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1. Introduction

In recent years there has appeared in the literature a
surge 1n the number of papers dealing with numerical solutions
of partial differential equations. And, usually, the difference
methods employed are of first or second order of accuracy.

This restriction is not an arbitrary one, but rather, 1is related
to the fact that computing machines have been relatively slow
and their high speed memory capacity has been small; hence a
usable computational scheme must necessarily have the attribute
of simplicity. In problems of more than one space dimension,
even greater emphasis is placed on simplicity.

It is anticipated, however, that a new era of computability
is almost upon us. We are referring to the use of parallel
processors, 1i.e. N-serial type computing processors, each of
which is synchronized and each of which can communicate with
the other processors through a common memory or central
controller. The wvalue of N may be from 2% to 27 and the
arithmetic speed of each individual processing unit will be
in the sub-microsecond range. By proper organizing of the data,
each mesh point or string of mesh points may have its own
central processor, which means the solution on the entire mesh
may be advanced essentially simultaneously. For such a class
of computing machines the requirement of simplicity for the
difference scheme may be relaxed.

In this note, we propose a class of difference schemes for

hyperbolic problems in one and two space dimensions. The



methods are applicable to nonlinear initial wvalue problems;
they are uniformly third order accurate on both the space variables

and time and are similar to methods proposed by Strang [8].

2. A Third Order Difference Operator

We will construct a difference operator which is uniformly
accurate to third order in each of the space and time increments
Ax and At. There are schemes which are third or fourth order
accurate in the space variable, but second order in the time step.
Such methods are, therefore, not uniformly accurate in both the
independent variables. The approximation scheme described here
is constructed in divergent form — Jjust as the original differ-
ential equation is written in divergent or conservation form.

In order to describe the derivation consider the differential

equation in one dimension

ut = F(u,x,t,ux|
(2.1)
u(x,0) = UQ (%) 00 < x < (0
in which the flux is computed by evaluating F. Of course, for

partial differential equations, F cannot be computed exactly
since it depends on derivatives 1in the space variables. An
approximate evaluation of F can be obtained if the space
derivative, u , Is replaced by a difference approximation 6u.
In this paper we look at Runge-Kutta type approximations to

(2.1) which are third order accurate and for which the algorithm

U(t+At) = u(t) + ~ ("+"2+7)



where

k1l At P(tl,ul)

k2

At P(ti+At/2, ur+k"™/2)

kS

At P(ti+At ; ui—kj!+2k9)

is a third order Runge-Kutta method of integration for first
order ordinary differential equations and 1is analogous to the
method derived for partial differential equations. Since three
evaluations of F (x3t) are required, we would expect the same
number of evaluations of difference approximations to the flux
for the partial differential equation to be required. The

form of the function P for the partial differential equation

(2.2) u, = £

leads to the requirement that the approximation to P, F differ

only by terms of O0(At ) so that if u is a difference approxima-

tion satisfying

u(t+At) = u(t) + At P
then Ju(t)—u(t); = OCAt"). Here
~ 0
F*Xi 5tn,Ui 5<Su’+ " = v+ 0 (AtT)

The great advantage of Runge-Kutta methods (one of which is
Richtmyer’s Lax-Wendroff two step method [1]) 1is that to achieve
higher order accuracy in approximating u(t) only repeated

evaluations of F are required. For complicated F, however,



this advantage becomes a disadvantage so that it may be desirable
to use methods which do not require multiple evaluations of F(x)
having only slight changes in the wvalue of the argument, x, of F.
As 1n ordinary differential equation theory it is possible
to construct approximation techniques to partial differential
equations using Taylor series methods. For high accuracy this
would require evaluation of higher derivatives of (2.1] and for
coupled systems of equations, i.e., for systems of the form (2.2),
these derivatives become more and more complicated to evaluate.
Lax and Wendroff [2] showed, however, that for systems of conserva-
tion laws given by (2.2), Taylor's method can be used to construct
an elegant second order accurate algorithm. They showed that u*”"
can be evaluated by using the original differential equation (2.2).
If the matrix A = 8f/9u is introduced, then (2.2) can be written

by using the chain rule as

(2.2a) u, = A(u)u
t X
so that
(2.3)
is found in terms of space derivatives only. If one wished to

construct a third order method, it would be necessary to compute

the time derivative of (2.3) for the next term in the Taylor

series. Unfortunately, it is not possible to then eliminate terms
containing 9A/3t = A so that terms containing only space
derivatives remain. It is clear that the dependence



A = A (udu )

will occur through time differentiation of each term of A and
back substitution for the time derivatives of u from the right
hand side of (2.2) (where the function P is relatively simple).
For the equations of gas dynamics this procedure will result
in unnecessarily complicated difference methods with the
associated disadvantage that the form of the algorithm will
not be conservative.*

