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The TUT-T5 .code f o r  t h e  IBM-704 e s t i m a t e s  n e u t r o n  c a p t u r e  p r o b -  
a b i l i t i e s  i n  a  o n e - e n e r g y ,  t w o - d i m e n s i o n a l ,  r e c t a n g u l a r  c e l l  
model ,  u s i n g  a  Monte C a r l o  method.  T h i s  r e p o r t  d e s c r i b e s  t h i s  
p rob lem and i t s  s o l u t i o n  i n  m a t h e m a t i c a l  t e r m s .  The t r a n s p o r t  
e q u a t i o n  a r i s i n g  f rom t h e  i d e a l i z e d  p h y s i c a l  model used i n  t h e  
code i s  d e r i v e d  and t h e  prob lem i s  s t a t e d  i n  terms o f  t h e  s o l u -  
t i o n  o f  t h i s  e q u a t i o n .  The v a l i d i t y  o f  t h e  Monte C a r l o  s o l u t i o n  
i s  e s t a b l i s h e d  b y  p r o v i n g  - t h a t  t h e  random v a r i a b l e s  i n v o l v e d  
a r e  u n b i a s e d  f o r  p r o c e s s e s  w i t h  c o n v e r g e n t  Neumann s e r i e s .  
These random v a r i a b l e s  sum t h e  d i s t a n c e s  t r a v e l  led  by  randomly  
s e l e c t e d  p a r t i c l e  h i s t o r i e s  and use these  sums t o  e s t i m a t e  f l u x  
i n t e g r a l s  o v e r  t h e  v a r i o u s . r e g i o n s .  C a p t u r e  p r o b a b i l i t i e s  a r e  
then o b t a i n e d  t h r o u g h  m u l t i p l j c a t i o n  by t h e  a p p r o p r i a t e  c a p t u r e  
c r o s s  s e c t  i o n s .  The . i n t e g r a  I s  w h i c h  e x p r e s s  t h e  v a r i a n c e s  o f  
t hese  random v a r i a b l e s  appear t o o  c o m p l i c a t e d  t o  hand le  by  ana- 
l y t  i c  m e t h o d s .  

THE PHYSICS AND MATHEMATICAL ANALYSIS FOR THE TUT -T5 
MONTE CARL0 CODE 

J. Spanier 

I. INTRODUCTION 

 h he TUT-T5 code fo r ' t he  IBM-704 (Ref 1 )  calculates,  f o r  a one-energy model, a regionwise 

distribution of neutron capture  probabili t ies in  a two-dimensional rectangular quar t e r  -cell. The 

code is based on an  analog Monte Car lo  method in  which random par t ic le  life h i s to r i e s  a r e  simulated 

using pseudo-random numbers ,  and the unknown capture probabili t ies a r e  es t imated by averages  of 

weighting functions ( random var iables)  associa ted with the his tor ies .  Although the specific technique 

used in TUT-T5, that of constructing es t ima tes  f r o m  the Monte Car lo  t r ack  lengths, has  been sug-  
' 

gested before fo r  use  in  s i m i l a r  problems (Ref 2, p 350), the author knows of no proof of the validity 

'of the technique. * The method is sufficiently irfiportant to war ran t  a discussion in  s o m e  detail. The 

pi-esent repor t  concerns the mathemat ical  analys is  which f o r m s  the theoretical  foundation for  the 

TUT-T5 code. 

'I'wo major  problems a r i s e  in connection with the analys is  for  any Monte Car lo  calculation: 

(1) a proof that the calculation is unbiased and (2)  a n  examination of the variance associa ted with the  

es t ima tes  of the unknown paramete r s .  Stated loosely,  the calculation is unbiased if the theoret ica l  

average of a l l  the weights.associated with a l l  possible particle h is tor ies  is exactly the quantity being 

es t imated.  Requiring that the calculation be unbiased imposes  a somewhat a r b i t r a r y  but cer ta inly  

v e r y  plausible res t r ic t ion on the c l a s s  of admiss ible  es t imat ing random variables.  The var iance of 

the estimating random var iable  provides a m e a s u r e  of the deviation of the es t imate ,  f o r  a finite s a m -  

ple,  f r o m  the unknown paramete r .  The var iance thus provides a useful cr i ter ion fo r  comparing the 

efficiencies of two competing methods of calculation. The es t ima te  with the s m a l l e r  var iance will 

*Recently, a proof has appeared i a  a pre l iminary draft :  M. A. Martino and W. W. Stone, "TRAM, 
A Monte Car lo  Thermal  Neutron Code,"  KAPL-2039 (June 19, 1959). .This proof is different f r o m  
the present  ,proof, since i t  is based on the introduction of a t ime-like var iable  and a general  r e s u l t  
on ergodic processes ;  moreover ,  the details  of the proof have been omitted. The proof ,presented 
here is based on f i r s t  principles.  . 



