
INTRODUCTION 

!Rm processing of spent f u e l s  from nuclear power and propulsion reac tors  is  
planned by Hanford Atomic Products Operation a8 part of the  Atomic Energy 
Commission's interim reprocessing schemer. 

!!!he spent nuclear f u e l s  have cores of  U02, U, o r  alloys of U-Pao, U-81, or  U-Zr  
clad i n  e i t h e r  staihless steel, aluminum, or  Zircaloy. This report  discusses 
only the Zircaloy-clad fuels and the appl icat ion of the Z i r f l ex  Process f o r  
d i sso lu t ion .  Zi r f lex  chemical flow sheets a re  presented as developed by p i l o t  
plant  operations.  

The Z i r f l ex  process i s  applicable to the  reprocessing of Fuels from the Dresden 
reac tor  and the  PWR reac tor .  
nium Recycle Test Reactor fuels and the  Hew Production Reactor fue ls  (HBPO); 
possible  fue ls  f r o m  the Experimental Breeder Reactor (Arco); WD-2 h l s  
(Ontario) and f u e l s  from Carolina-Virginia f i c l e a r  Power Associates reac tor .  

Other appl icat ions o f  the process are the Pluto- 

The Zi r f l ex  Process employs a boi l ing  aqueous solut ion of ammonium f luor ide  
and ammonium n i t r a t e  for the  se lec t ive  d isso lu t ion  of zirconium o r  Zircaloy 
cladding from the  power reactor  f u e l s .  
l u t i o n  r a t e s  of 7-10 m i l s  per hour are obtained on unoxidizad Zlrcaloy. Eow- 
ever,  zirconium oxidized by exposure t o  high temperature air  o r  water dissolves  
by solut ion penetration and undercutting of the oxide f i l m  a t  r a t e s  three- t o  
f ive fo ld  l e s s  than those obtained on unoxidized fuels. 
cladding may be removed in three t o  four  hours, whereas removal of oxidized 
claddings may require up t o  twelve hours. 

During the d isso lu t ion  of zirconium, hydrogen and ammonia are produced at rates 
of about 0.1 and 5 moles per mole of zirconium dissolved, respect ively.  
t i on  of these gases with steam and/or a i r  i s  required t o  avoid explosive concen- 
t r a t i o n s .  Also, pos i t ive  operating s teps ,  such as purge, high b o i l  up, and high 
condenser temperatures are necessary t o  remove annuonla and t o  prevent the adverse 
e f f e c t s  of aepnonia concentrations on e i t h e r  the d isso lu t ion  rate o r  the eo lub l l l t y  
of zirconium. 
zirconium solut ion i s  obtained with a s t a r t i n g  charge of 5.5 n e o l a r  
molar ppEI4NO3. 

Zir f lex  decladding solut ions do not severely a t t ack  unirrerdlated uranium, 
uranium-aluminum, o r  uranium dioxide cores. HOwever, a small  quantity of 
core mater ia l  dissolves to produce both soluble and inso1uble uranium. For 
instance,  the  s o l u b i l i t y  of uranium may very from 0.3 t o  3 gram per l i ter .  
A l l  o ther  dissolved uranium ex i s t8  as a W4 grec ip i t a t e .  
ding waste solut ion a re  minimized by nearly saturating the solut ion wit21 
zirconium; i . e . ,  nearly complete comglexing of the f luor ide  by zirconium, 

Tygical integrated o r  ave rwe  diseo- 

Thus, t yp ica l  unoxidized 

Dilu- 

Under proper operating conditions, a concentration of 0.6 M 
&d 0.5 

Losses t o  the  clad- 
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m and by cool ing the solut lon t o  decrease the uranium s o l u b i l i t y .  
tated maniun m y  be recovered by centr l fugat ior  and clissclved in a relatively 
noncorrosive form by the addi t ion of  n i t r i c  acid and a1min.m n i t r a t e .  

i c e  precipi- 

Dissolution o f  the core remaining after the  Zirf lex dezladding s tep was not 
studied extensively.  However, since auch cere material is nearly free f h m  
iTirconim, conventional techniques are 8pplicable i f  aluminum n i t r a t e  i s  tacided 
t~ i n h i b i t  the corrosive ac t ion  of reeidual  f luor ide .  

!The msteriral t o  contain t h e  Zirflex process can be s t a i n l e s s  s t e e l .  For example, 
m over-sll average corrosion rate of 4.3 mils per month WRS ot~5ained i n  the 
p i l o t  u n i t .  
st.ail;less s t ee l  exposed to bGil.fEg SIX molar ammonium f luoride. ,  

A corrosion r a t e  of 11 mils per mmth was obtalned witb ?@+-I, 

Details of the recornended flowsheet, f o r  proceEsing t y p i c a i  p c w e r  r e a c t r i r  mels 
are presented i n  Figs. 9 m d  10. 

D IS r_n,-(s s TON 

& n e r d  - Zirconiiun. dissolves  i n  b o i l i n g  mmnium fluoride soLutions by the 
react ion : 

I f  ammoni~ra n i t r a t e  is added t o  t h e  systen, the  evol.ution of hydrogen is a u p -  
pressed $0 nelow 0 . 1  mole per  m?e of  ' i r ca loy  dissolved. m e  dis6~1.11.t~io~ mi) 
rhen be represented by t h e  r eac l f cn :  

RP d i s s o l ~ ~ t i o n  of unoxidized zirconium o r  Zircaloy i s  charasteristic of a q i . - s +  
z r d e r  r eac t ion  wi th  respect t o  "free" fluoride, i . e . ,  fluoride uncompfexed by 
z i r c o n i m .  Derivation of k i n e t i c  equations and calmLation or' the c o r r e s p n d i n g  
t i m e  cycles f o r  d i sso lu t ion  a r e  shown In the Appendix. 

The d isso lu t ion  proceeds under the  bes t  conditions a t  a r a t e  of about 80 Am21~ 
per hour (22 mg/cm2/min) with a "free"f1uoride concentration of 6 molar. 
derrease proportionately as the  "free"  f luor ide  concentration decreases, '1s 
shown in Fig. 1. 
oxide film i s  present on the zirconium s u r f ~ ~ e s ,  (b)  the ammonia by-prodwt o? 
the dissolution react ion i s  allowed t o  accumulate i n  the ammonium f l u o r i d e  
dissolvent ,  or  ( e )  the s o l u b i l i t y  of zirconium i n  the  ammonium f luor ide  5 r l u t i 3 r  
i.s exceeded. 

b t ? s  

Harked decreases i n  d isso lu t ion  r a t e s  a l so  OCCLU' i f  (a) a . ~  

P e r t i n e n t  details are given in the following t e x t  on the develnpiwnt w r k  leo i -  
lng t c  the recommended flowsheets in Figs.  9 and 10q 

Zirconium S o l E b i l i . ( l )  (2) 

The s o l u b i l i t y  of t u m ~ ~ n i u n  hexafluozirroaate (il&+)&rF~, ~tt  room tezperat>ure 
a 



L t  . 