Instead of pursuing this approach, we use the alternate
procedure which we first discussed, and which was first pointed

out by Robert Richtmyer. He showed that the Lax-Wendroff method

could be written in two steps. For each step, only an evaluation

of £ is required — Jjust what one would expect from a Runge-Kutta
A

type method. The third order method which we now describe was

first proposed by Rusanov, and we repeat some of the results that

are contained in his paper [3]. We consider a sequence of
iterates to the solution u(t). The r—-th iterate defines an
approximation to (2.1), and is given by
r-1
ur = ul + At ars F(us,ts) 5§ r =
The function F is evaluated at time ts = ta + TS At, s = 1T%TBEST§

Gideon Zwas has shown, however, for the scalar case where

A = a(u), that the £-th time derivative of u can be given by
the compact expression

ultt = ST Vnix n =

which preserves the conservation form of the associated
differential equation.



and u(0) = uQ is defined at +tO0>

A solution uR = uCt”) 1is obtained at t-* = tg + At. To
advance the solution from t-* to the above procedure 1is
repeated with t* replaced by t*. The are determined by

requiring that uR satisfy the Taylor expansion

3u 32y, 93u
N At AtJ v) + OCAt")
UR u. + At (g"-) + 2 -+ 30
‘ 3t ) 3t!
up to the required order of accuracy which is three. The

quantities in parentheses are difference approximations to the
derivatives of u”. To apply this procedure to the partial
differential equation (2.2) it is convenient to write out the
sequence of iterates using the notation u) = u(x"jtn) with
tn+l = tn + At and X =At/Ax. We use the following spatial

difference operators in the derivation

U f(xt) = 2 (x1i+1/2) + £(xi-1/2)]
(2.3)
6 £(x1) = f('xi+1/2] " £(Xi-1/2)
and thus vb f(x1) = ~ (£f(xl+1) - f(x. IL)).
Then quA u(x”,tn +T"5At) is given by
5 é u (1) (O) -CO)
- i+1/2
w2 s u(x t +
1 i} "n To
(2) _ uf -(0) (1)
(2.3) e 20 21 i



and u., u; = uCx”, tn+At) 1is given by
i

n+l + a30{X(I+03162)y6f|0))}
u, u,

(2.6]

+ a32{Xy6ff2"}

The sequence (2.4) - (2.6) 1s chosen to be in flux divergent
form since the original differential equation is in this form.
Equations (2.4) and (2.5) are generalizations of Richtmyer’s
two step method; it will be shown that this form will lead to
a one parameter set of difference methods. Equation (2.6)
represents a linear combination of central differences of the

flux at the three previous time levels 0, r.At and r”At. The

quantity yu2+]y?2 rePlaces ui+i/2 for stability of (2.4) (and
indeed for stability of un ").

The prescription to find the 2 s is to use operators (2.3)

in (2.4)-(2.6), and then expand each term in the brackets as a

Taylor series; for example

(2.7) Vi ix +



We use the symbol [=] to Indicate that the expressions (2.7)
4

are correct modulo terms C>(Ax ). In order to compare the

resulting expression with the third order expansion
n+l n [+  nN / nNA ’ / nxAt%j ~, /A.4x%
u = u + (d-~u " 4+ (@**u %\I—E— + (@~~*~u - +"0'/At' )

= un + (dxfn)At + (atxfn} e + ((dttxfn) ™ + OtAtt

function £ (tQ+t~At) and £727(t0+x2At) must be expressed
as a Taylor expansion about fn = £°7°tg) . For instance, since
. (2 .
we want to find y6f) , first use (2.7) and then apply Taylor's

formula to the result to obtain

y«f'2) = (dxf{0))Ax + T2At (dxtf<0))Ax + (dxttf'0) )Ax
+ | (4,3, f£f0)) Ax3
X 1

In a similar fashion, we obtain the required expansion for each

of the bracketed expressions in equation (2.6). The expression
m+1

for u results in

Un+l = un + (070+40122) ("x£)At + 02272 ~dxtf"At2

(2.9) + (dxttf)At3 + a3l (dxxu)Ax?

(c™o + 6 + 0(22) At Ax'



The terms containing are at most second order accurate so

2 n-l- l
to preserve the accuracy of u , = %.
o+
Comparing (2.8) with (2.9) we see that for u to be third
order accurate, equation (2.6) must have coefficients and

which satisfy

1
a”~g + 0Oto2 = a32T?2 2 )
(2.10) 2
al327T?2 1
a”"Q + 6 a30®31 + a32 = " .