require fewer histories to achieve a fixed level of accuracy. In general, however, the smaller  the 

variance, the more costly is the data processing per sample. Thus, these two effects must in prac- 

tice be balanced to achieve maximum efficiency, i. e . ,  minimum over-all computing time. In any 

event, a knowledge of the variance is always desirable but generally very difficult to obtain. In fact, 

for most problems i t . i s  a s  difficult to obtain sharp theoretical bounds on the variance a s  i t  i s  on the 

parameters  being estimated. The digital calculation itself does provide an estimate of the variance, 

and this i s  then used in place of the variance to predict the expected e r r o r  a s  a function of the size 

of the sample. The main objective of this report is to prove that the random variables used in 

TUT-T5 a r e  unbiased; the integrals which express the variances appear too complex to handle in 

closed form. 

An outline describing the development of the analysis for a general Monte Carlo neutron t rans-  

port code i s  presented in Ref 3 ,  Section 6. According to this outline, the f i rs t  step is to establish 

clearly the physical model being studied. The transition from physical model to mathematical model 

is then established 'via an integral equation, the integral form of the Boltzmann transport equation for 

the given process. Next, an abstract  probability model is established in the form of a sample space 

nf random walks Q, end~wed  with an appropriate probability measure p. The definition of R a s  a 

point s e t  and the construction of a measure p based On a random walk process,, i. e. , a nlelhud fur 

generating sample histories,  a r e  described in Ref 3 ,  Section 7. Two types of measures a r e  pos- 

sible: the analog measure, in which the ''events'! undergune by each parLicle 1Listcjl.y a re  exactly as 

likely in the pr~babi l i ty~model  a s  they a r e  in the physical process, and non-analog measures, which 

distort the likelihoods of individual events in the probability model in an attempt to increase the e f -  

ficiency of the calculation. The analog measure is uniquely determined by the transport equation for 

the physical model; however, a wide range of non-analog measures a r e  possible in any given prob- 

lem. Only the analog measure was considered in the formulation of '1'UT-'1'5, largely because the 

geometric complexity seemed to make non-analog techniques forbidding, if not impractical. Knowing 

the measure to use in setting up the sample space, it then remains to define for each parameter to be 

estimated, a random variable 6: that i s ,  a real-valued, measurable furlclio~~ on R. Th.is function can 

be thought of a s  associating a "weight" c(C) with every random walk chain C of R., This weight is the 

C-estimate of the unknown parameter.  It is assumed that each unknown parameter can be repre-  

sented a s  an integral . , 

where R i s  the physical phase space, g(P)  is a known function.on R; and +(P)  is the transport theory 

collision density, the solution of the transport equation for the problem. Generating N random walk 

chains corresponds to"se1ecting N points, C1,. . . . C . .  of f2 using the constructed measure p. The - N 
average weight of these N chains EN, defined by 

converges by the Central Limit Theorem to the integral 

where dp i s  the differential of the probability measure p. It seems natural to require that 5 = and, 

if this is so, the random variable E provides an unbiased estimate, of the number 2. In this way, if 

the unbiased character of is  established, the original intkgral 2 over phase space R is replaced by - 
the integral 5 over the sample space 52, and th6 latter integral is approximated by.th@ quantities E N  
for sufficiently large N. 



Observe that in  this formulation the measure  p need not be analog to make the argument work. 

It is general ly  t rue  that the function g will have a s imple r  f o r m  when p is analog measure  than when 

p is non-analog. In fact ,  fo r  analog p i t  may be ve ry  tempting to equate 2 a n d 2  through ES physical 

argument.  In this connection, i t  should be s t rongly  emphasized that the sample  space  R and the m e a s -  

u re  p have been constructed quite abs t ract ly ,  and the fact  that this probability model reproduces  i n  

some  sense  the physical model when p is analog measure  needs to be demonstra ted rigorously.  Thus ,  

the statement,  f o r  the neutron flux @(P) a r i s ing  f rom a unit source ,  that 

where 5 is the average total  distance travelled f r o m  bir th  to death,  is a s ta tement  concerning the 

behavior of a r e a l  neutron population in  a cer ta in  physical sys tem.  On the other hand, the s ta tement  

that 

where 5 is that random variable on R which ass igns  to each chain C the total  distance travelled be - 
tween success ive  "collisions" and where d is the expectation of E, is a s ta tement  about a n  abs t rac t  

probability model. The equality of d a n d  5 is prec i se ly  the miss ing  link which makes  the t ransi t ion 

f rom the one model to the other possible. Such problems a r i s e  in  analyzing the TUT-T5 code, a n d  

i t  is hoped that the previous discussion s e r v e s  to motivate the proof of the unbiased charac te r  of the 

random var iables  used in  the code. 

