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I N T R O D U C T I O N

RAPPEL DE RESULTAIS CLASSIQUES

II est bien connu que le coefficient de diffusion en milieu homogène, pour
des neutrons monocinétiques, est égal au tiers du libre parcours de transport. L'exten-
sion de cette formule au cas d'un réseau hétérogène suppose le choix préalable d'un
certain mode de pondération des libres parcours des différents1 milieux. Soient Vj le

volume du i milieu constituant, Aj = -—— son libre parcours de transport, S un
2 i i

symbole de sommation sur l'ensemble des milieux i et 0 : le flux moyen dans le milieu

i , pour un réseau infini. Deux procédés élémentaires de pondération se présentent immé-
diatement à l'esprit :

- Moyenne arithmétique des sections efficaces, pondérée sur les volumes et
les flux :

i
(1) D = avec 2 =

3 2

Il est évident que cette formule s'applique en particulier (avec #• indépen-

dant de i) au cas d'un mélange homogène de plusieurs constituants (imbrication scatisti-

que de « grains » de dimensions très faibles devant leur libre parcours.

- Moyenne arithmétique des libres parcours, pondérée sur les volumes et les
flux :

i S v . <t>. x.
(2) D = J - i A x '

3 S V. , .

Cette expression est équivalente à l'expression usuelle de l'aire de diffusion

L - S L. f.
i l l

2

L. étant Paire de diffusion relative au milieu i et f. la proportion de neu-

trons capturés dans ce milieu.

Chacun de ces deux modes de pondération possède son domaine de validité
particulier mais il est évident que l'application de l'un ou de l'autre de ces procédés au

(•) Catta âtwa'a *st la refont* d'un travail antârlavr[j|; alla figure M U * «m* forma »lw* canaansaa aans



traitement d'un réseau hétérogène quelconque est erronée; il ne peut en être autrement,
ne serait-ce qu'à cause de l'indépendance des expressions ci-dessus, vis-à-vis de la
forme des milieux constituants, qui exclut tout effet d'anisotropie* D'autre part, l'ap-
plication de la formule (2) au cas d'un réseau comportant des cavités conduit à un coef-
ficient de diffusion infini, ce qui n'a aucun sens. Le besoin se fait donc sentir d'un
mode de pondération reposant sur des bases plus solides.

Hivers auteurs ont proposé, pour des geometries particulières - réseau plan
ou réseau de barres ou de canaux cylindriques - des expressions plus élaborées du coef-
ficient (ou de l'aire) de diffusion. Certaines de ces expressions reposent sur la théorie
élémentaire de la diffusion (SPINRAD [18]), d'autres sur une théorie de diffusion amé-
liorée pour tenir compte plus ou moins complètement des effets de transport (BEHRENS
[3], 1E1NBERG et NODERER [11], GRANT [6] et plus récemment GALANIN [19] et
LESLIE [20]), d'autres enfin sur la théorie du transport proprement dite (DAVISON [21],
LALETIN [7] )« La théorie de la diffusion sous sa forme non modifiée met en évidence
un effet d'anisotropie, mais sa condition de validité • milieux individuels de dimensions
grandes vis-à-vis de leur libre parcours - exclut la possibilité de traiter un réseau com-
portant des cavités.

La théorie de BEHRENS exceptée, les différents calculs mentionnés ci-
dessus ne s'appliquent qu'à une géométrie déterminée. Le but principal de la présente
étude est d'établir un formalisme tout à fait général reposant sur la théorie du transpou,
en définissant un mode de pondération des libres parcours applicable à un réseau quel-
conque. Ceci fera l'objet des deux premières parties; l'expression obtenue sera ensuite
mise à profit dans la troisième partie pour le calcul pratique d'un réseau classique com-
portant des cavités.



1ère partie

DEFINITION DU COEFFICIENT DE DIFFUSION

DANS UN RESEAU HETEROGENE

Notations otapprocho eu problème

En ne perdant pas de vue que l e ca lcul d e s fuites hott d'une zone de réac-
teur e s t en pratique la seule raison d'être de l a notion de coeff icient de diffusion, nous
a l lons redéfinir c e coeff ic ient de manière cohérente.. L e s neutrons sont supposés mono-
c iné t iques , l a lo i de choc e s t quelconque. Soient alors, au point r* d'un réacteur de vo-
lume V :

R

X ( ? ) = ^ le libre parcours total (non de transport)
2 ( r )

c ( ? , 0 . O1 ) l e nombre de neutrons émis dans une co l l i s i on au point t , dans
4 n l 'angle so l ide unité entourant la direction fi,' par un neutron in-

cident dirigé suivant fi .

r ( r* ) = / c ( r*, Q .. fi1) **Q l e nombre global de secondaires par co l l i s i on ,
(An) An

Q ( r*) la densité de sources, supposées isotropes (en pratique neutrons provenant d'un
groupe d'énergie différent),

D ( r , fi ) la densité en phase relative à la direction fi

• ( ? ) = / D ( ? , Q ) dû le flux,
'(4»)

J ( r ) = / D ( r , Q ) f i d O le vecteur courant,

— N ( r , fi*1 ) = 2 ( r ) / D ( t , Q) C (r , fi . 0')-ÎL la densité de collisions de
4»r w 4ir diffusion, c'est-à-dire l e nom-

bre de neutrons émis par dif-
fusion dans l 'unité de volume entourant l e point ? et dans l 'unité d'angle so l ide en-
tourant l a direction fi*' ( s i l e choc e s t isotrope, N - r 2 $ ) .

Si r*j est un autre point du réacteur, soient d'autre part :
-»

« = ? - ? , R = 1*1 » » - | -

S R le « parcours optique » entre tt et ? .



La quantité que nous désirons atteindre tvt, la fuite F (neutrons sortants •
neutrons entrants) hors d'une certaine zone V du réacteur, cette fuite étant normalisée
à un neutron dans la zone :

f div f ( ? ) dv
(3) F '"

fv • < ? >

dv étant l'élément de volume entourant le point ? « Le flux et le courant s'expriment
par les relations :

(4) J N ( r , 0 ' ) dû'

f
J (?) * i dv, 5 *( 5 ) J ( ? ) - J d v , Q • — " [ Q ( r , ) + N ( F l f Û ) ]

V
R

La densité de diffusion N est régie par l'équation de BOLTZIMNN

(6) N * 'H ( 0 + N)

H étant l'opérateur intégral défini par la relation

(7) « . f ( r , , Û ) = ï ( r ) / dvj« c (r , 0 . û') f ( r , , 0)
VR 4 , R2

le résultat étant une fonction de ? et de Q1-

Supposons connue une bonne approximation NQ ( ? , Û1 ) de la fonction

( r* , Q' ). On peut regarder l'équation intégrale (6) comme une équation dont la fonc-
tion inconnue est la différence N ( ? , Ô1) - No ( î , (S*). En développant cette nouvelle

fonction en série de UOTJVHXE-NEUléANR, on obtient pour la fonction N ( ? , Q' ) :

- {£- 1)
(8) N * No + S H [- No + H (Q + No)]

H "étant l'opérateur H itéré ( l - 1) fois et S un symbole de sommation. On en déduit
les développements de • ( t ) et de J ( ?) au moyen de (4) et (5) et l'expression de
F au moyen de (3X.



Nous ferons maintenant une hypothèse sur la densité de sources Q ( t ) ,
qui sera supposée factorisable en un produit d'une fonction « macroscopique » ¥0 ( r* )
par une fonction connue q ( r* ) de même période que celle du réseau*.

Nous choisirons d'autre part comme fonction d'essai NQ ( ? , 0 ' ) une fonc-
tion factorisable elle aussi en un produit de la fonction macroscopique ¥0 ( r* ) par une
fonction périodique n0 ( r*, 0 ' ) de même période que celle du réseau ; cette dernière
fonction sera supposée solution de l'équation de BOLTZMANN pour le réseau infini :

(9) n 0 = H M ( q + n o )

H w étant un opérateur semblable à H, mais dans lequel le domaine d'intégration est
étendu à l'infini.

Quant à la fonction macroscopique Vo ( r* ), elle sera supposée connue par
ailleurs, et devra satisfaire dans la zone V à l'équation d'onde en milieu homogène!.
Cette équation étant toujours separable dans les cas usuels, on peut envisager des la-
placiens géométriques partiels (positifs ou négatifs), relatifs à la variable k, tels que

(10) ( V * + B, 2) ¥ = 0
k k °

Nous définirons maintenant le coefficient de diffusion D, relatif à la varia-
ble k à partir de l'identité :

(H)

S étant un symbole de sommation.

Hypotheses

Dans la suite du calcul, on admet les hypothèses suivantes :

Hypothèse (a) Variation lente de la fonction macroscopique vis'à-vis de la période du
réseau.

Hypothèse (b) Variation lente de la fonction macroscopique vis-à-vis de la période de
décroissance de la fonction e ~ 2 R , envisagée comme fonction de ? ,
pour un Tj donné quelconque, et pour toute direction.

Hypothèse (c) Extension à.l'infini des domaines d'intégration, (pour le calcul de • ( r )
et de J ( r ) ), avec prolongement analytique des fonctions ¥e ( r ) ,
q ( t ) et no( r , Q1) (hypothèse classique des « piles images *).

(•) - Cette hypothèse serait inutil* en théorie multigroupe, puisqu'on aurait à traiter un problem h
Us sources dans un groupe étant déterminées par les flux dans las autres groupas.



