first order) but requires many 

evaluations (large N) per time step. In comparison, (4.22) may 

be satisfactory for N = 4.

6. Stability of Two Dimensional Operators

Except for the brief discussion on the stability of asymptotic 

operators, we have not found a satisfactory method for the 

analysis of the stability of the operators given by (4.11). Our 

only recourse is to carry out a numerical analysis of the eigen­

values of the amplification matrix using the digital computer.

We have completed a calculation in which the independent variables

are the wave numbers (£,ri) in (x,y) space. We took the dissipa-
. 2 4tion coefficient to to be to = 4cx -a +e with -0.2 e £ 0.2 in 

steps of 0.1 and with 0 £ cr £ 1 also in steps of 0.1.

Prom this parametric study, it appears that the spectral 

radius of 3^(5,n), the transform of (4.20), satisfies
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(6.1) u(s3(?,n))| < 1

and

(6.2) |y(s3U,n))! < 1 - 6|e|4

2 2 1/2where 0 = (£ +n ) is the norm In wave number space If

(6.3)
i) 0<a<l3 e>_0

li) a = 0 , e > 0 .

However if 0 < a < 1 and e < 0 the spectral radius exceeds one.
_4

Indeed if £ =0.1 we can choose, in (6.2), 6 = 10 uniformly 

independent of a. To achieve this define

then pick

6, = l-yU?o)° - I| 3

6 = inf 6' .
U,n)

We have found that 6' 

For £ = p we indicate 

following table.

is smallest when (£,n) is near (Tr,7T). 

the behavior of |y.(£,£)| by the
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r ( y(S3U,S)) |-1)

K = - . 1 K = 0 i—
1

+ii

0.0 0.0 0.0 0.0
0.01 2.9xl0-11 -1.6xl0-11 -6.0X10-11

0.10 2.9xl0-7 -1.6xio~7 -6.0xl0"7

0.5 _41.7x10 -9.7xl0-5 -3.7x10
1.0 2.6xio-3 -1.5xlO_3 -6.5xl0“3

2.0 3.2xio-2 -1.9xl0-2 -6.7xl0“2

3.0 l.OxlO-1 -6.2xio_2 -2.ixio-1

We have defined the distance from the origin r = /^T £ in
2 4wave number space and k = a)-(4a -a ). In the next section we 

present further evidence as to the usefulness of these third 

order operators.

7. Results

We describe some numerical experiments carried out with the 

scheme (2.14) for the Riemann problem in one dimension and 

with (4.20) for a two dimensional scalar problem invented by 

Crowley [10] .

Figures 5 and 6 show the results of two calculations 

using system (2.14) and (2.15) to obtain approximate solutions 

to (2.2). Both calculations start with the same initial data, 

i.e. two constant states separated by a discontinuity:
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p-1(x) 
u(x) 

p (x)

2.0 p 1(x) = 2.245

0.0 .x>0 u(x) = 0.698,.

0.571 p(x) = 3.528

In Figure 5 a = 0.9 with oa = 0.75. The instability is clearly 

shown. Figure 6 shows the solution at approximately the same 

time; here o = 0.9 with to = 2.5.

We have tested the third order method in two dimensions on 

the following scalar problem. The differential equation

(7.D r, + ur + vr = 0 t x y

describes the motion of the 

if the velocity components 

to be
■NU

(7.2)

function r(x,y3t) in the x-y plane 

u and v are specified. We take them

= FI f 'y
V X

which means that the velocity vector depends only on the radius, 
-*•

i.e. v = r defines solid body rotation (in our problem 

centered at (x^y^) = (30,30)). If the components of (7.2) are 

differentiated with respect to x and y respectively we see that 

one may write (7.1) in conservation form

(7.3) r, + (ur) + (vr) = 0u x y

since the velocity field is divergence free.

The distribution r(x,y,t) is prescribed at t = 0 to be 

a right circular cone in (r,x,y) space centered at (37337) 

with base radius of five. Ax = Ay = 1. Equation (7.3) subject
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to (7.2) states that the total variation of r(t), Dr(t)/Dt, 

along circles with radius centered at (x^y^), vanishes, i.e. 

r is just uniformly rotated with period t = 2ir/Q. In our 

computation the mesh size is 60 x 60 while the cone height 

is one.

The table shown below is a summary of the computations 

performed for this "cone" problem. In problem 1, the first 

order scheme is defined by the operator (4.5) while for problems 

2, 3 and 4, the second order scheme is defined by the operator 

(4.8). The third order scheme is given by (4.20) with L defined 

by system (2.l4) and (2.15). The value of w in problem 5 did 

not satisfy the stability condition (3.5); it was kept constant. 

For problems 6, 7 and 8, the local value of w satisfies
Q il

co = 4a - a + e with e = .01. The value of a = At/A |u| with 
^ 2 1/2|u| = (u +v ) 7 . The components of drift of the vertex of the

cone in the x(y) direction equals the x(y) position of the vertex 

computed by the difference method - the x(y) position of the 

vertex given by the exact solution.

We see how poorly first order methods compare with second 

or third order methods in the amplitude and phase of the 

solution. The most striking difference between second and 

third order accuracy is in the computation of the phase of the 

solution. The position of the vertex is within one half mesh 

width in both the x and y direction for the third order 

calculation but is two to three mesh widths from the exact 

position in both the x and y direction for the second order 

calculation. For both second and third order schemes, increasing
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Table. Summary of Computations for Cone Problem.