These relations imply that = 3/, = 1/%5 = 2/3

and = -2/3. Again, by using this expansion procedure on

the bracketed expressions in equation (2.5), we obtain

(2.11) u(2) = un + a20(dxf) At + a2l ((dxf)At + (A~E£"~At2)
2]

For the above equation for u to differ from the Taylor

,2)

expansion for u” ' about un by only terms of 0 (AtJ), the al
-s

must satisfy

1 2
(2.12] alo a2l T2 ) a2l1x1 2 T2

Similarly, for equation (2.4) to yield first order accurate data

for ,

(2.13) alo T1 .

Hence, we have specified the coefficients to within one parameter,

namely T,.



For #j- = 1/3] we have 07¢ = 0 and = 2/3. In this case

the difference equations become

Ana-
(2.14a) B S DT B FETI L ENIOPS e
(2.14b) u,?! i i (o v
. , ui + 3 {A(fi+1/2 i-1/2"
(2.14c¢) aptl uj + x {|(-2f5;+2+ T7fj+1- 7f5; 1+ 2f5 2
) | _ _
3 T /f. 2 f 2
~ {%(f£+i - fi—i}%

These equations are the analog of the Integral of the
conservation law. To see this we use the figure to define

Integral quantities

Figure 1

-10-



Integrate (2.2) over the shaded region in the space time

domain to obtain

Ul = U0 + ] f£(x2,t3u2) dt - | f(x1,t,ul) dt.

In the above expression u”Ct) and ii2(t) are the values of u at
the net points x* and x2; the time dependency is indicated. The
values of u computed by system (2.14) yield a sequence u(t?))
tQ < t* < 1=, which allows the integrals of the flux over the
time interval to be approximated more accurately. The
sums U-"] Ug are seen to be telescoping sums in f cancelling in
pairs over all net points between x* and x2.

We show in the next section the stability properties of
system (2.14); indeed, (2.14) 1is unconditionally unstable

(after all this effort!). If the right hand side of (2.14c)

is denoted by Rn, then a stable scheme is obtained by subtracting

an undivided difference quotient of fourth order from Rn, i.e.
; - © 4 n
(2.15) Hotl - fno o % 502

| o > 0

The net point cluster of the difference scheme (2.14) is shown

below

_ll_



The points designated ° are first order accurate data,

a —points are second order accurate data, and the x-point is
the third order accurate solution. The schematic indicates
the operator defined by (2.14a) 1is applied five times;

(2.14b) 1is applied three times, and (2.1l4c) and (2.15) are
applied once. Another scheme is obtained for = 2/3

(a20 = a2l = 1/3); for this choice of the difference scheme

is given by

(1] Lol 5 C Do £9))
(2.16a) uiT1/2 ) (u+1 ui) ; UE
(2] n (1) - £ ) o+ 1(f £ 1
2.160) w =W Pty , T Tty TR R TR

and equations (2.14c) and (2.15).
The net point cluster of this difference scheme is also

shown in the accompanying figures.

FIRST STEP SECOND and THIRD STEPS

(Five applications of (2.16a)) (Three applications of (2.16Db)

and one application of (2.14c)

and (2.15))

Figure 3

_12_



(2]

Since (2.14c) requires second order data i as well as
initial data, f01, evaluation, in principle any second order

difference operator can be used to generate this data; in

particular u‘2) could be obtained from

ul2) = un - ~» - + 2X - : -
i ) i 3gri1+1 fri—l;) "{Ai+1/2(fi+l £i) Ai-1/27fi fi-1))

which is the Lax-Wendroff method.

In addition, a simple method can be used to obtain first

order accurate data other than (2.14a) or (2.1loca). The
only requirement 1is that the overall scheme be stable. In
choosing all = x1 we have considered only values which result

in positive weights in (2.5) and a value for the time step of

(2.4) which is 1less than or equal to the time step of (2.5).

The permissible range of a-"Q required to satisfy these

conditions is 1/3 £ ct-"0 £ 2/3.

3. Stability of the One Dimensional. Difference Operator

Let M be the amplification matrix obtained by first letting

f(u) = Au and then substituting (2.14a) and (2.14b) into (2.14c)
subject to the viscosity expression (2.15). The amplification

matrix of this combined system, obtained by substituting

uQ exp (IKx) for u!? is

_13_



= I - sin2? - £ (l-cos ?)2

(3.1)
+ 1XA sin ?(1 4+ i (l-cos ?) (1-X2A2))
where ? = K Ax and 0 < ? £ "~
Call m the eigenvalues of M (see Figure and a = Xp
p the eigenvalues of A. Construct the function g(?,a,to) from

the real, R, and Imaginary, I, parts of (3.1) by

Since It takes so much effort to compute g we shall state Its

value here.

(3.2a)
éh—cos ?) - “1—cos %»2¥ % azﬁl—cza:émz%{l—cos
2
Now |m < 1 If and only If g < 0. Allow ? = m and observe that
(3.3)

If and only if 0 w £ 3.