L'hypothèse (c) est valable dans la mesure où l'hypothèse (b) est satisfaite,
ce qui peut n'être qu'approximatif si le réseau comporte des canaux et a fortiori des fen-
tes. On verra en 3ème partie (section 4) et en annexe 2 comment on peut s'affranchir de
ces hypothèses et on calculera les corrections qui en résultent*

II est important de noter qu'aucune condition n'est imposée à la capture dans
le réseau.

'êxpfttlon du co«ff/c/«nf </• diffusion

Le détail du calcul, exposé en annexé 1, conduit à l'expression suivante, où

<f, ( ?) = / no ( ft o«) est le flux en réseau infini, où 0^ est
r (7)1,(7) J{An) An

et où R« = r p • r n

(12)

On montre en annexe 1 que cette expression est équivalente à la définition
classique de l'aire caractéristique par le carré moyen de la distance en ligne droite jus-
qu'à absorption. Le premier terme représente la contribution des termes carrés (somme
des carrés des parcours élémentaires) ; la série sur l'indice £• représente la contribu-
tion des termes rectangles, figurant les corrélations angulaires entre parcours séparés
par Je collisions. Ces termes ne s'annulent pas dans un réseau hétérogène, même dans
l'hypothèse du choc isotrope. Pour illustrer simplement cet effet, on peut dire qu'un neu-
tron ayant traversé une cavité aura plus de chances de parcourir une grande distance
lors de son parcours suivant s'il esc diffusé vers l'arrière que s'il est diffusé vers l'a-
vant; d'où, si le réseau comporte des canaux, une diminution sensible du coefficient ra-
dial, le coefficient axial n'étant pas affecté. Cet effet, négligé dans U théorie de BEH-
RENS13), a été mis en évidence par SCHAEFER et PARKYN [5], par comparaison avec des
résultats expérimentaux ec au moyen de calculs Monte-Carlo, par GRANT [€\ et par LALE-
TIN [71, en utilisant des méthodes analytiques.



Si l'on compare maintenant l'expression (12) de D. au développement (8)

de la densité de diffusion N ( r , 0* ), on constate que le fait de négliger la série des
termes rectangles revient à approximer la fonction N (r*,tf*) par la fonction d'essai
No ( r , d' ) a fo ( ?) n, ( r , jf' )$ en d'autres termes, la représentation de la fonc-
tion N, et par conséquent du flux, par un produit d'une fonction macroscopique et d'une
solution en réseau infini est incorrecte •; ceci revient à admettre que l'existence d'un
gradient macroscopique apporte une perturbation dans la structure fine du flux ; c'est
le point de vue adopté dans [61 et [71. Signalons enfin que dans une étude non publiée,
A. AIIOUYAL a montré, en partant d'un point de vue différent, que la factorisation du
flux n'est pas compatible avec la conservation des neutrons.

(* ) La factorisation du fl«x introduit non iwUnmit dans U calcul 4 M fwJtes, nais ai dam



2ème Partie

NOUVELLE FORMULATION DU COEFFICIENT

DE DIFFUSION

(0)
S«etion 1 - ETUDE DE LA CONTRIBUTION PRINCIPALE D k (TERMES CARRES)

Introduction émt probabilités 4m colllitor,

Malgré son intérêt physique la représentation par le carré moyen se prête
mal, hormis dans quelques cas très simples, à un calcul pratique. L'expression (12)
n'est pas plus utilisable; aussi allons-nous la transformer en fixant pour le moment no-
tre attention sur la contribution principale D> ' ; l'intégrale sur dvx peut s'exprimer

en coordonnées sphériques, l'origine étant le point r* :

R e * Î R [ q ( ? , ) + • • < - ' . . Û ) ] d R

Une intégration par parties permet de transformer l'intégrale sur dR en

[q(r' l Htto(r t
1 ,0) ]dR' |+jdR l e * R [q ( r'1)+no(r'], Û)] dR'- | R I e

R=0 ' R

(R' est la distance vraie et 2 R1 la distance optique entre r et r * X Le premier

terme est nul puisque l'intégrale sur dR est une fonction continue de R (seules les
dérivées étant discontinues) qui est finie pour R — 0 et qui tend vers zéro sensiblement
comme une exponentielle quand R tend vers l'infinL Dans le second terme apparaît l'in-
tégrale

[ e dR'

qui» compte tenu de la définition de la densité en phase v ( Tx , Q) au point r̂ , peut
encore s'écrire

- 2 R -» -
4» e y (r l f Q)

8



(0)
d'où une nouvelle expression de D , qui ne fait plus intervenir les sources de manière
explicite :

(13)
(0)

D. - -T— /dv fàv ——Q2 „ <? Q)
r)dv j|oc] JL) l R2 k

i f r '
1 = • I dv I dv -
i j , k V. 0 . X . I / »

* * j J(\) hï)

Posons maintenant

(14)

V| étant le volume du milieu i, <f>- le flux moyen dans ce milieu et X : le libre parcours

total dans le milieu j .

Dans le cas d'un réacteur sphérique, cubique ou cylindrique optimum, ou plus

f 2 2 • •

Q. B • est indépendant de Q , on n'aura à utiliser que des quan-

tités P.. moyennes, que l'on repérera par l'indice 0, dans lesquelles 3 0 \ disparaît :

C -£R
(15) P;; n ^XTSTT / d v / d \ HT~~V ( ri • Û )ij, 0

j

On définira de même un coefficient de diffusion moyen par Do = — ^ k

La quantité P - Q définie par (15) n'est autre que la probabilité pour un

neutron naissant dans le milieu i suivant une distribution spatiale et angulaire propor-

tionnelle à la densité en phase v ( ? l t Q ) régnant dans ce milieu, de subir sa première

collision dans le milieu j - Par extension, nous pouvons considérer la quantité Pjĵ  ̂

définie par (14) comme une probabilité orientée suivant U composante k, bien que le
sens physique de cette quantité n'apparaisse pas clairement. Compte tenu de ces défi-
nitions, l'expression (13) devient :

(16)
(0)

k

1

3

S

S v

p



Cette expression apparaît comme une généralisation des expressions (1) et
(2). En effet, dans le cas d'un mélange homogène, on Ï P J M * V j ^ / S V-2- d'où l'ex-
pression (1). Pour obtenir l'expression (2), il faut J
supposer que P-- ^ = 5 •: , c'est-à-dire qu'un neutron est certain de subir sa première

collision dans le milieu où il est né, où encore que les dimensions de chaque milieu sont
grandes vis-à-vis de son libre parcours. L'expression (2) est donc la limite de la contri-

bution principale D k de Dk lorsqu'on passe à l'approximation élémentaire de la diffu-
*

sion ,
On a vu que l'application de la formule (2) au cas d'un réseau comportant des

cavités conduisait à un coefficient de diffusion infini. La formule (16) donne un résultat
fini car, si le libre parcours X. dans le milieu j tend vers l'infini, la probabilité pour

qu'un neutron subisse sa première collision dans ce milieu tend vers zéro et le produit
A: P;- i, reste fini, comme le montre l'expression (14).

1 s
J

p..
IS

k = 1

%• lotion*

Le problème est donc ramené au calcul des quantités P-- ^ . Ces quantités

sont liées entre elles par certaines relations qui facilitent les calculs. Tout d'abord la
relation de conservation :

(17)

Cette relation ne s'applique en toute rigueur qu'aux probabilités moyennes P-- ~ , défi-
(0) '*,

nies par (15) mais l'erreur induite sur D ^ en l'appliquant aux probabilités orientées
P.. , est insignifiante

Une autre relation d'un emploi pratique peut être écrite si l'on accepte l'ap-
proximation suivante : en constatant que la densité en phase dans un milieu i est rare-
ment très éloignée de l'uniformité et de l'isotropie, il est légitime de calculer Pj- ^

en supposant que le neutron naît dans le milieu i non plus suivant une distribution pro-
portionnelle à la densité en phase v (rr, Q), mais suivant une distribution uniforme et
isotrope. On verra en annexe 3 que cette approximation est justifiée dans les cas usuels
et qu'il est de toute manière possible d'y remédier par des corrections simples. L'expres-
sion de P.. .devient

(•) Mais i l est important do noter que dons I'approximation do diffusion, \ no so r id wit pas à l'expression

(2); s'il en était ainsi, les effets d'anisotropie disparaitraiont dans cette approximation, ce qui serait
en contradiction avec les résultats obtenus par SPINRAD [18] et par G AL AN IN [19] . Los termes de cor-
rélation angulaire qui seront étudiés plus loin ne s'annulent pas dans l'approximation de diffusion et
sont responsables des effets d'anisotropie. Cependant, pour une direction z parallèle aux plans ou ——
génératrices dos cylindres, ces termes s'annulent identiquement (au moins si le choc est isotrope) ;
dans ce cas. l'expression (2) est bien la limite de D s , ce qui est on accord avec [lfl j et [19].

(••) On peut en effet Montrer aisément «ue :

aux

Développons le fancti on enawloire V (n .0 ) •" hermanrqoes sphérieues en repérant l'ongle 6 per rapport à l'ose k.
On vcit elors ioMnédieieo>ent que / * O ffkV (r*. 0 ) différa de <f> (r*). donc que $ * j .k différa «e l'unité, si le
coefficient do l'henoewiewe >? (0.<f>) n'est pas mil ou point ri . ce qwl est le ces'générel. Mois en conçoit ^m l'or-

(0) *
rewr induite sur D. en négligeont «ette différence est msignifienlo.