Problem Method
Rotations
Traversed

Computed
Vertex
Amplitude

Vertex

x-direction

Drift

y-direction

No. of 
Integra 
-tion 
Cycles

1 first order 1/4 .07856 6.28699 2.07856 150

2 second ordei 1 .98935 1.65263 -2.51629 600
o = 1/6max

3 second ordei 1 .98363 1.55743 -2.29384 300

a = 1/3 max 2 . 82304 2.37585 -3.70616 600

4 second ordei 2 .79365 2.25867 -3.41507 240

o = 5/6max
5 third order 1 1.15205 ! .33053 - .29569 600

o)=const. = . 0! i

CT = 1/6max '
6 ithird order 1 1.03803 .26070 - .34469 600

a = 1/6max
7 third order 1 .99707 - .24833 - .36810 300

a = 1/3 max 2 .89400 - .89400 - .45386 600

8 third order oc. .81353 - .33365 - .45469 350

a = 4/7 max
9 third order : ^̂ 2 unstable

c = 4/6 max
10 third order 5/12 unstable

a = 5/6max

11 third order 1/2 goes 150

o=oonst.=.01 1 unstable 300

7max -
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the time step At with fixed space step increases o which 

results in greater dissipation in the third order difference 

scheme. Increasing At also increases the artificial viscosity 

in the second order method [see [5]] and therefore the greater 

smoothing reduces the maximum amplitude of r(x,yJt).

Problems 9 and 10 went unstable for the values of a 
indicated. Hence, one obtains an approximate upper bound for c, 

which gives an approximate upper bound for an allowable time step.

The remaining figures are labeled as to problem number, which 

corresponds to the problems given in the table on the preceding 

page. The figures show the overall behavior of the various 

methods and give means for a quick comparison between the methods. 

The contour lines, at each instant of time, define values 

r(x,y) = constant, the values of which lie between 0.05 and 0.95. 

For clarity the snapshot of the solution at the latest time has 

been shifted by an amount D along a line connecting the center of 

rotation and the vertex of the cone.

The scheme (4.20) required approximately 4 seconds per 

sweep while the second order method (4.8) (alternate sweeps were 

computed using first L(A/2) L(B) L(A/2) then L(B/2) L(A) L(B/2), 

etc., rather than L(A/2) L(B) L(A)... L(A) L(B) L(A/2)) required 

approximately 1 1/3 seconds. By comparing the numerical results 

in the above table, it appears that the mesh ratio for third order 

methods can be increased by a factor of three over the second 

order method. Comparable errors in the amplitude of the solution 

are obtained with the two methods but a clear superiority in the 

phase of the solution is achieved with (4.20).
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Our tentative conclusion, subject to additional numerical 

tests is that (4.20), using a more coarse mesh, may be as 

economical as a second order calculation on a fine mesh while 

still giving superior numerical results.
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Figure 4

Absolute value of the eigenvalues of Equation (3.1) 

showing dependence on w. The values of a are within .05 

of the maximum allowable for each w.

Curve
Number 03 a

0 0 1.00

1 1/3 0.05

2 2/3 0.15

3 3/3 0.25

4 5/3 0.45

5 8/3 OOOO

6 9/3 0.95

7 10/3 1.00
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Pressure and density profiles for the Riemann 

problem after 188 At (t =30.138) using a and uj 

not satisfying Equation (3.5).

Figure 5
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Figure 6

Pressure and density profiles for the Riemann 

problem after 163 At (t=30.065) using a and w 

satisfying Equation (3.5). The rarefaction wave 

propagates to the left; the contact discontinuity 

is located at x = 50; the shock propagates to 

the right with an error less than of the 

theoretical shock speed.
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Problem 2 Second order method with a = 1/6 andmax
computed vertex amplitude equal to O.989 
the exact value is 1.0.

Figure 7
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Figure 8

Problem 3 Same initial data and method as in Figure 7 

but with crmax = 1/3; after 300 cycles computed 

vertex amplitude equals 0.983; after 600 cycles 
amplitude equals 0.823.
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Problem 6 Same initial data as in Figure 7; third order

method with a = 1/6; a) is variable and is max
computed from Equation (3.5). The amplitude 

is 1.03 after 600 cycles.

Figure 9
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Figure 10

Problem 7 Same as Figure 9 but with o = 1/3.max
The amplitude after 300 cycles is 0.997 and 

after 600 cycles it is 0.894.
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Figure 11

Problem 11 - Same initial data as in Figure 7; third order

method with w = 0.01 and a = 1/3.max
Calculation does not satisfy stability 

condition (3.5). Eddies are forming while 

the amplitude increases — calculation 

eventually goes unstable.

-50-



5

—i------- 1--------- 1-------- 1-------- j-------- 1 i i i i i i
0.5 1.5 2.5 3.5 4.5 5.5 6.5

-51-





This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, 

or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately 
owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such em­ployee or contractor of the Commission, or 
employee of such contractor prepares, dis­seminates, or provides access to, any infor­mation pursuant to his employment or contract with the Commission, or his employment with 
such contractor.

-53-