11. THE PHYSICAL PROCESS . :> 

.. * .'> : . .. 
In this section,  the assumptions which govern the physical process  studied in  TUT-T5  a r e  . 

' . ' . r  . .:: 

described. Thus,  the geometry  of the problem, the manner  i n  which par t ic les  a r e  introduced into .,. k 
this geometr ica l  a r r a y ,  and the microscopic  laws which govern the behavior of the par t ic les  must  be .. ) 
described. The in tegral  equation which resu l t s  f r o m  these assumptions  is obtained in Section 111. 

The physical model under consideration gives r i s e  to the one-energy integro-differential  t r a n s -  .., ..: ,-; 

port equation J.-, 5: 

directions L 

where 

r - is a spat ia l  vector in th ree  -dimensions,  

W - is a unit direction vector ,  

@(r,w) is the t r anspor t  theory vector flux. 

Z t ( r )  is the total  macroscopic  c r o s s  section,  

CIffr) i s  the rnacrnscnpic scattering c r o s s  section for  hydrogen, 
b - 

Zs( r )  is the total  macroscopic  scat ter ing c r o s s  section. 
- 
p(r)  is the average cosine of the scat ter ing angle ( laboratory  sys tem)  fo r  hydrogen scat ter ing,  

c.1. - w1 - is the s c a l a r  product of the vectors  w. , and , 

, S(c) is the spatial. source density,  to he defined.  



Before defining the source density, i t  will be convenient to describe the geometry of the prob- 

lem. In Ref 1 the geometry of TUT-T5 is described a s  two-dimensional with no variation in the z -  

direction. F o r  the purposes of this report,  a description in three dimensions will be given because 

the Monte Carlo code itself, being patterned after the physical model, t reats  al l  events a s  i f  they 

were taking place in three dimensions. As a result,  the equations to be derived will be more pertin- 

ent if they contain al l  three spatial variables. Actually, the geometric configuration consists of an 

infinite lattice of rectangular cells in the (x, y) plane, each cell assumed to be infinite in extent 

in the z-direction. The basic cell  will be defined in three dimensions by the following inequalities: 

-M1 5 x 5 M1, -M2 5 y 5 M2, 1 z 5 1 2  The geometry of this cell is assumed to be symmetric 

about each of the planes x = 0, y = 0. These two planes divide the basic cell into four quarter-cells,  

the description of any one of which will thus serve to specify completely the entire lattice network. 

The basic quarter-cel l  i s  taken to be the one defined by the inequalities 0 5 x 5 Ml. 0 5 y 5 M2, 

1 5 z 5 1 Because the geometry does not vary with z ,  the description of the basic quarter-cell  

will be complete when the two-dimensional intersection of the basic quarter-cell  with the plane z = 0 

1s described. This region of the (x, y) plane may be subdivided into a s  many a s  32 subrectangles, 

every subre ctangle being considered homogeneous. Each subrectangle defines a region of the geom - 
etry.  A generic region will be systematically denoted by the subscript i ,  i = U, . . . , N - I .  

~ k c e  it i s  not always desirable to estimate. capture probabilities f o r  all.regions, several  regions 

may be grouped together t.; form a composition. The code autdmaticaily estimates capt ire  probabil- 
. . 

i t ies for al l  compositions. A subscript > is used to denote a generic composition number, 

j = 0, ..., K - 1 5  N - 1. 

Having described the geometric arrangement, it is possible to define the source density function 

S( r )  which occurs in  Eq (2.1). This function is assumed to be constant in each region, the level in 

each region being arbi t rary.  Then, 

is the defining equation for S over the basic quarter-cell  0 5 x 5 M 0 5 y 5 M2, -1 12 5 z 5 112. 
1' 

In Eq (2. 2), Vi is the volume of region i, i = 0.. . . , N  - 1; X.  is the characteristic function of region 
1 

i. defined hy  

1 if (x, y, z )  is in region i ,  
Xi (x' y, 2 )  = 

0 otherwise; 

and S. is an a rb i t ra ry  constant specifying the source level in region i. The function S is then extended 
1 

over a l l  of three-dimensional space by symmetry and periodicity, a s  follows: 

S ( ~ , y , z )  = S ( - X , Y , Z )  =S(x . -y ,z )  =S(-x , -y ,z ) ,  0 5 x 5  M1, 0 5  y 5  MZ, -1125 z S  112; 

and 

. I ( 2 .  3) 

S(x, y ,  2)  = S(x * 2Ml, y, 2)  = S(x, y 2M2, z)  , for al l  (x, y, z). 