10



(18)
—

3 O 2

k

On peut alors écrire le théorème de réciprocité :

(19) V . X . P . . . = V . X . P . .
1 j i), k j î j i , k

Form* pratiqu* ém l'»xpnwMlon du comHlcfont êm d If fut Ion

définies par
II est commode dans la pratique d'introduire des probabilités réduites p^-

(20)
Xj

P . • •
ij, k

* • • t avec r•
IJ, k » s

S V. 6-
S, étant la surface du milir-j y. Soient V t = S* Vt et <f>t = —i—*—HL. .Spéci-
fions, dans l'ensemble des milieux i, un milieu particulier m . On ^t
peut alors obtenir, compte tenu des relations de conservation et de réciprocité, l'expres-
sion suivante où ne figurent plus que des probabilités indépendantes :

(21)
(0)

7

i j.<i IJ -
* «• ^ « M ^ «• ^ î X i

l HT 10 A /

t̂a *j ^i

les sommations s'écendaat ici à tous les milieux sauf le milieu m , et-4L. étant égal à
1 si i T* j et à i si i = j .

11



Section 2 • ETUDE DES TERMES DE CORRELATION ANGULAIRE (TERMES

RECTANGLES.)

Nous allons maintenant étudier les termes de la série sur l'indice £> appa-
raissant dans (12), En effectuant sur ces termes une intégration par parties en tout point
analogue à celle effectuée sur le terme principal, on peut mettre le coefficient de dif-
fusion sous la forme générale

(22) D
k

1

3

S V 4

S
i

tp..

V . <

,k

^i

oo

+ s
t-l

p ]

avec

(23)
1 , f

/ dv / dv «
1 J Ai) * - >

1 / / -2R
Jdv/dv^ 3 0. H p . û

X j / ( j ) *-» 4 ' R 2 ^

I i. étant une fonction de la variable r^+ «égale à 1 dans le milieu i et

nulle ailleurs. Dans k s quantités P.. 0 - — ^ij k apparaîtra le produit scalaire

des vecteurs Û et Û>

Les U)
n'ont pas de signification physique immédiate, mais on conçoit

qu'ils représentent des probabilités pour un neutron né dans le milieu i de subir sa
{£ + 1 J*111*collision dans ie milieu j , étant entendu qu'il existe une corrélation angu-
laire entre le premier et le dernier parcours et que les collisions intermédiaires peuvent
se produire dans n'importe quel milieu. On définira des probabilités réduites p (^) en
généralisant la relation (20). *j> k

Le théorime de réciprocité (19) peut encore servir; quant au théorème de con-
servation (17), il a pour équivalent lorsque le choc est isotrope :

(24) 0

(•) On pmt «near* «crira U

i - î
Jj

T,̂ A, J d) Jm Jm Jm

•Nui* m prtmt r * « r t f i * a»lvm» U dlractlwi Q \
r M 4MI l« «itcH« 0, i par M M Mure» unit*



s
1

p
1

= S
J

u
p

• •

M)
r

k j
cos

J

Dans le cas d'une loi de choc quelconque, si r- est le nombre de secon-

daires par collision dans le milieu j et cos fi. le cosinus moyen de l'angle de diffu-

sion dans ce milieu, on peut montrer que :

(25)

(0)
avec la convention P = P

ij, k ij, k

Si la structure du réseau est indépendante d'une variable k et si le choc est
isotrope, les termes de corrélation angulaire relatifs à cette variable sont nuls.

Dans le cas particulier d'un milieu homogène, pour une loi de choc quelcon-
que, on a P = 1, P (1 )

= r cos /3 , P = r 2 cos j3 , d'où

2D k = —X ( 1 -f r cos 0 + r 2 cos /3 + ) =

tr A
ce qui fait apparaître la notion de libre parcours de transport X =

1 - r cos

On peut montrer que l'expression pratique (21) est encore valable lorsqu'on
tient compte des termes de corrélation angulaire. Il suffit d'ajouter aux probabilités ré-

o (^)
duites p- ^ les séries S p - ^ et de remplacer, partout où ils apparaissent expli-

%r~ 1

citement, les libres parcours totaux dans chaque milieu par les libres parcours de trans-

port correspondants -= 3 - . Toutefois il importe de se souvenir que le cal-

cul des quantités p>- . et pt-%. doit s'effectuer, non à partir des libres parcours de
1) , K a j , K

transport, mais à partir des libres parcours totaux, la loi de choc intervenant dans les

P par l'intermédiaire de la fonction c ( r , O . Û' ). L'approximation consistant à

calculer ces quantités à partir d'une loi de choc isotrope, en introduisant les libres par-
cours de transport, sera utilisée plus loin; elle ne repose que sur une base intuitive som-
maire et n'a d'autre justification qu'un souci de simplicité.
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3 ème P artie

APPLICATION AU CAS DE RESEAUX CLASSIQUES

Section 1 - CALCUL DE LA CONTRIBUTE ON PRINCIPALE

Problem* è don mllloux

En nous limitant pour le moment à l'étude de la contribution principale, nous
commencerons par trailer le cas d'un réseau très simple, celui dans lequel la cellule
élémentaire est composée d'un milieu matériel m quelconque entourant une cavité c de
forme convexe ; la densité en phase est partout uniforme et isotrope. Nous supposerons
pour l'instant que l'épaisseur de modérateur entre deux cavités est assez grande vis-à-
vis du libre parcours A m (l'étude des termes d'interaction sera abordée plus loin). D'a-
près (21), la seule probabilité à calculer est ici p, , , définie par (14) et (20). qui
peut se transformer en une intégrale étendue à la ' * - « • • - -.. -•- *

1 r f d0

(26) pcc,k - — •

surface S de la cavité :

30,

où X est la longueur de la corde dans la cavité au point de la surface S et dans la

direction 0 considérés, et où y. est égal à | 0 - n | , n étant la normals uni-
taire à la surface; l'intégration angulaire s'étend à l'angle solide (2tr) des directions de
neutrons entrant dans la cavité.

La quantité p c c ^est le rapport du carré moyen de la composante k de la

corde X au carré de la moyenne de cette composante. Prise en moyenne sur k , elle
n'est autre que la quantité Q définie* par BEHRENS [31.

L'expression (21) se réduit ici à la forme suivante, où l'on a posé

Pcc,k = Q k :

(27)

(•) La relation P •
cc.O

collision classique

Q , qui représenta le premier term»

P c on puissances do la section efficace

14
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Comme la section de capture uioyc one vaut i c i 2 c rp (où S C

m Vt m

est la section de capture du milieu m), i l e s t faci le de voir que cette expression est
équivalente à ce l l e obtenue par BEHRENS pour l'aire de diffusion :

L*k 2 V c Vc rc

1? v v x
** m vm v m A m

Problème è trot» milhw

Nous étudierons maintenant un réseau dont la cellule se compose d'un modé-
rateur m entourant une cavité c dans laquelle se trouve un élément combustible u
dont les caractéristiques diffèrent de celles du milieu m . Nous ne ferons aucune hypo-
thèse sur la forme de chacun des milieux si ce n'est que les deux frontières devront être
convexes ; nous maintenons pour le moment l'hypothèse relative à l'espacement des ca-
vités. Nous aurons ici, d'après (21), trois probabilités indépendantes à calculer dont les
deux premières peuvent s'écrire après transformation :

2 - V A U 1
(28) m a . k - T k - r ^ l — r / ' — 3 0 k ( l - « )J

XU fdsfc d °
' r V isj(2n) **

-VA

\J éétant la corde dans le milieu u au point de la surface S u et dans la

direction 0 considérés, et X étant la corde correspondante dans la cavité, définie
sur la figure ; on a p = | O . n | , n étant ici la normale unitaire à la surface S u .

Quant à la troisième probabilité indépendante, p , .nous la décomposerons

en une somme de deux termes

A A *
p c c , k " P c c , k * P c c , k

le premier étant relatif aux parcours d'un point à un autre de la cavité ne traversant pas
le milieu u, et le second aux parcours traversant le milieu u sans y subir de collision;

nous poserons p , = Q . et p , » Q1. .. La première de ces quantités, définie

15



Direction Q
du parcours
du neutron

par BEHRENS.B] est donnée par l'expression (26) généralisée au cas d'une canté an-
nulaire, c'est-à-dire que la surface d'intégration comprendra ici les frontières intérieure
et extérieure de la cavité. La seconde quantité aura pour expression

(30)

C C

avec les mêmes conventions que dans (28) et (29), X' étant la corde dans la cavité
définie sur la figure.

L'expression (21) prend ici la forme :

(31)

(0)

= 1 +
1

3

0 t

( 1 - m V 0 r
- i L l £ . Ç _ ( Q . +
V 0 X

t n> in

_£ I I f—i < 1- "» ) ^uu

m X u J

16



Pour le grdupe rapide, la formule se simplifie puisqu'on peut admettre que

V V X V X k * V X i k v iTt ¥ t A u Yt Am v t Am A«» v t *m

Le flux moyen dans la cavité pourra se calculer au moyen de la formule

c -
G1 + r 2 N

U U

c
X étant la section de capture du milieu u et G' une quantité intervenant dans le

calcul du facteur f [ 9, 10 ] , égale approximativement au rapport du flux moyen sur la
surface du milieu u au flux moyen dans son volume ; la quantité N est donnée par :

dQ
N = 1 - f ds lu X

C^mpmrmhom «v«e ! • • #orsi»l«s c/cssif • • *

Dans le cas particulier traité par BEHRENS [3], - milieux u et m composés
du même matériau, flux constant dans le réseau - la formule (3D obtenue ici se réduit
à :

D. V V r

I X k k

Au terme Q1, près, cette formule est semblable à celle déduite de la théo-
rie de BEHRENS.