-5- m-60597 

solut ions would r e s u l t ;  waste volumes would be greater;  and core losses  would 
be higher e 

To keep the zirconium s o l u b i l i t y  near 0.6 molar, the  res idua l  "free" f luor ide  
must be kept below 0.6 molar. 
r a t i o  i s  seven o r  less and by assuring t h a t  six moles of f luor ide  have been com- 
plexed with one mole of zirconium. Thus, the volume of solut ion charged must be 
based on the  expected penetration during the zirconium decladding operation. For 
example, only a 30 m i l  surface w i l l  dissolve from a 1/4-inch p l a t e  if most of the 
other  zircoriium present i s  30 mils thick.  The volume of solut ion should be 
charged f o r  the  quantitylof zirconium within the 30 m i l s .  
vol.mes of so lu t icn  are best  predicted by charging f o r  d i sso lu t ion  of 90 percent 
of an oxidized cladding and 25 percent of the end f i t t i n g s .  

This i s  done by assuring t h a t  the F/Zr mole charge 

I n  general, a c t u a l  

Since end f i t t i n g s  dD not completely dissolve i n  a single batch charge, they 
acclumiLate from one batch operation t o  the  next. 
chazge and decladding operations a re  required t o  completely dissolve the end 
f i t t i n g s  frcm the f i r s t  charge. However, if desired,  a s ingle  clean-up charge 
of NH4F can  be used at the end af a Zircaloy-clad-fie1 campaign t o  remove the  
residual  pieces of zirconium. 

Approximately fcur sequential  

Actual pilct. un i t  da.ta a r e  shown i n  Table I with a l i s t i n g  of charge concentra- 
t i o n s ,  ac tua l  dissolut ion times, and f i n a l  analyses a f t e r  th .e  water di l i l t ion.  

Ammonium Ni t ra te  Concentration 

The addition of ammonium n i t r a t e  eliminates two major objections t o  the  Z i r f l e x  
process, i . e . ,  gross quant i t ies  of hydrogen off-gas and i n s o h b l e  t i n  precipi-  
t a t e s .  
evolved i n  the react ion by the conversion of the n i t r a t e  ion ir?to ammonia and 
water. 
reduce the hydrogen evolution from t w o  t o  0.1 mole per mole of  zirconium dissolved. 
A 0 0 5  molar Concentration was as e f f e c t i v e  as a 0.75 molar concentration. 
Hcwever, the  terminal n i t r a t e  ion concentration should be kept a t  a minimum 
because of i t s  somewhat adverse e f f e c t  on zirconium and uranium s o l u b i l i t y .  
average f i n a l  n i t r a t e  ion concentration after the water d i l u t i o n  s t e p  i n  the 
pilct, u n i t  tests was 0.08 molar. The average consumption of n i t r a t e  ion w a s  
0.47 mole per mole of zirconium. 

The presence of ammonim n i t r a t e  reduces the amount gf ,explosive hydrogen 

Ammonium n i t r z t e  concentrations of  0.5 and 0.75 molar were adequate t o  

The 

Zircaloy-2 cladding contains approximately 1 . 5  percent t i n .  
t i n  cc.mpounds, has been reported t o  be from 0.0 t o  1 . 5  percent of the Zircaloy 
dissolved ( 2 ) o  Apparently, the  presence of the n i t r a t e  ion promotes the  so lubi l -  
i t y  of the t i n ,  since a f a c t o r  of 10 reduction i n  the  quantity of residue w a s  
experlenced with the n i t r a t e  ion present.  

Residue, presumably 

Trace quant i t ies  of residue i n  the  p i l o t  unit operations cawed no p a r t i c u l a r  
problems. 
brown p r e c i p i t a t e .  However, t h i s  prec ip i ta t ion  during the  dissolut ion of 
Zircaloy-2 d id  not occur i n  l a t e r  runs i f  the  removal of ammonia w a s  adequate. 

Many of the e a r l y  runs had considerable quant i t ies  of black and black- 
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Ammonis and hydrogen a r e  react ion products i n  the Z i r f l e x  process. Concentra- 
t i o n s  of  15 t o  28 percent ammonia i n  dry a2r a r e  explosive, but ammonia can be 
e a s i l y  absorbed from the off-gases i f  desired.  
4 percent emcent ra t ion  and i t s  safe  hanbling must be considered. 

Hydrogen i s  explosive above a 

The hydrogen d a t a  sca t te red  widely, since the method used t o  calculate  instan-  
?aneCus ra . tPs  (suspended basket weights of zirconium) were not accurat.e. 
general, the  d a t a  indicate3 the  hydrogen evolution was 0.025 to 0.03 moles 
r a t h e r  than t h e  0.1 mole expected per mole of zirconium dissolved. 

In 

To assure safe  operations,  the hydrogen concentxstior must be kept, below the  
explosive l i m i t  by dTlution with air .  
:,f hydrcgen per mole of zirccnium. 
evolution r a t e  of 0.1 mole per mole ,of zirconium, a "free"  f l u w i d e  concentration 
of 5.5 molar, and 6.n unoxidized zirconiun 'surface of one square foot hydrogen 
would be evclved a t  0.016 standard cubic feet per minute. 
r a t e  o f  0.38 standard cubic f e e t  per minute woyld be required t G  l i m i t  the 
hydrogen concentration i n  t h e  off-gases t o  4,O percent 
wo7lld proportional'ly change by lowering the  f luor ide  concentrations or by l i m i t -  
ing the hydrogen concentration t o  below 4.0 percent. I n i t i a l  off-gas concentra- 
t i o n s  in p i l o t  u n i t  t e s t s  averaged 2 - 8  percent hydrogen unde'r a. var ie ty  of t e s t  
conditions,  (See da ta  Table I.) 

