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Py

The TUT-T5 code for the IBM-704 estimates neutron capture prob-
abilities in a one-energy, two-dimensional, rectangular cell
model, using a Monte Carlo method. This report describes this
problem and its solution in mathematical terms. The transport
equation arising from the idealized physical model used in the
code is derived and the problem is stated in terms of the solu-
tion of this equation. The validity of the Monte Carlo solution
is established by proving ‘that the random variables involved
are unbiased for processes with convergent Neumann series.
These random variables sum the distances travelled by randomly
selected particle histories and use these sums to estimate flux
integrals over the various regions. Capture probabilities are
then obtained through multiplication by the appropriate capture
cross sections. The integrals which express the variances of
these random variables appear too complicated to handle by ana-
lytic methods.

THE PHYSICS AND MATHEMATICAL ANALYSIS FOR THE TUT-T5
MONTE CARLO CODE

J. Spanier
I. INTRODUCTION

‘The TUT-T5 code for the IBM-704 (Ref 1) calculates, for a one-energy model, a regionwise

distribution of neutron capture probabilities in a two-dimensional rectangular quarter-cell. The

"code is based on an analog Monte Carlo method in which random particle life histories are simulated

using pseudo-random numbers, and the unknown capture probabilities are estimated by averages of

weighting functions {random variables) associated with the histories. Although the specific technique
used in TUT-T5, that of constructing estimates from the Monte Carlo track lengths, has been sug- ’
gested before for use in similar problems (Ref 2, p 350), the author knows of no proof of the validity

‘of the technique. * The method is sufficiently ihportant to warrant a discussion in some detail. The

present report concerns the mathematical analysis which forms the theoretical foundation for the
TUT-T5 code.

‘'wo major problems arise in connection with the analysis for any Monte Carlo calculation:

(1) a proof that the calculation is unbiased and {2) an examination of the variance associated with the
estimates of the unknown parameters. Stated loosely, the calculation is unbiased if the theoretical
average of all the weights-associated with all possible particle histories is exactly the quantity being
estimated. Requiring that the calculation be unbiased imposes a somewhat arbitrary but certainly
very plausible restriction on the class of admissible estimating random variables. The variance of
the estimating random variable provides a measure of the deviation of the estimate, for a finite sam-
ple, from the unknown parameter. The variance thus provides a useful criterion for comparing the

efficiencies of two competing methods of calculation. The estimate with the smaller variance will

*Recently, a proof has appeared in a preliminary draft: M. A. Martino and W. W. Stone, "TRAM,
A Monte Carlo Thermal Neutron Code,' KAPL-2039 (June 19, 1959). This proof is different from
the present proof, since it is based on the introduction of a time-like variable and a general result
on ergodic processes; moreover, the details of the proof have been omitted. The proof presented
here is based on first principles. ’ et



require fewer histories to achieve a fixed level of accuracy. In general, however, the smaller the
variance, the more costly is the data processing per sample. Thus, these two effects must in prac-
tice be balanced to achieve maximum efficiency, i.e., minimum over-all computing time. In any
event, a knowledge of the variance is always desirable but generally very difficult to obtain. In fact,
for most problems it is as difficult to obtain sharp theoretical bounds on the variance as it is on the
parameters being estimated. The digital calculation itself does provide an estimate of the variance,
and this is then used in place of the variance to predict the expected error as a function of the size
of the sample. The main objective of this réport is to prove that the random variables used in
TUT-TS5 are unbiased; the integrals which express the variances appear too complex to handle in

closed form.

An outline describing the development of the analysis for a general Monte Carlo neutron trans-
port code is presented in Ref 3, Section 6. According to this outline, the first step is to establish
clearly the physical model being studied. The transition from physical model to mathematical model
is then established via an integral equation, the integral form of the Boltzmann transport equation for
the given process. Next, an abstract probability model is e'-stablished in the form of a sample space
of random walks §2, endowed with an appropriate prob‘abiljty measure p. The definition of 2 as a
point set and the construction of a measure i based 61 a random walk process, i.e., a methud for
generating sample histories, are described in Ref 3, Section 7. Two types of measures p are pos-
sible: the analog measure, in which the “events' undergone by each parlicle history are exactly as
likely in the probability.model as they are in the physical process, and non-analog measures, which
distort the likelihoods of individual events in the probability model in an attempt to increase the ef-
ficiency of the calculation. The analog measure is uniquely determined by the transport equation for
the physical model; however, a wide range of non-analog measures are possible in any given prob-
lem. Only the analog measure was considered in the formulation of TUT-T5, largely because the
geometric complexity seemed to make non-analog techniques forbidding, if not impractical. Knowing
the measure to use in setting up the sample space, it then remains to define for each parameter to be
estimated, a random variable £: that is, a real-valued, measﬁrable function on Q. .Th,is funcvtio_n"can
be thought of as associating a "weight" £(C) with every random walk chain C of Q. This weight is thé
C-estimate of the unknown parameter. It is assumed that each unknowh parameter can be repré_-