La présence de ce terme traduit le fait, que, dans le cas d'une cavité con-
cave comme une cavité annulaire, un neutron peut traverser deux fois la même cavité
sans subir de choc dans le milieu u, et qu'il existe un certain couplage entre les deux
parcours alignés ; en d'autres termes, le carré moyen du parcours total dans la cavité

17



n'est pas égal à la somme des carrés moyens des deux parcours partiels. Pour cette rai-
son, l'application de la formule de BEHRENS (comme de celle de WEINBERG et NODE-
HER [11] (pp. 51-58) ) à des cavités annulaires est erronée, d'autant plus que le milieu
u est plus transparent, et indépendamment du fait qu'elle ne tient pas compte des termes
de corrélation angulaire.

à ta giométri»

Nous étudierons maintenant le cas où la structure du réseau est indépendante
de l'une z des ttois variables k. Nous supposerons, ou bien que le réseau présente les
mêmes caractéristiques dans les directions définies par les deux autres variables, ou

2 2 "*

bien que la somme S 0 B est indépendante de la protection du vecteur Q sur
k l K K

le plan de ces deux variables (cas d'un réacteur à base circulaire ou carrée). C'est à l'une
de ces conditions seulement qu'il est légitime de se limiter au calcul d'un coefficient axial
D et d'un coefficient radial D ~

Les frontières des milieux u et m sont des cylindres de section convexe quel-
conque. Soient alors 1 £ , Xo et X'o les projections des cordes "V/ X et X' sur le plan

normal aux génératrices et <f> l'angle de la normale à la surface au point considéré avec
la projection du parcours du neutron sur ce plan. Si a et £ représentent respectivement

c c
2 a

la section et le périmètre total du canal (r = _ ), on a :
c 4

(32) Q = / ai 12d* cos 0 X / d$ 3 Q
k 2 « r r 2 a Kl) I-\ ° Jo

2

La quantité 3 Q, s'écrit, suivant que l'on s'intéresse au coefficient axial, radial ou

moyen (Do=

3 0 2 = 3 cos 2 6
z

3 Q2 » — sin2 $
r 2

3Q1 = 1
0

18



UiaépuionAc(12)*v « e*t iaaédMte, d'oft, coane l'a moatr« BEHRENS

»« - 4 - «.

D'autre part :

Q* /

f 4 1 / <tycos4X, / d0sin03Û (1-e x sin 0 j
(4) *m\ h k U

A n I u r /i I"a* 1 7 2 2 X sin i
T, = — - 1 / d$ I (Ucos^l d0sin 0 30 *M-e »

Ces expressions font apparaître des intégrales du type :

/

JL x

2 e'siïH sU n 0 d$

Ces fonctions*qui sont, au signe près, les primitiTCs successives de la fonc-
tion de Bessel Ko (1), ont été tabulées sur calculateur MERCURY- Elles font iaterrenir

Tes fonctions K 0 (x)» K. C«) et Kj o (x) • f0 Ko (t) dt. Leurs courbes représentatives

sont tracées sur la figure 6.

On a enfin :

N

U « —hrtl»»M *—fcm M

(s) - « K ! U) - » [ f
U) - f K.W . f Kx (x)
W £

[f

Ub* HkU 4» b fMcHM K|. to «at 4«Mii* 4«M
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Symttrb è% réV«fvff«*

Si les frontières intérieure et extérieure du canal sont des cylindres de révo-
lution concentriques de rayons respectifs a et c, on a, en posant a = -*- et 9 = ——

c Xu

où F (a) est une fonction tabulée en particulier par BEHRENS et recalculée ici av« c
une précision accrue ; son expression analytique est :

3a 3«* 1 2 2

F (a) = * * 2

( l - a ) ( l - a 2 )

E (a) et K (a) étant les intégrales elliptiques complètes. D'autre part :

2 q cos
la SL

V = 1 2

k w(l-a)(l-«*) X

cos d> [ %/1-a sin ^ - a cos ^ ] I d0 sin 0.3Q (1- e-acos^JJ d0sin0.3Q (1*

T *- — [ 1 - ^ - f *à>cos^ J 2d6sin2J

(33) N = 1- 7 r ^ ^ . a ¥ e c ^# = Arc sin

N est assez bien approxÛBé par l - a .

Les tables et courbes jointes à cette étude perawttent de traiter inaédiate-

les problèsKs à sysétrie de révolatioa. On pourra évenmelleaent, si d» est diffé-

rent de 4 , effectuer la correction de l'annexe 3* pour tenir coapte de la non-unifonaité

d« flu dans la cavité (inégalité éts courants de neutrons entrant dans la cavité par
«site de surface des frontières S et S ), auds l'exanten du tableau 1 awatre que ce n'est

pas nécessaire dans les cas assels.

20



Section 2 - CALCUL DIS TERMES DE CORRELATION ANGULAIRE

Le calcul pratique des termes p • . a été effectué jusqu'à l'ordre 2 dans le

cas du problème à trois milieux défini ci-dessus ; les expressions analytiques ne seront
données que pour une symétrie cylindrique de révolution. On maintient pour l'instant
l'hypothèse sur l'espacement des canaux. On suppose l'isotropie du choc, ce qui élimine
les termes relatifs à la variable z ; l'erreur introduite par cette approximation sera cor-
rigée tant bien que mal par l'emploi, dans les expressions des p . . . e t des ?'\ t .des

libres parcours de transport. D'autre part, dans le but de réduire le nombre de fonctions

et de paramètres à manipuler, on admet, pour le calcul de ces termes, que le milieu u

est composé du même matériau* que le milieu m (même libre parcours, même capture, mê-

me flux) ; les seules quantités à calculer sont alors les p * • ' , dépendant des deux pa-

ramètres a = et y~ ~~~- En tenant compte comme plus haut de la transparence

du milieu u par des termes Q' , on a pour & = 1 :

cc, r v r

avec 4 . = Arc sin —-
^ s

3r

f j s ds [J't

= Arc sin ay
S

cos<p

y2- s 2 - y/a%y 2 - s2

y = s cos if» - ^ y 2 - s2 sin

2 2i y -

= /y2-s2sin2y2-s2sin

y* ='B cos

(•) Cette «pproxiiMtion fait p f J f uns parti* d« la prie is ion aagnâa dans I* calcul da la contribution prin»
cipala da D r a>Mnt à l'affat da transparanca du mlliau u ; alla sara abandonna* dans «ma ôtuda «hi«
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Le terme J> » 2 n'a pour l'instant été calculé que pour un canal ride
( a - 0) :

(2) (2)
P (0) * Q*cc, r x r (0)

3r r jfs, ds ,H (s) / s 2 ds2 H (s2 )Jéx 1 ^ ) t
J J ' S |

avec

P

Arc cos

I SjdSjH (s,) fs2ds2H (s2)

/y Jy
d<u cos a

/ 2 2
W Sj + S2 - 2 Sj S2 COS 6>

sin

(0<<u

Kje (P> Kj #\/

H ( s ) /Arcsi .

in2 ,:• Kjo (p) = / V

Les fonctions IJt Ko et K t sont des fonctions de BesseL

Pour pouvoir appliquer cette expression au cas d'un canal annulaire, on se
recalera sur le cas £ - 1 en admettant que

(2)
(2) (2) (1) fi) Q r ( 0 )

Q (a) + Q' '(a) - [ OV («) +Q; (a) J
r * x

(34)

On a tracé sur la figure 4 le graphique de - [ Q^U+ QJU ) ] et sur la figure
5 celui de qf = - [Q™ + Q'f

n) + Q « + ÇTr
w ] pour r = 1 (le nombre moyen de secon-

daires par collision dans le réseau est très voisin de 1, qu'il s'agisse du groupe rapide
ou du groupe thermique). On doit, dans l'expression (31), retrancher de Q^ un terme q^
égal à zéro pour k = z et à q f pour k = t.
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REMARQUE SUR LA CONVERGENCE DE LA SERIE DES Q r .

Le terme Q f est lié au produit scalaire moyen de deux parcours d'un neu-

tron dans le canal, en projection sur le plan normal aux génératrices, ces deux parcours

étant séparés par «o collisions dans les milieux solides.. Le terme Q est donc né-

gligeable si un neutron a perdu après *£ collisions la mémoire de sa direction d'entrée

dans le canal. Les Q \ sont négatifs et leur somme compense en partie le terme prin-

cipal Qr égal à l'unité.

L'étude analytique de la série des termes rectangles en géométrie plane est
faite en annexe 4. Cette étude montre que pour cette géométrie, la somme des termes rec-
tangles compense exactement le terme principal égal alors à i ; d'autre part, elle mon-

4
tre que dans ce cas, la convergence de la série est très lente. Dans le problème des ca-
naux, un raisonnement physique simple permet de voir que la compensation n'est que par-
tielle; d'autre part, la convergence de la série sera d'autant plus rapide que les canauc
seront de plus faibles dimensions vis-à-vis du libre parcours; à la limite y = 0, la sé-
rie des termes rectangles s 'annule.. Mais pour des canaux d'assez grandes dimensions,
il est probablement insuffisant de se limiter aux deux premiers termes. Une étude plus
élaborée de la série est en cours.
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Section 3 - CALCUL DES TERMES D'INTERACTION ENTRE CANAUX DIFFERENTS

Pour pouvoir traiter des réseaux dans lesquels l'hypothèse de séparation des
canaux est mal respectée, on a calculé les termes d'interaction A Q _ et A Q relatifs

(1)
aux termes principaux Q et Q et le terme AQ relatif au terme rectangle

(1) z r r

Q , ce dernier dans l'hypothèse du choc isotrope et moyennant une légère approxi-

mation d'autant plus justifiée que le pas est plus grand : ces termes seront tabulés ulté-
rieurement. Il est facile de voir que l'importance relative du terme A Qr par rapport au

terme Q f correspondant croit avec & , au moins pour les premières valeurs de J/ ;

les termes d'ordre supérieurs ne doivent donc pas être négligeables pour des canaux très
rapprochés. D'autre part, les termes d'interaction croissent très vite si l'on serre le ré-
seau.