Safe air  r a t e s  can be based on 0.1 mcle 
For example, i f  one assumes a hydrogen 

Thus, an a i r  dil .ution 

These a i r  requirements 

The ammonia evolved during t.ke d isso lu t ion  of zirconium ( 5  moles per mole of 
z i r c o n h n  dissolved)  i s  highly srJlub1.e i n  the ammonium f lucr ide  dissolvent . 
Hence, the ammoni.a concentration i n  the ammonium f luor ide  increases;  the pFT 
increases;  and., as a result, both the  d isso lu t ion  r a t e  and the s o l u b i l i t y  of 
zirconium decreases. 

Opera.ting conditions of the dissolver  system; i .e . ,  boil-7Jp rate, '  condenser 
t.emperat;ure, air purge' rate,  and the amount of condensate refluxing, a f f e c t  the 
p a r t i a l  pressure o r  s o l u b i l i t y  of ammonia i n  the system. Figure 3 shcrss the 
calculated molarity of ammonia i n  the dissolver  under f ixed,  continuous, 
operating conditions. In general ,  the  ammonia ,''trap" e f f e c t  of the  dissolver  
and condenser system i s  eliminated by: (1) an a i r  flow tkrough th.e system, (2) 
a high condenser teqpera,ture, and (3) high boil-up rates. 
successful techniques included (a) use of very high air sparge rates, (b)  hi@. 
Soil.-up rates i n  the dissolver ,  and rout ing of t h e  condensate t o  a separate 
receiver ,  and [ c )  operation with a high condenser temperature and a modest air 
sparge i n  t h e  dissolver .  A s  shown by Fig. 4, t h e  l a t te r  two techniques were 
the  most sxcess fu l  fcr prompting high d isso lu t ion  rates. The t y p i c a l  operat-  
ing times for comparable runs with equal boil-up r a t e s  a r e  shown as follows: 

In the  p i l o t  u n i t  



-7- 

Operating 
RUE Noo Methcd of  Operation Time, hr  

17 Cold Condenser R e f l u x  only 3.5 
10  Cold Condenser a i r  sparge 2.2 
21 Water Boil-off 1 .9  
32 A i r  + high condenser temperature 2.7 

m-605 97 

Percent. Zircaloy Sheet 
Dissolved Thickness, ’mils 

84 
85 

100 
100 

(The Z i r c d c y  was uncxidized, an? penetrat ion cccurred from both s ides  of t he  sheet 
metal 1 

Oxidized Zirconium 

The prrslmged e x p s u r e  of Zircaloy t o  high temperature a i r  o r  water produces a 
tenacious cxide fi lm on the  metal ,  as  shown by Fig.  5. With mo?erate exposures, 
the  cxide i s  a smooth, r e l a t i v e l y  nonpcrous black fi lm; fu r the r  exposure produces 
a white, less tenacious oxide. Thus, during the  operation of all power reac tor  
f u e l s ,  some oxide f i lm w i l l  be formed. 

Zirconium oxide i s  almost completely r e s i s t a n t  t o  a t t ack  by the  ammonium f luor ide  
dissolvent  of the Z i r f l ex  process. Thus, d i sso lu t ion  must occur by p i t t i n g  and 
undercutting a t  poin ts  of imperfection i n  the  oxide film. Vnder such ccndi t ions,  
t h e  ac t ive  surface area of a f u e l  i s  g rea t ly  reduced; and, as shown i n  Figs.  1 
and 4,  s v e r - a l l  average d isso lu t ion  r a t e s  a re  a f ac to r  of 3-5 below the  dissolu-  
t i o n  r a t e s  of unoxidized material. In prac t ice ,  t h i s  r a i s e s  tke  f o u r  hours 
normally required t o  remove a 30 m i l  unoxidized Zircaloy cladding t o  near twelve 
bows for a similar but oxidized cladding. 

Reactor oxiilized ZircaLoy w a s  simulated i n  p i l o t  u n i t  tests by exposing the  
Zircaloy t c  air  a t  400 C f o r  1 4  days. 
oxidized material using 5.5 M ITHqF, 0.5 M NHqNO 
were as f o l l o w s :  

!I’y-pic,al d i sso lu t ion  operat ing times f o r  
with an F/Zr mol r a t i o  of 7 3 - - 

Oxidation (days) Operating Percent 
R u n  MG. -- .Type of  Charge i n  400 C air Time, H r  Dissolved 

11 0,030 i n .  sheet 1 4  6.5 95 
38 0.030 i n .  sheet 1 4  4.0 100 
40 Sealed Tubes 0.030 Tk w/U02 cores 14 10.5 95+ 
41 Sealed Tubes 0.030 Tk w/U02 cores * 11.0 99 
43 O.O3O i n .  sheet 1 4  5.8 93 

Wne-half of t he  charge was unoxidized Zircaloy and the remainder w a s  oxidized fcr  
fourteen days. 

Additional tests were conducted on three 6 0 4 1  Zircaloy 2 coupons that  had 
been oxidized i n  deionized water at 360 C f o r  308 days. A f t e r  twelve hours 
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I n  summary, minimum core l o s s e s  may be obtained by: (a) avGiding the  presence 
of U(!C) ir, the  solution, (b)  cooling the terminal solut ion t o  room temperature, 
and ( c  'i cbtaining the lowest possible f r e e  f luoride concentrfltion by dissolving 
to reach an F/Zr mole rat.io between 6 and 7 i n  the solut,ion (obtained by nearly 
complete complexing of t h e  f luoride ion with the  zirconium). A l o s s  i n  soluble 
uranium ( W )  of 0.25 g / l  can be expected i n  a t y p i c a l  d i l u t e d  decladding solut ion 
containing 0.6 m o l a r  zirconium. Losses of U(v3) may be as high as 3.0 g/ l .  

f rac t ion  of  the core lo s s  represented by the  soluble uranium I s  a d i r e c t  
function of the r a t i o  of  the solut ion volume to core weight o r  a l t e r n a t e l y  t o  
the Z r / U  r a t i o ,  s ince the quantity of cladding removal solut ion w i l l  be determined 
by the weight of zirconium charged. 
ZD uranium core losses  i s  presented i n  Fig.  7 f o r  three selected zirconium-to- 
w m t i  m t i x  i o  the f u e l s ,  
0.1 t o  0.15 percent f o r  TJ[IV> valence species,  a d  apprcximfely ten  times higher 
i f  the b - d k  of the urm-ium has a valence of V I o  

