_ PNNL-11383

Development of Automated Image Co-Registration Techmques
Part II - Multisensor Imagery

T. F. Lundeen
A. K. Andrews*
E. M. Perry

M. V. Whyatt
K. L. Steinmaus

October 1996

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO
1830

Pacific Northwest National Laboratory
Richland, Washington 99352

*Post-Doctoral appointment through Association of Western Universities

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Development of Automated Image Cd—Registration Techniques:
Part II - Multisensor Imagery

Executive Summary

This report summarizes results from the second phase of research on multisensor

image registration conducted at the US DOE Pacific Northwest National Laboratory in

conjunction with a US DOE office of nonproliferation and national security task titled -
Multispectral Imagery Analysis (ST474D). The major changes implemented in this '
phaisé include modifying the code to run independently of the Advanced Visualization
Software (AVS) required in the first version, and adding an image intersection module to
determine new ground control points (GCPs) outside the convex hull of the initial GCP
dataset. Registration results are presented for cases with images of differing pixel

resolutions and spectral bands. Instructions for running the programs and hardcopies of

the source code are also included in the report.

1.0
2.0

2.1

2.2

23

24
3.0
4.0
APPENDIX A.
APPENDIX B.

APPENDIX C.

Contents

EXecutive SUMIMATYccoieeceerieeieriieerveeerecsreeaeseeestneaaessessanaeesesnsasens il
BACKEZIOUNA ..ot sssese s ssss s ssssnaessasssesesns 1
ADPDPIOACH. ettt 4
Conversion to Independent (AN SfC) Code ..o 5
Locating GCPs Outside Convex Hullcocooiivevrnincnninvercenenennen. 5
User Specified Null Valuecocoivmiirieireececececeeenereeseennnene 6
Coarse Image Matching Algorithms......ccccceeeeiiiicecirenieesencseseecennnes 7
Results......... ettt b s st e e e et s baeert s se s e e s e e e s s b sa e nesternenaentss 9
Conclusions......ccccceeeeeeeeenenenne et s eeeees e esesseseseseeseeseseee 15 |
HOW TO RUN THE AUTOREG SOFTWARE.......c.cccvvmnencnennnne. A-1
AUTOREG SOURCE CODE...........civimierireenecntnecntereseeenseesesenseces B-1

Development of Automatic Image Co-Registration Techniques:
Part II - Multisensor Imagery

1.0 Background

This is the second in a series of PNNL Multispeci:ral Imagery (ST474D) reports
on automated co-registration and rectification of multisensor imagery. In the first report
(Risch et al. 1992), a semi-automated registration procedure was introduced based on
methods proposed by Chen and Lee (1992) which emphasized registration of same sensor
imagery. The Chen and Lee approach is outlined in-Figure 1, and is described in detail in
the first report. PNNL made several enhancements to the Chen and Lee approach; these |
modifications are outlined in Figure 2 and are also described in detail in the first report.
The PNNL enhancements to the Chen and Lee approach introduced in the first phaée have
been named Multisensor Image Registration Automation (MIRA). These improvements
increased computational efficiency and offered additional algorithms for coarse matching
of disparate image types. In the MIRA approach, one set of optimum GCP locations are
determined based on a Delaunay triangulation technique using an initial sét of GCPs
provided by the user, rather than repeating this step fof each added control point as is
proposed by Chen and Lee. The Chen and Lee approach uses an adjacent pixel difference
algorithm for coarse matching patches of the reference image with the source image,
while the MIRA approach adds other algorithms. Also the MIRA approach checks to

determine if the 2 newly. determined GCP fits the existing warping equation.

In the first phase of the research, several improvements were identified for future
implementation such as the ability to determine new GCPs outside the convex hull
formed by the initial GCP set. In this phase of the research, emphasis was placed on
implementing improvements identified in the first phase, and testing the MIRA approach

on images with different ground resolutions and spectral ranges characteristic of

multisensor imagery.

Input initial ground control points X
(GCPs) and image pair data set 1 X

Y

Predict optimal location for next : +
—»-| GCP based on Delauny Triangulation
of current GCP set 2

Y _—

Identify a candidate control point (CCP) o
in the vicinity of the optimal GCP location .
using an interest operator 3 ¢ N

- : - ®s o N iI
Predict the location of the CCP in the . L
source image using an affine transform «_ *
determined from the current GCPset 4 : * L

i | L

Perform coarse matching of the
. corresponding CCP image patches
using adjacent pixel difference (APD) § 3

Y

Perform fine matching using
least square matching (LSM)

Number of GCPs
sufficient?

¥ YES

Output GCP pairdataset . 8

Figure 1. Flowchart Diagramming the Chen and Lee Automated Ground Control Point
(GCP) Selection Algorithm

| Initial GCP’s and data sets 1|

L]

Determine the intersection points of
the two images and add these to the

_.GCP set 2

L]

Predict the optimal location for GCPs
based upon recursive Delaunay
triangulation of the input data set 3

L]

Identify candidate control point (CCP) in
e | the vicinity of the optimal GCP location lall——

using an interest operator 4

¥

Predict the location of the CCP in the
source image using an affine transform
determined using the current GCP set 3.

Does either
reference or source
image pixel contain a null value2,

Perform coarse matching of corresponding
CCPs to select the optimum CCP based
upon a matching operator 7

L]

Perform fine matching using
Least Squares Matching (LSM) 8

Does selected GCP fit
existing warping
equation?

Any more
optimal GCPs?

l Output GCP pair data set 11

Figure 2. Flowchart Diagramming the PNNL Multisensor Image Registration Automation
(MIRA) Algorithm.

In addition to the co-registration difficulties introduced in same-sensor imagery
such as differences in image geométry), multisensor imagéry adds additional challenges.
Features in multisensor images may have different spatial and statistical characteristic due

to:
e specific sensor properties such as field of view and pixel aspect ratio
e different sources of characteristic noise (such as ‘striping’ or ‘line-dropping’)
o differences in apparent reflectivity or emissivity properties of the target due to
differences in the spectral bands used
e (differences in atmospheric transmittance, absorption and scattering in different

waveband intervals

In a recent survey by Fonseca and Manjunath (1996) of multisensor registration
techniques, seven citations were noted of registration techniques tested on multisensor
imagery; however, none of the cited work incorporated imagery with major differences in
the waveband regions, such as optical versus thermal imagery or optical and SAR
imagery. The registration techniques mentioned in their survey included both area-based
(correlating image patches based on a metric such as correlation coefficients or
normalized cross correlation) and feature-based (extracting features bésed on detection of
edges, lines,’region centroids, etc.) techniques. Because of the complexities of merging
optical, thermal and radar data, the PNNL MIRA approach uses both area-based statistics

and feature extraction.