For small values of ?, m can be written as

_14_



Geometrically one sees that g will exceed one, in the complex

plane, unless

(3.5) ) > 4a2 * ald *

That is, the operator (2.14) will not be stable. Hence

combining (3.3) and (3.5) we conclude that 4a2—a4 £ w < 3

2 2
which in turn implies that O<a £1, 3f£fcr £4. To show
that a takes on allowable values only in the interval
prescribed by the Courant-Friedrichs-Lewy condition [4], it 1is

necessary to show that for any value of 0 such that 3 £ a £ 4,

there exists a £ = £¢0 such that g (£Q3a,m) > 0 for w given by

(3.5). In equation (3.2a) set £ = 1/2:

S j(7,(0) = tw (6o —12) + (4a —230 +28a ))

=35- ((4a2-a4d)2+ (4a2-ad) (6a2-12)

+ (4a6-23ad4+28a2))

2
= jg (a2-1) (a2-4) (a2-5) > 0 for 3 £ a2 < 4.

2
We see g < 0 only if 0 £ a £ 1.

It is clear that if o = 4a2—a4 and if 0 < a < 1, then g < 0.
Setting gs(£,a) = g(C,cr, 4a2-al), and noting sin2f =(l-cos £)
'(l+cos ?), we compute

2
(3.6) g*U,a) = (l-cos ?)2 (4-a2) (1-a2)-P2(cos ?) ,

-15



where the quadratic polynomial

P2(x) = ax2 + bx + ¢
a = - (1l-a2)
(3.7)
b = 2(3-cr2)
c = - (5-a2)

It can be shown that P2(x) < 0 if x < 1, which implies
P2(cos ?) < 0 if 0 < 2 < 11, Clearly, < 0 since
2
0 < a <1. One also observes that gs(0,cr) = 0. At this

point we have shown that the right hand side of (3.2) 1is

negative definite for m > £ > 0 and

1) 0 < a < 1
(3.8)
o .2 4
n)\ o = 43~ - a
We exclude the case where a = 1, since 1if that occurs, «© = 3]}
2
and g(£,1,3) = 1, which leads to |m = 1, i.e. the associated

difference operator is not dissipative.

We look at the gquantity |m]. It can be bounded (using (3.4))

for small £:
(3.9) hn‘ £ 1 + (4a2-a)-aiq + C)(A)

One can show that for any o e (0,1) there exists an e > 0 such

. 2 4 . .
that 1if o = 4a -a +e and 0 < £ £ 7171, g(*,a,co) < 0, which is
equivalent to |m| < 1. There exists a pair 6%,n , each greater
i 4
than zero, such that 0 < £ £ n implies Im| £ 1-6-" . Since

-16-



[n,TT] is compact and since [m| < 1 on there exists a

4

positive 6p such that if n < £ < 11, then |m| < v Let
6 = minimum we see that the difference scheme associated
with the amplification matrix (3.1) is dissipative for 0 £ 5 il

in the sense of Kreiss since

(3.10) Im| <1 - 6 , 6§ > 0
Since the accuracy 1is of order 3, (3.1) 1is stable [5].
4, Two Dimensional Methods

For two dimensional hydrodynamic flows 1in which x and y are
the cartesian coordinates, the equations of motion can be

written in conservation-law form

(4.1) u, = £ +

where g is the vector representing the flux of the mass, momentum
and energy per unit volume in the y direction. We carry out

differentiation of (4.1) using the chain rule to obtain

(4.2) u, = A(u)u + B(u)u
u X Yy

In general the matrices A and B do not commute and are not normal.
If one considers the class of linear problems where AQ = A (Up)

and Bo = B(UuQ), U" the state about which the motion is linearized,

then (4.2) may be integrated to yield

U(t + At) = P U(t) I

P = exp [ (AQ TjY + Bo gy)At]

_17_



Equation (4.3) 1is also wvalid even if and vary; however,
the variation must be independent of time. With the obvious

change 1in notation P may be written as

(11.4) P = eA+B

This operator is called the exact solution operator of

equation (4.2). The Fourier transform of P, P = exp (i (A5+Bp))
is called the symbol of the operator P (see ref. [5]) .

By multiplying the initial data u(x,y,0) = u(0), r successive
times using the operator P, we can map u(0) into u(T), T = r At.

In forming difference approximations to (4.1) or equivalently
in approximating the operator P, the question of stability arises.
The analysis of stability of the difference operator becomes
difficult, especially as the order of accuracy (and corresponding
complexity) of the difference scheme increases. Indeed, in
Strang's paper [6] on the construction of accurate difference
methods, he 1s motivated in the construction of difference methods
by approximating P to the desired degree of accuracy.