sented as an integral

g= fu g(P) y(P)dP ., : : (1. 1)

where R is the physical phase space, g(P) is a known function.on R; and {/(P) is the transport theory
collision density, the solution of the transport equation for the problem. Generating N random walk

chains corresponds to'selecting N points, C C;; of € using the constructed measure w. The

. 1 Oy
average weight of these N chains gN, defined by

1 ‘N :
ENC N i; &(C) | S {1.2)

converges by the Central Limit Theorem to the integral

t= [ gap ., : (1.3)

Q . R
where dy is the differential of the probability measure p. It seems natural to require that £ = g and,
if this is so, the random variable £ provides an unbiased estimate of the number g. In this way, if ‘
the unbiased character of £ is established, the original intégral g over phase space R is rep;lacied by
the integral E over the sample space 2, and the latter integral is approximated by the quantities EN
for sufficiently large N.

»
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Observe that in this formulation the measure p need not be analog to make the argument work.
It is generally true that the function £ will have a simpler form when p is analog measure than when
p is non-analog. In fact, for analog p it may be very tempting to equate g and ¢ through a physical
argument. In this connection, it should be strongly emphasized that the sample space © and the meas-
ure b have been constructed quite abstractly, and the fact that this probability model reproduces in
some sense the physical model when ¢ is analog measure needs to be demonstrated rigorously. Thus,

the statement, for the neutron flux ¢(P) arising from a unit source, that

[ ¢P4P=D , (1.4)
R _ .

where D is the average total distance travelled from birth to death, is a statement concerning the
behavior of a real neutron population in a certain physical system. On the other hand, the statement
that

[ gdu=7, . (1.5) .
Q

where § is that random variable on @ which assigns to each chain C the total distance travelled be -
tween successive "collisions" and where d is the expectation of £, i§ a statement about an abstract
probability model. The equality of d and D is precisely the missing. link which makes the transition
from the one model to the other possible. Such problems arise in analyzing the TUT-T5 code, and
it is hoped that the previous discussion serves to motivate the proof of the unbiased character of the

random variables used in the code.
II. THE PHYSICAL PROCESS

In this section, the assumptions which govern the physical process studied in TUT-T5 are
described. Thus, the gedmetry of the problem, the manner in which particles are mtroduced into
this geometrical array, and the microscopic.laws which govern the behavior of the particles must be

described. The integral equation which results from these assumptions is obtained in Section III.

The physical model under consideration gives rise to the one-energy 1ntegro -differential trans-

port equation

N L
V9o (r, o + Z(rip(r,w = { ‘do’ ¢(r,w) | —= (1 +3 u(£)9'2'>
all

directions

Sr)
(2 (r) - = (r)> , (2.1)

where
r is a spatial vector in three-dimensions,
w is a unit direction vector,

¢(r,w) is the transport theory vector flux,

Z (r) is the total macroscopic cross section,

ZH(E) is the macroscapic seattering cross section for hydrogen,

z (r_) is the total macroscopic scattering cross section,

_H(E) is the average cosine of the scattering angle (laboratory system) for hydrogen scattering, -
w-w is the scalar product of the vectors w, g' , and |

: S{r) is the spatial source density, to be defined.