Observe that the source t e rm of Eq (2. 1)  is s o  norrnalized'that i t s  integral over al l  regions of the 

basic quarter-cell  is unity. 

The code considers only two general types of events upon collision of a neutron with a nucleus: 

elastic scattering and absorption. The relative probabilities for each event a r e  specified by the 

macroscopic c ros s  sections for the processes in questiun. Upon execution of a scattering collision, 

the distribution of new directions in the laboratory system is determined by the assumed distribution 

of scattering angles for the various elements. In TUT-T5, al l  elements except hydrogen a r e  assumed 



to scat ter  isotropically in the laboratory system. As is evident from Eq (2. l ) ,  the angular distribu- 

tion arising from hydrogen scattering is  assumed to have the form 

in each region i ,  where p is the cosine of the scattering angle in the laboratory system, and )ri is the 

average value of this cosine. Between collisions, the path lengths of particles measured in units 

of mean free path a r e  distributed exponentially in the interval 0 5 t 5 a. 

Since all  particles a re  assumed to have.the same energy throughout their lifetimes, energy con- 

siderations a r e  irrelevant. 

111. THE INTEGRAL EQUATION: STATEMENT OF THE PROBLEM 

In this section the physical assumptions made in Section I1 a r e  recast in  the form of an integral 

equation-the integral form of the Boltzmann equation for the idealized process being studied. The 

capture probabilities estimated by the code are  then expressed a s  definite integrals involving the , 

solution of the Boltzmann equation. The problem solved by TUT-T5 is thereby stated mathematically. . . ,  . .. 

Rather than obtain the integral equation via a transformation on the integro-differential equation 

(2. l ) ,  a derivation from more general f i rs t  principles will be outlined. The treatment used in this 

derivation is that of Ref 2, Appendix 2. . . 

In the following, the general integral equation is discussed and then specialized to the case of 
. .  

TUT-T5. 

Let denote a position vector in three-dimensional euclidean space, and let E denote a velocity 

vector, also in three-space. Writing E = E w, then, w i s  a unit vector in the direction of motion and 

E denotes the kinetic energy of the particle. The symbol R represents the six-dimensional phase 

space of pairs (r, E).  - - 
The particle collision density, +( r ,  - - E) ,  is  defined s o  that the expe.cted number of collisions of 

the particle with the medium contained in a volume V of phase space is given by 

where drdE is ordinary Lebesgue measure in R. The particle flux, @(r,  E), is defined in terms of 

J/(c. E) by the equation 

+(r .  Z) = zt (r. g)@(c. g )  . (3.1) 

where X t ( r ,  E) io the total macroocopic croon ocction at (r, E_).  . 

The general transport equatlon to be derived will have the form . 

The source term, Q(r,  E), represents the density of f i rs t  collisions, and the integral te rm sums the 

contributions from particles which have already collided at least once. 

The functions Q and K a r e  now discussed in more detail. 

The kernel K is most conveniently factored into a product of two functions, one dealing with 

changes in the spatial coordinates, the other dealing with changes in the velocity coordinates. Thus, 

the transport kernel T ( ~ ' , ~ ;  E) is s o  defined that, for a particle leaving the source or  a collision at 

( r ' , ~ ) ,  the expected number of next collisions in the volume V of position space is 



In s imi la r  fashion, the collision kernel c(E' ,E;~) is s o  defined that, for  a particle entering a colli- 

s ion a t  ( r ,  - - E'), the expected number of particles leaving the collision within the volume V of energy 

space is 

~ ( ~ ' . g ; r ) d ~  . 
v . . 

By introducing an orthonormal s e t  of vectors 2,. ?', 8' at the function T( r l ,  - - -  r;E) may be writt.Cn 

where ?(x) = 0 if x 5 0, ?(x) = 1 if x > 0. The delta functions and the function guarantee that the 

vectors lie along the forward trajectory of the path of the particle a s  it leaves with direction + 
The representation (3. 3) resul ts  f rom the differential equation 

satisfied by T, together with the condition that T vanishes a t  infinity. 

With this description of the function T ,  the source term Q of Eq (3. 2) may now be defined by 

Q(r ,  E) = / T ( ~ ' , ~ ; E )  s(fll. g ) d r l  - , (3. 5) 

the integral being taken over a l l  of position space and the function ~ ( r ' ,  E) being the physical source - 
density of particles a t  ( f ' . ~ ) .  The function Q ( r , E )  now may be seen to represent the rate of collision 

a t  ( r ,  - A E)  of particles which have been injected into the system a t  (f'. E) and then transported to ( r ,  E )  
by the transport kernel '1'. 