It is well known, for instance, that a first order approxima-

tion to the matrix P can be written as

(4.5) P = eAeB + C) (At2)

since A and B are of order At. The error in (4.5) goes to =zero
A B

when A and B are scalars. The operators e and e can be

thought of as exact solution operators to the one dimensional

differential equation of the form (2.2a) defined separately

_18_



for the x and y directions. Let L(A) and L(B) be difference

. . A B ,
approximations to the operators e and e respectively. If

L(A) 1s the symbol of the x-difference operator and

(4.6) L(A] - exxryvL = (0 (Atp+1)

then we conclude that the difference operator 1s accurate to
order p.
Strang has shown [6,7*8] that if one considers an operator

L1(A,B) formed from the product of the one dimensional operators

L1 (AJB) = L.(A) L(B)
then
(4.7) \\ (1@,B) + L1(BJA)) - P| = d(?33n3)
where P has been defined previously. Strang has also noted

recently [8] that it is possible to satisfy (4.7) with the product

(4.8) L(A/2) L(B) L(A/2)

replacing the sum in (4.7); hence (4.8) provides the structure
for another difference scheme of second order accuracy.

The stability of (4.8) follows immediately from the stability
of each one dimensional operator L(A) and L(B). For (4.8) to be

second order accurate and stable each one dimensional operator,

given by

2
(4.9) L(A/2) =1 - | &5 + £- A2S2

which is the Lax-Wendroff operator, need be stable; this

_19_



requirement 1is fulfilled if the eigenvalues of A and B, y(3)
and 1ii(B) satisfy
X y(A&) < 1

(4.10)
X y(B) < 1

Equation (4.8) can be used with a second order two step procedure

rather than (4.9), i.e. equations (2.14a) and (2.14b) or system
(2.16) (with the appropriate time step). The advantage 1is the

elimination of the evaluation of the matrix A in the difference

scheme
Gourlay and Morris [9] have performed some computations
with such schemes. They have adopted the operator in (4.7)

for practical computations by also using two step versions of
L(A) and L(B).

We wish to look for difference schemes of the form given by
(4.8) which are of uniform third order accuracy. The structure
of the difference operator will then be based on the third order
one dimensional operators discussed in Section 2.

We have considered generalizations of the operators given

in (4.7) and (4.8) of the form

(4.11)
and T a.. =T B.. = 1 with each a,B > 0.
A L 1] -
Clearly if one chosses 0 = 1 with a-* = = s21 = a3i =
and a21 = 0 = B"p then (4.11) becomes
A/2 B A/2
(4.12) sla,B) = e / e e /

_20_



With the constants

I
'_l
~
N
W
5
o
v
>

= 1, and = 1/2

and al2 = 0 = $22'" ~12 =1 = a22} becomes

Il
ro—
o
(0]
+
D
D

(4.13) %2

The operators Sl and S2 are the operators Strang has investigated.
It is interesting to consider the operator formed from linear

combinations of (4.12) and (4.13), i.e.

u s, (A,B)+Sn (B,A)

(4.14) S3 = —————= 2— ~ S22

If the one dimensional differential operators in (4.14) are

replaced by corresponding one-dimensional difference operators

defined by

2 3
(4.15) L(A) = 1 + AAy0 + A2S52 + A362vy6

!

then it may be verified by direct computation that the resulting

difference approximation to the differential operator
satisfies

2 3
(4.16) = I + A(A+B) + — (A+B)2 + yy (A+B)3

Here, for simplicity we have used the abbreviations

A = A(u)o , B = B(u)b for the centered difference operators
X

and X = At/Ax, A = Ax = Ay. This 1is precisely the expansion

for (4.4) up to cubic terms. This operator was first found

by J. Dunn.

The procedure used to derive the third order approximation

to (4.4) which is in some sense computationally optimal follows.

-21-



The operator defined by (4.14) 1is complicated and inefficient

as 1t requires ten sweeps through the mesh — five in the
x—direction and five in the y-direction — to advance the
solution one time step. It is clear that more compact forms

resulting in economical algorithms suggested by (4.11) are

desirable. Consider the differential operator

A 3B 1- A 1-B)B
(4.17) creet 4 cre e e (1-a) e ( )

If the constants are chosen correctly (4.17) can be made

to differ from (4.4) by terms of O(At"). To do this first

expand each of the exponential forms up to terms involving
cubic powers of the matrices A and B. This allows the evaluation

of the term corresponding to the coefficient c*

I + (A+B) + | (A2+B2) + [a+(l-a) (1-B)AB
+[B (l-a) 1BA + £-(A3+B3)+ | [a2+2a(l-a) (1-B) + (1-a)2 (1-B) ]A2B
(4.18)
+ a3(l-a)ABA + | 3(l-a)2BA2 + I B2 (l-a)B2A