Before defining the source density, it will be -convenient to describe the geometry of the prob-
lem. In Ref 1 the geometry of TUT-T5 is described as two-dimensional with no variation in the z-
direction. For the purposes of this report, a description in three dimensions will be given because
the Monte Carlo code itself, being patterned after the physical model, treats all events as if they
were taking place in three dimensions. As a result, the equations to be derived will be more pertin-
ent if they contain all three spatial variables. Actually, the geometric configuration consists of an
infinite lattice of rectangular cells in the (x, y) plane, each cell'assumed to be infinite in extent .
in the z-direction. The basic cell will be defined in three dimensions by the following inequalities:
-M, <xs=M;, -M, <ysM,, -1/2<z<1/2. The geometry of this cell is assumed to be symmetric

about each of the planes x = 0, y = 0. These two planes divide the basic cell into four quarter-cells, &
the description of any oné of which will thus serve to specify oompletely the entire lattice network.

The basic quarter-cell is taken to be the one defined by the inequalities 0 = x = Ml' O0=<y=< MZ’ ' -
-1/2 =z =<1/2. Because the geometry does not vary with z, the description of the basic quarter-cell ’\‘l

will be complete when the two-dimensional intersection of the basic quarter-cell with the plane z = 0
is described. This region of the (x, y) plane may be subdivided into as many as 32 subrectangles,
every subrectangle being considered homogeneous. Each subrectangle defines a region of the geom-
etry. A generic region will be systematically denoted by the subscripti, i=0,...,N - 1.

Since it is not always desirable to estimate. capture probabilities for. all're'gions, several regions
may be grouped together to form a composition. The code automatically estimates capturé probabil-
ities for all compositions. A subscript jis used to denote a generic composition number, o
j=0,...,K-1=N-1. '

Having described the geometric arrangement, it is possible to define the source density function

S(r) which occurs in Eq {2.1). This function is assumed to be constant in each region, the level in
each region being arbitrary. Then,
. . : . N-1 .
S(r) = Six,y,2) = 55— % S {x,y,2) (2. 2)
— N-1 j=o i
> VS
i-0

1P 0Sy=SM,, -1/2=z=1/2.
In Eq (2. 2), Vi is the volume of regioni, i=0,...,N-1; X4 is the characteristic function of region

is the defining equation for S over the basic quarter-cell0 s x =M

i. defined hy

1 if (x,y,z)is in region i,
X; (%, y,2) =
0 otherwise;

and Si is an arbitrary constant specifying the source level in region i. The function S is then extended
over all of three-dimensional space by symmetry and periodicity, as follows:

S(x,y,2) = 8(-x,y,2) = S{x, ~y,2) = §(-x, -y,z), 0= x =M, 0sy=M,, -1/2=z=1/2;
and ‘ S (2.3) !
S(x,y,z) = S(x % ZMl,y,z) = S(x,y % ZMa,z), for all (x,y, z).

Observe that the source term of Eq (2.1) is so normalized that its integral over all regidns of the
basic quarter-cell is unity.

The code considers only two general types of events upon collision of a neutron with a nucleus:
elastic scattering and absorption. The relative probabilities for edch event are specified by the
macroscopic cross sections for the processes in question. ’ Upon execution of a scattering collision,
the distribution of new directions in the laboratory system is determined by the assumed distribution
of scattering angles for the various elements. In TUT-TS5, all elements except hydrogen are assumed



to scatter isotropically in the laboratory system. As is evident from Eq (2.1), the angular distribu-

tion arising from hydrogen scattering is assumed to have the form

zH
H _ Ts,i1 + 3% 4
Es,i(u) = {1+ Bk (2.4)

in each region i, where p is the cosine of the scattering angle in the laboratory system, and Fi is the
average value of this cosine. Between collisions, the path lengths of particles measured in units

of mean free path are distributed exponentially in the interval 0 =t = oo,

Since all particles are assumed to have the same energy throughout their lifetimes, energy con-

siderations are irrelevant.
III. THE INTEGRAL EQUATION: STATEMENT OF THE PROBLEM '

In this section the physical assumptions made in Section II are recast in the form of an integral
equation—the integral form of the Boltzmann equation for the idealized process being studied. The
capture probabilities estimated by the code are then expressed as definite integrals involving the
solution of the Boltzmann equatioh. The problem solved by TUT-T5 is thereby stated mgtherﬁatically.

Rather than obtain the integral equation via a transformation on the integro-differential equation
(2.1), a derivation from more general first principles will be outlined. The treatment used in this

derivation is that of Ref 2, Appendix 2.

