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INTRODUCTION'

RAPPEL DE RESULTATS CLASSIQUES

Il est bien connu que le coefficient de diffusion en milie. homogéne, pour
des neutrons monocinétiques, est égal au tiers du libre parcours de transport. L'exten-
sion de cette formule au cas d'un réseau hétérogéne suppose le choix préalable d'un
certain mode de pondération des libres parcours des différents milieux. Soient V; le

volume du i *™€ wilieu constituant, A; = 21 son libre parcours de transport, S un

i i
symbole de sommation sur I'ensemble des milieux i et ¢, le flux moyen dansle milieu

i, pour un réseau infini. Deux procédés élémentaires de pondération se préseantent immé-
diatement 2 1'esprit :

- Noyenne arithmétique des sections efficaces, pondérée sur les volumes et

les flux :
(1) D= — avec T =_1
32 SV ¢4

Il est évident que cette formule s'applique en particulier (avec ¢, indépen-
dant de i) au cas d"un mélange homogeéne de plusieurs constituants (imbrication statisti-

que de « grains » de dimensions trés faibles devant leur libce parcours.

- Noyeane arithmétique des libres parcours, pondérée sur les volumes et les
flux :

1 DY
3 §vi :

(2) D=.

Cette expression est équivalente A I'expression usuelle de 1'aire de diffusion :

£ = SC ¢
'i 1 1

L: étant l'aire de diffusion relative au milicu i et f. la proportion de neu-

trons capturés dans ce milieu.

Chacua de ces deux modes de pondération possdde son domaine de validité
particulier mais il est évident que 1'application de 1'un ou de 1'autre de ces procédés au

(*) Cette étude ast le refonte d'un trevail -nirlour[ Il; olle figure sous une forme plus condensée dens [Z‘l



traitement d'un réseau hétérogéne quelconque est erronée; il ne peut en étre autrement,
ne serait-ce qu'a cause de l'indépendance des expressions ci-dessus vis-a-vis de la
forme des milieux constituants, qui exclut tout effet d'anisotropie. D'autre part, 1'ap-
plication de la formule (2) au cas d'un réseau comportant des cavités conduit 4 un coef-
ficient de diffusion infini, ce qui n'a aucun sens. Le besoin se fait donc sentir d'un
mode de pondération reposant sur des bases plus solides.

Divers auteurs ont proposé, pour des géométries particuliéres - réseau plan
ou réseau de barres ou de canaux cylindriques - des expressions plus élaborées du coef-
ficient (ou de 1'aire) de diffusion. Certaines de ces expressions reposent sur la théorie
él émentaire de la diffusion (SPINRAD [18]), d'autres sur une théorie de diffusion amé-
liorée pour tenir compte plus ou moins completement des effets de transport (BEHRENS
[3], WEINBERG et NODERER [11], GRANT [6] et plus récemment GALANIN [19] et
LESLIE [20]), d'autres enfin sur la théorie du transport proprement dite (DAVISON ([21],
LALETIN (7] ). La théorie de la diffusion sous sa forme non modifiée met en évidence
un effet d'anisotropie, mais sa condition de validité - milieux individuel s de dimensions
grandes vis-a-vis de leur libre parcours - exclut la possibilité de traiter un réseau com-
portant des cavités.

La théorie de BEHRENS exceptée, les différents calculs mentionnés ci-
dessus ne s'appliquent qu'a une géométrie déterminée. Le but principal de la présente
étude est d'établir un formalisme tout A fait général reposant sur la théorie du transpor.,
en définissant un mode de pondération des libres parcours applicable 3 un réseau quel-
couque. Ceci fera l'objet des deux premiéres parties; 1'expression obtenue sera ensuite
mise 3 profit dans la troisiéme partie pour le calcul pratique d*un réseau classique com-
portant des cavités.

<



lére partie

DEFINITION DU COEFFICIENT DE DIFFUSION
‘DANS UN RESEAU HETEROGENE

Notations etapproche duv probléme

‘En ne perdant pas de vue que le calcul des fuites hoic 2'une zone de réac-
teur est en pratique la seule raison d'étre de la notion de coefficient de diffusion, nous
allons redéfinir ce coefficient de maniére cohérente. Les neutrons sont supposés mono-
cinétiques, la loi de choc est quelconque. Soient alors, au point  d'un réacteur de vo-
lume V

A(F) = -i-l—(_,) le libre parcours total (non de transport)

r
L c(r, Q.0') le nombre de neutrons émis dans une colhsxon aa point T , dans
4 I'angle solide unité entourant la direction Q par un neutron in-

cident dirigé suivant a.

r(t)= c(7, d.qa" d@' e nombre global de secondaires par collision,
4 n) A

Q () ladensité de sources, supposées isotropes (en pratique neutrons provenant d'un
groupe d'énergie différent),

D ( :, 0 ) la densité en phase relative a la direction 6

o (1) =/D (7,0) dQ le flux,
R (4w) ..
J(£)=f[ D (f,Q) Q dQ le vecteur courant,

4g)

fl—-N (2,8 )=3¢( :)ID (t, 6) C (r, ﬁ . (;')29-.. 1a densité de collisions de
4 4n) n diffusion, c'est-a-dire le pom-

bre de neutrons émis par dif-
fusion dans 1'unité de volume entourant le point r et dans l'unité d'angle solide en-
tourant la directioa €§' (si le choc est isotrope, N= r X @ ).

Si P, est un autre point du réacteur, soient d'autre patt

~ R
TR le «parcours optique» entre T et T .

3



La quantité que nous désirons atteindre est la fuite F (neutrons sortants -
neutrons entrants) hors d'une certaine zone V du réacteur, cette fuite étant normalisée
4 un neutron dans la Zone :

/Ldiv 7 (?) dv

fvjo (?) dv

3) F =

dv &tant 1'élément de volume entourant le point f . Le flux et le courant s'expriment
par les relations :

1

4) o (7) = N (2,0 40"
r ()2 (7) (4x)

[ 2 ;
) F(@=Jay,d ¢ ER [+ N (7, a)
‘V'B 4y K2

La densité de diffusion N est régie par I'équation de BOLTZMANN :
6 N=H(O0+N)

H é&ant 1'opérateur intégral défini par la relation
~
- 2 - -ZR - - - 2
¢)) H.f(rl,ﬂ)=2(r)/.dvl° c (r,0.Q2%6(r,,Q)
R 4r R?

le résultat é&ant une fonction de © et de 6 '

Supposons connue une bonne approximation N_( r, 6‘ ) de la fonction
(c, g ). On peut regarder 1'équation intégrale (6) comme .une équation dont la fonc-
tion inconnue est la différence N (7, 8%) - No (2, 8°). En développaant cette nouvelle
fonction en série de LIOUVELLE-NEUMANN, on obtient pour la fonction N (7, @' ) :

e (e-l)
(8) N=N + S H : [-N +H(Q+N,)]

4=1

B Neane L'opérateus H icésé (£- 1) fois et Sun symbole de sommaion. On en déduit

les développements de @ (1) etde J () au moyen de (4) et (5) et 'expression de
F au moyen de (3).



Nous ferons maintenant une hypothése sur la densité de sources Q (7),
qui sera supposée factorisable en un produit d'une fonction « macroscopiques ¥, (7)
par une fonction connue q (7) de méme période que celle du réseaus.

Nous choisirons d'autre part comme fonction d'essai N, ( 7T, a ) une fonc-
tion factorisable elle aussi en un produit de la fonction macroscopique ¥, ( f) par une
fonction périodique no (7, Q') de méme période que celle du réseau ; cette dernidre
fonction sera supposée solution de 1'équation de BOLTZMANN pour le réseau infini :

¢)) n, = H_ (q+ n,)

H_ étant un opérateur semblable 4 H, mais dans lequel le domaine d'intégration est
étendu A 1'infini.

Quaat 2 la fonction macroscopique ¥, (T ), elle sera supposée connue par
ailleurs, et devra satisfaire dans la zone V 2 1'équation d'onde en milieu homogéne.
Cette équation étant toujours séparable dans les cas usuels, on peut envisager des la-
placiens géométriques partiels (positifs ou négatifs), relatifs a la variable k, tels que :

2 2
(10) (Vk+ Bk) ¥ = 0

Nous définirons maintenant le coefficient de diffusion Dk relatif A la varia-
ble k i partir de l'identité :

(11) F = % Dk B:

S étaat un symbole de sommation.

Hypothéses
Dans la suite du calcul, on admet les hypothéses suivaantes :

Hypothése (a) Variation lente de la fonction macroscopique vis-g-vis de la période du
réseau.

Hypothése (b) Variation lente de la fonction macroscopique vis-g-vis de la période de
décroissance de la fonction e~ ZR | envisagée comme fonctionde T,
pour un ? donné quelconque, et pour toute direction.

Hypothése (c) Extenuon q,l ‘infini des domaines d ‘intégration, (powr le calcul de ®(r )
et de ] ( r )), avec prolonge ment analytique des fonctions ¥, (r ) ,
q (T) et nof r, ') (hypothése classique des « piles images »).

(*) - Cette hypothése serait invtile en theorie multigroupe, puisqu'on aurait a traiter un probléme homogene,
les sources dans un groupe atant déterminges par Jes flux dans les autres groupes.



L'hypothdse (c) est valable dans la mesure od I'hypothese (b) est satisfaite,
ce qui peut n'étre qu'approximatif si le réseau comporte des canaux ¢t a fortiori des fen-
tes. On verra en 3&me partie (section 4) et en annexe 2 comment on peut s'affranchir de
ces hypothéses et on calculera les corrections qui en résultent.

Il est important de noter qu’aucune condition n'est imposée a la capture dans
le réseau.

Premiére oxpression dv coefficient de diffusion

Le détail du calcul, exposé en annexe 1, conduit A 1'expression suivante, od

é(7) = Tl_ /“o (i’,(i.') dg' est le flux en réseau infini, o} ﬂk est
r(c)X(r) (4n) 47

la composante k du vecteur 3 etod Re = ?z- 'r.g_,_ 1

(a4
1 e-zR
D = d /d Q> R{q@) +n (57, @
k [#(D)dv wi S  4gR? K ta) +a (5,
() ~/
[ -2R e
c
&) Q
- +e=? (:)v [ivl 42 R nk Hn ne,k Re [q(é"’l oo (é'{'l?]