2.0 Approach
In this section we discuss the improvements to the enhanced Chen and Lee
approach made during phase two of this research . These improvements include the
conversion to stand-alone C code (eliminating the use of licensed software), an image
intersection module, a user-specified null value check, and additional coarse matching

algorithms.

2.1 Conversion to Independent (ANSI C) Code

The original MIRA algorithms introduced in the first phase utilized the
Application Visualization System (AVS), which isan object-based visual programming
system. Although AVS provided an excellent platform to develop and test the initial
software, especially the Delaunay triangulation module, the need to develop hardware
independent programs was recognized. In this second phase of the MIRA work, the
Delaunay triangulation module was modified to operate outside AVS. The programs

modified in this phase should run under any machine platform supporting ANSI C.

2.2 Locating GCPs Outside Convex Hull
One problem identified in the first phase of this research was the limitation of
- finding control points only within the convex hull, or spéce defined by the set of initial
GCPs. This problem is illustrated in Figure 3. Coarse matching of the source and
reference images is constrained to the triangulated areas bounded by the initial GCP set.
To solve this problem, an image intersection module has been added (see Figure 2),
- which determines the corner points of the source file with réspect to the reference file
coordinates. This is accomplished in one of two ways: |
e In the first case, where one image is completely contained within the other, the
four corner points of the contained image are returned.
e In the alternate case, where there is overlap between the two images, the
source image is ‘clipped’ against the reference image, using the Cohen-

Sutherland line clipping algorithm (Foley et al., 1994).

To initialize this procedure, the user identifies 3-4 GCPs and the dimensions of
the two images (minimum and maximum x and y values for the two images). The four
corners representing the area of intersection of the two images are then calculated, and
these four points are then added to the user specified GCPs to form the initial GCP

dataset. As the GCP dataset grows, all of the area bounded by the intersection of the two

images is included.

Area outside
conveX hull

GCP
n

Figure 3. Convex Hull Problem.

2.3 User Specified Null Value

Offsite or null value pixels may be included in an image file from one or more
sources, such as: ‘

e image registration causing the image to be skewed or rotated relative to the

file coordinate system
e when roll correction has been performed, léaving an irregular or wavering
| edge of the image
e when there are image ‘drop-outs’ or other sources of image noise, artifacts, or

unwanted features (such as clouds and cloud shadows)

To account for these possibilities, an option was added to allow the user to specify
a value for offsite or null pixels. Optimum control points are generated for the entire
reference 1mage file (including offsite areas). However, when performing the coarse
matching of the reference to source files, the image patches are checked to make sure that
null values are not included in the patch. Patches which include null values are

discarded.

24 Coarse Image Matching Algorithms

In preparation for the coarse matching step of the autoregistration process, both
optimum control points (based on Delaunay triangulation) and candidate control points
(based on feature extraction) are generated from the reference image. For each .optimurn
control point, the closest candidate control point is selected for processing, and is referred
to as the local control point (LCP). Given the location of the LCP in the reference image,
the approximate location in the source image is determined from an affine transformation
of the existing GCPs. This location is used as the center for the image patch in the
reference image, and as the center for a search area in the source image. A series of
patches in the source image are extracted. For each patch, one of the coarse matching
metrics (adjacent pixel difference, correlation, or patch coding) is used to determine the
matching factor between the reference and source patch. After comparing the reference
patch with all of the source patches within the search area, the source patch with the best
match is used to determine the new GCP (as the center of both the reference and source

patches). Each of the coarse matching algorithms is described below.

The adjacent pixel difference (APD) metric evaluates the similarity of two image
patches based on feature vectors determined from row and column statistics. The feature

vector of an M by M image patch in the reference image is defined as (after Chen and
Lee, 1992):

£7.= [R1, Ry, ..Rm, C1, Ca, ..Cao]

where the row and column features are determined as:

m=1

Y IDN(,y)— DN(L,y +1)|
R~= =

S DN(Ly)
=1

forl= 1,2;...m

§|DN(x,s) =DN(x+1,5)|
R.==

i DN (x,s) '
x=1

fors=12..m

The feature vector for the source image, f;; is determined in the same way, using
the DN values from an M by M patch from the source image. The degree of matching is
evaluated by the correlation coefficient between image patches in the source and
reference images, as defined by:

fo.of,;

le b

Ci.j=

For the image correlation, no processing is performed on either the reference or
source patches. The degree of matching is based on the normalized cross correlation,

defined as:

i (ref)(source)
|C = i=l)

\/ Q. ref 2)(2 source’)

i=1

where “ref” is a pixel in the reference patch, “source” is the corresponding pixel in the

source patch, and “N” is the number of pixels in the patch.

The image coding metric evaluates all of the interior pixels in the patch (i.e., not
the edge rows or columns) to compute the difference between a given pixel and its eight
surrounding pixels. Then the locations of the four pixels which differ most from this

center pixel are used to compute a location code, defined as:

C= TY0) kk=1,..4

Where L(kk) is the location (1 through 8) of pixel kk. After the code values are
determined for both the reference and source images, the degree of matching between the

reference and image patches is evaluated as:
Y.(# of pixels with same code)/(# pixels * 4)

Note that the denominator represents a 100 percent match.

3.0 Results
During the second phase of the PNNL MIRA development, tests were performed

using multisensor imagery in the visible, near-, mid-, and thermal infrared. Results from
these test will be presented to demonstrate the performance of the PNNL MIRA system

for various types of multisensor imagery.