In the following, the general integral equation is discussed and then specialized to the case of
TUT-TS. ’ T '

Let r denote a position vector in three-dimensional euclidean space, and let g denote a v'élocity
vector, also in three-space. Writing E = E w, then, wis a unit vector in the direction of motion and
E denotes the kinetic energy of the particle. The symbol R represents the six-dimensional phase

space of pairs (r, E).

The particle collision density, Y(r, E), is defined so that the expected number of collisions of

the particle with the medium contained in a volume V of phase space is given by

JI wie, By arar
v L
where drdE is ordinary Lebesgue measure in R. The particle flux, ¢(r, E), is defined in terms of
Y(r, E) by the equation
Y(r,E) = T, (r, EIO(r, B) BERNERY
where I‘t(g. E} is the total macroocopic croco oection at (r, E)..

The general transport equation to be derived will have the form
vie.B) = J/ pe' BNk, B £ E)E dr' + Q(r, B) B2
R . . .— . : )

The source term, Q(r, E), represents the density of first collisions, and the ihtegral term sums the

contributions from particles which have already collided at least once.
The functions @ and K are now discussed in more detail.

The kernel K is most conveniently factored into a product of two functions, ohe dealing with
changes in the spatial coordinates, the other dealing with changes in the velocity coordinates. Thus,
the transport kernel T(r',r; E) is so defined that, for a particle leaving the source or a collision at

(g',E), the expected number of next collisions in the volume V of position space is



f T(r',r; E)dr
\'A

In similar fashion, the collision kernel C(E', E;r) is so defined that, for a particle entering a colli-
sion at (E'E')' the expected number of particles leaving the collision within the volume V of energy
space is

J c(E' EirdE

v

By introducing an orthonormal set of vectors w,. g', g" at E" the function T(E‘,E;E) may be written

w-(z-r')
T(r',r;E) = Z, (r, Elexp -f Zt(g' + sw, E)ds 5(3'-[5 - 5'])
. v .

-6(2".[3-;'Dn(g.[g-r;']) NE Y

where n(x) =0ifx=<0, n{x) = 1 if x > 0. The delta functions and the function n guarantee that the
vectors r lie along the forward trajectory of the path of the particle as it leaves r_' with direction w.
The representation (3. 3) results from the differential equation

@ T(r', ;E)

VTR mB T mE =) (3.4)

satisfied by T, together with the condition that T vanishes at infinity.

With this description of the function T, the source term Q of Eq (3. 2) may now be defined by

Qr.E) = [ T(r', rE) S(r’, B)ar’ (3..5)

the integral being taken over all of ‘position space and the function S(E', E) being the physical source
density of particles at (r', E). The function Q(r, E) now may be seen to represent the rate of collision
at (r, E) of particles which have been injected into the system at (r', E) and then transported to (r,E)
by the transport kernel ‘l'.

The collision kernel C is more difficult to describe in general than the kernel T because, on a
given collision, many types of events are competing with various probabilities. It is usual to express
Cas

C=2zpC »

where P; is the probability of an event of type i, and Ci is a corresponding kernel for that event.
Explicit forms for the C; must be obtained from the laws of collision mechanics in each separate case.
The kernel K(r', E';r, E) of Eq (3. 2) is now defined by
Kir', Er, B) = CIE", Eir') e, k) (3. 6)
so that K(r', E';r, E) transports particles from the state (r', E')to (r, E) via a collision at the space ’
point E'! followed by transmission from ;’ to r at the velocity vector E. An integral equation simi-
lar to (3.2) is satisfied by the flux, ¢(r, E); however, this report will deal exclusiveiy with the equa- .
— — .. .
tion for the collision density.
In the problem considered by the code, since there is no energy dependence, the collision density
Y is a function of five variables. To denote a unit vector in the direction of flight of the particle, wis
again used and polar coordinates are used to describe the components of this vector. Thus, w = (6, ¢)
specifies that @ is the polai- angle of w, 0 = 6 = v, measured from the positi‘ve z-axis in euclidean
three-space, and ¢ is the angle between the positive x-axis and the projection of w on the (x, y) plane,
0 = ¢ =< 27. For spatial components, rectangular coordinates in three-space will be used and written
r = {x,y,2).