A graphical conversion of uranium s o l u b i l i t y  

Uranium losses  a r e  expected t o  be i n  the  range of 

The p i l o t  un i t  w a s  not equipped t o  handle plutonium w ra,dioactive materials. 
Howeypr resuLt,s compiled by .To L. Swanson of Hanford Laboratories Operation, 
HAPOa.'J ase  presented,: 

Amount i n  Bciling Solution Arncuntq in Cooled So1uti.cn pull.' Eat lo  in 
a U-Pu q l o y  Solu t  i cn  9 Pu Pu/V Ratio 'J Pu Pu/U Ratio 

- F- - M Zr(LV) g/l g/l  x 10-4 _g/l g/l 10-4  - x 10- 

6 - 15.0 4.3 2 .9  4,5  1 . 4  3 - 1  
11 6 13.0 6.6 5.1- 2.5 1 .7  6 .a 
11 6 0.7 2 * 5  0.68 2.7 0.2 0.003 0.15 
11. 6 0.86 i . .4  0 ~ 2 3  1.6 0.3 0.015 0.5 

3 

The u-a.niim-pLut,onium a l l o y  w a s  f i rs t  exposed t o  the indicated concentrations r J f  
bc,ilir_g Z i r f l e x  sollitions. 
s c l u t i m  w a s  l e s s  t.han the  Pu/'J r a t i o  i n  the m e t a l .  
d i l u t e d  to prevent zirconium prec ip i ta t ion  and cooled. 
weight r a t i o s  i n  the  cooled solut ion were m c h  l e s s  than those i n  the a l loy .  
r e d u r t i m  in the  Pu/V r a t i o  occurred after cooling because of an apparent carrying 
o f  the  plutoaixn by the  prec ip i ta ted  uranium f luor ide  salt.  

A s  shown, the determined Pu/U r a t i o  i n  the boi l ing  
Then the solut ion was 

The plutonium/uranium 
The 

O f  course, the plutonium losses  w i l l  depend on the  exposure and enrichment of the 
f u e l ;  the surface area of  the core, and the  operating conditions.  AdditionaL 
Pu l o s s  data  h w e  been given by ORNL i n  document CF-58-11-91. In general ,  F'u 
losses  of less than 0.1 percent can be expected. 

tJra.nium Recovery 

A s  previollsly indicated,  the s o l u b i l i t y  of UF4 decreases as the concentration 
of  zirconium increases;  i . e . ,  greater complexing of f luor ide  ion.  During the  
decladding of Zircaloy, d i sso lu t ion  of any exposed meta l l ic  ixranium or s in te red  
U02 core mater ia l  w i l l  sa tura te  the solut ion and form a p r e c i p i t a t e  of UF4. 

http://So1uti.cn
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i n  the Zi r f lex  solut ion (5.5 M NH4F, 0.5 M NH4NO wi th  an F/Zr mole r a t i o  
of 7) dissolut ion was 78, 85,-and 96 percent comp ? ete.  

Other Oxide Treatment . 
Removal of t e Zirconium oxide f i lm has been attempted by various methods. 

f o r  the removal of Zircaloy cladding on reactor  f u e l s .  
r a t e s  were 19 mg/cm2/min (68 m i l s / h r ) .  
oxide f i lm w a s  reported; a l so ,  t i n  residue was absent.  

To A.. Gens ( 315 reported the use of molten ammonium bi f luor ide  (el90 C )  
I n i t i a l  dissolut ion 

Almost immediate d isso lu t ion  of the  

In other  tests a t  Hanford, J. L. Swanson used a molten salt  ( 3 O C j  saturated 
with zirconium and having a composition of NH4F {EIF)2.2. 
pieces were soaked i n  the salt bath approximately one hour, the oxide film w a s  
r e a d i l y  penetrable by aqueous solut ions.  
aqueous solut ions dissolved the oxide film; but after the salt treatment, the 
f i l m  was very readi ly  "undercut" i n  the  aqueous ammonium f luor ide  solut ions.  

After the  oxidized 

Neither the molten salt  nor the 

Core Losses 

Losses of the f u e l  core material t o  the Z i r f l e x  decladding sGlution are p r i -  
marily ccntrol led by the s o l u b i l i t y  of the core material i n  the  ammonium 
f luoride dissolvent .  
continuously dissolves .  When the  solut ion i s  saturated with uranium, f u r t h e r  
dissolut ion of the core produces a p r e c i p i t a t e  of UF4. 
sc lu t ion  f u r t h e r  reduces uranium s o l u b i l i t y  and more UF4 p r e c i p i t a t e s .  
the p r e c i p i t a t e  can be e a s i l y  recovered by centr i fugat ion,  as discussed la ter .  

Figure 6 i l l u s t r a t e s  the expected uranium core losses  and the  importance of 
control l ing temperature and zirconium "saturation" ( i . e . ,  nea r ly  complete 
complexing of the f l u w i d e  with zirconium> The s o l u b i l i t y  of U(IV) decreases 
as the zirconium concentration increases,  i . e . ,  more complete complexing of the 
f luor ide  by zirconium. Under the same circumstances, the  s o l u b i l i t y  of u ran ium . 
( V I )  increases,  i .e . ,  as the  "free"f1uoride concentration decreases. 

In an ac tua l  Zirflex decladding s tep,  the  exposed uranium 

Later cooling of the  
Eowever, 

Production of uranium (IV) i s  prevalent during the Z i r f l e x  decladding s tep,  
while prodwction of uranium ( V I )  i s  prevalent during core d isso lu t ion  w i t h  
n i t r i c  acid.  %elhigh s o l u b i l i t y  c h a r a c t e r i s t i c  of U(VI) and attendant core 
losses  require  very e f f e c t i v e  f lushing between a l t e r n a t e  decladding and core 
d isso lu t ion  i f  waste losses  are t o  be low. 
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Further zirconium dissolut, ion reduces the  UF4 so lub i l i t y ,  and addi t iona l  prec i -  
p i t a t i o n  may GCCUT. 
cause fur ther  p rec ip i t a t ion  of the uranium. 

Centrifugation i s  a convenient way t o  i s o l a t e  t he  UF4 p rec ip i t a t e  (1 t o  3 
weight percent of t he  t o t a l  uranium) from the  solut ion.  A de ta i l ed  study of 
t he  qentr i fbgat ion s t e p  was not made; but a 12-inch centr i fuge gave c l ea r  solu- 
t i o n  when operated at 2600 rpm (11 g ' s )  with a feed rate of 200 ml/min and a 
residence t i m e  of 1.5 minutes. 