+ B(l-a) (1-B)BAB + | [aB2+ 2aB(1-8) + (1-B)Z2]AB2 |,

A

and the evaluation of the term corresponding to the coefficient c

(4.19) I + (A+B) + |-(A2+B2) + AB + | (A3+B3) + |-(A2B + AB2)

For simplicity we Jjust equate the coefficients of the matrices

BA, ABA and BAB in (4.18) to their proper values:
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c23(1-a) ;

cZ2a3(l-a) = ;
and
c2B(l-a) (1-B) =
These equations yield the values a = 1/3, 3 = 2/3, c2 = 9/8
and cl = -1/8. We again observe the appearance of the nonpositive
weight in our difference scheme. The difference equation becomes
(4.20) S3 = | L(A/3)L(2B/3)L(2A/3)L(B/3) —-"L(A)L(B)

Each one dimensional difference operator in (4.20) 1is defined
by (4.15). The proof of stability of (4.20) (and that of (4.14))

does not follow from the fact that the norm of each one

dimensional operator ILl < 1. If each coefficient ¢ in (4.17)
were greater than zero then would be a convex operator and
one could conclude in that case that had norm less than one.

We defer this qguestion until later.

It appears that (4.20) 1is most efficient in the sense that
the number of one dimensional sweeps 1s a minimum for a third
order operator. One needs at least six applications of the

. A B .
exponential operators e and e to match the noncommutative
terms that result from the third order term in the Taylor

) 0
expansion for e i 1.e. -g/A+B) . The proof of this statement
involves consideration of linear combinations of products of
A B . .
e and e taken two at a time and three at a time. All such

combinations fail to yield simultaneously the matrix operators

ABA and BAB. Next consider product combinations of the one
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dimensional operators taken four at a time:

ahA 6B (l-a)a (1-B)B
e e e e

Expanding and considering the requirement that second order
accuracy implies 3(l-a) = 1/2, we find that for third order
accuracy a = 1/3, 3 = 2/3. Hence there is a contradiction.
Finally operators formed from products taken five at a time

are of the general form

(4.21) e e e e e

For (4.21) to be third order accurate al must satisfy
12a-L - 6al + 1=0. This polynomial however has only complex
roots

Hence a third order splitting method of the form (4.11)

must have at least six terms. We state that the linear combina-
tion of the form (4.12), i.e.
aA 3 l-a)Aa 3B A 1-3)B
cle e e( ) + cle e e ( )

cannot differ from e”+” by terms of O(At"). Satisfying

consistency requires that a and 3 must satisfy

| (a=3) (a+3-1) = 0
If a = 3 we can show that a must satisfy a quadratic in a with
complex roots. If a+3 = 1, a satisfies (a-1/2) (a-1) = 0.
Now a / 1 so a = 1/2 and therefore 3 = 1/2 which is a contradiction.

If one were to only consider operators with ¢~ > 0, then
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third order accuracy could still be obtained but with a relaxa-
tion of the condition that all cu, > 0. Although the analysis
of stability would be trivial, one would have to accept multistep
difference methods with operators having a negative time step.
For flows which contain shocks or other irreversible phenomena
the problem is not well posed. If the flow is smooth and
thermodynamically reversible there may be no drawback to such

methods. We indicate in section 7 some results using (4.20).

5e Asymptotic Operators

It is possible to generate a positive difference operator but

only asymptotically. Consider the differential operator

S(A,B;N) E eA/N e2B/N eA/N

and its conjugate SN (B,A;N). Then
N/4
(5.1) SN = (S (A,B;N) S(B,A;N)) , N=4,8, ...
is called an asymptotic third order difference operator. SN

would be an exact third order operator if the coefficient G-

of the terms (A"B,B"A), (BA*,AB”) and the coefficient 6% of

the terms (ABA, BAB) satisfied = = Instead these

coefficients are functions of N. We have computed bounds on

the coefficients and show them below for several values of N:

l61-1/6] < |62-1/6] <
4 .0053 .0105
8 .0013 .0026
12 .0006 .0012

_25_



It appears, that using (4.4),

[1lim Sw - P| = 0 (At4)
Since |S"(A,B)|] < 1 and |S*(B,A)| < 1, then |S*"] < 1 which
shows the stability of (5.1). The operator defined by (5.1)

achieves 1its accuracy by using finer and finer time steps,

At/N, as N 00; indeed it 1is the form assumed for that gives
the rapid convergence of coefficients 6-%, The operator
(eA/NeB/N)N/2, ~  2,4,... will also give asymptotic high

order accuracy (greater than first order) but requires many

evaluations (large N) per time step. In comparison, (4.22) may
be satisfactory for N = 4.
6. Stability of Two Dimensional Operators

Except for the brief discussion on the stability of asymptotic

operators, we have not found a satisfactory method for the
analysis of the stability of the operators given by (4.11). Our
only recourse 1s to carry out a numerical analysis of the eigen-
values of the amplification matrix using the digital computer.
We have completed a calculation in which the independent variables
are the wave numbers (£,ri) 1in (x,y) space. We took the dissipa-
tion coefficient © to be to = 4%2—a4+e with -0.2 e £ 0.2 in
steps of 0.1 and with 0 £ ¢ £ 1 also in steps of 0.1.