On montre en annexe 1 que cette expression est équivalente a la définition
classique de l'aire caractéristique par le carré moyen de la distance en ligne droite jus-
qu'a absorption. Le premier terme représente la contribution des termes carrés (somme
des carrés des parcours élémentaires) ; la série sur 1'indice V représente la contribu-
tion des termes rectangles, figurant les corrélations angulaires entre parcours séparés
par £ collisions. Ces term:s ne s'annulent pas dans un réseau hétérogéne, méme dans
I'hypothese du choc isotrope. Pour illustrer simplement cet effet, on peut dire qu'vn neuw-
tron ayant traversé une cavité aura plus de chances de parcourir une grande distance
lors de son parcours suivant s'il est diffusé vers 'arridre que s'il est diffusé vers 1'»-
vant; d‘od, si ie réseau comporte des canaux, une diminution seasibie du coefficiest ra-
dial, le coefficient axial n'étant pas affecté. Cet effet, négligé dans 12 ihéorie de BEH-
RENS [3), a &€ mis en évideace par SCHAEFER et PARKYN [5], par comparaison avec des
résultats expérimentaux et au moyen de calculs Noate-Carlo, par GRANT [6) et par LALE-
TIN [7], en utilisant des méthodes analytiques.



Si 'on compate maintenant 1'expression (12) de D g a¢ développement (8)

de la densité de diffusion N (r, a’ ), on constate que le fait de négliger 1a série des
termes rectangles reY.ient a q_s.proximer la fonction N (1, (I') par la fonction d'essai
N (r, i )= ¢ (r) n, (r, g ); en d'autres termes, Ia représentation de la fonc-

tion N, et par conséquent du flux, par un produit d'une fonction macroscopique et d'une
solution en réseau infini est incorrecte +; ceci revient 4 admettre que I'existence d'un
gradient macroscopique apporte une perturbation dans la structure fine du flux ; c'est
le point de vue adopté daas [6] et [7]. Signalons enfin que dans une é&tude noe publiée,
A. ANOUY AL a montré, ea partant d'un point de vue différent, que la factorisation du
flux n'est pas compatible avec la conservation des neutrons.

(*) La fectorisation du flux inwreduit une erreur non seviement dans le calcul des fuites, mais avssi dens
colui du facteur d'viilisation thermique; tevtefels cotte demiire erreur ost nigligeable ot tend d°dll-
lowrs vers abre avec leo leplecion.



2éme Partice

NOUVELLE FORMULATION DU COEFFICIENT
DE DIFFUSION

: (0)
Section | - ETUDE DE LA CONTRIBUTION PRINCIPALE D, (TERMES CARRES)

Introduction des probabilités de collision

Malgré son intérét physique la représentation par le carré moyen se préte
mal, hormis dans quelques cas trds simples, a un calcul pratique. L'expression (12)
n'est pas plus wilisable; aussi allons-nous la transformer en fixant pour le moment no-
tre atteation sur la contribution principale DI(:O) ; l'intégrale sur dv, peut s'exprimer

en coordonnées sphériques, l'origine étant le point ? :

2 ~r -
%'2 ok[Rc°zR [q(?l)+n,(.?‘, Q)1dR
(4=)

Une intégration par parties permet de transformer l'intégrale sur dR en

) o N. - - ﬁt - - -
iy R/e'2R[q(r'l)+no(r'l,0)]dk'| +ﬁnf=' [q (r')) 480 (r', ®)] dR"
R=0 JR o Jr

NS -» -+
(R' est la distance vraic et X R' la distance optique entre r et rl’ ). Le premier

terme est nul puisque |'intégrale sur dR  est une foaction continue de R (seules les
dérivées &tant discontinues) qui est finie pour R = 0 et qui tend vers zéro seansiblement

comme une exponentielle quand R tend vers 'infini. Dans le second terme apparail 1'in-
tégrale

SR -
fe' R [q(r*l')+n.(t",',ﬂ)] dR'
R

qui, compte teau de la définition de la deneité en phase » (7, , Q) au poist ,, pewt
encore s'écrire

o~ i
-IR -~
4 e V(rlp n)



(0)

d'od une nouvelle expression de Dk , qui ne fait plus intervenir les sources de maniére
explicite :

LY
(0) 1 e~ IR
(13) Dk = " [dv ‘/‘dvl
l ¢(r)dv o) (o0)
o0)

Posons maintenant

1 -ZR
(14) Pij,k =m / / 30k v (r, &)
11 ) ’ (1)

V; étaant le volume du milieu i, ¢, le flux moyen dans ce milieu et A j le libre parcours

total dans le milieu j.

Dans le cas d'un réacteur sphérique, cubique ou cylindrique optimum, ou plus

-

généralement si § 0; B : est indépendant de @ , on n'aura 3 utiliser que des quan-

tités Pii moyennes, que 1'on repérera par 1'indice 0, danslesquelles 3 @2 disparait :

k
~s
- IR

(15) v——/dv[lv1 v (1, 0)

On d#finira de méme un coefficient de diffusion moyen par D, = L
3

$ P

La quantité pij, o Jéfinie par (15) n'est autre que la probabilicé pour un
neutron naissant daas le milieu i suivant une distribution spatiale et angulaire propor-
tionnelle a la densité en phase v (T, Q ) régnant dans ce milieu, de subir sa premidre
collision dans le milieu j. Par extension, nous pouvons considérer la quantité Pii k

définie par (14) comme une probabilité orientée suivant ia composaate k, bien que le
seas physique de cette quantité n'apparaisse pas clairement. Compte tenu de ces défi-

nitions, 1'expression (13) devient :

S vVveéearr?r
(0) 1 y ii ) ijk
(16) D, =—.

3

k
Sv 4.

1 1 1




Cette expression apparait comme une généralisation des expressions (1) et
(2). En effet, dans le cas d'un mélange homogéne, on a Pij K = Vj 2’/5 Vj Ej d'od 1'ex-
pression (1). Pour obtenir 1'expression (2), il faut ’ }
supposer que Piir K =9 ij c'est-a-dire qu'un neutron est certain de subir sa premidre
collision dans le milieu od il est né, oli encore que les dimensions de chaque milieu sont
grandes vis--vis de son libre parcours. L'expression (2) est donc la limite de la contri-

butior: principale D de D lorsqu'on passe 3 1'approximation élémentaire de la diffu-
sion .

On a vu que l'application de la formule (2) au cas d'un réseau comportant des
cavités conduisait A un coefficient de diffusion infini. La formule (16) donne un résultat
fini car, si le libre parcours '\j dans le milieu j tend vers l'infini, la probabilité pour

qu'un neutron subisse sa premiére collision dans ce milieu tend vers zéro et le produit

Aj Pj: g reste fini, comme le'montre 1'expression (14).

Relations vtiles
Le probléme est donc ramené au calcul des quantités Pij i - Ces quantités

sont liées entre elles par certaines relations qui facilitent les calculs. Tout d'abord la
relation de conservation :

(17 SP, =1
j .

Cette relation ne s'applique en toute rigueur qu'aux probabilités moyennes Pij 0’ défi-

nies par (15) mais |'erreur induite sur D | - en l'appliquant aux probabilités orientées
P.. | estinsignifiante .

?

Une autre relation d'un emploi pratique peut étre écrite si 1'on accepte 1'ap-
proximation suivante : en constatant que la densité en phase dans un milieu 1 est rare-
ment trés éloignée de 1'uniformité et de l'isotropie, il est 1égitime de calculer Pii k

?

en supposant que le neutron nait dans l¢ milieu i non plus suivant une distribution pro-
portionnelle i la densité en phase v (r), @), mais suivant une distribution uniforme et
isotrope. On verra en annexe 3 que cette approximation est justifiée dans les cas usuels
et qu'il est de toute manidre possible d'y remédier par des corrections simples. L'expres-

sionde P i, k devient

(*) Mais il est important de noter que dans |'approximation de diffusion, D ne se réduit pas & 1" expression

(2); s"il en était ainsi, les effets d'anisotropie disparaitraient dans cette opproximation, ce qui serait
en contradiction avec les resultats obtenus par SPINRAD {18] ot por GALANIN [19]. Les termes de cor-
rélation angulaire qui seront atudiés plus loin ne s’annulent pas dans I"approximation de diffusion et
sont responsables des effets d’anisctropie. Copendant, pour une direction 2 paralléle aux plons ow aux
genétratrices des cylindres, ces termes s'annulent identi quement (au moins si le choc est isatrope) ;
dons ow cus, I'expression (2) est bien la limite de D ; , ce qui w3t en accord avec [18] ot [19).

(**) On peut en effet montrer oisil-uw que :
2
Si Piik =Vidy f( i')ln f( ‘4'()1 3ﬂ|‘v (?l,ﬁ)
Développons le foncti on enguleire (-:l, on hermoniques sphiriques en repiront (‘engle 0 por rapport & 1'exe k.
On veit elors immédistement que Iﬂ (%% (?, Q differe ‘o¢ (), denc que s Rk diffore de 'unité, si fe
cosflficient de I"hermenique )-;(0. ¢) n'est pas nul eu polat ?l o Co qui est le cu'gininl. Meis on congoit que 'er-
rew induite sw O N nigligeant catte diffirence est insignifiante.
15



(18) p L /d /d .____e'% 2
. = . v v 3 0
e TV 3 g AR L

On peut alors écrire le théoréme de réciprocité :

(19) V. A, P = V. A, P,

Forme pratique de I'expression du coefficient de diffusion

Il est commode dans la pratique d'introduire des probabilités réduites p; i, k
définies par ’

Aj p 2 Vi_
(20) Pijk = 7 i, k avec rj = 3
J

Sv. &

S, étant la surface du miliz» j. Soient V., = § V; et ¢, = 141 . Spéci-
fious, dans 1'ensemble des milicux i, un milieu particulier m. On V¢

peut alors obtenir, compte tenu des relations de conservation et de réciprocité, i'cxpres-
sion suivante ol ne figureat plus que des probabilités indépendantes :

(0)
— =1+ ~ )
12 b te Aj
3

+SS £. Vi fr(2%i_2n)(1.2a

t Am ¢m Ai Aj

+ (2L 2 - 2m) Py, k
dm Aj Aj |

les sommations s'éendant ici A tous les milisux sauf le milieu m, et.éi . &tant égal 2
lsii#)etdisii=) J
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Section 2 - ETUDE DES TERMES DE CORRELATION ANGULAIRE (TERMES
RECTANGLES)

Nous allons maintenant étudier les termes de la série sur l'indice v/ appa-
raissant dans (12). En effectuant sur ces termes une intégration par parties en tout point
analogue A celle effectuée sur le terme principal, on peut mettre le coefficient de dif-

fusion sous la forme générale *

e (4)
1 SVvenrip +S P
(22) D =—_ 4 1 1] ll.k J=1 ij, k
k3
Sv ¢
1 1 1
avec
&) 1 . §% 2 g
o = .
(23) Pl),k v dv 3ﬂan nl né’k v(é'_i ﬂ}
()

il 1. o

Viri JG)

l_l &tant une fonction de la variable r[+ é égale A 1 dans le milieu i et

&) _

nulle a.illeurs. Daas l's quantités P.. .~ = — S Pl kK apparaitra le produit scalaire
1],0 3 k )s

- -
des vecteurs ) et ﬂe .