Cooling the  solut ion at  the  end of the d isso lu t ion  w i l l  

The p rec ip i t a t ed  UF4 cake i n  the  centr i fuge w a s  removed i n  approximately 30 
minutes by the  addi t ion of cold 1 M EN03 and 1 M Dissclved AJTY and mO3 
wit.h higher temperatures will reduEe the  d i s so lz t ion  time t o  about 10 minutes. 

AIW. 

In  addi t ion t o  the UF4 p rec ip i t a t e  co l lec ted  i n  the  centr i fuge,  a cc l l ec t ion  cf 
zirconium dioxide f lakes ,  uranium f lakes ,  small fragments of f u e l  cores, o r  
residue can be expected. A l l  of these p a r t i c l e s  a re  e a s i l y  broken, and most of 
them w i l l  remain i n  the  d isso lver  unless the solut ion i s  severely ag i t a t ed  
during t zans fe r .  
tc, be l /h-inch square and up t o  10  m i l s  th ick .  

The l a r g e s t  p a r t i c l e s  noted i n  the  p i l o t  u n i t  were estimated 

"he uranium f l akes  a r e  produced by a film formed on the  surface of meta l l ic  
uranium d w i n g  the  decladding s tep.  Some of this black f i lm  (approximately 
4 m i l s  t h i c k )  dislodges from the  meta l l ic  uranium surface and s e t t l e s  to3 the  
bcttom of the  d isso lver .  
30 percent n i t r i c  ac id  -- w i t k - i c  10 minutes. 
tests were estimated t o  be 0.1 g/sq cm of exposed sur face . )  

(The uraniyn f l akes  were r ead i ly  soluble i r z  cold 
The flakes i n  the  p i l o t  u n i t  

The quant i ty  of zirconium dioxide f l akes  can be predicted frcm the  f i lm  thick-  
ness, as shrswn i n d i r e c t l y  by Fig. 5. 

S l i g h t  traces of other  residue were usual ly  found i n  the  centr i fuge bowl, both 
'oefore and a f t e r  the additior- of aluminum n i t r a t e  and r - i t r i c  acid.  Such 
residue could ha e been p r e c i p i t a t e s  of s tannic  ac id  and s tannic  oxide, as 

f luor ides .  However, t he  residue caused n3 p a r t i c u l a r  problem, 
reported by O F !  y7 1 cr  the  p r e c i p i t a t e s  of r e s idua l  zircollium o r  al?uninum 

"he behavior and i s o l a t i o n  of plutonium i n  the  centr i fuge i s  not kr_mn at. t h i s  
time, 
"s11xrry" of the  centr i fuge contents back t o  t h e  d isso lver  for t he  core dissolu-  
t i o n  s t ep  o r  ' ' s lurry"  t o  the  oxidizing or diges t ing  tank i s  proposed. 
a l l  of the  mater ia l ,  o ther  than zirconium oxide f lakes ,  should dissolve.  Then 
the  flakes can  be removed during the  feed centrif ' ligation and la ter  washed and 
I' s l u r l e d "  f r c m  the  centr i fuge t o  waste storage.  

In order t o  assume complete recovery of the uranium and plutonium, 

Here 
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Entrainment 

Entrainment i s  of pa r t i cu la r  importance i n  the  Z i r f l ex  process,  s ince entrained 
zirconium solut ion contacts re f lux ing  ammonium hydroxide and p rec ip i t a t e s  as an 
adherent zirconium-hydroxide sludge. Plugging of the off-gas system may r e s u l t .  
The p i k t  un i t  with a 3-inch tower of l - inch  s t a i n l e s s  s t e e l  raschig  r ings  w a s  
operated a t  a, calculated vapor ve loc i ty  of 4 feet per second without any ser ious  
buildup of zirconium p rec ip i t a t e s ;  t r a c e s  of the  p rec ip i t a t e  on the w a l l s  of the 
glass tower was e a s i l y  removed by the n i t r i c  ac id  r e f l u x  during the  uranium 
disso lu t ion  s tep .  

The method of  en t ry  of the condensate i n t o  the  d isso lver  i s  perhaps more important 
i n  the  re f lux ing  d isso lver  system. E a r l y  p i l o t  unit t e s t s  allowed the condensate 
to run dcwn the  s ide  of the d isso lver .  A s  a result, l a rge  white mounds c f  z i rco-  
ni im hydrcxide adhered t o  the d isso lver  w a l l s  around. the  condensate en t ry .  
Further  t rouble  w a s  avoided by i n s t a l l i n g  a l i n e  t o  discharge condensate d i r e c t l y  
onto the bo i l ing  surface.  

Foaming - 
Foaming has been reported by L. M.  Fe r r i s (7 )  and J. L. Swanson as appreciable 
during the reac t ion .  There w a s  no evidence of severe foaming i n  the  p i l o t  p lan t  
dissol.ver when operated w i t h  a l i q u i d  t o  zirconium surface r a t i o  of 0.17. 
d i sso lver  had a t  l e a s t  0.17 cu f t  of freeboard per  square foot  of zirconium sur- 
face i n  contact, with d isso lver  so lu t ion .  

The 

Sclution CGrductivity 

Preliminary conductivity t e s t s  were successful i n  ind ica t ing  the progress of t he  
rea , i t t cn  * z i n g  the  decladding s tep .  A standard 1000-cycle conductivity bridge 
by  Industr ia l .  Instruments w a s  used t o  ind ica te  values from a shiny platinum 
e lec t roee  cell with a c e l l  constant of 9.8. A 0.2 mfd capaTitance w a s  used t o  
give xcre d i s t i n c t  readings on the  null ind ica tor  eye. 
35 to 55 ohms. 

Operating range was from 

Conductivity Measurements a t  Boiling (ohms) 

R u n  No. start F ina l  

28 40 50 
40 55 
35 53 

29 . 
30 
31 ' 35 55 

A 
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Ccre Dissolution 

Sintered uranium dioxide i s  the  core component i n  the  Dresden and PWR Zircaloy 
clad f u e l s .  After the  Z i r f l ex  decladding s tep ,  conventional n i t r i c  ac id  can be 
used f o r  t he  dissolut ion of t he  U02 core. 
added t o  i n h i b i t  the  corrosive ac t ion  of the  r e s idua l  f luor ide  on the  dissolver  
vessel  e I 

The d i s s c l u t i c n  r a t e s  of s in t e red  U02 were th ree  t o  four  times more rapid than 
thcse of me ta l l i c  uranium i n  10 molar n i t r i c  a c i d  concentrations. 
continued-, the  rates decreased t o  equal or below t h a t  of me ta l l i c  uran iur .  
Sa t i s f ac to ry  dissclTJtion of  the  U02 w a s  obtained as long as the  ac id  concentra- 
t i o n  w a s  abcve 1 molar. 