~ The first two examples draw on data collected during Mission 4 of thé
Department of Energy AMPS data collection over the Washington Public Power Supply
System (WPPSS) nuclear power plant on the Hanford site in Ri.chland, WA. In the first
example, AMPS high resolution photography is used as the reference image (Figure 4,
upper left image), and Daedalus multispectral imagery (Channel 8, daytime) was used as
the source image to be warped (see Figure 4, upper right). The coded patch algorithm
was used with the éearch area and patch size set to 25 pixels. The canidate contol point
(CCP) threshold, which specifies the contrast required to consider a pixel as part of a
CCP feature, was set to 20 digital numbers‘ (DNs). The resulting warped image is shown
in the lower left of Figure 4. Note that despite the loss of contrast and spatial resolution
in the Daedalus imagery (relative to the photography), the MIRA software was able to
find sufficient control points to successfully warp the source image.

. The second example demonstrates the registration of AMPS Daedalus pre-dawn
thermal-IR imagery (upper right of Figure 5) to Daedalus daytime mid-IR (upper left of

Figure 5). In this case, the search length was specified as 20 pixels, while the patch size

remained 25 pixels, and the coded patch matching algorithm was used. The CCP

Semiamtomatic Irnage Registration Example
Reference Image: AMPS RC-30 Aerial IR Photo (Near IR component)

Source Image: AMPS Daedalus
Daytime Channel § {0.91 - 1.04
microns)

Warped Source Image

Figure 4. Registration of AMPS Daedalus Channel 8 to RC-30 Photography.

Semiautomatic Image Registration Example
Reference Image: AMPS Daedalus Daytime Channel 8 Source Image: AMPS Daedalus Night Channel 10
{0.51 - 1.04 microns) (8.4 - 14.5 microns)

Warped Source Image

Fikgure 5. Registration of AMPS Daedalus Channel 10 Nighttime to Daedalus Channel 8
Daytime Imagery.

11

threshold was set at 10 DNs. The resulting warped image is shown in the lower left of
Figure 5. Again, the source image (nighttime thermal infrared) has very different
characteristics than the reference image, but the MIRA approach was able to successfully

warp the image:

Additional tests were performed to compare resqlts using the different coarse
matching algorithms for imagery at different spatial resolutions, and to quahtify the
results of progressively increasing the spectral difference between the reference and
source imagery. The first test utilized Daedalus Channel 6 imagery (.69 - .75 microns),
collécted in conjuction with AMPS Mission 9 over Camp Pendleton, CA. Table 1 lists
these results. Column 5 indicates the root mean square error (RMSE) determined with
that set of GCPs, based on a first order fit through the entire set. The RMSE values are
much lower than what would be expected from manual selection of GCPs; the RMSE of

manuaily selected GCPs may approach the number of GCPs. Note that the coded patch
| metric produced the fewest GCPs (while yielding the lowest RMSE), and the image
correlation metric generated the greatest number of GCPs. Also, the different coarse

matching algorithms selected different features for GCPs (see Figure 6).

Table 1. Comparison of three coarse matching algorithms.

Source Reference Matching Number RMSE
Image Image Algorithm of GCPs (pixels)
2250 AGL 4500 AGL Image :

Daedalus B6 Daedalus B6 Correlation 155 53

« Adj. Pixel Diff. 96 41

coded patch - 31 3.99

Figure 6. Network of Calculated GCPs on the Reference Image Using Correlation (A),
APD (B) and Coded Patch Algorithms (C).

In the second test, Daedalus imagery from the same Camp Pendleton, CA dataset
was used. For the reference image, Daedalus Channel 6 (0.69 - 0.75 microns), collected
at 2250 ft. AGL, was selected. For the source images, Daedalus Channels 8 (91 - 1.05

13

microns), 9 (3.0-5.5 microns) and 10 (8.4 to 14.5 microns) were used. The intent was to
evaluate the GCP dataset generated, and the resulting RMSE for multisensor images as
the separation between the bands increased. Each of the three coarse matching algorithms
were also evaluated. Table 2 summarizes the results of these analyses, for each of the
three coarse matching algorithms and each of the three Daedalus Channels used as source

irnages.

Table 2. Evaluation of band separation on different coarse matching algorithms.

RT3

Source Reference Matching Number RMSE
Image Image Algorithm of GCPs (pixels)
2250 AGL 2250° AGL Image
Daedalus B6 Daedalus B8 Correlation 126 5.8
« 2250 AGL
Daedalus B9 “ 125 8.0
“ 2250° AGL
Daedalus B10 “ 123 7.6
Source Reference Matching Number RMSE
Image Image Algorithm of GCPs (pixels)
2250’ AGL 2250° AGL - Adjacent
Daedalus B6 Daedalus B8 Pixel Diff. 88 6.1
“ 2250° AGL '
Daedalus B9 «“ 47 5.7
“ 2250 AGL
Daedalus B10 “ 47 5.6
Source Reference Matching Number RMSE
Image Image Algorithm of GCPs (pixels)
2250° AGL 2250’ AGL Coded
Daedalus B6 Daedalus B8 Patch 49 5.7
2250 AGL
Daedalus B9 « 12 8.1
2250 AGL
Daedalus B10 «“ 12 7.2

The results show that in general, as the band waveband difference increases

between reference and source images, the number of GCPs decreased, however GCPs

were found for all of the source images. As with the previous test, the image correlation

metric found the number of GCPs followed by the APD and the coded patch metric. Also,

the RMSE values were again smaller than what would be expected from manual selection

of GCPs.

4.0 Conclusions

Several modifications have been implemented in phase two of the multisensor
image co-registration research. The MIRA software developed at PNNL now includes
three image patch matching algorithms and an image intersection module to allow GCP
determination outside of the convex hull of the original GCPs. The MIRA software no
longer requires AVS software. Tests in phase two have demonstrated successful
registration of multisensor imagery. RMSE values (based on a .ﬁrst order fit through the
GCPs calculated with MIRA) indicate accuracies much better than normally obtained

with manual registration.

Future enhancements to the MIRA software will include improved algorithms for
coarse matching of image patches, co-registration of radar and optical imagery, and
testing on other types of reference images, such as digital maps and digital terrain model
data. Fonesca and Manjunath (1996) suggest that it is unlikely that a single registration
technique will work satisfactorily for all applications, and they suggest integrating the
various techniques into a rule based artificial intelligence system. Currently the MIRA
software contains options for matching algorithms and search parameters which the user
can fine-tune for various applications. Future enhancements may include machine

intelligence to best select the correct matching algorithms and search parameters for a

given combination of imagery.

References
Chen, L.C. and L.H. Lee. 1992. Progressive generation of control frameworks for image
registration. Photogrammetric Eng. and Remote Sensing. 58(9):1321-1328.