Les pi‘jll: n'ont pas de signification physique immédiate, mais on concoit
qu'ils représentent des probabilités pour un neutron 0é dans le milieu i de subir sa
(£ + 1)8m€ collision dans ie milieu j ), étant entendu qu'il existe une corrélation angu-
laire entre le premier et le dernier parcours et que les collisions intermédiaires peuvent
se produire dans n'importe quel milieu. On définira des probabilités réduites pu(i ) en
généralisant la relation (20). ij, k

Le théoréme de réciprocité (19) peut encore servir; quant au théordme de con-
servation (17), il a pour équivalent lorsque le choc est isotrope :

(24) : S P(‘u 0

l,,

= (&)

S P“ k ssus une forme globale dquivelente

{*) On pout encere écrire la semme P“

P p - o« o 8,7.0h ﬂv r.ﬂ')
"'“s ek vu#u f ) J;m ﬁu) S o % (

-~ G(r.ﬁ.r_‘d') ost le donslté on phase nt r ot dens lo direction 0 produite par une saurce wnité
slvée ou peint ndld.‘ouh-nlodlneﬂu'h”




Dans le cas d'une loi de choc quelconque, si i est le nombre de secon-
daires par collision dans le milieu j et cos Bj le cosinus moyen de 1'angle de diffu-

sion dans ce milieu, on peut montrer que :

(D) (4-1)
(25) Sp  =Svp r o5 F
i i)k )y ik ) j
. (0)
avec la convention P = P
ij, k ij, k

Si la structure du réseau est indépendante d'une variable k et si le choc est
isotrope, les termes de corrélation angulaire relatifs A cette variable sont nuls.

Dans le cas particulier d'un milieu homogéne, pour une loi de choc quelcon-
que,ona P = 1,-pP®
2

- @
=rcosB,P =1% cosg, dod
D —-1—;\ (l+rcosB+ 2co‘ﬁz+ ) = A
= s T SP T wese = =
k™3 3 1-rCospB
tr A

ce qui fait apparaitre la notion de libre parcours de transport A =

l-rcosB

On peut montrer que 1'expression pratique (21) est encore valable lorsqu'on
tient compte des termes de corrélation angulaire. 1l suffit d'ajouter aux probabilités ré-

duites Pij, k les séries S P ij, k de remplacer, partout ou ils apparaissent expli-
/=1
citement, les libres parcours totaux dans chaque milieu par les libres parcours de trans-
A
1-r i cos i
cul des quantités Pii, k¢ Pgj k doit s'effectuer, non a partir des libres parcours de

port correspondants . Toutefois il importe de se souvenir que le cal-

transport, mais a partir des libres parcours totaux, la loi de choc intervenant daas les

(2 W e
F. par l'intermédiaire de la fonction ¢ (r, @ . Q"'). L'approximation consistant 3
1), k
calculer ces quantités a partir d'une loi de choc isotrope, en introduisant les libres par-
cours de transport, sera utilisée plus loin; elle ne repose que sur une base intuitive som-

maire et n'a d'autre justification qu'un souci de simplicité.
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3éme Partie

APPLICATION AU CAS DE RESEAUX CLASSIQUES

Section 1 - CALCUL DE LA CONTRIBUTI ON PRINCIPALE

Problame 6 deux milieux

En nous limitaat pour le moment a 1'étude de la contribution principale, nous
commencerons par traiter le cas d'un réseau trés simple, celui dans lequel la cellule
élémentaire est composée d'un milieu matériel m quelconque entourant une cavité c de
forme convexe ; la densité en phase est partout uniforme et isotrope. Nous supposerons
pour l'instant que !'épaisseur de modérateur entre deux cavités est assez grande vis-d-
vis du libre parcours A  (I'étude des termes d'interaction sera abordée plus loin). D'a-
prés (21), la seule probabilité 4 calculer est ici p, définie par (14) et (20). qui

Lk’ .
peut se transformer en une intégrale étendue 2 la €% surface S, de la cavité :

]
2 2

d0
26) = d
( ook e ve /(;: /(;) « Ol X
C

od X est la longueur de la corde dans la cavité au point de la surface Sc et dans la

direction O considérés, et ol u est égal & | 8.2 | 2 &tant la normale uni-
taire 3 la surface; 'intégration angulaire s'étend a 1'angle solide (27) des directions de
neutrons eantrant dans la cavité.

La quantité p . yest le rapport du carré moyen de la composante k de la

corde X au carré de la moyenne de cette composante. Prise en moyenne sur k , elle
n'est autre que la quantité Q définies par BEHRENS (3L

L'expression (21) se réduit ici A la forme suivaate, o3 1'on a posé
Peck ~ Q k*

0
(27) Dk( ) Vc Vc LI
l—— =1+ + - Qk
B‘Am vt vt A m

{*) La relation ':e 0 --;-i- Q , quireprisente le premier torme dv dive)o spement de lo probabilisg de

collision classique P . on puissances de lo section efficace ‘!x", figure également dans [8]
p.41,éq.2) ©

14



Comme la section de capture moyenne vaut ici 2; %;ﬂ (od €

est la section de capture du milieu m), il est facile de voir que cette expression est
équivalente a celle obtenue par BEHRENS pour 1'aire de diffusion :

12 2V V.

.__k_z 1+ ¢ ¢ ¢ Qk
2

Lm vm vm AIIJ

Probleme g trois milieux

Nous étudierons maintenant un réseau dont la cellule se compose d'un modé-
rateur m entourant une cavité c dans laquelle se trouve un élément combustible u
dont les caractéristiques différent de celles du milieu m . Nous ne ferons aucune hypo-
thése sur la forme de chacun des milieux si ce n'est que les deux frontidres devront étre
convexes ; nous maintenons pour le moment 1'hypothése relative A 1'espacement des ca-
vités. Nous aurons ici, d'aprés (21), trois probabilités indépendantes a calculer dont les
deux premiédres peuvent s'écrire aprés transformation :

- U/
(28) ndk-Tk-—'—ll- ﬁs —30 (1-¢ u)]
(2a) 4

-U/A
ﬁsf ——30 X(1-¢ %
r V Sy 2#)

l } étant la corde dans le milieu u au point de la surface S et dansla

(29) Pe u, k

u
direction @ considérés, et X tant la corde correspondante dans la cavité, définie
sur la figure ;ona u = | 0 a ls o étant ici la normale unitaire A la surface Su

Auant 2 la troisiéme probabilité indépendante, Pec. k POUS la décomposerons

en une somme de deux termes

A'
P

A
pcc,k v

-L

cc, k cc, k

le premier étan: relatif aux parcours d'un point & un autre de la cavité ne traversant pas
le milieu u, et le second aux parcours traversant le milieu u sans y subir de collision;

nous poserons S cek = Qy et 2 ; k= Q'k . La premidre de ces quantités, définie

15



milieu m

xl

-
Direction Q
du parcours
du aeutron

par BEHRENS (3] est donnée par 1'expression (26) généralisée au cas d'une carité an-
nulaire, c'est-id-dire que la surface d’intégration comprendra ici les frontidres intérieure

. L
et extérieure de la cavité. La seconde quantité aura pour expression

' w-U/x
ce,k fs I —3 Ok XX'e u
(2:)

avec les mémes conventions que dans (28) et (29), X' étant la corde dans la cavité

N>

(30)

définie sur la figure.
L'expression (21) prend ici la forme :

©
D
cae e Ve, Yug tmy Ve bt (g 4 q)
1A, b | Ve Ve Aw Vg A
3
e , cfur®e (1-"_r-;)+ﬂ."_m_] v
vt AIII ¢II'I AIl ¢m u
+ -‘-,l'r—"-('#“- =) (1 2) T, 1
% Am %o Ay Au |

16



Pour le groupe rapide, la formule se simplifie puisqu'on peut admettre que
b, = ¢ = b0

Dy VoV, Ay V.

v,
—_— 1+—+1(1--_)+——-(Q+ )+__(1- Amyy 40000
_13_xm VOV, A, VA ¢ L ch..u e ) Tk

Le flux moyen dans la cavité pourra se calculer au moyen de l2 formule :

c
) X ° éant la section de capture du milieu u et G' une quantité intervenant dans le

calcul du facteur f (9, 10 ], é&gale approximativement au rapport du flux moyen sur la
surface du milieu u au flux moyen dans son volume ; la quantité N est donnée par :

do

Ve (Sn) ﬁ)

Compereison evec los formules clessiques

Daas le cas particulier traité par BEHRENS [3], - milieux u et m composés
du méme matériau, flux constant dans le réseau - la formule (31) obtenue ici se réduit
a:

Dk Vc Vc r

— =1+—+—= S (Q +¢
1dg 7 \' A

? t t m

Auterme Q' prés, cette formule est semblable i celle déduite de la théo-
rie de BEHRENS.

La présence de ce terme traduit le fait, que, dans le cas d'une cavité con-
cave comme une cavité annulaire, un neutron peut traverser deux fois la méme cavité
sans subir de choc dans le milieu u, et qu'il existe un certain couplage entre les deux
parcours alignés ; en d'autres termes, le carré moyen du parcours total dansla cavité

17



n'est pas égal A la somme des carrés moyens des deux parcours partiels. Pour cette rai-
son, 1'application de la formule d¢ BEHRENS (comme de ceile de WEINBERG et NODE-
RER (11] (pp. 51-58) ) i des cavités annulaires est erronée, d'autant plus quele milieu
u est plus transparent, et indépendamment du fait qu'elle ne tient pas compte des termes
de corrélation angulaire.

Applicotion ¢ la géométrie cylindrique

Nous étudierons maintenant le cas oi la structure du réseau est indépendante
de l'une z des trois variables k. Nous supposerons, ou bien que le réseau présente les
mémes caractéristiques dans les directions définies par les deux autres variables, ou

bien que la somme S 0 1 B: est 'adépendante de la projection du vecteur Q sur
k#z
le plan de ces deux variables (cas d'un réacteur i base circulaire ou carrée). C'est i 1'une

de ces conditions seulement qu'il est 1égitime de se limiter au calcul d'un coefficient axial

D . et d'un coefficient radial Dr .