The collision kernel C is more difficult to describe in general than the kernel T because, on a 

given collision, many types of events a r e  competing with various probabilities. It is usual to express 

C a s  

C = z pici . 
where pi is the probability of an event of type i ,  and Ci i s  a corresponding kerne1,for that event. 

Explicit forms for  the Ci must be obtained from the laws of collision mechanics in each separate case. 

The kernel K ( ~ ' ,  E ' ; ~ ,  - E)  of Eq (3.2) is now defined by 

s o  that K ( ~ ' ,  E ' ; ~ ,  E) transports particles from the state (r ' ,  g) to ( r ,  E) via a collision at the space 

point :', followed by transmission from to r a t  the velocity vector E. An integral equation s imi-  

lar  to (3.2) is satisfied by the flux, $(f,E); however, this report will deal exclusively with the equa- 

tion for the collision density. 

In the problem considered by the code, since there i s  no energy dependence, the collision density 

J/ is a function of five variables. To denote a unit vector in the direction of flight of the particle, g is 

again used and polar coordinates a r e  used to describe the components of thisvector .  Thus, g = (9, $) 

specifies that 9 is the polar angle of w, 0 5 9 5 n, measured from the z-axis in euclidean 

three-space, and $ is the angle between the positive x-axis and the projection of g on the (x, y) plane, 

0 5 $5 2n. Fo r  spatial components, rectangular coordinates in three-space will be used and written 

r = k . y , z ) .  - 



The physical source  density for  TUT-T5 has  a l ready been defined in  Section 11; it is the function 

where S ( r )  - is thk function defined'by Eqs  (2 .2)  and (2 .3) .  The t ranspor t  kernel  T has  been defined 

in  general  in  Eq (3.3);  thus ,  i t  r emains  only to define the collision kernel  C to-specify the in tegral  

equation for  the code. In view of the assumptions  made .in Section I1 concerning the scat ter ing l aws  

of the var ious  e lements ,  C i~ given by 

H where X ( r ) ,  C ( r ) ,  Z (r). p(r) have the s a m e  meaning a s  in  Section 11. The full  in tegral  equation s -  t -  s -  
satisfied by the collision density in TUT-T5 i s ,  therefore ,  the equation 

where S ( r )  is the source  density defined by Eqs  (2. 2) 'and (2, 3). - 
The physical assumptions guarantee that the solution + ( r ,  - - w) = +(x, y ,  z ,  0, $) will be a periodic func- : . .s 

tion of the varia,bles x and y and will be independent of z .  Interes t  will be focused on the, solution in . . . "  

the range.of values 0 6 x 5  M1, 0 5  y 5  M2, - 1 1 2 5  z 5  112, 0 e 5 n ,  a n d 0 5  $ 5  2n. 

The problem solved by the code is the estimation of each of the in tegrals  

where x . ( r )  is the cha rac te r i s t i c  function for composition j of the basic quar ter-cel l ,  gnd +( r ,  w) 
J - - - 

sat is f ies  E q  (3 .8 ) .  The number p. shal l  be r e f e r r e d  to a s  the capture probability fo r  composition j.  
J 

In the analys is  given l a t e r ,  it will be necessa ry  that the source  t e r m  appearing on the right s ide  

of E q  (3. 8)  integrate to unity over  a l l  of phase.space.  The in tegral  i n  question is given by 

the integral  being over  the basic quar ter-cel l .  F r o m  the definition of T through the differential  

equation (3 .4 ) ,  i t  is e a s y  to  show that .. 

/ ~ ( ~ ' . ~ ; ~ ) d ~  = l . 
a l l  space  

Then, inverting the o r d e r  of integration in ( 3 .  l o ) ,  

R . quar ter-cel l  



Equation (3.11) s t a t e s  that the total  b i r th  r a t e  h a s  bken normalized t6  unit9 over ' the  'basic q u a r t e r -  

cell .  Since the source  .is periodic,  i t s  in tegral  over  a l l  of phase space  is unbounded. T o  avoid an  

unbounded s o u r c e ,  the .present formulat ion is replaced with a mathematically equivalent one which 

h a s  the  p roper  normalizations.  This  is done by placing the required source  i n  Eq (3.8) and a l ter ing . . I .  . . 
the definition of the numbers  p.. 