Foley, 1.D., A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips. 1994. Introduction to
Computer Graphics. 2nd ed. Addison Wesley, Reading MA.

Fonseca, M.G. and B.S. Manjunath. 1996. Registration techniques for multisensor
remotely sensed imagery. Photogrammetric Eng. and Remote Sensing. 62(9):1049-1056.

Risch, J.S., T.F. Lundeen, K.L. Steinmaus, G.E. Wukelic, and G.M. Petrie. 1994.
Development of automated image co-registration techniques: Part 1 - same sensor
imagery. Report to DOE under contract DE-ACO06-76RLO.

APPENDIX A. HOW TO RUN THE AUTOREG SOFTWARE

Running the PNNL MIRA (Multisensc;r Image Registration Automation) software
requires four steps: '

Select an initial GCP set ;

Run ClipImages to determined the intersection points of the two images
Run DelTriang to determine the optimum control point locations

Run AutoReg to generate the new GCP dataset

These steps are described below.
1. Manual selection of the minimum number of ground control points.

Select a minimum of 4 ground control points between the source and reference image.
Export them into a plain ASCII file. There should be one set of control points per
line, space delimitted, with source file x and y coordinates preceding the reference file
x and y coordinates. The coordinates may be either integer or real numbers. There '
should be no blank lines or comments.

Here is an example exported GCP file:

167.1560 699.0009 25.8842 833.1438
192.2160 331.5397 62.1073 76.5127
533.9680 349.9777 666.5731 18.4717
398.6695 640.3110 438.6048 670.6290
378.9331 412.0436 402.9410 195.1122

2. Find the intersection of the two images using ClipImages.

ClipImages assumes the origin is at the images’ upper left corner. If the software used to
select the GCP’s assumes the origin is at the lower left (such as ERDAS IMAGINE does)
then the y-coordinates must be reversed. You can do this with the “yflip” utility which
knows how to reverse source or reference y-coordinates in GCP files (format above). For
example, to reverse a source image with 804 rows of samples and also a corresponding
reference image with 866 rows:

yilip.pl -w src -1 804 -f gepfile > gep_sreflipped -
yflip.pl -w ref -1 866 -f gcp_srcflipped > gep_bothflipped

gep_bothflipped would look like:

167.1560 105.4990 25.8842 33.3561
192.2160 472.9602 62.1073 789.9872
533.9680 454.5222 666.5731 848.0282

398.6695 164.1889 438.6048 195.8709
378.9331 392.4563 402.9410 671.3877

Next, run ClipImages. There are 9 required command line arguments that must be glven
in the following order:

- the name of the GCP file, with relative or absolute path name if appropriate

- the minimum x pixel value for the source file (the first column - usually 0 or 1)

- the minimum y pixel value for the source file (the first row - usually 0 or 1)

- " the maximum x pixel value for the source file

- the maximum y pixel value for the source file

- the minimum x pixel value for the reference file (the first column - usually 0 or 1)
- * the minimum y pixel value for the reference file (the first row - usually 0 or 1)

- the maximum x pixel value for the reference file

- the maximum y pixel value for the reference file

The pixel values can be given as integer or real numbers, for example:

ClipImages gcp_bothflipped 0.5 0.5 720.5 804.5\
0.5 0.5 720.5 866.5 > clip.out

clip.out might look like:

151.611632 95.276201 0.500000 0.500000

556.273869 46.592385 720.500000 0.500000
562.156006 463.521309 720.500000 866.500000
157.493769 512.205125 0.500000 866.500000

3. Find the Optimum Control Points using DelTriang.

First, parse the coordinates defining the intersection for the reference image into a
separate file:

awk “{printf(“%f %f\n”, $3, $4);}" clip.out > clip.refcoords
clip.refcoords would look like:

0.500000 0.500000
720.500000 0.500000
720.500000 866.500000
0.500000 866.500000

Then, parse the reference image coordinates from the (possibly flipped) GCP fileand
concatonate it, with the file of intersection points, into a new file.

awk “{printf(“%f %f\n”, $3, $4);}* gcp_bothflipped > gep.refcoords

A-2

cat gcp.refcodrds clip.refcoords > both.refcoords
Then run DelTriang:

DelTriang both.refcoords > DelTriang.out
DelTriang.out might look like:

41.000000 541.000000

156.000000
117.000000
553.000000
603.000000
647.000000
450.000000

721.000000
106.000000
167.000000
414.000000
96.000000
783.000000

0.000000 757.000000

501.000000
334.000000
416.000000
369.000000
622.000000
316.000000
140.000000
270.000000

593.000000
123.000000
363.000000
531.000000
541.000000
279.000000

480.000000

747.000000

0.000000 108.000000

539.000000
564.000000
134.000000
540.000000

540.000000 -

180.000000
630.000000
203.000000
180.000000
720.000000
© 217.000000
720.000000
661.000000
497.000000
277.000000

315.000000
703.000000
324.000000
0.000000
'41.000000
866.000000
866.000000
615.000000
0.000000
649.000000
170.000000
216.000000
216.000000
467.000000
422.000000

0.000000 649.000000

0.000000 216.000000

0.000000
433.000000

360.000000
720.000000

540.000000

866.000000

0.000000 433.000000

'360.000000
25.884205

- 866.000000

33.356106

62.107395 789.987244

666.573181
438.604828
402.941040
0.500000
720.500000
720.500000

848.028259
195.870956
671.387756
0.500000
0.500000
866.500000

0.500000 866.500000
4. Run AutoReg to Generate the New GCP Dataset.