Les frontidres des milieux u et m sont des cylindres de section convexe quel-
conque. Soient alors U, , X, et X' les projections des cordes |/, X et X' sur le plan

normal aux génératrices et ¢ 1'angle de la normale 3 la surface au point considéré avec
la projection du parcours du neutron sur ce plan. Si 0 et 4 représentent respectivement

c c
20
la section et le périmétre total du canal (rc= €) ona:
4
1 z .Z
2 2 2 2
(32) Q = dl/dabcos¢xjdo3n
22120 ) /L ° Jo k
c

2 .
La quantité 3 ﬂk s'écrit, suivant que 1'on s'intéresse au coefficient axial, radial ou

Dz +2D;,.
2 =0):

moyen (D,=

3ﬂz=3cos 0

302 =°3—~sin20
r 2

30° =1

18



L'intégration de (32) sur 0 est immédiste, d'od, comme 1'a montré BEHRENS :

3
Q. 37 Q,
3
Q ==,
4
D'autre part :
Vo
Q. = dl _:I.ﬁcos¢x X’ j—d030 e o\ sin 0
k Ztta

Vo

| 4 ¥
v =_‘un de/’,g.cos«.x,/’aosinosn’(l-e’r‘m"'o)
X k a '
@ 1 (3

k 245 0
u c
V%

A Au = ; 2 2 X &n o0
1- d0 | " dgcosg) 'dosin 930 (1-e U )
L

20, (4) lk
2

Ces expressions foot apparaitre des intégralesdu type :
X x
£ (x) =[’ e"sin0 sia® 0 do

Ces fonctions’ qui sont, au signe prés, les primitives successives de la fonc-
tion de Bessel K, (x), ont été tabulées sur calculateur NERCURY. Elles foat intervenir

x
Ies fonctions K (x), K, (x) et Kj o ®=1f, K, (t)dr. Leurs courbes représentatives

sont tracées sur la figure G
On a enfin :

N =1- L dé cos § X,

50, (t.)

£*) Les mo:hn enelytiques duﬁ' (x) sent los suiventes :
»&, (!)"" * Ky, (»;
_,u:)-xx,w-x[-i Ky ()]
ﬁ.w-}&w w3 F -]
z.«xu"*."uz) TLaf-x w]
£ w-ﬁ;‘__ K ) - 28 xl(x)...'_t"z'_?L'_ 2T 9™

Une teble do le fonction Kj, (x) oot denniée dane [17].
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Symétrie de révelvtion

Si les frontidres intérieure et extérieure du canal sont des cylindres de révo-

lution concentriques de rayons respectifs a et c, on a, en posant ¢ =-2- ety = -)-:‘—-
¢ u

4
Q =‘—3-F(a)

od F (a) est une fonction tabulée en pasticulier par BEHRENS et recalculée ici avi ¢
une précision accrue ; son expression analytique est :
2 i @-a-a @)
- + - +a a)-(l-a a
F(a) = 4 4 2

(1-a) (1-4a%)

E (a) et K (a) &ant les intégrales elliptiques complétes. D'autre part :

chos¢
Q!k = [_d* cos¢[\/1'¢ sin’g - ¢C°S¢]1d0-3ak°

7 (1-a) (1-a )

21, cos ¢

Idﬁcos¢[\/l-¢ sin’ g - acos#]rdOsmO.aﬂ (l-e sing )

r(la?)y

z z 2y cos¢

1 2 [2 ) ——
T ;—[l-——[ d¢cos¢/ ddsin? 6.3Q%(1-¢ sing )]
k n ) A k

1 2*'~-—~—sml in 2
T ol ¢, avec ¢, = Arcsin g

l-a2

N est assez bien approximé par 1 - a.

Les tables et courbes jointes i cette éude permettent de traiter immédiate-
ment les problémes 2 symétrie de révolution. Oa pourra éventuellement, si ¢ o St diffé-

rutde¢. , effectuer la correction de 1'anneze 3, pour teair compte de la non-uniformite

du flux daas la cavité (inégalité des courants de ncutrons eatrant daas la cavité par
writé de swface des frontidres S- et S- ), mais 1'examen du tableau 1 moatre que ce n'est

pas aécessaire dans les cas usuels.



Section 2 - CALCUL DES TERMES DE CORRELATION ANGULAIRE

)

Le calcul pratique des termes p . i,k ® éé effectué jusqu'd 1'ordre 2 dans le

cas du probléme 4 trois milieux défini ci-dessus ; les expressions analytiques ne seront
données que pour une symétrie cylindrique de révolution. On maintient pour l'instant
I'hypothése sur l'espacement des canaux. On suppose l'isotropie du choc, ce qui élimine
les termes relatifs a la variable z ; 1'erreur introduite par cette approximation sera cor-
rigée tant bien que mal par I'emploi, dans les expressions des pii L des p; | ’4‘ ), des

libres parcours de transport. D'autre part, dans le but de réduire le nombre de fonctions
et de paramétres 4 manipuler, on admer, pour le calcul de ces termes, que le milieu u
est composé du méme patériaus que le milieu m (méme libre parcours, méme capture, mé-
me flux) ; les seules quantités a calculer sont alocs les P ( ) , dépendant des deux pa-
ramdtres @ = —— et y=— z . En tenant compte comme plus haut de la transparence

c ‘m (£)

du milieu u par des termes Q't , Oft a pour Z =1:

3¢

\ oo 3

(1) -Q(1+Q' - [sds[’fcosd)f/(y)d#
w2y (l-a)(1.a®) | ¥ b :

b
+1 Ecosp }; (y+z)¢l4;]2

[ l]f‘cosd»&(v')dH

avec¢.=Arcsin—:- ¢, = Arc m(;
g = ) Vyi-stsinle - Valy7-ssin'p (0<¢p<o,)
2 \/.;r*sisinz¢ (¢‘<¢<¢°)

y = scos¢ - yi-s? sin® ¢

z = 2ya’y?-siin’¢

&= ‘/yz-szsinz ¢ - \/azyz_sz sin2¢

y' =-5 cos ¢+J¢2y2- s?sin’ ¢

(+) Cette epproximation fait perdre une portie de la pricision gegnae dans le calcul de la contribution prin.
cipale do D' quent a ['effet de transparence du miliey v ; elle sere abandonnie dans une stude uite-
rieure.
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Le terme £ =20's pour I'instant &é calculé que pour un canal vide
(a =0 :

(2) (2 3,2 o
Po , @=Q, @=-— {2 s‘dsln(sl)jszdszn(sz)j:a 18 ) K (xs,)
? g’y s,
. . M
- Kio () Kis ()
+J.sldslﬂ(sl)lszdszﬂ(sz)fdm Cco8 w
4
Y [
.
avec
[ =\/;f+s:-Zs,szcosw
~ P N (0(0(“)
P p-Z\[yz-iL_:sJ_sinzm (p<w<r)

pz

p = Arc cos --L—[yz- \/y‘- y’(sz+ s?) + s s?]
s, s, 1 2 1 2

H (Sl) =fAl.’C Siﬂ(Y/Ql) MCOS“‘ fl 24 (yl)
0

£, = 2\/72'slzsi°24’ Y, =8, cos¢ '\[Yz'slzsi“z ¥ Ki,(p)-“f‘.(t)dt
(

Les fonctions I, K, et K sont des foactions de Bessel.

Pour pouvoir appliquer cette expression au cas d'un canal annulaire, on se
recalera sur le cas £ = 1 en admettant que
2)
() (1) Q, O
@=[Q (@W+Q" @I —m—
q t Qf' ) ©

2 (2
(34) Q( ) (a) + QF

r

)

Oa a tracé sur la figure 4 le graphique de - [ Q:u+ Q;U)] et sur la figure

5 celuide q, = -[Q:“ + Q'l_m + Qrm + Q'rm ]l pour r = 1 (le nombre moyen de secon-
daires par collision dans le réseau est trds voisin de 1, qu'il s'agisse du groupe rapide
ou du groupe thermique). On doit, dans ['expression (31), retrancher de Q un terme qy
égal dzéropowrk =zetd q powrk=r.
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REMARQUE SUR LA CONVERGENCE DE LA SERIE DES Q('é )

Le terme Q,  est lié au produit scalaire moyen de deux parcours d'un neu-

tron dans le canal, en projecticn sur le plan normal aux génératrices, ces deux parcours

Z)

étant séparés par £ collisions dans les milieux solides. Le terme QE est donc né-

gligeable si un neutron a perdu aprés Z collisions la mémoire de sa direction d'entrée

dans le canal. Les Q E £) sont négatifs et leur somme compense en partie le terme prin-

cipal Q; égal a l'unité.

L'étude analytique de la série des termes rectangles en géométrie plane est
faite en annexe 4. Cette étude montre que pour cette géométrie, la somme des termes rec-
tangles compense exactement le terme principa! égal alors a 3 ; d'autre part, elle mon-

4
tre que dans ce cas, la convergence de la série est trés lente. Dans le probléme des ca-
naux, un raisonnement physique simple permet de voir que la compensation n'est que »ar-
tielle; d'autre part, la convergence de la série sera d'autant plus rapide que les canarx
seront de plus faibles dimensions vis-a-vis du libre parcours; a la limite y = 0, la sé-
rie des termes rectangles s 'annule. Mais pour des canaux d'assez grandes dimensions,
il est probablement insuffisant de se limiter aux deux premiers termes. Une étude plus
élaborée de la série est en cours.



Section 3 - CALCUL DES TERMES D'INTERACTION ENTRE CANAUX DIFFERENTS

Pour pouvoir traiter des réseaux dans lesquels !'hypothése de séparation des
canaux est mal respectée, -on a calculé les termes d'interaction A Qz et AQ . relatifs

(1 .
aux termes principaux Q , et Q  etleterme AQ, relatif au terme rectangle

(1)

Q, »ce dernier dans l'hypothése du choc isotrope et moyennant une légére approxi-

mation d'autant plus justifiée que le pas est plus grand ; ces termes seront tabulés ulté-

rieurement. Il est facile de voir que l'importance relative du terme A Qr( )par rapport au

(2 ) . j . . Z
terme Q correspondant croit avec , au moins pour les premiéres valeurs de £ ;
r
les termes d'ordre supérieurs ne doivent donc pas étre négligeables pour des canaux trés
rapprochés. D'autre part, les termes d'interaction croissent trés vite si l'on serre le ré-
seaw.