6



The physical source density for TUT-T5 has already been defined in Section II; it is the function

S(r)
4n

S(r,w) =

where S(r) is the function defined by Eqs (2.2) and (2.3). The transport kernel T has been defined
in general in Eq (3. 3); thus, it remains only to define the collision kernel C to.specify the integral
equation for the code. In view of the assumptions made in Section II concerning the scattering laws

of the various elements, C is given by

2.0 [ 2Hm 1 +3800- o R
Zy(r) | Z (x) 4m 4nZ _(r) C

Clw', wr) = (3.7)
where ZS(E), Et(g), E?(E), ’_‘(E) have the same meaning as in Section II. The full integral equation
satisfied by the collision density in TUT-TS5 is, therefore, the equation

z,(r) | =} (r) z () - (")

d/(rw)—f/tp(r @) T (r) {1+3.;(r)c.>m}+T

w-(r-r')

- exp ,g Z (' + sw)ds 6(2’-[5-r_'])6(2”-[1-1'])71(2-[5-5'])d£'d£'

| @ (z-r . ' ) ‘ | - s<5’)‘, _
+f2t(-£)exp -_j(; Zt(£’+sg)ds 6(2-[5-5])5(9'-[£-£Dq(gv-[£-‘£]) 4x dr, (3.8)

where S(r) is the source density defined by Eqs (2. 2) and (2. 3).

The physical assumptions guarantee that the solution y(r, w) = Yi{x,y,2,0,¢) will be a periodic func- --

tion of the variables x and y and will be independent of z. Interest will be focused on the solution in
the range of values 0 = x < M;, 0 =y=< M,, -1/2s2z=1/2, 0s8<m, and 0 < ¢ < 2m.
The problem solved by the code is the estimation of each of the integrals

Z (r)
ff x:(r) == Y(r,w)drde; j=0,...,K -1 , ' {3.9)
R J= o) TS :

where x.(r) is the characteristic function for composition j of the basic quarter-cell, and Y(r, w) '

satisfies Eq (3.8). The number pj shall be referred to as the capture pr:obability for composition j.

In the analysis given later, it will be necessary that the source term appearing on the right side

of Eq (3. 8) integrate to unity over all of phase space. The integral in question is given by
, S(r') .
fff T(r',r;w) —-— dr'drde , (3.10)
R -7 " - 0T

the E' integral being over the basic quarter-cell. From the definition of T through the differential
equation (3. 4), it is easy to show that

f T(E',E;g)dr =1
all space -

Then, inverting the order of integration in (3.10),

fff T

( l
dr'drdw = f —— dr'dw =1
. quarter- cell . ' - (3.11)

[
&3




Equation (3.11) stétes that the total birth rate has been normalized to unity over the ‘basic quarter-
cell. Since the source is periodic, its integral over all of phase space is unbbun_ded. To avoid an
unbounded source, the present formulation is replaced with a math.ematically equivalent one which
has the proper pormalizations. This is done by placing the required source in E.q (3. 8) and altering

the definition of the numbers pj. ,

Consider a function SN(E) which coincides with S(r) over the basic quarter-cell and which van-
ishes everywhere else. Let WN(E, w) be the function which satisfies Eq (3.38) whén'S(r_') is replaced
by SN(E') on the right side. The collision density WN(E' w) is no longer a periodic function on phase
space. Indeed, WN vanishes at infinity because the source SN is now confined to the basic quarter-
cell. It is clear from the symmetry of the geometry that the numbers pj may be defined in‘terms of
the new function 1[/N by the equations

‘?-.

_ Z (r) .
- * - el - :
py= [[x{m Z,(0 VNl edrde, §=0,. K -1 (3.12)
R

where X;\(E) is now the characteristic function of the unioh of all the replicas of composition j over
all the duarter—cells of the lattice network. Integrals of this type will be dealt with in the remainder

of this report.

The results of this section may be summarized in the following way: initially, the problem is
stated in terms of a source which is periodic, taking on the same values in each replica of the basic
quarter-cell. The collision density arising from such a source is also periodic, and the capture
probabilities may be defined as weighted integrals of the collision density, restricted to a single .
basic quarter-cell. The source in every quarter-cell contributes to these weighted integrais, by
amounts which diminish as the distance from the quarter-cell to the basic quarter-cell increases.
Now, if the source is confined to the basic quarter-cell, the source will make contributions to the
" collision density over all phase space in such a way that, if the weighted integrals are summed over
all of phase space, the original capture probabilities will result. Since later analysis requires a
unit source, this poirit of view is édbpte'd in formulating the problem solved by the code. The code
thus estimates the integrals (3.12), where Vnir @) satisfies

S (r')

Ynle o = {{f Yylr WK o', wde'dr’ + .[T(}_”_',g;ég) 41\; ar' . (3.13)

The function K(E',g';g,w) is the kernel of Eq (3. 8) and the source terms are identical except for the,
replacement of S(r') by .SN(E')' The numbers pj~defined by Eq (3.12) coincide with those defined by
Eq (3.9).