Prom this parametric study, 1t appears that the spectral

radius of 37(5,n), the transform of (4.20), satisfies
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(6.1) u(s3(?,n))| < 1

and
(6.2) ly(s3U,n))! < 1 - o6leld
2 2 1/2
where 0 = (£ +n ) the norm In wave number space If
i) O<a<-13 e> 0
(6.3)
1i) a = 0 , e > 0

However if 0 < a < 1 and e < 0 the spectral radius exceeds one.

Indeed if £ =0.1 we can choose, in (6.2), 6 = 10T uniformly
independent of a. To achieve this define

6, = 1l—yUvo)

then pick
6 = inf o'
U, n)
We have found that 6' is smallest when (£,n) 1s near (Tr,77T).
For £ = p we indicate the behavior of |y.(£,£)] by the

following table.
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K =-.1 K =0 oo+
0.0 0.0 0.0 0.0
0.01 2.9x10-11 -1.6x10-11 -6.0X10-11
0.10 2.9x10-7 -1.6x10~7 -6.0x10"7
0.5 1.7x10— —9.7x10-5 ~3.7x%10
1.0 2.6x10-3 -1.5x10_3 -6.5x10™3
2.0 3.2xi0-2 -1.9x10-2 -6.7x10™2
3.0 1.0x10-1 -6.2xi0 2 -2.ixio-1
We have defined the distance from the origin r = /T £ in
wave number space and K = a)—MaZ—a4). In the next section we

present further evidence as to the usefulness of these third

order operators.

7. Results

We describe some numerical experiments carried out with the
scheme (2.14) for the Riemann problem in one dimension and
with (4.20) for a two dimensional scalar problem invented by
Crowley [10] .

Figures 5 and 6 show the results of two calculations
using system (2.14) and (2.15) to obtain approximate solutions
to (2.2). Both calculations start with the same initial data,

i.e. two constant states separated by a discontinuity:
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p—1(x) 2.0 p 1(x) = 2.245
u (x) 0.0 -x=0 ux) = 0.698,.
p (x) 0.571 pkxx) = 3.528

In Figure 5 a 0.9 with o = 0.75. The instability is clearly
shown. Figure 6 shows the solution at approximately the same
time; here o0 = 0.9 with to = 2.5.

We have tested the third order method in two dimensions on

the following scalar problem. The differential equation
(7.-D r, + ur_ + vr_ = 0

describes the motion of the function r (x,y3t) in the x-y plane
if the velocity components u and v are specified. We take them
to be

(7.2)

which means that the velocity wvector depends only on the radius,
-t

i.e. v = r defines solid body rotation (in our problem

centered at (x"y”) = (30,30)). If the components of (7.2) are

differentiated with respect to x and y respectively we see that

one may write (7.1) in conservation form

(7.3) r, + (ur) + (vr) = 0
u X v

since the velocity field is divergence free.
The distribution r(x,y,t) is prescribed at t = 0 to be
a right circular cone in (r,x,y) space centered at (37337)

with base radius of five. Ax = Ay = 1. Equation (7.3) subject
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to (7.2) states that the total wvariation of r(t), Dr(t)/Dt,
along circles with radius centered at (x"y”"), vanishes, 1i.e.
r is just uniformly rotated with period t = 2ir/Q. In our
computation the mesh size is 60 x 60 while the cone height
is one.

The table shown below is a summary of the computations
performed for this "cone" problem. In problem 1, the first
order scheme is defined by the operator (4.5) while for problems

2, 3 and 4, the second order scheme is defined by the operator

(4.8) . The third order scheme is given by (4.20) with L defined
by system (2.14) and (2.15). The value of w in problem 5 did
not satisfy the stability condition (3.5); it was kept constant.

For problems 6, 7 and 8, the local value of w satisfies
Q il
0w = 4a - a + e with e = .01. The wvalue of a = At/A |u|l with

lul = (uA+v2)1{2. The components of drift of the vertex of the
cone 1in the x(y) direction equals the x(y) position of the vertex
computed by the difference method - the x(y) position of the
vertex given by the exact solution.