Les expressions analytiques de ces termes n'ont pour l'instant été établies
que pour des canaux vides; on doit les multiplier par le nombre de canaux voisins en in-
teraction, soit 4 pour un pas carré.

¢ ta, T .
f jdg&cos"‘nﬁ y 4 2d0 30:35-1{1)_0

7%y

L4 -
+ dw}qubcos ¢ Z[2do 302 ¢ S
A k
avec
2
w, = Arc cosTy a, = Arc sin‘zy-
7 _82-2)'8 COS(.»-L2 j= \/y2+-82-2y8cosm
p
{ = Ancsin(—s—f-}ﬂ-) p =lc03a-\/y2-jzsin2a
Am Aﬂl
d = distance entre les axes des deux canaux.

(*) SCHAEFER ot PARKYN (5] ont noté que la correction propasie por BEHRENS [3] pow rendre comph
de cet affet est tras insuffisante (dons le cas du r@seau de pas 5,5 du tableau 2, elle augments S
0,01 seulement).

24



D'autre part :

(1) 6 " g (w)
AQ = 3 /dmfysds H(s) H(s') cos pu

H(s) = ["" in (/%) 44 con g ¢ y )

& = 2 \/yz-szsin2 é

8 w
8 (o) = 8i 0< 0 <
- 2 cos w
y = s cos ¢ -\/y’-s2 sin? ¢ o0 si;"-<a,<,;

s' = 52 +s%2-25s cosw

+ 51 s<§ cosw

_ 562 . 2
cospy =t fl- sin @ .
s'? -si §>8 cosw

Pour pouvoir appliquer ces formules A des cansux annulaires, on pourra
éventuellement opérer un truquage analogue a celui utilisé en (34) pour le calcul du
2 (1)

terme q_ , en se recalant sur le terme Qr
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Section 4 - CALCUL DE LA CURRECTION DEPENDANT DU LAPLACIEN

A .
De meme qu'en milieu homogéne l'expression D =3 n'est que le premier terme du dé-

. ) 1 1 S
' = -— . o\l = 2
veloppement en puissance de BA del'expression Dk E’X(l B 4C 8 BA),ou B D B,
I'expression (22) de D n'est qu'une approximation valablc lorsq.e la fonction macros-
copique @, (i) varie lentement le long d'un libre parcours de neutron (hypothase (b)

faite en premiére partie). Si le milieu comporte des canaux, et si le réacteur est de pe-
tites dimensions, cette condition peut étre mal remplie. On peut alors montrer que les
corrections A apporter aux probabilités pour s’affranchir de 1'hypothése (b) sont du se-

cond ordre en By sauf celle relative d la probabilité Oecz = Qz qui est du premier
: H

ordr¢ en B , ; comme les corrections du second ordre sont pratiquement négligeables,

on peut se borner a retrancher de Q , un terme correctif 5 Q, tel que :

3

X,

2
C

_ 1
SQZ—.z.Bzr

X, étant la projection sur le plan radial de la corde X dans la cavité; en symétrie de

révolution ;

-

34
an —T Bz(c+a) N

N étant la fonction de o = ‘?— définie en (33) (poura=0,5Q, = %’1 B,c). Cette
2

correction n'a de sens que si B est positif. Ceci résulte de 1'hypothése d'extension

a l'infini des domaines d'intégration (hypothése (c) ) admise plus haut. On trouvera en
annexe 2 des résultats numériques permettant de mesurer l'influence de cette hypothése.
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4eme Partie

RESULTATS NUMERIQUES

TABLEAU

Le tableau 1 permet de comparer les effets respectifs de 1'inégalité des libres
parcours A et A _, de l'inégalité des flux moyens, de la non-uniformicé du flux

dans la cavité (annexe 3) et des termes de corrélation angulaire, Un calcul Monte-Carlo,
limité au terme rectangle du premier ordre, a écé effectué dans un cas par 1.S. GRANT.
Le rayon de la barre est de 1,30 cm, celui du canal de 3,50 cm ; dans les deux cas o

c
le flux n'est pas uniforme, on a :_c = 1,470 (2 g = 0,323 cm '),
“ U

On voit dans ce tableau que l'erreur commise en négligeant la correction de
'annexe 3 peut étre admise dans les cas usuels. D'autre part, on constate que l'erreur
commise en posant ¢ 4= ¢ .= ¢ a'estpas prohibitive, et se trouve étre de signe

contraire a la précédente.

L'importance de l'effet d'inégalité des libres parcours, ainsi que celle des
termes de corrélation angulaire, est par contre nettem~at mise en évidence.
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1,589

1,270 | 1,407 | 1,257 | 1,381

1,222 1,345

— e ——— . —

P
-
8
s
-

N
R

1,135 1,204

1,125
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TABLEAU 2

Le tableau 2 montre 1'influence respective des termes de corrélation angu-
laire, des termes d'interaction et de la correction dépendant du laplacien, Il s'agit de
canaux vides disposés suivant un pas carré. On a adjoint A ce tableau les résultats ob-
tenus (pour B y = 0) par SCHAEFER et PARKYN (5], par 1a méthode Monte-Carlo et par

un calcul numérique du carré moyen ; ces calculs se limitent au terme rectangle du pre-
mier ordre ; ils tiennent compte de |'effet d'interaction. Cependant, les valeurs données
dans [5] sont trop imprécises et présentent des anomalies trop accusées pour que la com-
paraison puisse apporter autre chose qu'une indications,

(£)

On voit que pour de gros canaux l'erreur commise en négligeant les Q

d'ordre supérieur 2 2 peut devenir appréciable. D'autre part, pour les réseaux de pas 6,0
et 5,5, l'interaction entre les canaux commence 2 se faire sentir; elle croitra trés rapi-
dement si 1'on serre le réseau.

La quantité calculée est ici, conformément A (5], le rapport de l'aire de dif-
fusion du réseau 3 celle du modérateur.

{*} Toutslcis ls désaccord entre les valews oxicles BEHRENS et MonteCarlo s'explique par le fait que
ces derniéres sont calculges a partir d'une source plane situge a une cote fixde et non a partir d'une
source rgpartie en volume comme cela doit se faire dans un calcul de réacteur (voir lo discussion dans
[S] ). Les formules exposaes ici sont donc bien adapises & un calcul de réacteur, mais, pour lo coef-
ficient oxial, exigent plus de prudence quant a I'interpritation d'une expirience exponentielle (inde-
pendamment des difficultes rencontrées dans le calcul de la correction dapendant du laplecien). La
méthode du Neutrostat, dus @ J. MARTELLY [15], est exempte de ces difficultes d'interprétation, puis-
que le flux y est sensiblemsnt indgpendant de la variable axiale.



Rayon du canal (en pouces) 2,0
Libre parcours 1,0 0,5 1,5
Pas 10,0 8,0 6,0 5,5 8,0 8,0
4 ! ' i v [
k r N z r | z r ! z r | z r ! z r ' z
- ' T l '
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S5éme Partie

APPLICATION A DIVERSES GEOMETRIES

La méthode exposée se préte au calcul de réseaux de types variés. On peut
traiter ceux-ci sous forme exacte, ou si la géométrie est trop complexe, par approxima-
tion.

L'approximation la plus simple, permettant le calcul de celiules dont 1'é1é-
ment de combustible est de forme compliquée,consiste A homogénéiser cet élément, sa
gaine et le fluide de refroidissement dans un volume fictif - cylindre circulaire ou non -
de méme masse, ce volume étant égal par exemple au « volume de 1'élastique ». Si le
fluide de refroidissement est un liquide, cette approximation est raisonnable; s'il s'agit
d'un gaz, elle est plus hasardée; en opérant ainsi, on sous-estime alors plus ou moins
le coefficient de diffusion. Il convient cependant de remarquer que les formules prati-
ques établies ici pour le calcul d'une barre pleine rendent compte d'une manidre correcte
de 1'inégalité des libres parcours dans la barre homogénéisée et le modératcur; ce per-
fectionnement, qui n' apporte pas de modifications énormesdaans les résultats <oncer-
nant une barre pleine classique, permet, lorsqu'il existe des cavités intéricures a 1'élé-
ment de combustible, de tenir compte dans une certaine mesure des effets de transport
dans celle-ci et aussi de la transparence de cet élément. On pourra traiter de la sorte
des tubes, des systémes de plaques pas trop allongées, des faisceaux, etc...

Le traitement exact de ces éléments de combustible est certainement possi-
ble 4 1'aide d'un calculateur électronique. Toutefois, si 1'on veut se limiter a ua cal-
cul relativement simple, on pourra utiliser une approche un peu plus élaborée que le
simple procédé d*homogéréisation. Cette approche consiste a attribuer au milieu u ho-
mogénéisé un libre parcours tel qu'il conduise a la méme «transparence » que ceile
du milieu réel intérieur i la frontidre de ce milicu (ensemble combustible - gaine -
fluide). Cette transparence est définie comme la probabilité de sortie sans choc d'un
neutron entrant par cette surface suivant une densité en phase isotrope. Dans le cas
d'une cellule refroidie au gaz, si l'on admet que les chocs ne peuvent se produire que
dans le combustible, la transparence 1 - T est liée trés simpleent [9, 10] A la proba-
bilité classique P. pour un neutron né uniformément dans le combustible de subir sa

premiére collision dans le combustible, par le théoréme de réciprocité :
4V

1-T = 1-T°"'1'EE°comb (1-P.)
u
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c . .
Veomb étant le volume vrai du combustible, X .., Sa section vraie de capture et S

la surface du milieu homogénéisé. Le calcul de P. pour des volumes composés de plu-

sieurs éléments pourra se faire d'une manidre plus ou moins approchée. Cette quantité
est d'ailleurs utilisée également dans le calcul du facteur £ et dans celui du facteur
f [9, 10L On pourra éventuellement définir un E. axial et un P, radial sans compliquer

sensiblement le calcul.

Le traitement d'une cellule cylindrique 3 plusieurs milieux concentriques se-
ra facilité par 'emploi des probabilités de collision calculées par C.(MERCIER (16). En
ce qui concerne le calcul des faisceaux, les formules d'approximation mises au point par
R. NAUDET (14] en vue du calcul de .£ pousront étre utiles.