J I 

Consider  a function S (r) which coincides with S ( r )  over  the bas ic  quar t e r -ce l l  and which van- N -  
i s h e s  everywhere  e lse .  Le t  q N ( r , ? )  be the  function which sa t is f ies  Eq (3..8) when.s(fl) is replaced 

by sN(f) on the r ight  side.  The collision density qN(fl,%) is no longer .a periodic function on phase 

spa,ce. Indeed, qN vanishes a t  infinity because the s o u r c e  SN is now confined to  the basic quar t e r -  

ce l l .  It is c l e a r  f r o m  the s y m m e t r y  of the geometry  that the numbers  p.  m a y  be de,fimed i n t e r m s  of 
.I 

the new function qN by the equations 

where  Xf(r)  is now the cha rac te r i s t i c  function of the union of a l l  the r ep l i cas  of composition j ove r  
1 - 

a l l  the q u a r t e r - c e l l s  of the lat t ice network. In tegrals  of th is  type will be dealt  with in the r emainder  

of th i s  r epor t .  

The  r e s u l t s  of this sect ion may  be summar ized  i n  the following way: initially, the problem is 

s t a t ed  i n  t e r m s  of a source  which is periodic,  taking on the s a m e  values i n  each  repl ica  of the basic 

quar t e r -ce l l .  The collision density a r i s i n g  f rom such  a source  is a l so  periodic,  and the capture 

probabili t ies m a y  be defined a s  weighted in tegrals  of the collision density, r e s t r i c t ed  to  a single 

bas ic  q u a r t e r  -cell .  The s o u r c e  in  e v e r y  quar te r  -ce l l  contributes to these weighted in tegrals ,  by 

amounts  which diminish a s  the distance f r o m  the quar te r -ce l l  to the basic quar t e r -ce l l  inc reases .  

Now, if the source  is confined to the bas ic  quar ter-cel l ,  the source  will make contributions to the 

coll ision density over  a l l  phase space  in  such a way that, if the weighted in tegrals  a r e  summed over  

a l l  of phase space ,  the or ig inal  capture probabili t ies will resul t .  Since l a t e r  analysis r equ i res  a 

unit s o u r c e ,  th i s  point of view is adopted i n  formulating the problem solved by the code. The code 

thus e s t i m a t e s  the in tegrals  (3. 12),  where q N ( ~ ,  o_) sat is f ies  

t sN(cl) 
d r '  . q N ( x , d  = // ~',(~'.~')~(~'.~';~.~)d~t!'df + / T '  .. 

H. 

The function ~ ( ~ ' . ~ ' ; ~ , w )  is the ke rne l  of Eq (3 .8)  and the source  t e r m s  a r e  identical  except fo r  the. 

replacement  of S(K') by s N ( ~ ' ) .  The numbers  p:defined by Eq (3. 12) coincide with those defined by 
3 

Eq (3 .9) .  

Finally,  i n  view of the balance between births and captures  i n  the steady-state (in the absence of 

leakage) ,  t 

. . 
dr'drdw 

R 
- - -  t 

which shows that the numbers  p .  m a y  t ru ly  be rega rded  a s  probabili t ies of capture in  composition j. 
J 

IV. THE PROBABILITY MODEL 

In this sect ion the probability model used in  the formulation of the code is defined. A s  indicated 

in  the introduction,  a sample  space  of random walk chains,  together with a measure  on the space  



m u s t  be defined. In effect, the m e a s u r e  prescr. ibes a method of generating sequences of collision 

points, each sequence specifying a random walk made by a Monte Car lo  particle history.  How each  

his tory  obtained in  this way is to be.weighted fo r  the estimation of. the numbers  p.  defined by Eq. (3.12) 
. J 

is shown in Section V where the random var iables  a r e  defined. 

A s  mentioned in Section I of this r epor t ,  only the analog model was considered in the formulation 

of TUT-T5. This  means  that the particle h is tor ies  generated by the code will s imulate  a s  closely a s  

possible the life h is tor ies  of randomly se lected r e a l  par t ic les ,  a s  they might occur in the idealized 

physical model t rea ted here .  The method fo r  defining two sequences of functions, fn, pn, n = 0 ,  

1 , .  . . , f rom which the analog measure  p may be constructed,  was given in Ref 3. A s  expected, these  

functions a r e  uniquely determined by the source  and kernel  of Eq (3. 13).  Intuitively, the function f n  

is a probability density function on Ftntl, the s e t  of a l l  (n t 1)-tuples of points of phase space  R ,  which 

gives the probability density of the sequence (_ro, z l ; .  . . ; z n ,  w ) of collision points. The func- -n 
tion pn is a non-negative function on R giving the probability of terminating the his tory  a t  any given 

point of phase space.  F o r  the present analog p rocess ,  these  functions a r e  defined' a s  follows: 

d r '  , 

where 

and where K is the ke rne l  of Eq (3. 13). Observe that the relation (4. 3) impl ies  the equality 

which follows f rom the detailed definition of the kernel  K given in Section 3. 