Finally, in view of the balance between births and captures in the steady-state (in the absence of
leakage), ' . '

K-1
Z P; =
j=0

~

e Z,(0) ,
ff zt(r) ‘PN(E’ S)didﬁ i . .
R - .

S (r" S o (B3.19 !
fff T(r', riw) —H— dr'drdw -
R .

4

=1,

J
which shows that the numbers pj may truly be regarded as probabilities of capture in composition j.

1v. THE PROBABILITY MODEL

In this section the probability model used in the formulation of the code is defined. As indicated

in the introduction, a sample space Q of random walk chains, together with a measure on the space Q



&

must be defined. In effect, the measure prescribes a method of generating sequences of collisvion.
points, each sequence specifying a random walk made by a Monte Carlo particle history. How each
history obtained in this way is to be weighted for the estimation of the numbers _pj defined by Eq- (3.12)

is shown in Section V where the random variables are defined.

As mentioned in Section I of this report, only the analog model was considered in the formulation
of TUT-T5. This means that the particle histories generated by the code will simulate as closely as
possible the life histories of randomly selected real particles, as they might occur in the idealized
a Py =0,

1,..., from which the analog measure p may-be constructed, was given in Ref 3. As expected, these

physical model treated here. The method for defining two sequences of functions, f

functions are uniquely determined by the source and kernel of Eq (3.13). Intuitively, the function fr'1

n+1, the set of all (n + 1)-tuples of points of phase space R, which

is a probability density function on R
gives the probability density of the sequence (EO' WoiTyr Wsee- 5L,

tion p, is a non-negative function on R giving the probability of terminating the history at any given

, gn) of collision points. The func-

point of phase space. For the present analog process, these functions are defined* as follows:

Sa(r')
- 1 . N'=- ' .
folzg v = [ Tir'irgswg) —— dr' ST
r | 1
n
Kir, \,©, ;r, w)
fa(rgr ©giev e @) = H N folrg, wg)
=1 I/ Kiry y» )13 5y wdrde,
R (4. 2)
F n K(r w ; T, W)
- SRR DL . PR
Dopp(Tpoyr 9 y) | 05075007
2=1 : J
where '
zZ (r,) Z_(r,)
s'=4 a'—4
Pr,w)=1-595+7=5,"+v (4. 3)
05 2y Z,,) T E(r)
and where K is the kernel of Eq (3.13). Observe that the relation (4. 3) implies the equality
f/ K(r w ir,, w)dr dw =E’£l'_l) | ' (4. 4)
R o 2 M S0 MRl S T A AN T P : .

which follows from the detailed definition of the kernel K given in Section 3.

The function fO is the normalized density of first collisions; that is, the source term of Eq (3.13)

evaluated at (50, 90). The function fn is clearly properly normalized over RnH.

The functions fn, p, are used to generate sample histories in the following way: fir'st, an initial
state (go, 90) is selected from the density function fo(go, 90) according to well-known sampling
methods, choosing one real coordir{ate at a time. The state (go, 90) is the point of the first collision
of the initial history. This history will terminate at (go, 90), with probability po(go, 90) =
Za(EO)/Zt(EO) and will continue beyond that state with probability ZS(EO)/Zt(EO)' A random choice is
made to determine this decision. If the history does not terminate at (50, 90), the next collision

point (31, g_)l) is chosen from the conditional probability density function

f1{rg, @i Lys @)

Klcg, w1y, @)
Zglrg)

Et(zo)

fo(rg, wg)

*See Ref 3: Eqgs (8.3), (8.4), and (8.5).



where (50, 90) is the previously determined initial collision point. In general, if the sequence Iy
@gree 0Ty ©no1 of collision points has been specified and if it is decided by a random choice not

to'terminate the history at L1 ©a-1 the next chain point is selected from the conditional density

function
f(rgs @gieeoixn @) 5 Klr _jre 5, )
fh-1{0r Loi+ + -3 Inyr €qy) Zsitpy!
Z:t(zn-l)

Each history is followed until capture ultimately occurs. This process is rebeated until a large

number of histories have been generated.