Concatonate the ground control points file that was an input to ClipImages and the output
intersection points file into a new file.

cat gcp_bothflipped clip.out > gcp _and clip
gep_and_clip would look like:

167.1560 105.4990 25.8842 33.3561

192.2160 472.9602 62.1073 789.9872

533.9680 454.5222 666.5731 848.0282

398.6695 164.1889 438.6048 195.8709

378.9331 392.4563 402.9410 671.3877

151.611632 95.276201 0.500000 0.500000
556.273869 46.592385 720.500000 0.500000
562.156006 463.521309 720.500000 866.500000
157.493769 512.205125 0.500000 866.500000

AutoReg currently deals only with integer values. Parse both gcp_and_clip and
DelTriang.out into new files containing only integer values:

awk '{printf("%d %d %d %d\n",$1,$2,$3,84);}' gcp_and clip > gcp_and_clip.integer
awk '{printf("%d %d\n", $1‘, $2);}’ DelTriang.out > DelTriang.out.int
AutoReg has several required command line arguments:
AutoReg -1 gcp_and_clip.int -o AutoReg.out -c DelTriang.out.int srcfile reffile
-1 is the input GCP file

-0 is the output (new) GCP datafile
-c is the OCP data file

-srcfile is the name of the directory containing the source data file and its header .
-reffile is the name of the directory containing the reference data file and its
header

In addition, you may want to specify the following parameters:
-M matching mode; 0 for image correlation, 1 for adjacent pixel difference,
and 2 for coded patch
-t for the DN threshold used for finding CCPs. <1 is the fraction of the std.
deviation; >1 is the value in DN.

For more information on the application of this algorithm, contact

Dr. Thomas F. Lundeen

Pacific Northwest National Laboratories
Phone: (509) 372-6055 FAX: (509) 372-6397
E-mail: tf_lundeen@pnl.gov -

APPENDIX B. AUTOREG SOURCE CODE

AutoReg.c

[*+%/
/*
khkhkhkkdkhkhhbhkdhhbdhbhbhbhdhhbhhbhhbhhbbdhhrbhbhdhbhhbbdhhbhbbhkbhbhbddhdhdbdhhdrhhdrhkhst
% d K K Kk Kk Kk
* %
** 0) NAME: AutoReg
* %
** 1) PURPOSE: PRISMS program for autoregistering two
PRISMS
il data sets, using a set of initial user
define ‘
** Ground Control Points (GCPs) and the
Jocation
Bl for the optimal location for new control
points.
* %
** 2) USAGE:
* ok AutoReg [-hDv][-m mode] -p pntfile Source
Reference | '
*x Output
* %
* * -h : Print out the help message.
* % ' -D : Print out the version
information.
* %
** 3) ALGORITHM/METHOD:
** 1.
* %

** 4) LIMITATIONS:

* %

** 5) Create: 8/5/95

*x -

** §) By: Thomas Lundeen‘
el Pacific Northwest Laboratory
* %

**x 7} SRevision$
* %

** 8) Log

* %

dkhkdkdhhkhhkhdkdbdhhhrhhkhkhbhdbhkhhbkdhbhhhkdhdhbhbkhbdbhbhdhhhrhbkhkhhbdbhhbkhdhhkhddhkhhrhk itk
* % Kk ok ok K

*/

[*=*/

$#ifndef lint

static char

rcs_info[] = "Id";
#endif

/* System Includes */

#include <stdio.h>
#include <string.h>

/* User Includes * /

#include "PRISMSMain.h"
#include "AutoReg.h"

/* Globals */

int

Verbose,

Mode, _
PatchSize,
SearchLength,
PRISMSErrValue = 0;

float
MatchThreshold,
CCPThreshold;
char '
Source[512],
Reference[512],
InputFile[512],
OutputFile[512],
OCPLFile[512],

*ProgramName = "AutoReg",
PRISMSErrMsg[512],
*Description = "To semi-automaticaly register two data

sets.";

Arguments Args[] = {
' {

‘v, BooleanArg, OPTIONAL, o, 1,
(char *) &Verbose, "0V,
"\o", "Display the program status
"information.™ .
by
{
e, StringArg, REQUIRED, i, 1,
Source, "\0O",
"source", "The name of the source data set."
b
{
v, StringArg, REQUIRED, 1, 1,

B-2

Reference, "\O",
“"reference", "The name of the reference data
set."”

it, StringArg, REQUIRED, 1, 1,
InputFile, "\O",
: “"input", "The name of the input ground
control points (GCP) file."
br
{

o', StringArg, REQUIRED, 1, 1,
OutputFile, "\O", :
"output"”, "The name of the output control

points file.™
}y
{
‘ct, StringArg, REQUIRED, 1, 1,
. OCPLFile, "\O",
"ocpl"”, "The name of the file containing the
optimal control\n\
point locations."

's', . IntArg, OPTIONAL, i, 1,
(char *) &PatchSize, "ie6",
"PatchSize", "The size of the image patches
used."
Yy
{ .
'Y, IntArg, OPTIONAL, i, 1,
(char *) &SearchLength, "8",
"length", "The length of the grld search
used.”
b,
{
'm', FloatArg, OPTIONAL, 1, 1,
(char *) &MatchThreshold, "0.8",
"MatchThreshold", "The threshold level used to

when comparing \n\ _
image patches."
}y
{ _
L', FloatArg, OPTIONAL, i, 1,
" (char *) &CCPThreshold, "-0.5",
"CCPThreshold"”, "The DN threshold used when
finding CCPs.\n\
For values less than one, the
threshold is set\n\

B-3

: to (-CCPThreshold) * Standard
diavation.™ '
},
{
'M', IntArg, OPTIONAL, 1, 1,
(char *) &Mode, "O",
"mode", "The comparison mode to be used.\n\
0 : Correlation.\n\
1 : Apd.\n\ ‘
2 : Coded Patch."

v ','EndArg, O, O, 0, nn, ""r ">"l nwn }
By '

/******************* COpyDS *******************/

int main (argc, argv)

int
argc;
.char
*argvl[];
{
CPInfo
*OCPData = NULL;
GCPInfo
*GCPData = NULL;
DataSetInfo
source,
reference;
int
ReadArgs{():;
/* Read in the calling arguments
.*/ .
if (ReadArgs(Args, argc, argv, Description) != 0)
{
exit(-1);
}-
/* Open the source data set for reading.
*/
if (!OpenDataSet (Source, &source, ReadData))
{ /* Open the reference data set.