Les expressions analytiques de ces termes n'ont pour l'instant été établies
que pour des canaux vides; on doit les multiplier par le nombre de canaux voisins en in-
teraction, soit 4 pour un pas carré.

fJL- P
2 <f> Z l 2d0 3 O f e s ln °

J° k

2 dù> | 2 dtj> c o s 2 $ Z ( 2 d d 3 Q 2 e sm 0

avec

2 y
= Arc cos —— a , = Arc

S - 2 y S cos a> - p J, = y y + 5 - 2 y 5 cos &

, . • / d sm &> Ë !
Q = Arcsin( ) p = / c o s o * V y ~$ s i n <*

- c ^ _ d
A m *m

d = distance entre les axes des deux canaux.

(•) SCHAEFER «t PARKYN [s] on» not* qu» la correction proposé* par BEHRENS [3] pour r*ndr* compta
4* c*t «ff*» «*t tris insuffisant* (dons k cas du r*s*au d* pas 5,5 du tableau 2, * l l * augment* S „ d*
0,01 s*wlm«nt). X
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D'autre part :

(1) g(«0Kl) o /n / g K<*)
A Q = / dû) / s ds H (s) H (s1)

r » 3 y 3 Jf# Jy

« / \ / Arc sin (y/ s) , .H (s) = j o
 vr/ d^

cos

cos (y)

2 v / 2 s 2 s in 2y 2 - s 2 sin

y — s cos - v y2 " s 2 s"*2

s
cos <Ù

si 0 < a) < - j -

si «ï- < Û) < ir
2

S 1

COS ft

+ S 2 - 2 5 S COS 6)

= ± Vl sin
V s ' 2

+ si s < 8 cos a

• s i s > 8 cos eu

Pour pouvoir appliquer ces formules à des camux annulaires, on pourra
éventuellement opérer un truquage analogue à celui utilisé en (34) pour le calcul du

(2) (1)
terme 0 , en se recalant sur le terme Q
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Section 4 - CALCUL DE LA CORRECTION DEPENDANT DU LAPLACIEN

De même qu'en milieu homogène l'expression D =-=- n'est que le premier terme du dé-

veloppement en puissance de BA de l'expression D, = •=?- ( 1-gr- arc tg BA),où B = S f i ?
K D À HA IC »

l'expression (22) de D ̂  n'est qu'une approximation valable lorsque la fonction macros"

copique tpo ( r*) varie lentement le long d'un libre parcours de neutron (hypothèse (b)

faite en première partie). Si le milieu comporte des canaux, et si le réacteur est de pe-

tites dimensions, cette condition peut être mal remplie. On peut alors montrer que les

corrections à apporter aux probabilités pour s'affranchir de l'hypothèse (b) sont du se-

cond ordre en Dk sauf celle relative à la probabilité tr , = Q , qui est du premier

ordre en B z ; comme les corrections du second ordre sont pratiquement négligeables,

on peut se borner à retrancher de Q 2 un terme correctif 5 Q 2 tel que :

3

A o

r c

Xo étant la projection sur le plan radial de la corde X dans la cavité; en symétrie de

révolution :

8Q = B (c + a) N
z 4 z

N étant la fonction de a = — définie en (33) (pour a = 0, 5 Q 2 = - T ^ B 2 C ) . Cette
2

correction n'a de sens que si B est positif. Ceci résulte de l'hypothèse d'extension

à l'infini des domaines d'intégration (hypothèse (c) ) admise plus haut. On trouvera en
annexe 2 des résultats numériques permettant de mesurer l'influence de cette hypothèse.
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4 è m e P a r t i e

R E S U L T A T S N U M E R I Q U E S

T A B L E A U 1

Le tableau 1 permet de comparer les effets respectifs de l'inégalité des libres
parcours A et K , de l'inégalité des flux moyens, de la non-uniformité du flux

dans la cavité (annexe 3) et des termes de corrélation angulaire.. Un calcul Monte-Carlo,
limité au terme rectangle du premier ordre, a été effectué dans un cas par J.S. GRANT.
Le rayon de la barre est de 1,30 cm, celui du canal de 3,50 cm ; dans les deux cas où

<t>c c

le flux n'est pas uniforme, on a -— = 1,470 (2 = 0,323 cm" ">.
9 u

On voit dans ce tableau que l'erreur commise en négligeant la correction de
l'annexe 3 peut être admise dans les cas usuels. D'autre part, on constate que l'erreur
commise en posant <f> = 0 = <f> n'est pas prohibitive, et se trouve être de signe

contraire à la précédente.

L'importance de l'effet d'inégalité des libres parcours, ainsi que celle des
termes de corrélation angulaire, est par contre nettement mise en évidence.
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BEHRENS

Formult propo-
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rectangles

Formule propo-
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TABLEAU 2

Le tableau 2 montre l'influence respective des termes de corrélation angu-
laire, des termes d'interaction et de la correction dépendant du laplacien. Il s'agit de
canaux vides disposés suivant un pas carré. On a adjoint à ce tableau les résultats ob-
tenus (pour B 2 = 0) par SCHAEFER et PARKYN [51, par la méthode Monte-Carlo et par

un calcul numérique du carré moyen ; ces calculs se limitent au terme rectangle du pre-
mier ordre ; ils tiennent compte de l'effet d'interaction. Cependant, les valeurs données
dans [51 sont trop imprécises et présentent des anomalies trop accusées pour que la com-
paraison puisse apporter autre chose qu'une indication*.

On voit que pour de gros canaux l'erreur commise en négligeant les Q

d'ordre supérieur à 2 peut devenir appréciable. D'autre part, pour les réseaux de pas 6,0
et 5,5, l'interaction entre les canaux commence à se faire sentir; elle croîtra très rapi-
dement si l'on serre le réseau..

La quantité calculée est ici, conformément à [5], le rapport de l'aire de dif-
fusion du réseau à celle du modérateur..

(•) Toutefois I* disaccord entra les velours oxioUs BEHRENS ot Mont*-Carlo s'oxpliquo par la fait qua
cas darniàras sont calcula** à partir d'un* sourc* plan* situ** à uno cota fixa* at non à partir d'un*
sourca râparti* *n volwm* CONNU* c*la doit s* foira dans un calcul d* râacfour (voir la discussion dans
[s] ) . Las for «m la s «xposaas ici sont donc bian adaptées à un calcul da râoctaur, «a is, pour la coaf •
f iciant axial, oxigant pius do prudanca quant à l'interprétation d'un* expérience axponantialla (indé-
pandoMNMnt dos difficultés rvncontrâas dans la calcul da la correction dépendant du lap*aci*n). La
aiâthodo du Nautrostat. du* à J. MARTELLY [lS], ast oxaaipt* da cas difficultés d'interprétation, puis-
que la flux y »st sensiblement indépendant da la variabla axial*.
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Rayon du canal (en pouces)

Libre parcours

Pas

k

BEHRENS

(1) (2)
B .+ Q k + Q k

(1) (2)
B . + Q + Q +4A Q,

k k k

(1) (2) (1)
B . + Qk4 Qk+4AQk+4AQk

(i) (2) m
B-+ < V Q k + 4 A Q k + 4 A ^
- 5 Q .(pour B 2 = 4.1(T4cm"2)

K Z

Monte-Carlo

Carré moyen sans
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Sème Partie

A P P L I C A T I O N A D I V E R S E S G E O M E T R I E S

La méthode exposée se prête au calcul de réseaux de types variés. On peut
traiter ceux-ci sous forme exacte, ou si la géométrie est trop complexe, par approxima-
tion.

L'approximation la plus simple, permettant le calcul de cellules dont l'élé-
ment de combustible est de forme compliquée, consiste à homogénéiser cet élément, sa
gaine et le fluide de refroidissement dans un volume fictif - cylindre circulaire ou non -
de même masse, ce volume étant égal par exemple au « volume de l'élastique »„ Si le
fluide de refroidissement est un liquide, cette approximation est raisonnable; s'il s'agit
d'un gaz, elle est plus hasardée; en opérant ainsi, on sous-estime alors plus ou moins
le coefficient de diffusion. Il convient cependant de remarquer que les formules prati-
ques établies ici pour le calcul d'une barre pleine rendent compte d'une manière correcte
de l'inégalité des libres parcours dans la barre homogénéisée et le modérateur; ce per-
fectionnement, qui n'apporte pas de modifications énormes dans les résultats concer-
nant une barre pleine classique, permet, lorsqu'il existe {des cavités intérieures à l'élé-
ment de combustible, de tenir compte dans une certaine mesure des effets de transport
dans celle-ci et aussi de la transparence de cet élément. On pourra traiter de la sorte
des tubes, des systèmes de plaques pas trop allongées, des faisceaux, etc. .