We see how poorly first order methods compare with second
or third order methods in the amplitude and phase of the
solution. The most striking difference between second and
third order accuracy is in the computation of the phase of the
solution. The position of the vertex is within one half mesh
width in both the x and y direction for the third order
calculation but is two to three mesh widths from the exact

position in both the x and y direction for the second order

calculation. For both second and third order schemes, increasing
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Table. Summary of Computations for Cone Problem.

Computed Vertex Drift No. of
Rotations Vertex Integra
Problem Method Traversed Amplitude x-direction y-direction -tion
Cycles
1 first order 1/4 .07856 6.28699 2.07856 150
2 second ordei 1 . 98935 1.65263 -2.51629 600
o} = 1/6
max
3 second ordeil 1 .98363 1.55743 -2.29384 300
a = 1/3 2 , 82304 2.37585 -3.70616 600
max
4 second ordei 2 .79365 2.258067 -3.41507 240
0 = 5/6
max
5 third order 1 1.15205 | .33053 - .29569 600
o)=const.=.0
T = 1
cmax /6
6 ithird order 1 1.03803 .26070 - .34469 600
a = 1/6
max
7 third order 1 .99707 - .24833 - .36810 300
a = 1/3 2 .89400 - .89400 - .45386 600
max
8 third order £ .81353 - .33365 - .45469 350
a = 4/7
max
9 third order N2 unstable
c = 4/6
max
10 third order 5/12 unstable
a = 5/6
max
11 third order 1/2 goes 150
o=oonst.=.01 1 unstable 300
Tmax -
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the time step At with fixed space step increases 0 which
results in greater dissipation in the third order difference
scheme. Increasing At also increases the artificial viscosity
in the second order method [see [5]] and therefore the greater
smoothing reduces the maximum amplitude of r (x,yJt).

Problems 9 and 10 went unstable for the wvalues of a
indicated. Hence, one obtains an approximate upper bound for c,
which gives an approximate upper bound for an allowable time step.

The remaining figures are labeled as to problem number, which
corresponds to the problems given in the table on the preceding
page. The figures show the overall behavior of the wvarious
methods and give means for a quick comparison between the methods.
The contour lines, at each instant of time, define wvalues
r(x,y) = constant, the wvalues of which lie between 0.05 and 0.95.
For clarity the snapshot of the solution at the latest time has
been shifted by an amount D along a line connecting the center of
rotation and the vertex of the cone.

The scheme (4.20) required approximately 4 seconds per
sweep while the second order method (4.8) (alternate sweeps were
computed using first L(A/2) L(B) L(A/2) then L(B/2) L(A) L(B/2),
etc., rather than L(A/2) L(B) L@A)... L(A) L((B) L(A/2)) required
approximately 1 1/3 seconds. By comparing the numerical results
in the above table, it appears that the mesh ratio for third order
methods can be increased by a factor of three over the second
order method. Comparable errors in the amplitude of the solution
are obtained with the two methods but a clear superiority in the

phase of the solution is achieved with (4.20).
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Our tentative conclusion, subject to additional numerical
tests 1is that (4.20), using a more coarse mesh, may be as
economical as a second order calculation on a fine mesh while

still giving superior numerical results.
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Absolute value of the eigenvalues of Equation

showing dependence on w.

of the maximum allowable for each w.

Curve
Number

Figure 4

(3.1)

The values of a are within .05
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Figure 5

Pressure and density profiles for the Riemann

problem after 188 At (t =30.138) wusing a and w

not satisfying Equation (3.5).
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Figure 6

Pressure and density profiles for the Riemann

problem after 163 At (t=30.065) wusing a and w

satisfying Equation (3.5). The rarefaction wave

propagates to the
is located at x =
the right with an

theoretical shock

left; the contact discontinuity
50; the shock propagates to
error less than of the

speed.
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Figure 7

Problem 2 Second order method with amax = 1/6 and
computed vertex amplitude equal to 0.989

the exact value is 1.0,
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Figure 8

Problem 3 Same initial data and method as in Figure 7
but with ctmax = 1/3; after 300 cycles computed
vertex amplitude equals 0.983; after 600 cycles

amplitude equals 0.823.
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Problem 6

Figure 9

Same initial data as in Figure 7; third order

method with a = 1/6; a) is variable and is
max

computed from Equation (3.5). The amplitude

is 1.03 after 600 cycles.
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Figure 10

Problem 7 Same as Figure 9 but with Olax ~ 1/3.
The amplitude after 300 cycles is 0.997 and

after 600 cycles it is 0.894.
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Problem 11

Figure 11

Same initial data as in Figure 7; third order
method with w = 0.01 and a = 1/3.

max
Calculation does not satisfy stability
condition (3.5). Eddies are forming while
the amplitude increases — calculation

eventually goes unstable.
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