*/

if (!OpenDataSet (Reference, &reference, ReadData))

{ /* Read in the Ground Control Points
*/
if ((GCPData = RAGCPFile (InputFile)) != NULL)
{ /* Read in the optimum control point

locations */
if ((OCPData = RAOCPFile (OCPLFile)) !'= NULL)
{ .
if (!AutoRegProc (&source, &reference,
GCPData, OCPData, MatchThreshold,
CCPThreshold, PatchSize,
Searchlength, :
Mode, Verbose))

(void)WrGCPFile (OutputFile,

' GCPDhata);

}
}

(void) CloseDataSet (&source);

}

(void) CloseDataSet (&reference);

}

if (GCPData !'= NULL)
(void) FreeGCPInfo (GCPData);

if (OCPData != NULL)
(void) FreeCPInfo (OCPData);

if (PRISMSErrValue != 0)

{
PRISMSError (PRISMSErrValue, PRISMSErrMsg, NULL):;

}
exit (PRISMSErrValue);

/*

AutoRegProc.c

YAk A

kkkhkbhkhkdkhkdkdhkhkhhkhkhkhbhkdhhhkhkhkhdkhbrbhkhkhkhhbdhkhhbdhhbhhhdhhhhkhhkhdkdhhkdhkdhkhhkdkhhih

* ok kok ok ok ok

* %

*% 0) NAME: AutoRegProc

* % . .
** 1) PURPOSE: The main subroutine which processes the
data and

*x finds the new Ground Control Points.:

* % ’

** 2) USAGE:

* ok int AutoRegProc (DataSetInfo *source, DataSetInfo
*reference, ' ,

* % GCPInfo *GCPData, CPInfo *OCPData,

* % float MatchThreshold, float CCPThreshold,
* % int PatchSize, int MatchlLength, int Mode,
** int Verbose)

* %

** 3) ALGORITHM/METHOD:

*x 1.

* % .

% 4) LIMITATIONS:

* %

** 5) Create: 8/5/95

* %

** 6) By: Thomas Lundeen

okl Pacific Northwest Laboratory

* % ’

** 7) SRevision$

* % .

** 8) Log

* % '

******************************7\;*****************************
% % %k %k %k Kk Xk

*/

/*=%/
$#ifndef lint
static char

sccs_info[] = "Id";
#endif
/* System Includes */

#include <stdio.h>
$include <malloc.h>
#include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

/* User Includes * /

#include "AutoReg.h"
- #include "PRISMSProgDefines.h"
#include "PRISMSErrors.h"

/* Externals */

extern int
PRISMSErrValue;

extern char
PRISMSErrMsg(]:

/******************* COpyPrOC *******************/

int AutoRegProc(DataSetInfo *source, DataSetInfo *reference,
GCPInfo *GCPData, CPInfo *OCPData, float MatchThreshold,
float CCPThreshold, int PatchSize, int MatchLength, . int
Mode,
int Verbose)
{

float

Threshold;

int

out,
YY
MinY,
Maxy,
XX,
MinX,
MaxX,
Halflength,
XMin,
YMin,
XMax,
YMax,
ii,
Total,
GCPCount,
OCPCount,
CCPCount,
LCPCount,
LCPCntr,
Found,

B-7

NewPoint,
index[4],
RXSize,
RYSize,
RImageSize,
SXSize,
SYSize,
SImageSize,
SearchRadius,
SearchRadiusSquared,
Distance,
VectorCount,
PercentCount,
CCPRefX,
CCPRefY,
MaxXRefloc,
MaxYRefloc,
MaxXSrclLoc,
Max¥Y¥SrclLoc;

double
CenterX,
CenterY;

CPInfo

ocpptr, / Pointer to Optimum Control
Point */ ‘

ccpptr, / Pointer to a Candidate Control
Point */
CCPData, / List of Candidata Control Points

i.'/
LCPData[1001; /* List of CCP's around the current
ocp */

TriangleInfo , :
‘*Triangles = NULL, /* Current List of Triangles
*/ | |
triptr; / Pointer to the current Triangle

*/

GCPInfo
*LastGCP = NULL,
gcpptr; / Pointer to the current GCP
-k/' . .

TransCoef
ForwardTrans, /* Forward transformation
coefficents */
ReverseTrans; /* Reverse transformation
coefficents */

float
Range (2],

" Mean,
StdDeviation,
MaxValue,
MatchValue,
*SImage,
*RImage,
*SPatch,
*RPatch;

void

*SProcessed
patches */

*RProcessed

NULL, /* Pointer toithe‘processed

I

NULL;

/* Setup the I/0 buffer
*/

HalfLength = MatchLength/2;

SXSize = source->SubsetLengths[X]:
SYSize = source->SubsetLengths([Y];
SImageSize = 3SXSize * SYSize;

if ((SImage = (float *) malloc(SImageSize *
sizeof(float))) == NULL)
{

PRISMSExrrValue
"PRISMSErrMsg[0]
return (TRUE);

ErrAllocating;
!\Ol; .

i

RXSize = reference->Subsetlengths[X]:;
RYSize = reference->SubsetlLengths[Y]:;
RImageSize = RXSize * RYSize; '

if ((RImage = (float *) malloc(RImageSize *
sizeof (float))) == NULL)
{
PRISMSErrValue = ErrAllocating;
PRISMSErrMsg[0] = '\0';

return (TRUE);
y

if ((RPatch = (float *) malloc(PatchSize* PatchSize *
sizeof(float))) == NULL)
/)
PRISMSErrValue = ErrAllocating;

B-9

PRISMSErrMsg([0] = '\0';
return (TRUE);
} .

if ((Spatch = (float *)'malloc(PatchSize* PatchSize *

sizeof (float))) == NULL)
{ .
PRISMSErrValue = ErrAllocating;
PRISMSErrMsg[0] = '\0';

return (TRUE);
}

/* Count the number of GCPs and OCPs
7&/ . .

for (GCPCount= 0, gcpptr = GCPData; gcpptr->Next !=
NULL; GCPCount++,
gcpptr = gcpptr->Next);
for (OCPCount= 0, ocpptr = OCPData; ocpptr != NULL;
OCPCount++, ‘ :
ocpptr = ocpptr->Next):;

/* Read in the source image

~.|r/

for (ii = 0; ii < 4; ii++)
index[ii] = 0;

if (Verbose)
printf ("Reading the source image.\n");

if (ReadPlane (source, SImage, index, XY))
return (TRUE) ; :

if (Verbose) . _
printf ("Reading the reference image.\n");

if (ReadPlane (reference, RImage, index, XY))
return (TRUE) ;

/* Find the bounding box for the reference image

*/
FindBBox (GCPData, &XMin, &XMax, &YMin, &YMax, FALSE);

if (Verbose)