The space 2 of random walk chains is defined as the infinite product space

—138

Q= Xi' whereXi=Rx{P,Q},i=0,1,2,...,

0

i
and where R is the phase space and {P,Q} denotes a two point space. A point of Q is then an infinite
sequence {(an, CREE )}, where each a; specifies a state (Ei' gi) of R, chosen as described in the
preceding paragraph, together with a ""distinguished' state, P or Q. The designation of the state P
means that the chain is regarded as terminated at that collision, while the state Q corresponds to
non-termination. A particle which is terminated in a given state after n collisions remains in that

state for all further collisions with probability one.

The analog measure p on  was defined in Ref 3, Section 7, and is based on the sequences fn, P,
of Eqs (4.1), (4.2), and (4.3) of the present report. More generally, the method for constructing
a probability measure on © based on more general considerations has been given, the analog measure
resulting as a special case of this construction. In any event, this construction will not be repeated
here and the existence of the analog measure p will henceforth be assumed.

V. THE BASIC ESTIMATING VARIABLES

In this section the random variables used in TUT-T5 are defined and, modulo certain convergence

assumptions, it is. shown that they are unbiased.

If, as in Section IV, the density of first collisions is denoted by folr, @), i.e., the source term
of Eq (3.13), then that equation becomes

V(o @) = ff \UN(;',Q')K(E'.Q';g,g)dg'dg‘ tfy(r, o . - (5.1)
R .
The function
Za‘(g) )
gj(£,9)=x;‘(£)m,j=0,...,K-l . (5.2)

is defined so that, from Eq (3.12),

p, = ff gylr,w) o (e, odede, J=0,..0,K -1 : {(5.3)
I e -
For each j=0,...k -1, an adjoint integral equation is defined by
ni(E, @) = JI ny(c' @) K(p, wir', o')dr'de’ + gi(r, @) (5.4)
: R

Notice that in Eq (5. 4}, the ’argument's have been transposed in the kernel and the source term has
been replaced by gj. Equation (5. 4) is evidently an integral equation of the same type as (5.1). The
solution, qj(g,g), may be interpreted as the expected contribution of a particle at (r,w) to the capture

10
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probability p.. This expected contribution is composed of a direct contribution (no further collisions),
the source term of (5.4), plus an indirect contribution—the integral term involving the transposed

kernel.

The reasons for introducing the adjoint equation are somewhat technical. First, the result used
to prove that the TUT-T5 estimators are unbiased involves an assumption concerning the Neumann
series of the adjoint equation. Second, the technique involved —namely, that of using Monte Carlo
track lengths to estimate the numbers p., actually is a special case of a more general device to
obtain Monte Carlo estimates of the solution n of the adjoint equation. This theory has been devel-
oped in detail in Ref 3, Section 8. In the present report, the general result is used without giving the

background or any details.

The assumption is now made that the Neumann series
0 .
folr, @) + kgl I (x, @) | (5. 5)

converges to l//N(E:B) for all (r,w) of R, where

IR(EIE) = l:{.' * .'f{' K(Ek'l' Ek_l;zv Q)K(Ek_zt Ek_z; Ek-l’ ‘ﬁk_l) e K(I‘O, ‘20; Elr El)

tfolzgr woldrg -+ dry dwp - dy - (5.6)

The assumption is also made that the Neumann series

o0
gl vl + kgl Iy, j(E @ (5.7)

converges to qj(g, w) for all (r,w) of R, where
e = f f K, oiry 1o @) -0 Klzys 95510, @5)g;(ry, 9p)

dEO"' dEk-l d‘i’o"‘ d‘i’k-l . (5. 3)

The author knows of no way to establish these assumptions rigorously for the specific equations
dealt with here. It is easy to show? that, if a unique, non-negative, everywhere bounded solution of
(5.1) or (5. 4) exists, then the corresponding Neumann series does converge to this solution. Thus,
the assumptions may he partly justified on physical grounds. ’