Le traitement exact de ces éléments de combustible est certainement possi-
ble à l'aide d'un calculateur électronique. Toutefois, si l'on veut se limiter à un cal-
cul relativement simple, on pourra utiliser une approche un peu plus élaborée que le
simple procédé d'homogénéisation. Cette approche consiste à attribuer au milieu u ho-
mogénéisé un libre parcours tel qu'il conduise à la même « transparence » que celle
du milieu réel intérieur à la frontière de ce milieu (ensemble combustible - gaine -
fluide). Cette transparence est définie comme la probabilité de sortie sans choc d'un
neutron entrant par cette surface suivant une densité en phase isotrope. Dans le cas
d'une cellule refroidie au gaz, si l'on admet que les chocs ne peuvent se produire que
dans le combustible, la transparence 1 - T est liée très simplement [9, 10] à la proba-
bilité classique P pour un neutron né uniformément dans le combustible de subir sa

première collision dans le combustible, par le théorème de réciprocité :

< V comb
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Vcomb é c a n t l e v o l u m c *r a i d u combustible, 2 c o m b sa section vraie de capture et Sn

la surface du milieu homogénéisé. Le calcul de Pc pour des volumes composés de plu-
sieurs éléments pourra se faire d'une manière plus ou moins approchée. Cette quantité
est d'ailleurs utilisée également dans le calcul du facteur £* et dans celui du facteur
f [9* 101- On pourra éventuellement définir un Ç. axial et un Pc radial sans compliquer

sensiblement le calcuL

Le traitement d'une cellule cylindrique à plusieurs milieux concentriques se-
ra facilité par l'emploi des probabilités de collision calculées par CMERCIER [16L En
ce qui concerne le calcul des faisceaux, les formules d'approximation mises au point par
R. NAUDET [14] en vue du calcul de ,£ pourront être utiles.

Les gaines métalliques minces ne demandent pas, en général, à être traitées
comme des milieux supplémentaires- Dans le cas d'une cellule classique dans laquelle
la cavité est gainée intérieurement et extérieurement, on pourra alors utiliser les formu-
les pratiques établies dans cette étude. Si les gaines sont composées d'un matériau très
transparent aux neufons (aluminium, magnésium), on pourra les traiter comme du vide et
les englober dans la cavité; sinon, le mieux est de les englober dans le milieu matériel
adjacent, éventuellement en comprimant ou en dilatant le matériau dont elles sont cons-
tituées de manière à ajuster leur libre parcours sur celui de ce milieu. Mais il est évi-
dent que la présence de ces gaines pourra affecter notablement les flux moyens dans les
différents milieux. Le traitement de gaines situées à l'intérieur de la cavité, ainsi que
celui d'ailettes, pourra à la rigueur s'effectuer suivant les mêmes recettes, avec moins
de justification.

La détermination du coefficient de diffusion dans un réseau comprenant plu-
sieurs types différents de barres entourées ou non de cavités est très facile, au moins
s'il n'y a pas d'interaction entre les barres; la généralisation à une « supercellule » des
formules établies dans cette étude est immédiate. Si en particulier, certaines de ces bar-
res sont des barres de contrôle noires, les formules se simplifient, puisque le libre par-
cours est nul (Q1, = 1 , = T =0) .

le k k

Le traitement exact de réseaux à eau légère, dans lesquels les barres sont en
général très serrées, exige probablement un calcul assez poussé des termes d'interaction.
Mais, en l'absence de cavités, le procédé consistant à homogénéiser le réseau (formule
(1) ) doit déjà conduire à un résultat coavenable; il semble d'aillears que les expressions
(1) et (2) doivent borner inférieurement et supérieurement le coefficient de diffusion.

Signalons pour finir que la méthode de remplacement progressif de R. NAUDET
[13], actuellement utilisée sur la pile AQUILON pour l'étude de réseaux à gaine d'air,
avec barres pleines ou faisceaux, permettra dans un proche «venir une confrontation ex-
périmentale des formules; les échanges de neutrons entre deux réseaux sont en effet très
sensibles aux rapports de leurs coefficients de diffusion.

Les calculs numériques ont été dirigés par Mme PILLARD, M. AMOUYAL,
Melle 1AHL, Melle OUVŒ, MM. LECLERC et GUILLOU

Nous tenons à exprimer nos remerciements au Dr.LS.GRANT, qui a eu l'obli-
geance de nous communiquer des résultats de calculs par la méthode Monte-Carlo, et au
Dr D.C. I.ESI JE. qui a bien voulu nous faire pan de ses récents travaux et avec qui
nous avons eu d'intéressants entretiens. Nous voulons remercier également le Dr A.D.
GALANIN, dont les remarques nous ont permis de préciser certains points et qui nous a
fait parvenir ua exemplaire de son dernier travail.
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ANNEXE 1

ETABLISSEMENT OE LA PREMIERE EXPRESSION (12) OU COEFFICIENT DE DIFFUSION

EQUIVALENCE A LA REPRESENTATION PAR LE CARRE MOYEN

2 2

La fonction macroscopique fo ( t), solution de (V. + B . ) ? o = 0,

peut s'écrire en toute généralité.en posant B =

- ( t i- \

— l f ( o > ) e
)

f ( Û> ) étant une certaine distribution complexe du vecteur unitaire <y , déterminée par

les conditions auxquelles doit satisfaire ¥0 ( ? ) aux frontières de la zone V, et telle

que ¥o ( f*) soit réelle en tout point. L'intégrale est étendue au domaine S des valeurs
2 2 2

de ô> telles que B &>• — B • (certaines des composantes a , de a> peuvent éventuelle-

ment prendre une valeur imaginaire). On montre alors aisément que :
»i #-» n t \ f JX c i - \ î B * • ' A . •* J»IV

N ( r , Û*) = / d<u f ( 6> ) e n ( r , O')
Js °

avec
'. = «.+ S

« î R "* R

où K est un opérateur égal à H « e " Les fuites s'écrivent :

/d»f («)Jdvdiv{e \à*iQ

F =

e e
^ A -• -*

[ q ( r l ) + n 0 ( r l , Û ) ]

[4r)

l'opérateur divergence agissant sur r . L'intégrale sur r au numérateur peut se décom-
poser en une somme de deux termes; le premier

peut être négligé. En effet la divergence de l'intégrale sur r 4 est un vecteur fonction pé-

riodique du point r* , de même période 91e celle du réseau; mais, d'après l'hypothèse
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(a), la fonction e 1 "*' varie lentement, ce qui permet de remplacer, dans l'intégration
sur r*, la divergence par sa valeur moyenne sur tout l'espace, qui est nulle!. Le numéra-
teur se réduit alors à :

I I iBût.t f •* - ZR -iB<u-R -» À "* "*
f d < u f ( û ) ) / d v e / dv i B «a. 0 £ « [q (r j) + no( rlf 0) ]

/s / v /(«c> J 4» R2

L'hypothèse (a) autorise à nouveau à remplacer, au numérateur et au déno-
minateur, les fonctions périodiques par leur valeur moyenne :

dû, f («?) [ Je dv'] Jdv /dv\iB*Y.Q
5 A J[eo) J (oo)

ï q ( f l ) + n\ (r*. , Q) ]

On peut montrer que, dans tous les cas envisagés en pratique, l'intégrale
* ^B. ^fc ^b)

e l^û>- r dv' est indépendante de a» pour toutes les valeurs de <u telles que
Û> ) £ 0 ; ceci permet de faire disparaître cette intégrale du numérateur et du déno-

minateur.

De cette expression de F, on peut, d'après (11) tirer une expression géné-
rale de D^ , dépendant des laplaciens Bj^en faisant apparaître la fonctionTo(r- r. )

v • *
au dénominateur et la composante k de soa gradient au numérateur. Nous n'écrirons ici
que la contribution principale, correspondant à 1 = 0 :

( f - £ R
! Idv /dv! Cj—™—^k^k *o(" R)][q. ( rO + n.o( r » û) 1

k B.2?o(0) / ^ ( r ) dv
y (oo)

L'intérêt de cette forme générale est de permettre le calcul de la correction
axiale en B z considérée plus haut *. Intéressons-nous maintenant à la partie indépen-
dante des laplaciens. On supposera la parité de la fonction * (soit V . ¥ (0) - 0), ce

(•) Cette forme général*, indépendante de l'hypothèse (b), mais soumise eux restrictions consécutives à l'hypothèse
(o), ne peut fournir pour les termes dépondant des Bfc au'une précision illusoire. Cependant, Us termes dépendant

du laplecien axial gardent un sens; en effet, cotte hypothèse ne postule rien avant à la dependence axiale da V, .
puisaue le structure du réseau ne dépend pas de le variable s.

Le celcul de cette correction axiale oblige à passer par l'intermédiaire da la forma générele; une fois col*
culé 0 B sous cotte forme, on développe le résultat en puissances da B, . Mois un développement préelable sous le
signe somme en puissances de B, conduirait, pour les termes dépendant de B , , à une divergence. Dans la problè-
me des fontes, il se produit un phénomène enalogue pour le coefficient parallèle à la fente, mais cette fois même le
«orme independent du leplecien direr,., rem.au. dé|« faite per BEHRENS[^. L'eppliceHon de I* feme fénérele
fu problème des fentes conduit (bien au'il ne s'egisse pas ici d'un réseav) eux formules données dons [l?J per J.
CHERNICK *t I. KAPLAN.
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qui dans les cas pratiques ne limite pas la généralité. Le développement de la fonction
¥ 0( r*- tp ) eu série de Taylor au voisinage de r - Xp = 0 conduit alors directement,

compte tenu de (9) et de (10),à l'expression (12)-

Une intégration par parties sur le rayon vecteur R oermet de transformer
l'expression (12) de D^ de manière à retrouver la définition usuelle de l'aire de diffu-
sion L^ par le carré moyen (on pose R^ = R

k[ q( tx S Rk H

La quantité

mentaires d'un neutron durant sa vie..

dv

est le nombre moyen de parcours élé-

La contribution du premier terme du numérateur représente alors clairement
la demi-somme des carrés moyens des composantes k des parcours élémentaires d'un
neutron durant sa vie. La contribution du terme 4 de la série représente la somme des
moyennes des produits des composantes de deux parcours élémentaires séparés par -€
collisions, durant une vie de neutron. L'aire de diffusion peut donc s'interpréter Comme
le demi-carré moyen de la composante k du vecteur joignant le point de naissance du
neutron à son point de capture..
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ANNEXE 2

INFLUENCE DE L'HYPOTHESE D'EXTENSION A L'INFINI DES DOMAINES D'INTEGRATION

Pouf étudier l'influence de l'hypothèse (c) ( « piles images •) , on a, dans
quelques cas particuliers, calculé le terme Q en évitant cette hypothèse ( Q n'est

pratiquement pas affecte). Ces résultats ne sont donnés qu'à titre indicatif car certains
termes ont été négligés dans le calcuL

l°)Cas B 2 > 0 ( f 0 (z) = cosB z)
z z

• Canal vide de rayon 4 cm

Réacteur de hauteur infinie :

Q = 2 pour B = 0
z z

Q 2 - 1,834 pour B 2 = cm'^correction 5 Q 2 proposée
plus haut)

Réacteur de hauteur 170 cm :

Q = 1,840 pour B = 0
Z Z

<3 =1,772 pour B = — a»"1

z z 170

On voit que l'hypothèse (c) introduit une erreur qui, bien que moins impor-
tante que dans le problème des tentes [12], est loin d'être négligeable. La seule correc-
tion S Q 2 est insuffisante, mais a le mérite de la simplicité.