The function fo is the normalized density of f i r s t  collisions; that i s ,  the source  t e r m  of Eq (3. 13) 
n t l  evaluated at ( r o ,  go).  The function fn is c lear ly  properly normal ized over  R . 

The functions fn, pn a r e  used to generate sample  his tor ies  in  the following way: f i r s t ,  an init ial  

s ta te  (rO, go)  is selected f r o m  the density function fo(x0, go) according to  well-known sampling 

methods,  choosing one r e a l  coordinate a t  a t ime.  The s ta te  (rot go)  is the point of the f i r s t  collision 

of the init ial  history.  This  h is tory  will terminate  a t  (_ro, go) ,  with probabilily p o ( r i ,  go) = 

Ca(ro)  / Z t ( r o )  and will continue beyond that s t a t e  with probability z ~ ( I - ~ ) / Z ~ ( I - ~ ) .  A random choice is 

made to determine th is  decision. If the his tory  does n o t t e r m i n a t e  a t  ( r o ,  go), the next collision 

point (xl ,  g l )  is chosen f r o m  the conditional probability density function 

*See Ref 3: E q s  (8 .3) ,  (8 .4) ,  and (8.5). 



where  (cO, go) is the previously determined init ial  collision point. In general ,  if the sequence rO. 
20,  - - .  ,Cn-ln En-1 of coll ision points h a s  been specified and if i t  is decided by a random choice not 
t o t e r m i n a t e  .the his tory  a t  I ~ - ~ ,  E ~ - ~ ,  the next chain point is se lected f r o m  the  conditional density 

function . . 

E a c h  his tory  is followed until capture  ult imately occurs .  Th i s  p rocess  is repeated until a l a rge  

number  of h i s to r i e s  have been generated.  

The  space n of random walk chains is defined a s  the infinite product space  

- 
n = n x i ,  where  xi = R x {P,Q}, i = 0, I .  2, . . . , 

i = O  

and where K is the phase space  and {P, Q) denotes a two point space .  A point of n is then an  infinite 

sequence {(an, u l , .  . . )), where each  cui speci f ies  a s ta te  (_ri,  gi) of R, chosen as descr ibed in the  

preceding paragraph,  together with a "distinguished" s t a t e ,  P o r  Q. The designation of the s ta te  P 

m e a n s  that the chain i s  r ega rded  a s  terminated a t  that coll ision,  while the  s ta te  Q corresponds  to 

non-termination.  A particle which is terminated in  a given s ta te  a f t e r  n coll isions r e m a i n s  in  that 

s t a t e  f o r  a l l  fu r the r  coll isions with probability one.  

The  analog measure  )I on w a s  defined in  Ref 3, Section 7 ,  and is based on the seqllen.ces f nJ Pn 
of E q s  (4 .  l ) ,  (4 .2) ,  and (4.3) of the present  r epor t .  More generally,  the method f o r  constructing 

a probabili ty m e a s u r e  on R based on m o r e  general  considerations has  been given, the analog measure  

r e su l t ing  a s  a spec ia l  case  of th is  construction.  In any event,  this construction will not be repeated 

h e r e  and the exis tence of the analog m e a s u r e  p will henceforth be assumed.  

V. THE BASIC ESTIMATING VARIABLES 

In this sect ion the random var iab les  used in TUT-T5 a r e  defined and; modulo cer ta in  convergence 

assumptions ,  i t  is. shown that they a r e  unbiased. 

I f ,  a s  in  Section IV, the density of f i r s t  coll isions is denoted by fo ( r ,  @), i. e .  , the source  t e r m  

of Eq (3. 131, then that equation becomes 

The function 

is defined s o  that ,  f rom Eq (3. 12) ,  

F o r  each  j = 0 , .  . . k - 1 ,  an  adjoint in tegral  equation is defined by 

Notice that i n  Eq (5.4),  the arguments  have been t ransposed in  the ke rne l  and the  source  t e r m  has  

been replaced by g.. Equation (5.4) is evidently an  in tegral  equation of the s a m e  type a s  (5.1).  The 
J 

solution, qj(x,g),  may be in terpre ted a s  the  expected contribution of a par t ic le  a t  (r,g) to the capture 



probability p . .  This  expected contribution is composed of a d i rect  contribution (no fu r the r  coll isions),  
J 

the source  t e r m  of (5 .4) ,  plus an indirect  contribution-the in tegral  t e r m  involving the t ransposed 
I ,  . 

kernel. 