Les gaines métalliques minces ne demandent pas, en général, i étre traitées
comme des milieux supplémentaires. Dans le cas d'une cellule classique dans laquelle
la cavité est jainée intérieurement et extérieurement, on pourra alors utiliser les formu-
les pratiques établies dans cette étude. Si les gaines sont composées d'un matériau trés
transparent aux neutrons (aiuminium, magnésium), on pourra les traiter comme du vide et
les englober dans 1a cavité; sinon, le mieux est de les englober dans le milieu matériel
adjacent, éventuellement en comprimant ou en dilatant le matériau dont elles sont cons-
tituées de maniére a ajuster leur libre parcours sur celui de ce milieu. Mais il est évi-
dent que la présence de ces gaines pourra affecter notablement les flux moyens daas les
différents milieux. Le traitement de gaines situées a l'intérieur de la cavité, ainsi que
celui d'ailettes, pourra 3 la rigueur s'effectuer suivant les mémes recettes, avec moins
de justification.

La détermination du coefficient de diffusion dans un réseau comprenant plu-
sieurs types différents de barres entourées ou non de cavités est trés facile, au moins
s'il n'y a pas d'interaction entre les barres; la généralisation 2 une « supercellule » des
formules éablies dans cette étude est immédiate. Si ep particulier, certaines de ces bar-
res sont des barres de controle poires, les formules se simplifient, puisque le libre par-

cours est nul (Q'k= 'k = Tk = 0.

Le traitement exact de réseaux i eau légére, dans lesquels les barres sont en
général trés serrées, exige probablement un calcul assez poussé des termes d'interaction.
Mais, en l'absence de cavités, le procédé coasistant 2 homogénéiser le réseau (formule
(1) ) doit déja conduire i un résultat coavenable; il semble 4'aillenrs que les expressions
(1) et (2) doivent borner inférieurement et supéricurement le coefficient de diffusion.

Signalons pour finir que la méthode de remplacement progressif de R. NAUDET
(13], actuellement utilisée sur la pile AQUILON pour ]'étude de réseaux a gaine d'air,
avec barres pleines ou faisceaus, permettra dans un proche avenir une confrontation ex-
périmentale des formules; les échanges de neutroas entre deux réseaux soat en effet trés
sensibles aux rapports de leurs coefficients de diffusion.

Les calculs numériques ont été dirigés par Ume PILLARD, N. ANOUYAL,
Nelle WAHL, Nelle OLIVIE, NN. LECLERC et GUILLOU.

Nous tenons & exprimer nos remerciements au De.l.S.GRANT, qui a eu l'obli-
geance de nous communiquer des résultats de calculs par la méthode Monce-Carlo, et au
Dr D.C. LESLIE. qui a bien voulu nous faire part de ses récents travaux et avec qui
nous avons eu d'intéressants entretiens. Nous voulons remercier également leDr A.D.
GALANIN, doat les remarques nous ont permis de préciser certains points et qui nous a
fait parvenir ua exemplaire de soa dernier travail.
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ANNEXE 1

ETABLISSEMENT DE LA PREMIERE EXPRESSION (12} DU COEFFICIENT DE DIFFUSION
EQUIVALENCE A LA REPRESENTATION PAR LE CARRE MOYEN

La fonction macroscopique ¥ ( 7 ), solution de (V: +B : )y, = 0,
peut s'écrire en toute généralité.en posant B ‘= § B:‘
k

¥, (7) =ff (o) e iBa.r
S

f (&) étant upe certaine distribution complexe du vecteur unitaire & , déterminée par

les conditions auxquelles doit satisfaire ¥, ( r ) aux frontidres de la zone V, et telle

que ¥, (?) soit réelle en tout point. L'intégrale est éendue au domaine S des valeurs
- 2 2 2 . -+

de & telles que B o = Bk (certaines des composantes o k de & peuvent éventuelle-

ment prendre une valeur imaginaire). On montre alors aisément que :

1Bd.r A (?,(;')

N(?,a')=/d¢n f (o) e
S
41

.=n,+ S K (-0, +K(q+n,)]

£=1
- ...ﬁ
oi K est un opérateur égal 3 H ,e”Bm‘

avec
A
n

. Les fuites s'écrivent :

iB&’.'-t. 'iuR 'm;u-é - A - -+

dof (3) |dvdiv{ e dv,fle e lq ) + 0. (F,, )]
s v (o0) 4'R2

F

¢

-

Q')

(r

B . 1 da’
/d..f(;:) dv eiB8-7 a
s r(r) Z(r) (“)4' °

1'opérateur divergence agissant sur r. L'intégrale sur f au numérateur peut se décom-
poser en une somme de deux termes; le premier

e » o~y e

/dvelB"’t div{{dv, 0 e.zk e-LBw'R [q(?,)+8, (P, Q)]
v (oo} by Rz

pewt étre négligs. En effet la divergence de 1'intégrale sur r': est un vecteur fonction pé-

riodique du point t , de méme période que celle du réseau; mais, d'aprés 1'hypothése
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(a), 1a fonction eBOL orie lentement, ce qui permet de remplacer, dans 1'intégration
sur r, la divergence par sa valeur moyenne sur tout I'espace, qui est nulle. Le numéra-
teur se réduit alors 2 :

- ~N -+
iBa.r » - 2R 'iB(;)’..R > . -
/dwf(Z))/dve @ dV]iB(B',Q S ¢ [q(r1)+3o(r1.0)]

s v {00) 411R2

L'hypothése (a) autorise & nouveau a remplacer, au numérateur et au déno-
minateur, les fonctions périodiques par leur valeur moyenne :

B ., SR-iRa.R N
do f(a)[]e dv']{dv [dv'iB 0.0 St {q(,)+n, (r,,0)]
8 v (00) J (00)
F =

47R?
, iBa.r', 1 o' A ,» >,
/sdwf(w) [ve dv lkr'(?)z(;)-(“:)ﬂ n,(r,u"

On peut montrer que, dans tous les cas envisagés en pratique, !'intégrale

/ e iBo. © dy' est indépendante de o pour toutes les valeurs de & telles que
(@) # 0;ceci permet de faire disparaitre cette intégrale du numérateur et du déno-
minateur.

De cette expression de F, on peut, d'apréds (11) tirer une expression géné-
rale de Dk , dépendant des laplaciens Bkz,en faisant apparaitre la fonction !o(}’- re +l)

au dénominateur et la composante k de soa gradient au numérateur. Nous n'écrirons ici
que la contribution principale, correspondant 2 i = 0 :

- SR s .
_ 1 ldv /dvl ﬁwm—ﬂk[v k 'o(' R)][q ( l’l) + n-o( rp 0) ]

0} Jieo)
D =
k

B, ¥ (0) é (7) dv
k (o0)

L'intéréc de cette forme générale est de permettre le calcul de la correction
axiale en B, considérée plus haut «. Intéressons-nous maintenant a la partie indépen-

dante des laplaciens. On supposera la parité de la fonction ¥ (soit V Y 0 =0),ce
A o

R —
(*) Cotte forme ganirale. indépendante de i‘hypothése (9, mois soumise sux restrictions consécutives & "hypothése
(a), ne pout foumir pour les termes dépendant des Hk qu'une précision illusoire. Copondant, les termes dépendent

dv laplecien axiel gerdent un sens; en effet, cette hypothise ne postule rien quant @ la dapendence exiele do ¥, ,
puisque la structure du réseau ne dépend pas de la varicble 3.

Le calcul de cette correction axiele oblige & passer par I'intermédisire deo le forme génerele; une fois cele
culé D, sous cette forme, on développe le résultet en puissances de B; . Meis un déiveloppement pricleble seus le
signe somme on puissances de B, conduirait, pour les termes dipendent de B, + & une divergence. Dans le prebls-
me des fentes, il se produit un phinoméne enclogue pour le coefficient perelisle & le fente, meis cette fois méme lo
terme indépendent du leplacien diverge, remerque déja feite par BEMRENS [3]. L'epplicetion de lo farme génirale

ou probléme des fentes conduit (bien qu'il ne s'egisse pes ici d'un résesy) eux formules données dens 12] por ).
CHERNICK ot I. KAPLAN.
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qui dans les cas pratiques ne limite pas la géréralité. Le développement de la fonction

L X £- r}_‘_ ] ) eu série de Taylor au voisinage de f - ?I'l' l= 0 conduit alors directement,

compte tenu de (9) et de (10),2 I'expression (12).

Une intégration par parties sur le rayon vecteur R vermet de transformer
1'expression (12) de D de maniére a retrouver la définition usuelle de 1'aire de diffu-

sion Li par le carré moyen (on pose Ry =R} ) :

N N~
! dv2(t)ﬁv € {Rilq(r YHa (r,0)1+2 SRk-H.. [q (g J+n . ( )
Lz i [u) (..)lhkz) k 1 1 Z=1 ?,k ﬁl) 2+l"b)

j =5 (2)¢ (7) dv
(o)

w2 ()G (F)dv o e nombre moyen de parcours élé-

X (D¢ (D) dv

mentaires d'un neutron durant sa vie.

La coatribution du premier terme du numérateur représente alors clairement
la demi-somme des carrés moyens des composantes k des parcours élémentaires d'un
neutron durant sa vie. La contribution du terme £ de la série représente la somme des
moyeanes des produits des composantes de deux parcours élémen’aires séparés par 4
collisions, durant une vie de neutron. L'aire de diffusicn peut donc s'interpréter comme
le demi-carré moyen de la composante k du vecteur joignaat le point de naissance du
neutron i son point de capture.
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ANNEXE 2

INFLUENCE DE L'HYPOTHESE D'EXTENSION A L'INFINI DES DOMAINES D'INTEGRATION

Pous étudier 1'influence de 1'hypothése (c) ( « piles images ») , on a, dans
quelques cas particuliers, calculé le terme Q , ©0 évitant cette hypothése ( Q . n'est

pratiquement pas affecté).Ces résultats ne sont donnés qu'a titre indicatif car certains
termes ont été négligés dans le calcull

1°) Cas B’z > 0 (¥ (2) = cosB_ 2)

- Canal vide de rayon 4 cm

Réacteur de hauteur infinie :

Q =2 pourB =0
z z i
Q, =183 pour B, = 7ocm"(corrccction 8 Q , proposée
plus haut)
Réacteur de hauteur 170 cm :
Qz = 1,840 pom'Bz =0,
Q. =1,772 pourB_ = — am"!
z Z 170

On voit que I'hypothése () introduit une erreur qui, bien que moins impor-
tante que dans le probléme des tentes [12], est loin d'éire négligeable. La seule correc-
tion § Q 5 st insuffisante, mais a le mérite de la simplicité.