2«)Cas B2
2<0 (*0(z) = ch fiz z)

Canal vide de rayon 2,5 cm

Réacteur de hauteur infinie :

Q 2 = 2 pour 0 2 = 0

Q 2 = - PO»» /32=l,8.10"2 cm1

Réacteur de hauteur 140 cm :

Q z = 1,872 pour /32 - 0

Q z s 1,916 pour 0 = 1,8.10"2 cm"1
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ANNEXE 3

CORRECTION DE NON-UNIFORMITE DU FLUX DANS LA CAVITE

Dans le cas où le flux dans la cellule est variable, on peut se demander si l'hypo-
thèse d'uniformité du flux dans chaque milieu, admise en deuxième partie, est justifiée.

On peut montrer que l'hypothèse d'uniformité du flux dans le modérateur n'in-
troduit qu'une erreur insignifiante dans les cas pratiques. La non-uniformité du flux dans
la cavité, qui résulte de l'inégalité des courants de neutrons entrant dans la cavité par
unité de surface des frontières S et S , fait apparaître une correction un peu plus im-

u m r r r r

portante, mais qui peur encore être négligée dans les cas usuels, comme le montre le
tableau 1 ; cette correction dont BEHRENS, dans une seconde publication [4] et GRANT
[6] ont tenu compte, se calcule aisément :

A D
-N) | —

X
m

r u

A m u

- 2 M

avec

°>V ' 3 a + a ' - 2 [ ( l + aa) E (o) - (1-a* ) K (a) ]
)

(<u = 2 , a> — 1)

E (a) et K (a) sont les intégrales elliptiques complètes.

Cette correction peut devenir un peu plus importante si le barre est très cap-
turante et le canal de grandes dimensions ( <4 « <j> )u

u m
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ANNEXE 4

ETUDE ANALYTIQUE DE LA SERIE DES TERMES DE CORRELATION
ANGULAIRE EN GEOMETRIE PLANE

Pour simplifier nous supposerons le choc isotrope. Dans le cas d'une géo-
metric quelconque, on peut mettre la série sous la forme

Sp = * fd, L ' l£LFj k (?) F; fc(?) [«?<•) + 1 ^ G (?, f ) l
a ri),k r V- Ijoojyfoo) M O I,K I ,K L A(r j J

G (rt r*) étant le flux produit au point r* par une source isotrope unité située au point
r' , et F; t (?) étant donné par

( e " 2 R

?. . (r) = L^v, g Qk
i»k /j) 4irRZ

F- . (r* ) est défini de façon équivalente..

Nous nous intéresserons maintenant au calcul de ceue série en géométrie
plane, plus précisément dans le cas d'un réseau constitué de fentes pratiquées dans un
réseau homogène; la direction étudiée est la direction normale aux fentes.. Nous suppo-
sons les fentes suffisamment espacées vis-à-vis du libre parcours pour que l'on puisse
négliger les effets d'interaction.

Bien que ce problème ne présente guère d'intérêt pratique, il est cependant
instructif de l'étudier à titre d'exemple, car il peut être intégralement traité de manière
analytique. Ceci est dû au fait qu'il est possible de ramener le calcul des intégrales
sur dv* à un calcul en milieu infini et homogène, en rapprochant les deux parois de la
fente; le noyau de diffusion G (r*, r*) est alors un simple noyau de déplacement. Si e
est l'épaisseur de la feote, on a alors, en posant X = 1

/

S p.c . = S Q L = - — - Idx ldx'F(x)F(x') 5(x-x') + rG(|x-x'|)

avec

s ( x ) étant égal à l s i x > 0 et à - l s i x < 0 .
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Le noyau G (|x-x'|) est ici b: flux produit au point d'abcisse x par une source
plane isotrope unité d'abscisse x1. Une première intégration sur dx' conduit à l'expression

- r ( 1 - L o g 2 ) - 6r * t ~ - L ( l - — a r g t h y j l
/ ! y 3 y /"

que

(u)du
y - y

L'approximation consistant à prendre pour G (u) la seule partie asymptoti*

~, avec K - 3 (1-r), en négligeant la partie transitoire au voisinage de
2K2

u * 0 conduit, dans la cas ou r = 1, à une valeur de la série égale à «—1—(1 + 8 Log2)
10

- - 0,655, qui comme on va le voir est inexacte d'environ 13%. On peut éviter cette ap-
proximation en opérant de la façon suivante. L'intégrale sur dy peut s'écrire, en posant
z = i y :
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Dans le plan complexe le point d'affixe i est un point critique logarithmi-
que pour la fonction arctg z dont la valeur augmente de n après rotation d'un tour
dans le sens direct autour de ce point. Nous pouvons alors considérer l'intégrant dans
l'intégrale ci-dessus comme la différence entre les déterminations f,(z) et -T (z)
d'une certaine fonction / (z)» la détermination <f s'obtenant à partir de X par
rotation d'un tour dans le sens direct autour du point L U est facile de trouver" une
telle fonction X (z ) :

1 ( \ n\ iuz
arctg z - 1 - «—- e

d'où l'expression de l'intégrale A ( u) :

(u) = [ (z) - £ (z) dz=(f(z)dz + If (z)dz

L'intégrale de 1 ( z ) le long du demi-cercle de rayon R dans le demi-plan
supérieur tend vers zéro quand R tend vers l'infini ; de même l'intégrale sur le cercle
centré sur le point i tend vers zéro avec son rayon. Comme l'origine est le seul pôle
de la fonction •£ ( z ) , on peut remplacer l'intégrale sur le contour C t+ C 2 par une

intégrale sur l'axe réel prise entre - «*> et + •» , à condition de retrancher de •£ ( z )

1 (*z2 z , \ 1 f.z* z • i02

au voisinage de l'origine, ce qui est légitime puisque la différence X, (z) - C (z) n'en
esc pas affectée :

A(u) -JL IUZ
dz

II en résulte :

3i =-r(l->Log2) - 6r Idz 2 T
G (u) du

Comme l'expression entre crochets est une fonction réelle, ainsi que l'inté-
grale double, et comme la fonction G (u) est paire., on peut écrire :

(z)e iuz G (u)du

= -r(l-Log2) f - - ( 1 - — arctg z ) le l u 2 G (u) du
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D'après un résultat classique, la transformée de Fourier du noyau G (u) vaut

1
— arctg z
z

r
1 - —arctg z

z

d'où :

~ (^) 3r2r«dz (1—arctg z)
, = - r (1-Log 2) - — | —,- arctg z —

|f la 7 « T, r
1 - — arctg z

Si la capture du milieu matériel tend vers zéro, r tend vers l'unité et

~ (^) 3 /-odz 1
= - (1 - Log 2) - — 1̂  —j arctg z ( 1 - — arctg z)

Z Z

Si l'on calcule maintenant le terme principal Q i correspondant, on trouve

sans difficulté qu'il est égal à — - En géométrie plane, dans le cas d'une capture nulle,

la série des termes rectangles compense donc exactement le terme principal, ce qui re-
vient à dire que le carré moyen de la composante normale de la somme vectorielle des
parcours d'un neutron dans une fente est nul, ce que laisse d'ailleurs prévoir l'intuition.
La formule du coefficient de diffusion est alois :

1
—± = 1+ —

On retrouve bien la formule obtenue par GRANT [61 au moyen d'un raisonne-
ment physique simple; cette formule est en effet

1

3
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et se réduit à la précédente dans l'hypothèse d'espacement des fentes admise plus
haut.

Si l'on désire calculer séparément chacun des termes de corrélation angu-
laire, il suffit de développer la transformée de Fourier de G (u) en puissances de r ,
d'où :

(t) :

soit :

(1)

(2)

()
Q. =*-(l-Log2) =-0,307

± =- 0,133

(3)

(4)
=- 0,036

(5)
jL =- 0,026

(6)
=- 0,019

(7)
=- 0,015

(8)
Ç1 =- 0,012

(9)
Qj_ =- 0,010

(10)
Q, — 0,008
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La somme de ces dix premiers termes rectangles vaut seulement - 0,62; la
série converge donc très lentement.

Dans le problème des canaux, il est facile de voir que la série des termes
rectangles ne compense que partiellement le terme principal Q égal alors à l'unité.