The reasons  for  introducing the adjoint equation a r e  somewhat technical. F i r s t ,  the r e su l t  used 

to prove that the TUT-T5 es t ima to r s  a r e  unbiased involves an assumption concerning the Neumann 

s e r i e s  of the adjoint equation. Second, the technique involved-namely, that of using Monte Car lo  

t rack lengths to es t imate  the numbers  p., actually is a specia l  case  of a m o r e  general  device to 
J 

obtain Monte Car lo  e s t ima tes  of the solution q. of the adjoint equation. This  theory has  been devel-  
J 

oped in  detail  in Ref 3 ,  Section 8. In the present  r epor t ,  the general  r e su l t  is used without giving the 

background o r  any details .  

The assumption is now made that the Neumann s e r i e s  

converges to q N ( r , g )  for  a l l  ( g , g )  of R, where 

The assumption is a l so  made that the Neumann s e r i e s  

converges to  q . ( r  w) for  a l l  ( r , ~ )  of R, where 
J -'- 

The author knows of no way to es tabl ish  these  assumptions r igorously  for  the specific equations 

dealt with he re .  It is e a s y  to showt  that, if a unique, non-negative, everywhere bounded solution of 

(5. 1 )  o r  (5.4) exis ts ,  then the corresponding Neumann s e r i e s  does converge to this solution. Thus ,  

the a s s~ impt inns  may  he partly justified on physical grounds. 

Let  C = {(-ro, s o ;  Q), . . . , (-rn(C,-l, gn(C,-l; Q), ( L - ~ ( ~ ) ,  gn(C); PI.. . . 1 be any point of the sample  

space  52 defined in Section IV; thus, by this notation, the Monte Car lo  his tory  C is terminated in the 

s ta te  of R af ter  having made non-terminating coll isions in  the s t a t e s  (zO,  go) ,  . . . , 
r (-n(c) - l *  %(c) - 1 ), in  that o rde r .  Let i denote any region of the geometry.  Numbers gi(C) a r e  

associa ted with each his tory  C. These numbers  a r e  defined by 

where gi is defined by (5. 2 ) .  with X? replaced by the cha rac te r i s t i c  function of a l l  r ep l i cas  of region 
J 

i ,  and where N is the total  number of regions of the geometry  of the basic quar ter-cel l .  Then, gi 
is a real-valued function on the sample  space  Q-which is measurable  with r e spec t  to the  analog 

measure  p; i. e . ,  gi is a r e a l  rand0111 variable on 52. 1n.theorem (8. 68) of Ref 3 and in  the discussion 



preceding this theorem, it was shown that 

[ l i]  ' $ Si d~ ' $1 gi(f # W )  qN(c. 
n R 

under the assumptions made previously concerning the convergence of the Neumann ser ies  (5.5) and 

(5. 7) .  Equation (5. 10) s tates  that the random variable gi is an unbiased estimator of 

Notice that 

where Ca, Bt, a r e  the macroscopic absorption and total cross  sections, respectively, for region 

i ,  and where ki(C) is the number of collisions made by the history C in all  replicas of region i. Thus, 

E~ (5. 10) is equivalent to 

Now, a new random variable p. on n is defined by 

pi(C) = total distance (cm) travelled by history C in all replicas of region i. (5. 13) 

The constant Ct, i s  the expected number of collisions per centimeter in a region of total c ross  

section Ct, i; however, by definition, 

while 

Thus, 

or 

E [ ki] = / ki(C)dp = expected total number of collisions 
52 in all  replicas of region i, 

E[pi] = I pi(C)dp = expected total distance (em) travelled 
52 in a l l  replicas of region i. 

F rom (5. 12). 

x a s i  E [ pi] = gi(x, -Y) YN(r. g)drdo . 
R 

Now, random variables p. a re  defined by 
J t 

I 

where 1 denotes the sum over all  regions i forming composition j. Then, 

k[ pj1 = I/ g.(r w)qN(~._w)dxdw_ , 
R J -'.- 

proving that p .  is an unbiased estimator of p . .  The random variables p. a r e  the ones used in TUT-T5. 
J J J 

Observe that p. assigns to each chain C the weight ' 
J 

1 

pj(C) = xa ,  diiC) , (5.19) 



where di(C) is the distance travelled in  a l l  r ep l i cas  of region i. 

A s  mentioned in  the introduction (Section I ) ,  i t  would be des i rable  to know the var iance of p .  
J '  

s ince th is  would allow prec i se  e s t ima tes  of the expected s ta t is t ica l  e r r o r  a s  a function of the s i z e  of 

the sample .  Unfortunately, the in tegrals  which e x p r e s s  these va r i ances  a r e  not eas i ly  re la ted to  

known p a r a m e t e r s  of the problem and, thus, e s t ima tes  of the expected e r r o r  a r e  always obtained i n  

pract ice  by the code. These  prove re l iable  fo r  reasonably l a rge  samples  and have se rved  to show 

that the TUT-T5 es t ima to r s  provide an  efficient means  of calculating capture probabilities. 
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