2°)Cas B <0 (¥,(2) = ch 8_2)

- Canal vide de rayon 2,5 cm

Réacteur de hauteur infinie :
Qz=2 pour B8,=0

Q == pour Bz= 1,810 cm’!

Réacteur de hauteur 140 cm :

Q z = 1,872 pour ﬁz =
Q z=1,916 pour Bz =1,810? cm™?
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ANNEXE 3

CORRECTION DE NON-UNIFORMITE DU FLUX DANS LA CAVITE

Dans le cas o le flux dans la cellule est variable, on peut se demander si 1'hypo-
thése d'uniformité du flux dans chaque milieu, admise en deuxiéme partie, est justifiée.

On peut montrer que 1'hypothédse d'uniformité du flux dans le modérateur n'in-
troduit qu'une erreur insignifiante dans les cas pratiques. La non-uniformité du flux dans
la cavité, qui résulte de 1'inégaiité des courants de neutrons entrant dans la cavité par
unité de surface des frontiéres S y S S o’ fait apparaitre une correction un peu plus im-

portante, mais qui peur encore étre négligée dans les cas usuels, comme le montre le
tableau 1 ; cette correction dont BEHRENS, dans une seconde publication (4] et GRANT
[6] ont tenu compte, se calcule aisément :

fu (1-m)

C - f ¢
ADk=Vc¢’uru S, {1-N) [_(Qk+Q.k)+ L"
Li, V. ¢, A g A Ay
3
-2Nk
avec
1 dQ 2 2
N, =— ds Jpu 3@, X

Zrch (Su) (2x) 4n

- Yk 3a+a  -2[(1+a) E@-(a)K (a) ]

6 (1-a) (1-a 2)

(0 =2, o =1)
z r

E (a) et K (a) sont les intégrales elliptiques complétes.

Cette correction peut devepir un peu plus importante si le barre est trds cap-
turante et le canal de grandes dimensions (¢ <9 m).
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ANNEXE 4

ETUDE ANALYTIQUE DE LA SERIE DES TERMES DE CORRELATION
ANGULAIRE EN GEOMETRIE PLANE

Pour simplifier nous supposeroas le choc isotrope. Dans le cas d'une géo-
métrie quelconquc on peut mettre la séric sous la forme

ZSP" .__v_ [w) (“) ..T.)_ 'k(r)F k(l") [a(r-r )+—;—")TG (@, r )]

G (r (£} ') étant le flux produit au point 7 par une source isotrope unité située au point
r', et Fl k (f) étant donné par

e-ER
F., () = | dv, ——0
l)k []) : 4aR k
F ik (t.:) est défini de fagon équivalente.

Nous nous intéresserons maintenant au calcul de czice série en géométrie
plane, plus précisément dans le cas d'un réseau constitué de fentes pratiquées dans un
réseau homogéne; la direction étudiée est la direction normale aux fentes. Nous suppo-
sons les fentes suffisamment espacées vis-A-vis du libre parcours pour que 1'on puisse
négliger les effets d'intéraction.

Bien que ce probldme ne présente guére d'intérét pratique, il est cependant
instructif de 1'étudier a titre d'exemple, car il peut étre intégralemenc traité de maniére
analytique. Ceci est dii au faic qu'il est possible de ramener le calcul des intégrales
sur dv' 4 un calcul en milieu infini et homogéne, en rapprochant les deux parois de la
fente; le noyau de diffusion G (r, r') est alors un simple noyau de déplacement. Si e
est 1'épaisseur de la fente, on a alors, en posant A =1

5 A g uZ) 3,
[= pCC.L ‘ezl

dx F (x) F(x') [8 (x-x')+r G(|x-x' D]

avec
c =dy - -lxly
F(x) = —s(x) | — e
2 1y

s (x) étant égald 1si x>0 etd -1six<Q
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Faire tendre la capture vers séro dans cette expression revient
A conserver seulement:ls premier terme )} , oo qui conduis exactsment b 1la
|

formule odbtenue zar G R ANT
|

D.L - 1+ v‘




"TEKMES D*INTERACTION EN GEOMETRIE PLANE 1@

Nous ne ferons maintenant aucune hypothdse sur l1l'sSpaisseur
t (exprimée en libres paroours) de milieu matériel entre deux fentes
conséocutives . Un caloul en tout point analogue au précéddent permet de
montrex que l'interaction de deux fentes sépardes par une ¢paisseur de

natidre nt s'exprime, pour une capture quelconque , par la forme analytique

co po 4 e
SRRl A = PP cafntsy)
=0 " " ° 3} - ;%j. ‘n¢f3‘2}

(L*interaction d'une fente avec elle-m8me » 6tudide plus haut, revient A
poser n = 0 ). On peut montrer que pour tout n cette expreossion tend vers
zéro avec la capture, mais 1l est en réalité erronnd de faire tendre la
’oaptufe vers zro avant d'avoir sonmé sur toutes les valeurs de n § la re-

lation S ced(nt & 2T
permet dmgc;rofre z( '}) om,sz-oa S ( T )
oo oo t g 2T
one'F
ES ES Jfl) _ 4, 3.t - -ﬁ) ES 1 Lw:: qac*.;f;mn
M=o e::o t m =4 r:z,mn T



Le noyau G (|x-x'|) est ici l: flux produit au point d'abcisse x par une source
plane isotrope unité d'abscisse x'. Une premidre intégration sur dx' conduit i 'expression :

w (2)

wdy (edy' 1 -
SQL—’671;!— lA-y-"- y-!—.—;r!o [l'l'r/.e“yG(n)dn]

o d 1 *
=-r(1-Log 2) -6rzll _3(1 - —argth y) l.e °8Y G (u)du
y y
L'approximation consistant i preadre pour G (u) la seule partie asymptoti-

que ———— avec x = 3 (1-1), en négligeant la partie transitoire au voisinage de
2«
u = 0 conduit, dans la cas od r = 1, A une valeur de la série égale 2 -l—;-(l + 8 Log2)

= - 0,655, qui comme on va le voir est inexacte d'environ 13x. On peut éviter cette ap-
proximation en opérant de la fagon suivante. L'iatégrale sur dy peut s'écrire, en posant

z =1y : o .
A(lt):Jl di(L arctgz-le"'z
23

! z
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Dans le plan complexe le point d'affixe i est un point critique logarithmi-
que pour la fonction arctg z dont la valeur augmente de » aprés rotation d'un tour
daas le sens direct autour de ce point. Nous pouvons alors considérer 1'intégrant dans
'intégrale ci-dessus comme la différence entre les déterminations f (z) et {' _ (2
d'une certaine fonction { (z), la détcrmination  s'obtenant & partir de par
rotation d'un tour dans le sens direct autour du point i. Il est facile de trouver une

telle fonction f (z) :

1 (1 o\ iuz

d'od I'expression de 1'intégrale A (u) :

)
A(u)=1 -ﬁ (z)- (z) dz-[ (z)dz+[ (z) dz
1 [ + { ] (c’:[; C,)

L'intégrale de f (z) le long du demi-cercle de rayon R dans le demi-plan
supérieur tend vers zéro quand R tend vers l'infini ; de méme 1'intégrale sur le cercle
centré sur le point i tend vers zéro avec son rayon. Comme 1'origine est le seul pole
de la fonction f (z), on peut remplacer 1'intégrale sur le contour C + C, par une

intégrale sur I'axe réel prise entre - » et + e« , 2 condition de retrancher de 7( (z)

sa . ipale l(tz.z-t) - l(rz .z ') elllz
partie princ wz o\ 6 2 2 z3\6 2 2

au voisinage de I'origine, ce qui est l&gitime puisque la différence 7[' + (z) - 7(' (z) n'en
est pas affectée :

I ¥ 4 .) juz
A= F(z)-'—za -—-7-7 . ]dz

11 en résulte :

- &
iazl [#=z 2z =
§‘Ql =-r(l°L0;2)-6er [{(z)e -;—5(—-3-?)}1 iUz G (u) du

Comme |'expressioa entre crochets est une foaction réelle, ainsi que 1'inté-
grale donble, et comme la fonction G (u) est paire, on peut &crire :

. + o
tS Ql- °r(l-'l.032) -3¢ [dz [‘F(z)e luz 1.7( (—z)e - _l_ Jjeluz G (u)du

222 |)-»

4 22 z

3 1 2
=‘f(1'l-°82)‘—! —_— (l-—arctgz)] “'ZG(Il)dll
® -09
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D'aprés un résultat classique, la transformée de Fourier du noyau G (u) vaut

1
- arctg z

z

T
1- =—arctgz

z
d'od :
1 2
- (,Z) 302 fmdz (1-?arctg z)
SQL= -r(l-Log 2) - — } — arctg z
L= " )°z 1-Z arctg z
z
Si la capture du milieu matériel tend vers zéro, r tend vers l'unité et :
oo (Z) 3 oodz 1
SQ]_=-(1-~Log 2)- =] —=arctg z( 1~ —=—arctg 2z)
=1 7 )° z z
.2
4

Si 1'on calcule maintenant le terme principal Q L correspondant, on trouve
sans difficulté qu'il est égal 2 -%-. En géométrie plane, dans le cas d'une capture nulle,
la série des termes rectangles compense donc exactement le terme principal, ce qui re-

vient & dire que le carré moyen de la composante rormale de ia somme vectorielle des
parcours d'un neutron dans une feate est nul, ce que laisse d'ailleurs prévoir 1'intuition.

La formule du coefficient de diffusion est aloss :

D v

C
24 _,, =
1 k:
3

On retrouve bien la formule obtenue par GRANT (6] au moyen d'un raisonne-

ment physique simple; cette formule est en effet

v

D.L c
—_—= ]t —
Alll VIII

W
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et se réduit & la précédente dans 1'hypothése d'espacement des fentes admise plus
haut.

Si 1'on désire calculer séparément chacun des terwes de corrélation angu-
laire, il suffic de développer la transformée de Fourier de G (u) en puissances de 7,

d'od :
° ( Z-l )
&) . arctg z
Q.LZ'—'"E' & (l-l-aragz) (
g J°o 2 z z
soit :
M (1-Log 2) 0,307
Q ..L = 8 =Y,
(2)
Q _L =- 0,133
3)
Q | =- 0,057
(4)
Q 1N =- 0,036
(5)
(6)
Q.L =- 0,019
(7)
Q L =- 0,015
(8)
Q | =- 0,012
9)
Q.L =- 0,010
(10)
Q L =- 0,008
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La somme de ces dix premiers termes rectangles vaut seulement - 0,62; la
série converge donc trés leatement.