Mais là aussi on peut s'attendre, à la lumière des résultats obtenus en géométrie plane,
à ce que la convergence de la série soit lente pour des canaux de grandes dimensions
vis-à-vis du libre parcours (pour y -» «• et o = 0, on a environ Qt - -0,23 et Q -
-0,12); le calcul des deux premiers Qf , auquel on s'est limité dans cette étude, est

( À)probablement dans ce cas insuffisant; une étude plus élaborée de la série des Q est

en cours, ainsi que de la série des termes d'interaction qui risque aussi de converger
( & )

lentement. Cependant, compte tenu du fait que la série des Q tend vers zéro avec les

dimensions du canal, on peut, pour des canaux suffisamment espacés et de dimensions
pas trop grandes devant le libre parcours, utiliser avec sécurité les formules pratiques
établies dans ce rapport.

Manuscrit reçu le 20 Novembre 1959
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FORMULAIRE PRATIQUE

Formules à utiliser pour le calcul du coefficient de diffusion dans une cel-
lule composée d'un modérateur M , é'un canal cylindrique annulaire c et d'une barre
combustible u .

D k

iAB
3

+ *m(vc/u

i
V t Am *

V t Xm

A m Vc 9 c

X u V( 4>m

c Am vu

" 1 A '
Au * f f l Au

c - a
• — • ( Q k » Q k - q k )

xfflj v ,

m A u

•* K

Pour le groupe rapide la formule se simplifie puisqu'on peut admettre que

~ ^ m :

ix
3

vt ^
-ï- (1-

A u

+

Vc c

V X

2 c a
 M

"X *̂  m

- a

m

A u

k + Q'k

+ -ÏH-

-q)

Xnj Au

2
) Tk

L'indice k désigne la direction pour laquelle on veut calculer le coefficient
de diffusion ( z pour axial, r poor radial).

X | est le libre parcours (total) de transport du milieu i

V i est le volume du milieu i et Vr le volume total de la cellule.

tf>i est le flux moyen dans le milieu i , et <f> t = Vm ̂ m-<-Vç ^c+Vu

moyen dans toute la cellule- Vt

i e flux

Si a est le rayon de la barre et c le rayon extérieur du canal, soit
a a c

On a alors
m

Q 2 = 2 F («)

Q = F («)
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F ( a ) est donné par la cable 1 ci-après*
Q' et W , sont des fonctions de rç et a données pour les deux valeurs de k par les

courbes des figures 1 et 2. La fonction T^ ae dépend que de t] et est donnée par ies

courbes de la figure 3-

Le terme de corrélation angulaire q ̂  est nul pour k = z et est donné pour

k « r par les courbes de la figure 5 en fonction de y et a .

Le calcul du flux moyen <f> dans la cavité pourra s'effectuer au moyen de

la formule :

<£,. c -
• a - G' + a 2 u N
9u

c
2 u étant la section macroscopique de capture du milieu u, G1 une quantité

intervenant dans le calcul de f , égale approximativement au rapport du flux à la sur-
face de la barre au flux moyen dans son volume, (voir [9,10] ) etTî" une fonction de a
donnée par la table 2.

Pour une barre très capturante placée dans un canal de grandes dimensions
(<f> «c <f>m), on pourra éventuellement appliquer la correction de l'annexe 3-

Condition do validité do» formulo*

L'épaisseur de modérateur entre deux canaux doit être supérieure à une dis-
tance de l'ordre de deux libres parcours.. Sinon, il taut tenir compte des termes d'inter-
action étudiés en 3ème partie (section

Corrociion pour lo* rôactovr» do potitos dimonsion»

Si B 2 est le lapîacien axial, on pourra retrancher du terme Q, un terme

5 Q ̂  tel que

Ô Q B ( + ) N

2

Cette correction n'est valable que si B 2 > Q.

Approximation*

- On peut admettre le plus souvent que <f>t « <f> ̂

- La fonction N est assez bien approximée par 1 - eu
- Le terme T^ est en général négligeable, sauf si la barre est très transparente..

- L'erreur commise en posant <pn= <f>c= $ m n e s t souvent pas considérable,

et peut être admise pour une estimation rapide.
- L'influence de gaines métalliques minces peut ea général être négligée pour

le caicul de DL. ..
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TABLE I . - P o n c t i o n F ( d ) d e B : ; E * . II. 1 , 0 4 6 - 0 ,
—> -1

0

0,01

'0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,1 t

0,12

0,13

0,14

0,15

0,16

0,17

0,19

0,19

0,20

0,21

0,22

0,23

0,24

0,25

F«O
»,0000

1,0025

1,0050
•

1,0075

1,0101

1,0127

1,0152

1,0178

1,0205

1,0231

1,0253

1,0285

1,0312

1,0339

1,0366

1,0394

1,0422

1,0450

1,0478

1,0507

1,0536

1,0565

1,0594

1,0623

1 ,0653

1,0683

AF

25

25

25

?fi

26

25

26

27

26

27

27

27

27

27

p Q

28

28

28ta V^

29

2Q

Q

29

29

30

30

o(

0,25

0,26

0,27

0,28

0,29

0,30

0,31

0, j2

0,33

0,34

0,35

0,36

0,37

0,38

0,39

0,40

0,41

0,42

0,43

0,44

0,45

0,46

0,47

0,48

0,49

0,50

F ft)
1,0683

1,0714

1,0745

1,0776

1,0807

1,0839

1,0871

1,0903

1,0936

1,0969

1,1002

1,1036

1,1071

1,1106

1,1142

1 ,1178

1,1213

1,1250

1,1288

1,1326

1,1364

1,1403

1*1443

1,1484

1,1525

1,1566

AF

31

31

31

31

32

32

32

33

33

34

35

35

36

36

35

37

38

38

38

39

40

41

41

41

0,50

0,51

0,52

0,53

0,54

0,55

0,56

0,57

0,58

0,59

0,60

0,61

0,62

0,63

0,64

0,65

0,66

0,67

0,68

0,69

0,70

0,71

0,72

0,73

0,74

0,75

F ft)
1,1566

1,1608

1,1652

1,1696

1,1741

1,1786

1,1832

1,1880

1,1929

1,1979

1,2029

1,2081

1 , 2 1 3 4

1,2188

1,^244

1,2301

1,2359

1,2419

1,2461

1,2545

1,2610

1,2678

1,2747

1,2819

1,2694

1,2972

A?

42

44

44

"5

45

46

48

49

50

50

52

5;3

54

56

57

56

60

62

64

65

68

69

72

75

78

0,75

0,76

0,77

0,78

0,79

0,80

0,81

0,82

0,83

0,84

0,85

0,86

0,87

0,88

0,89

0,90

0,91

0,92

0,93

0,94

0,95

0,96

0,97

C,98

0,99

1

F (<*)

1 ,2972

1,3052
*

1,3136

1 ,3223.

1,3314

1 ,3403

1,3509

1,3614

1,3725

1,3843

1,3967

1 ,4101

1,4243

1,4396

1 ,4563

1,4745

1 ,494

1 ,517

1 ,542

1,572

1 ,606

1 ,649
•

1,703

1,78

1,85

CO

ÛF

80

84

87

91

95

1 00
t V V

105

11 1

118

124

134.

142

153

167

182

20

23

25

30

34
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TABLE 2 .- Ponction N (<)

7 GO

TT
a» wet,

«f > -

0

0,01

0,02

0,05

0,04

0,0$

0,06

O007

0,08

0,09

0,10

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,1B

0,19

0,20

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,30

1

0,9873666

0,9749269

0,9626749

0,9506049

0,9387113

0,0269886

0,9154517

0,9040555
0,8927950

0,8817057

0,8707628

0,8599622

0,8492994

0,8587705

0,8283710

0,8180975

0,8079460

0,7979129

0,7879946

0,7781876

0,7684885

0,7588941

0,7494010

0,7400063

0,7307069

0,7214996

0,71*3818

0,7035504

0,6944027

0,6855559

w U)

0,51

0,52

0,55

0,54

0,55

0,56

0,57

0,58

0,39

0,40

0,41

0,42

0,45

0,44

0,45

0,46

C,47

0,48

0,49

0,5C

0,51

0,52

0,53

0,54

0,55

0,56

0,57

0,58

0,59

0,60

0,61

0,6767474

0,6680346

0,6593948

0,6508255

0,6423242

0,6358885

0,6255156

0,6172055

0,6089497

0,6007518

0,5926075

0,5845i44

0,5764702

0,5684726

0,5605195

0,5526080

0,5447565

0,5369021

0,5291029

0,5213363

0,5136002

0,5058919

0,4982092

0,4905496

0,4829106

0,4752896

0,4676840

0,4600912

0,4525084

0,4449327

0,4375614

W 6*)

0,62

0,65

0,64

0,65

0,66

0,67

0,68

0,69

0,70

0,71

0,72

0,75

0,74

0,75

0,76

0,77

0,78

0,79

0,80

o,ai
0,82

0,83

0,84

0,85

0,86

0,87

0,88

0,89

0,90

0,91

0,92

0,4297912

0,4222191

0,4146418

0,4070559

0,3994577

0,3318435

0,3842095

0,3765508

0,3688655

0,3611426

0,3533830

0,3455791

0,3377250

0,3298140

0,3218392

0,3137927

0,3056661

0,2974499

0,2891335

0,2807051

0,2721515

0,263-575

0,2546058

0,2455763

0,2565457

0,2268864

0,2171654

0,2071426

0,1967688

0,1859817

0,1747013

VOk)

0,95

0,94

0,95

0,96

0,97

0,98

0,99

1

0,1628217

0,1501966

0,15661 A

0,1217543

0,1050663

0,0854822

0,0602320
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