, printf ("Bounding box size of: Xmin = $d Ymin = %d
Xmax = $d Ymax = %d \n",

XMin, YMin, XMax, YMax):

B-10

/* Find the data threshold

*/

FindRange {(reference, RImage, &Range, &Mean,
&StdDeviation,
RImageSize);

printf ("Std Deviation = $%g\n", StdDeviation);

if (CCPThreshold > 1.0)
Threshold = CCPThreshold;
else
Threshold = CCPThreshold * StdDeviation;

if (Verbose) .
printf ("Setting the threshold value to %g\n",
Threshold);

/* Find Candidate Control Points within the Ref. Image
*/ '

if (Verbose)
printf ("Finding a set of canidate control
points.\n");

if ((CCPData = FindCCPS(RImage, RXSize, RYSize, XMin,
AMax,
~ YMin, YMax, &CCPCount, Threshold)) == NULL)
{
PRISMSErrValue = -1;
(void) strcpy (PRISMSErrMsg,
"No canidate control points found in the
image."):
return (TRUE);
}

if (Verbose) :
~ printf ("A total of %d canidate control points were
found.\n", ‘
CCPCount) ;

/* ,
for (ii = 1, ccpptr = CCPData; ccpptr !{= NULL;

ccpptr = ccpptr->Next, i1ii++)

{

printf ("%4d: %5d $5d $5g\n", ii,
ccpptr->XLoc, ccpptr->YLoc, ccpptr-

>InterestValue);

}

*/

/* Find the Search Radius

FindSearchRadius (OCPData, OCPCount, &SearchRadius,
&SearchRadiusSquared) ;

if (Verbose)
printf ("Node Search Radius = %d\n", SearchRadius):;

/* Searching for a GCP around each OCP
-;\r/ .

if (Verbose) ;
‘printf ("Seaching for GCP around each OCP
locations.\n");

NewPoint TRUE;

for (ocpptr = OCPData; ocpptr != NULL; ocpptr = ocpptr-
>Next) : '
{
MaxValue = MatchThreshold;
MaxXRefloc = -1;
MaxYRefLoc = -1;
MaxXSrcLoc = -1;
Max¥Srcloc = -1;

LCPCount = FindLCPs (GCPData, ocpptr, CCPData,
LCPData, '
SearchRadiusSquared) ;

if (Verbose)

{
printf ("%3d CCPs found within radius %d of the

LCPCount, SearchRadius);

printf ("OCP at location %5d, %5d\n",
ocpptr->XLoc, ocpptr->YLoc);

} N

fflush(stdout):;

/* Triangulate the Current Set of Ground Control
Points (if needed) */

if (NewPoint)
{

triangles

/*
*/

for

*/

CCPRefY));

CCPRefX)

CCPRefY)

CCPRefX)

. CCPRefY)

PatchSize,

if (Triangles != NULL)
FreeTriInfo(Triangles):;

Triangles = Triangulate2D(GCPData);

/* Calculate the transforms for each of the

*/

for (triptr = Triangles; triptr != NULL;
triptr = triptr->Next)
{

CalcTransform (triptr):

p
Search the candidate control pbints

(LCPCntr = 0; LCPCntr < LCPCount; LCPCntr++)

LCPDhata[LCPCntr] .XLoc;
LCPData[LCPCntr] .YLoc;

CCPRefX
CCPRefY

/* Find out which triangle its in
for (triptr = Triangles; (triptr != NULL) &&
('PointInTriangle (triptr, CCPRefX,
triptr = triptr->Next);
if (triptr !'= NULL)
{ CenterX = (triptr->Forward.aX * (double)
+ (triptr->Forward.bX * (double)
+ triptr->Forward.éX;
CenterY = (triptr->Forward.aY * (double)
+ (triptr->Forward.bY * (double)
+ triptr->Forward.cY;

if (!ReadRefPatch (reference, RImage, RPatch,

CenterX, CenterY, triptr))

B-13

if ((RProcessed = ProcessPatch
(RProcessed, RPatch,
PatchSize, Mode)) == NULL)

strcpy (PRISMSErrMsg,
"Processing Reference Patch");
PRISMSErrValue = -1;
return (TRUE);
}

/* Grid Search */
MinX = ((int) CenterX + 0.5) -
HalfLength; - ‘
MaxX = ((int) CenterxXx + 0.5) +
HalfLength; _
MinY = {((int) CenterY + 0.5) -
HalfLength;
o MaxY = ((int) CenteryY + 0.5) +
HalfLength; _ 4
/-k
MinX = (int) CenterX
+ 0.5;
MinY = (int) CenterY
+ 0.5;
MaxX = MinX + 1;
MaxY¥ = MinY + 1;
*/

for (yy = MinY; yy < Max¥; yy++)
{
for (xx = MinX; xx < MaxX; XxX++)
{
; if (!ReadSrcPatch(source,
SImage, SPatch,
PatchSize, xx, yy))
{
if ((SProcessed =
ProcessPatch (SProcessed, SPatch,

PatchSize, Mode)) ==

NULL)

/* code folded from here */
strcpy (PRISMSErrMsg, :
"Processing Source Patch"):
PRISMSErrValue = -1;
return (TRUE);
/* unfolding */

MatchValue = ComparePatch
(RProcessed,
_ SProcessed, Mode,
PatchSize) ;

/*fprintf (stderr,
"MatchValue: %f\n", MatchValue);*/
if (MatchValue > MaxValue)
{
/* code folded from here */

MaxValue = MatchValue;
MaxXSrcLoc = XxXX;
MaxYSrcLoc = yy:
MaxXRefl.oc = CCPRefX;

MaxYReflL.oc = CCPRefY;
/* unfolding */

}

if (MaxXSrcLoc >= 0)
{ /* Add a new GCP */
' if (Verbose)
{
printf ("Adding point at (%4d, %4d) - (%4d,
$4d)\n", _ ’ : '
MaxXRefLoc, MaxYRefloc, MaxXSrcloc,
MaxYSrclLoc) ; '
)
NewPoint = TRUE;
if (LastGCP == NULL)
{ ;
for (gcpptr = GCPData; gcpptr != NULL;
gcpptr = gcpptr->Next)
LastGCP = gcpptr:;
}

I

| LastGCP->Next
malloc(sizeof (GCPInfo)),
LastGCP .