Dans le probléme des canaux, il est facile de voir que la série des termes
rectangles ne compense que partiellement le terme principal Qr égal alors a I'unité.

Mais la aussi on peut s'attendre, 2 la lumidre des résultats obtenus en géométrie plane,
a ce que la convergence de la série soit lente pour des canaux de grandes dimenszsons
vis-3-vis du libre parcours (pour y + = et a = 0, on a environ Q(rl )2 -0,23 et Qt( =
-0,12); le calcul des deux premiers Q ™, auquel on s'est limité dans cette étude, est
probablement dans ce cas insuffisant; une étude plus élaborée de la série des Q(r 'Z’)est
en cours, ainsi que de la série des termes d'interaction qui risque aussi de converger

lentement. Cependant, compte teau du fait que la série des Qr tend vers zéro avec les

dimensions du canal, on peut, pour des canzux suffisamment espacés et de dimensions
pas trop grandes devant le libre parcours, utiliser avec sécurité les formules pratiques
établies dans ce rapport.

Manuscrit recu le 20 Novembre 1959
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FORMULAIRE PRATIQUE

Formules & utiliser pour le calcul du coefficient de diffusion dans une cel-
lule composée d'un modérateur m , d'un canal cylindrique annulaire ¢ et d'une barre
combustible v .

D, é \V_V A V.% .-
— =1+—2) 4+ %qa- m)+‘ - 2 (Qk+Qk q)
.1..Am ¢t vt vt Au J¢ o
3
V. A
+.._.‘_[ (1-Amy P = Wy

m %m A $m *u

+Yu 2 . _m.)(iL_m_) T,
VoA, Ay $g A

Pour le groupe rapide la formule se simplifie puisqu'on peut admettre que

$u=¢c= n:

D \') v A V. c¢-
e SRR -SUFIA 0 PR B P - (Q+ Q' - )
1 Ve V¢ Ay Ve Ap
3 m
+2¥cd g Amyg 4 Vu 2 4 An )Tk

L'indice k désigne la direction pour laquelle on veut calculer le coefficient
de diffusion ( z pour axial, r poar radial).

est le libre parcours (total) de transport du milieu i
V; estle volume du milieu i et V; le volume total de la cellule.

¢; estle flux moyen dans le milieu i,et ¢, = Vm puat Ve dct Vu du e flux
moyen dans toute la cellule, \[’

Si a est le rayon de la barre et ¢ le rayon extérieur du canal, soit

= 2 =2 = =
* T e TN, A
On a alors
Qz 2 F (u)
Q F (a)



F (a) est donné par la cable 1 ci-aprés.
Q' L L  sont des fonctions de n et a données pour les deux valeurs de k par les

courbes des figures 1 et 2. La fonction Ty ae dépend que de 5 et est donnée par les
courbes de la figure 3.

Le terme de corrélation angulaire qy est nul pour k=2 et est donné pour

k = r par les courbes de la figure 5 en fonctionde y et a.

Le calcul du flux moyen ¢ . dans la cavité pourra s'effectuer au moyen de

la formule :

€ -
_¢£.= G'+aX N
$u
. .
% |, €ant la section macroscopique de capture du milieu u, G' une quantité

intervenant dans le calcul de f , égale approximativement au rapport du flux a la sur-
face de la barre au flux moyen dans son volume, (voir [9,10] ) 2t N' une fonction de a
donnée par la table 2.

Pour une barre trés capturante placée dans un canal de grandes dimensions
(¢, < $), on pourra éventuellement appliquer la correction de 1'annexe 3.

Condition de validité des formules

L'épaisseur de modérateur entre deux canaux doit étre supérieure a une dis-
tance de ' ordre de deux libres parcours. Sinon, il taut tenir compte des termes d'inter-
action étudiés en 3¢me partie (section 3).

Correction pour les réacteurs de petites dimensions

Si B ‘z est le laplacien axial, on pourra retrancher du terme Q | un terme
5 Qy tel que

5Q z=-2;'1 B, (c+ta) N

. R
Cette correction n'est valable que s1 B, > (.

Approximations

- On peut admettre le plus souvent que ¢, ~ ¢

- La fonction N est assez bien approximée par 1 - a.
- Le terme T est en général négligeable, sauf si la barre est trés transparente.

- L'erreur commise en posant ¢, = ¢.= ¢, n'est souvent pas considérable,

et peut étre admise pour une estimation rapide.
- L'influence de gaines métalliques minces peut ea général étre négligéc pour

le cascul de Dy -
47




TABLE I.- Fonction F (d) de BiEL 1. LimF(d)= 1,046 ~ 0,17  log(4.a)

o ~> 4
oA Fel) AF| & F() AF] « F(a) AF} &  F(x) AF
0 1,0000 0,25 - 1,0683 0,50 1,1566 0,7% 11,2972
25 31 42 80
0,01 1,0025 0,26 1,0714 0,5 11,1608 0,76 1,3052
25 1 44 " 84
0,02 1,0050 0,27 1,0745 0,52 11,1652 0,77 1,3136
- 25 31 44 87
0,03 1,0075 0,28 1,0776 0,55 1,1696 0,78 1,3223
0,04 1,0101 0,29 1,0807 0,54 1,1741 0,79 1,3314 o,
26 32 45
0,05 1,0127 0,30 1,0839 0,55 1,1786 0,80 11,3403 ,,,
25 32 46
0,06 1,0152 0,31 1,0871 0,56 11,1832 0,81 1,3509
26 32 48 105
0,07 1,0178 0,52 1,0903 0,57 1,1880 0,82 1,3614
27 33 49 LR
0,08 1,0205 ¢ | 0,33 1,0936 y 0,58 11,1929 10,83 1,%725 s
0,09 1,0231 5, 10,34 1,0969 53 0,59 1,1979 50 0,84 1,3843 124
0,10 1,0253 ,q | 0,35 1,1002 s 0,60 1,2029 10,85 1,3967 154
0,11 1,0285 , | 0,36 1,1036 s 0,61 1,2081 . 0,86 1,411 -
0,12 1,0312 50 | 0,37 1,1071 s 0,62 11,2134 10,87 11,4245 153
0,13 1,0539 0,38 1,1106 0,65 1,2188 0,88 1,4396
27 | 36 56 167
0,14 1,0366 ,g | 0,39 1,1142 0,64 11,2244 0,89 1,4563
0,15 1,0394 ,g | 0,40 1,1178 0,65 1,2301 0,90 1,4745
35 58 20
0,16 1,0422 Lg | 0,41 1,1213 0,66 1,2359 0,91 1,492
37 60 @3
0,17 1,0450 ,g | 0,42 1,1250 0,67 1,2419 0,52 1,517
38 62 25
0,18 1,0478 ,4 | 0,43 1,1288 0,68 1,2481 0,53 1,942
| | 38 64 30
0,19 1,0507 ,g | 0,44 1,1326 0,69 1,2545 0,94 1,572
| . 38 65 24
0,20 1,0536 ,o | 0,45 1,1364 0,70 1,2610 0,95 1,606
0,21 1,0565 9,46 1,1403 0,7t 1,2678 0,96 1,649
0,22 1,0594 0,47 151443 0,72 1,2747 0,97 1,703
29 72
0,23 1,0623 0,48 1,1484 ,, 0,73 1,2819 c,98 1,78
. 30 75
0,24 1,0653 0,49 1,1525 0,74 11,2894 0,99 1,85
30 41 78
0,25 1,0683 0,50 11,1566 0,75 1,2972 {1 @ =48~




TABLE 2 .- Ponction N (%) = (4-

"."_.‘L e . 4
Fhne,)

'%" 4-o?

(fo-, Rre aund .
o V (&) o N () o N (&) ok N &)
0 1 0,31 0,6767474 | 0,62 0,4297912 0,93 0,1628217
0,01 0,9873666 0,32 0,6680%46 0,65 0,4222191 0,94 0,1501966
0,02 0,9749269 0,53 0,6593948 | 0,64 0,4146418 0,95 0,136614
0,03 0,9626749 0,34 0,6508255 | 0,65 0,4070559 | 0,96 0,1217543
0,04 0,9506049 0,35 0,6423242 | 0,66 0,3994577 0,97 0,105C663
0,05 0,9387113 0,36 0,6338883 | 0,67 0,35i8435 0,98 0,0854822
0,06 0,5269886 0,37 ©0,6255156 | 0,68 0,3842093 0,99 0,0602320
0,07 0,9154317 0,38 0,6172035 | 0,69 0,3765508 1 0
0,08 0,9040355 2,29 0,6089497 | 0,70 0,3688635
0,09 0,8927950 0,40 0,6007518 0,71 0,3611426
0,10 0,8817057 | o0,41 0,5326075 | 0,72 0,3533830
0,11 0,8707628 0,42 0,5845144 | 0,73 0,3455791
0,12 -0,8599622 0,43 0,5764702 | 0,74 0,3377250
0,13 0,8492994 0o44 0,5684726 | 0,75 0,3298140
0,14 0,8387703 0,45 0,5605193 | 0,76 0,32183%92
0,15 0,8283710 0,46 0,5526080 | 0,77 0,3137927
0,16 0,8180975 C,47 0,5447363 0,78 0,3056661
0,17 0,8079460 0,48 0,5369021 0,79 0,2974499
0,18 . 0,7979129 0,49 0,5291029 0,80 0,2891335
0,19  0,7879946 0,5¢ 0,5213363 | 0,81 0,2807051
0,20 0,7781876 0,51 0,5136002 0,82 0,2721515
0,21 0,7684885 | 0,52 0,5058919 | 0,83 0,263.575
0,22 0,7588941 0,53 0,4982092 0,84 0,2545058
0,23 0,7494010 0,54 0,4905496 | 0,85 0,2455763
0,24 0,7400063 0,55 0,4829106 | 0,86 0,2363457
0,25 - 0,7307069 0,56 0,4752896 | 0,87 0,2268864
0,26 0,7214996 0,57 0,4676840 | 0,88 0,2171654
0,27 0,7123818 0,58 '0,4600912 | 0,89 0,2071425
0,28 0,7033504 0,59 0,4525084 | 0,90 0,1967688
0,29 0,6944027 0,60 0,4449327 | 0,91 0,1859817
0,30 0,6855359 0,61 0,4373614 | 0,92 0,1747013
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~ Fonction Q.= -0Q, + Q'r +Q + Q. i dcpendant de 7 et de ¢«
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