Let C = {(30, @0 Qe (En(C)-l’ Qn(c)_l,' Q), (EH(C)' Locy P),... } be any point of tbe sample
space Q defined in Section IV; thus, by this notation, the Monte Carlo history C is terminated in the
state (r n(C)’ & w (C)) of R after having made non-terminating collisions in the states (ro, mo), ey
(rn(c) 1* 9n(C)- l), in that order. Let i denote any region of the geometry. Numbers gl(C) are
associated with each history C. These numbers are defined by

n{C) -
g(Cy= gty ), i=0,...,N-1, (5.9)

where g; is defined by (5.2), with x¥ replaced by the characteristic function of all replicas of region
i, and where N is the total number of regions of the geometry of the basic quarter-cell. Then, gi
is a real-valued function on the sample space Q-which is measurable with respect to the analog

measure p; i.e., & is a real random variable on Q. In.theorem (8. 68) of Ref 3 and in the discussion

t3ee Ref 4, p 206.
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preceding this theorem, it was shown that

E[g] = f g; dp = ,1/;.[ g;(r, w) tl/N(z.g)deQ (5.10)
Q

under the assumptions made previously concerning thé convergence of the Neumann series (5.5) and
(5. 7). Equation (5.10) states that the random variable gi is an unbiased estimator of

.g gi(z,c_o)tI/N(z_, widrdw .

Notice that

= . .
- 2,1 v
£;,(C) = == k,/(C) , . (5.11)
t,1
where Z:a i’ Zt ; are the macroscopic absorption and total cross sections, respectively, for region é,*’

i, and where ki(C) is the number of collisions made by the history C in all replicas of region i. Thus,

Eq (5. 10) is equivalent to
zZ .
. ?g f ki(f:')ﬂ'u - ff ul(l_.l_ll) ilt’l\j(:'__-il)l'h_'l']u_l . (5.13)
L,i Q R

Now, a new random variable p; on 2 is defined by
pi(C) = total distance (cm) travelled by history C in all replicas of region i. (5.13)

The constant Z:t i is-the expected number of collisions per centimeter in a region of total cross

?
section Et i however, by definition,
s

E[ ki] = f ki(C)dp. = expected total number of collisions (5.14)
Q in all replicas of region i,
while
E[pi] = f pi(C)dp. = expected total distance (cm) travelled ' (5.15)
Q in all replicas of region i.
Thus,
N
Fik
t,i E[p.]
‘ L
or (5. 16)
E[ p,] Bl
p;) =
i zt,i
/
From (5. 12},
z, (Elp,) = {{f g,(r, )Y (r, w)drdw . (5.17)
Now, random variables pj are defined by . &
1
pj = E Zﬂ,i pi '
5

1
where ) denotes the sum over all regions i forming composition j. Then,
o] = JI gr.owyle.warae (58
J R J .

proving that p. is an unbiased estimator of p.. The random variables pj are the ones used in TUT-T5.

Observe that pj assigns to each chain C the weight

1
p(Cr= 2 B, ; 4iC) , A (5.19)



gl

" where di(C) is the distance travelled in all replicas of region i.

As mentioned in the introduction (Section I), it would be desirable to know the variance of pj,
since this would allow precise estimates of the expected statistical error as a function of the size of
the sample. Unfortunately, the integrals which express these variances are not easily related to
known parameters of the problem and, thus, estimates of the expected error are always obtained in
practice by the code. These prove reliable for reasonably large samples and have served to show
that the TUT-TS5 estimators provide an efficient means of calculating capture probabilities.

REFERENCES

1. J. Spanier, H. Kuehn, and W. Guilinger, "TUT-T5—A Two-Dimensional Monte Carlo Calculation
of Capture Probabilities for the IBM-704," WAPD-TM-125 (November 1959).

2. G. Goertzel and M. H. Kalos, '"Monte Carlo Methods in Transport Problems,'" Progress in
Nuclear Energy, Series I, Physics and Mathematics, Vol 2, D. H. Hughes, J. E. Sanders, and

J. Horowitz, eds., Pergamon Press (1958).

3. J. Spanier, "Monte Carlo Methods and Their Application to Neutron Transport Problems,"
WAPD-195, (July, 1959). :

4. B. Davison, Neutron Transport Theory, {Fair Lawn, New Jersey: Oxford University Press,
1957).

13