However, aluminum n i t r a t e  must be 

A s  d i s so lu t ion  

Ccrrosion 

Tk?e Z i r f l ex  process i s  p a r t i c u l a r l y  a t t r a c t i v e ,  s ince  ordinary stainless s t ee l  
equipment i s  applicable f o r  t h e  decladding and core d i s so lu t ion  s t ep .  Coupons 
o f  types 304-L, 347, and 316 gave a corrosion rate of 4 .3  mols per month i n  the  
p i l o t  .slant dissolver  (based on 55-hour decladding and 55-hour HNO3 core 
3Lssolution).  Other corrosion da ta  were i n  t h i s  same range. 

Corrosion i o  6 - M NH4F 0.5 - M NH4NO3 

(24-48 hours a t  bo i l ing  i n  Teflon o r  s t a i n l e s s  s t e e l  containers) .  

Material 

3 0 L ~  
309 Scu 
Carpenter 20 
Hastelloy F 
Ni -0-ne1 
Incaloy 804 
Hanes 25 

Hastelloy F 
304-L 

Mil/mo 

1 1 . 4  
9.6 
5.6 
3.3 
4.4 
5.9 
5 . 5  

3836 
18* 

* Heat t r a n s f e r  surface 

The  corrosion of mild s t ee l  by neu t r a l i zed  wastes w a s  n i l  a t  40 C i f  t he  pH 
w a s  8.5 o r  above. Higher temperatures have not been tested.  

Some re s idua l  f luor ide  i n  the  n i t r i c  a c i d  core d i s so lu t ion  s t e p  could cause 
corrosion problems. 
of aluminum t o  f luo r ide  complexes f l u o r i d e  and prevents excessive corrosion, 

However, addi t ion of aluminum t o  a t  least  a 1:l mole r a t i o  
as 

UNCLASS LF I E D  
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shown by the following data. 

43 -  

CORROSION OF 304-L 

10 M HNO:,, 0.02 M UNH, 0.08 M .- 

Al/F Mole Ratio Mils/Mo 

6.25 1.97 

1.00 13.7 
3.12 2.82 

E qui pme n t 

The p i l o t  u n i t  w a s  arranged as shown i n  Fig.  8. 
s t a i n l e s s  s t e e l  vessel  was connected through a 3-inch ID glass  tower of 1-inch 
raschig r ings t o  a tubular  condenser. 
t o  the  dissolver ,  o r  w a s  del ivered t o  a separate condensate co l lec tor .  
off-gases from the condenser passed through a rotameter i n t o  a bubble cap 
glass tower f o r  absorbing ammonia. 

A 40- l i te r  steam-jacketed 

Condensate returned through t h e  tower 
The 

To follow d isso lu t ion ,  an ordinary pneumatic d i f f e r e n t i a l  pressure t ransmit ter  
w a s  used t o  indicate  the weight of a wire basket suspended ins ide  of the  
d isso lver ,  
the d i f f e r e n t i a l  p r e s p r e  on the diaphragm. 
w a s  removed t o  eliminate the e f f e c t  of dissolver  vacuum on the readings. A 
pneumatic recorder provided a recorded t r a c e  of t h e  dissolut ion of the mater ia l  
i n  the  basket.  

The weight of the basket provided the  force o r d i n a r i l y  developed by 
The diaphragm of the  t ransmit ter  

The bunyant e f f e c t  of the gases on the  indicated weight cer ta in ly  caused some 
magnitude of e r r o r ,  which i s  d i f f i c u l t  t o  pred ic t .  
l a t e d  from the p i l o t  u n i t  data are probably lower than a c t u a l  because the 
bxoyant e f f e c t  becomes progressively l e s s  s ign i f icant  as the r a t e  of react ion 
decreases.  However, the weighing device was very useful, since liquid samples 
dilring the react ion wou1.d p r e c i p i t a t e  and plug sample l i n e s .  
of l.,O9 (cold)  d id  not  change appreciably during the d isso lu t ion .  

Liquid sample por t s  were provided on the d isso lver ,  condensate re f lux  l i n e ,  
condensate col lector ,  and the a c i d  reservoi r .  Samples were taken a t  the off-gas 
flow j u s t  before en t ry  t o  the  scrubbing tower. 

The diSSGlUtiOn r a t e s  calcu- 

A s p e c i f i c  gravi ty  

Operating procedure 

A customary procedure f o r  dissolver  operation w a s  used i n  the  decladding tests.  
The metal and calculated amount of solut ion were charged t o  the  d isso lver .  
The solut ion w a s  then heated t o  boi l ing  and maintained at  boi l ing  throughout the 
run. 
the  off-gas system and t o  d i l u t e  the solut ion t o  a soluble zirconium concentra- 
t i o n  a t  room temperature. 
added t o  maintain a constant l i q u i d  l e v e l .  

A t  the  end of the dissolut ion,  water was  added t o  replace t h a t  l o s t  t o  

During boi l -off  operations,  water w a s  continuously 

'JNCLASSIFSED 
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I n i t i a l l y ,  vapors were condensed and routed d i r e c t l y  t o t h e  dissolver .  
After  d i f f i c u l t y  i n  obtaining complete dissolut ion,  a i r  was sparged through 
the dissolver  and off-gas system. Later, the condensate from the condenser 
w a s  routed t o  a separate receiver  o r  the condenser temperature was operated 
high enough t o  ad jus t  t h e  vapor pressures of ammonia f o r  optimum removal. 

CR Coo1ey:pc 
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A 
Unoxidized 
Water Boil-off 

I I I I I I l l  1 I I I I I I I ' I  I 
0. 

* 3  .4 .? .6 .7 .a .g 1.0 \ 2  3 4 5 6 7 8910 
Free 'FJ-uoride Molarity (Total  Fiucride - M - 6 Z r  - M )  

FIGURE I - ZIRCALOY DISSOLUTION RATES 
I N  BOILING AMMONIUM FLUORIDE 
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100 

90 
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70 

60 

50 

40 

30 

20 

10 

0 

Reflux with 
A i r  Sparge 

Reflux with high Condenser 
Temperature and A i r  

Time, Min. 
S-32 - Reflux with Air and High Condenser Ternperatare 
o - 9 - No A i r  Spar& 
0 11 - Oxidized-Water Boil O f f  
d 24 - Water Boil O f f  
e 20 - A i r  Sparged 

FIG‘JRE 4. EFFECT OF OPERATING CONDITIONS 
- ON DISSOLUTION RATE 

UNCLASSIFIED 



UNCLASSlFllED -17 - Hw-605 97 

Condenser Effluent Temperatures 

500 172'F 150°F 200'FJ 150'F 
lOO'F 

PEAK NH3 LOAD 
for 5.5  - M NH4F 

I .  

% A i r  Rate = 500 Scfm 
B o i l  up = 1150 gal/hr 

R A i r  Rate = 500 Scfm 
B o i l  up = 575 

100°F 

BASIS: 
558 pounds of Zi rca loy  cladding and 
an estimated surface of 660 sq f+,. 

1 t on  of U as U02 wi th  

NH3 Molarity in the Dissolver 

1 
c.1 1.0 

FIGURE 3. EFFECT OF A I R  KATE, BOIL UF' RATE AND CONDENSER 
TEMPERATURE ON NHq CONCENTRATION IN THE DISSOLVER - 
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P i l o t  Unit Data 
0 U02 w i t h  0.5 M NO3 
DUO2 w i t h  0.75-M NO? 
OMetal l ic  U w i t K  0.5 

0.1 1.0 \ 10.0 
Free Fluoride Concentration, 9 -mole s / l i t e r  

Free Fluoride - M = Total Fluoride - ~ v l  - 6(Zirccnirun - M )  

FIGURE 6 - SOLUBILITY OF IJRANIUM I N  ZIRFLM: SOLbTIONS 
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1.0 

0.10 

Z 

= Nc;rmi 0 
Zr/U = wei&t 
Zr /U f o r  Dres 

Zr /U  For Shippingsport  Assembly =O 37 

1 I 1 I I l l  I I 1 
0.1 1.0 

Uranium Concentration, grams/liter 

FIGURE 7 - PERCENT LOSS OF URANIUM I N  ZlRFLEx SOL'JTZONS 
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ZIRF'LM FLOWSIIEET BASIS FOR FIGURES 9 and 10 

1. A mole of Zircaloy i s  100 percent zirconium. (Zircaloy 2 i s  98.5 
percent zirconium. ) 

Seven moles of ammonium f luo r ide  i s  required per  mole of Zircaloy. 

Five moles of  ammonia i s  evolved per  mole of Zircaloy. 

One-tenth mole of hydrogen i s  evolved per  mole of Zircaloy. 

No Zircaloy i s  present  i n  d isso lver  a t  charging. Approximately 558 
pounds of Zircaloy i s  removed d u r i n g t h e  decladding s t ep .  Approxi- 
mately 172 pounds of Zircaloy i s  l e f t  i n  t he  d isso lver  as undissolved 
tube shee ts  and end f i t t i n g s .  

2 .  

3. 

4. 

5. 

6. Estimated surface a rea  of the  Zircaloy i s  650 square f e e t  per ton of 
uranium. 

7. Peak gas rates assume a s t a r t i n g  d i s so lu t ion  r a t e  of 66 mils/hour with 
unoxidized Zircaloy. Peak rates f o r  oxidized Zircaloy are approximately 
10 t o  1 5  percent of rates f o r  unoxidized Zircaloy. 

Uranium s o l u b i l i t y  i n  Zircaloy waste so lu t ion  i s  approximately 1 . 6  
grams per  l i t e r  at boi l ing  and 0.25 graxns per  l i t e r  a t  22 C .  

8 .  

9 .  A i r  r a t e s  a r e  based on a 2 percent hydrogen concentration during peak 
off-gas  evolut ion.  

Condenser temperature and b o i l  up i s  based on the par t ia l  pressures  and 
r a t e s  necessary t o  permit adequate ammonia removal during peak operat-  
ing  cocdi t ions.  

10. 

11. C r i t i c a l i t y  o r  d i sso lver  geometry has not  been considered. 

1 2 ,  N i t r i c  a c i d  consumption f o r  t he  d i s so lu t ion  of one mole of U02 i s  
approximately 2.2 moles per  mole of uranium dissolved.  

Zirflex contaminants (Zr, F and NH4 ions)  are based on a 50-gallon 
l i q u i d  hee l  per ton  of uranium. 

13. 

I 
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I DISSOLVER CHARGE I PVR-1 U02 Fuel  
PEAK VAPORRATES 

I b m J h r  - 
H2 1.6 

PEAK VAPOR RATES 
lb m / h r  

H2 1.6 

78 
%0@150 F... 50 

79 -- To O f f - G a s  Systen 

I 

tu 2000 lb h 
79 
78 N93 

A i r  Nfl3 
A i r  

I . 
1 SOLUTION ADDITIOM 
I NaOH 19 14 I I DISSOLVER 

Charge S o h  
Heat t o  bo i l ing  

11 1. 
2. 

- 
Volune 95 @l 

I I 3.  B o i l  12 hours I SOLUTION ADDEI!IOPT 
HNO? 1.0 M i 
*umJ 1.0 G 
Sp Gr 1.19 
Volme 120 gal-  

l 

A s  required t o  
na in t a in  Liquid -4.7 o'pn 

I l e v e l  1 I I  
I 

'Alternate to Sever I I,mp 1.7 'fl 
u t o t a l  2 .5  E 
PJJ t o t a l  0.15 g. 
Sp Gr 1.06 

I 
I AIRADDITION 
1500 Scfm 

I 

CLADDING w m  
0.6 M 
0.6 R a F 6  

F' 
NO3' 0.08 E 
m4+ 1.9 h 
pu S o l . t o t a l  0.1 g- 
Pu PPt 4.2 g. 
u Sol t o t a l  2.5 Ib 

10.0 lb u PPt 
SpGr 1.09 
Volune @a g a l  

CAKE SOLUTION 
FiNo 3 1.0 M 

0.18 b 
ANN 1.0 k 

J F' 

u t o t a l  10 1E 
Pu t o t a l  4.2 g. 
Volume 120 g a l  

FIGURE 9 - ZIRFLEX CLADDING RElcioVAL - PWR-1 FUEL 
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CHARGE CONDITIONS RESULTS 
Ave rage Average Percent of Total  

Fluoride - to  Srr anium 
Rim Fluoride Ni t r a t e  Zircaloy g / l  Before 
Nn . MGla.rity Molarity Mole Ratio Centrifugation - -- -_I 

33 5.5 0.5 7 0.1L 

35 5-5  0.75 * 7  0.25 
36 5.5 0.75 - 12.5 

34 5.5 0.75 7 0.47 

37 5.5, 0.75 7 2.4 

IJranium 
g/l After  

_I Centrifugation 

Not Cent. 
0.54 
1 . 9  
2.9 

Not Cent. 

Z r / U  
Weight 
R a t  i o  -.- 

0.16 
0.17 
0.17 

0.17 
- 

5.5 0.75 7 0.11 0.10 0.17 
0.15 

38 
39 5.5 0.5 7 4.3 1 .3  
40 5.5 0.5 .7 2.8 2.6 0.21 
41 5.5 0.5 7 2.2 1 . 4  0.29 
42 5.5 0.5 7 0.4 0.4 0.17 

5.5 0.5 7 1 . 2  1.1 0.17 
0.16 

43 
44 5.5 0.5 7 1.1 1.8 

0.0036 - 
0.07 - - 45 5.5 0.5 7 >  

46 5.5 0.5 7- 
47 5.5 0.5 7 0.06 - - 

- 

1 . 6  0.91 0.034 
- 0.046 

45 5.5 0.5 7 
'19 5.5 0.5 7 1 . 5  

Percent Loss t o  Urmium as UF4 
Solution After P rec ip i t a t e  
Centrifugation i n  Centri iuge 

0 .Ob - 
0.17 0.06 
0.57 - 
0.63 0.15 

.- -. 

- - 

0.03 
0.37 
1 - 3  
0.82 
0.13 

0.37 
0.50 
0.25 
2.9 
9.4* 

0.09 
0.08 

NOTE: *Dissolver contamination may have contributed t o  the high lo s s  
WApproximately 1% remained i n  dissolver  as f l akes  

+(+wJ-A~ a l l o y  2.25% u 
M J - A l  a l l o y  0.s U 

C 

E cn 

Ei 
E 
U 

0.01 

0.10 
0.21 
0.02 

- 

- 
- 
- 

- 
0 . 0 3 ~  

Core 
Material  

Sintered UOg 
I t  

11 

11 

11 

I t  

Swaged U02 
Sintered I I  U 0 2 ,  

c 

1 1  

Metal l ic  U 
Metal l ic  U 
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APPENDIX 

ZIRCONIUM DISSOLUTION RATE EQUATIONS 

A .  Nomenclature 

zr = gram moles of meta l l ic  zirconium 
(3 = time from start ,  minutes 
V = volume of so lu t ion ,  l i t e r s  

= molarity of so lu te ,  unreacted f luor ide  
= molarity of solute ,  zirconium 
= t o t a l  f luor ide  t o  zirconium mole r a t i o  i n  batch 

CF 

K = reac t ion  constant,  l i ters / in2-min 
A = surface area of zirconium, square inches 

B e  Derivation 

HW-60597 

1) Since the  d i s so lu t ion  of zirconium i s  first order i n  "free" 
(unreacted) f luo r ide ,  t he  r a t e  of d i sso lu t ion  may be expressed as: 

-dZr/AdQ = K CF 

2 )  Known re l a t ionsh ips  of 'the system are: 

-VdZr - = vcFo - 6 Zro  + 6 Z r  
KAd0 

5 ) Rearranging, , 

Z r  8 

[ KAd0 -dzr 

UNCLASSIFIED 
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. 6 )  a t e g r a t i n g ,  

V C F ~  - 6 Zro + 6 Z r  ! KAQ 

V 
- -- - -1/6 I n  

“Fo 

6 KAC) 
- ‘Fo - -  I n  

h 

8)  o r  subs t i tu t ing  

6 K A ~  - - -  cFo I n  

C .  - Wme Cycle Calculations 

1) Basis: 

a )  One-pound Zr tube of  30 m i l  thickness, (4.97 g-moles) 

2 b) A = 143 i n  (only outside surface exposed t o  so lu t ion )  

, c )  I n i t i a l  s c l u t i o n  ba tch  of 5 . 5  - M NH4F and 0.5 NH4NO3 

d) Seven moles of  f luor ide  charged per mole of  Zi.rconim 

e )  Reaction c o n s t m t  of 23 x 10-5 l i ters / in2-min,  m a x i m u m  possible 
(Note: lk x 10-5 w a s  the  average K value f o r  unoxidized p i l o t  un i t  
runs and 3.3 x 10-5 w a s  the average for  oxidized fuels . )  
I 

2) ~ o l u m e  of charge so lu t ion ,  v = (g-moles Zr)(F/Zr)(l/CFo) 

or V = (4.97 g-m Zr)(7 g-m F/ g-m !Zr)(1/5.5 g-m F)  = 6.3 l i t e r s  
or (1.66 gal)  

For 100 $ d i s s o l u t i m ,  end concentration, ‘F = ‘Fo - ( 6 ) ( m i e s  Z r ) / V  
o r  CF = 5.5-(6)(4.97)/6.3 

3. 
= 0.77 ,M 

4.  Hence, from Equation No 8 above 

8 

and 0 = 63 min o r  approximately 1 hour 

-= V/6 KA I n  c F 0 / C ~  = [ 6 . 3 / ( 6 ) ( 2 ~ ~ 0 - 5 ) ( 1 4 3 ~  I n  5.5/0.77 
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5 )  Theoretical dissolution times can be calculated in a similar manner 
for other conditions. 
total dissolution, actual values are 2 to 5 hours longer. 

Since surface area changes with the degree of 

Conditions 
v K 

A Liters/ing-min - 
CFO FZ, 
- M mo 1; s/mo le Lit e r s - 

7 6.3 23x10- 5 ( m x  ) 143 
5.5 7 6.3 14x10-5 avg) 143 

143 
3.0 7 11.6 14x1 0-5 ' avg ) 143 

k 
5 

5.5 
5.5 7 6.3 3.3~10' (oxidized) 143 
3.0 7 11.6 23x10'5 (max ) 

3.0 7 11.6 3.3xlO- (oxidized) 143 

h 

Theoretical 
Time 
8 

Hours 

1.0 
1.7  
7.0 
1 .9  
3.1 

13.3 
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