(GCPInfo *)

LastGCP~>Next;

LastGCP->SrcX = MaxXSrcloc;
LastGCP->SrcY = Max¥SrcLoc;
LastGCP->RefX = MaxXRefloc;
LastGCP->RefY = MaxYRefloc;

LastGCP->Next = NULL;

B-15

}
else
NewPoint = FALSE;
}

/* need to remove CCP from CCP list? May or may not be
worth it. */ ' '

(void) free(SPatch);

(void) free(RPatch);

return (FALSE);

AutoRecUtil.c

[xax

/*
khkhkhkdkhkhkhkbhkhhhhkhkhhdhhhhkbhhkhhhhkhhhhkhkhkrhhhhkhhkkhkkhkhkkhhhhhkhhhkd,khhkhhkkk
* %k ok %k ke ok ke .

J Kk

** (0) NAME: AutoRegUtil

* %
** 1) PURPOSE:
* %
* %

** 2) USAGE:

** AutoRegUtil ();
* % ‘

* *

** 3) ALGORITHM/METHOD:
* % 1.

s

** 4) LIMITATIONS:

* %

** 5y Create: 24/5/95

* K _'

** 6) By: Thomas Lundeen

*k Pacific Northwest Laboratory
* %)

*% 7)) SRevision$
* %

** 8) SLog$

* * .
*hkhkdhkdrddrkhhrhhdhrhrhkrbhrhbdbhhkhkhhhkkhkhhkhkhbkhdkhhkhhdhhkhhhkdkdhkdhkdkddhxikk
* Kk %k ok ke ok k

*/

[*=*/

#ifndef lint

static char

sccs_info[]l = "$IdS";

#endif '

/* System Includes */

#include <stdio.h>
#include <stdlib.h>

/* User Includes */
/* Externals */

extern int
PRISMSErrValue;

B-17 -

extern char
PRISMSErrMsgl[]:;

int *IntVect (int ncbls)
{
int *vectptr:;
if ((vectptr = (int *) memalign{(32, ncols *
sizeof(int))) == NULL)
{ .
fprintf (stderr, "\nIntVect: Unable to allocate
storage for ivector");
exit(1l);
}

return vectptr;

int **IntMatrix (int nrows, int ncols) -

int 10;

int **matptr;

if (nrows<2) nrows = 2;

if (ncols<2) ncols = 2;

if ((matptr = (int **) memalign(32,nrows * sizeof (int
*))) == NULL)

{
, fprintf (stderr, "\nIntMatrix: Unable to allocate
storage for **imatrix");

exit (1) ;
} v
if ((matptr[0] = (int *) memalign(32,nrows * ncols *
sizeof (int))) == NULL)

{ .
fprintf (stderr, "\nIntMatrix: Unable to allocate
storage for imatrix[1");
exit (1);

} » : _
for (i0=1; iO<nrows; i0++) mafptr[iO] = matptr[0] + i0 *
ncols; .

return matptr;

¥

"-double **DoubleMatrix (int nrows, int ncols)

{

int i0;
double **matptr;
if (nrows<2) nrows = 2;

if (ncols<2) ncols = 2;

if ((matptr = (double **) memalign(32,nrows *
sizeof (double *))) == NULL)

{

fprintf (stderr, "\nDoubleMatrix: Unable to allocate
storage for **dmatrix");

exit(1);
}
if ((matptr[0] = (double *) memalign(32,nrows * npols *
sizeof (double))) == NULL)

{
fprintf (stderr, "\nDoubleMatrix: Unable to allocate
storage for dmatrix[]"); :
exit (1)
} : '
for (i0=1; iO<nrows; i0++) matptr[i0O] = matptr[0] + i0 *
ncols;
return matptr:;

}

void FreeVecti(int *vectptr)

{
}

free (vectptr);

void FreeMatrixi (int **matptr)

{ .
free (matptr[0]);
free (matptr);

void FreeMatrixd(double **matptr)

{

free(matptr[0]);
free (matptr);

CalcTransform.c

/*+*/.

/*

%k ok ok ok %k ok Kk ko ke ok sk ok ok e ok ok ok sk ok ok ok ke ok ok ok ok ok ok ok ok ok ok S ok ko ok ok ok ok ok ok ke ok ke ok ok ko
J kK kK K ‘

Jo *

** () NAME: CalcTransform

* %

**x 1)} PURPOSE:

% %

* %

** 2) USAGE:

* % CalcTransform();
I 2 ’

* %k

** 3} ALGORITHM/METHOD:
sk ke l,.

e %

** 4) LIMITATIONS:

* %

** 5) Create: 31/5/95

3

** 6) By: Thomas Lundeen

** Pacific Northwest Laboratory
4 Kk

** 7} SRevision$
J* %

** 8) SLogs

ko

IR E X SRR LSS LS F TR RS E ST S ERE LSS E S EEE LR SRS EE LT EREEE SR EEETREEEEERE LR LT
Tk kkkhkk

*/

/*=*/

#ifndef lint

static c¢har

sccs_info[] = "S$IdS";

#endif

/* System Includes */
#include <stdio.h>
#include <math.h>
/* User Includes */

#include "AutoReg.h"

/************’******* CalCTranSform *******************/

void CalcTransform(TriangleInfo *TriData)

{

*/

*/

double
RefX[3],
RefY[3],
SrcX[3],
SrcY[3],
denom,
ax,
ays
bx,
by,
CcX,
cy;

int
ii;

/* Load the point array for a foward Transform

for (ii = 0; ii < 3; ii++)
{
RefX[ii] = TriData->Vertices[ii]->RefX;
RefY[ii] = Tribata->Vertices[ii]->RefY;
SrcX[ii]l] = TriData->Vertices[ii]->SrcX;
SrcY[ii] = TriData->Vertices[ii]->SrcY;
} : '
/* Calculate the Coefficents
denom = ((RefX[2] - RefX[0]) * (RefY[1l] - RefY[0])) -
({(RefX[1] - RefX[0]) * (RefY[2] - RefY[O0])):
ax = {(((SrcX[2] -~ SrcX[0]) * (RefY[l] - RefY[0])) ~-
((RefY[2] - RefY[O0]) * (SrcX[1l] - SrcX[0])))/denom;
ay = (((SxrcY[2] - SrcY[0]) * (RefY[1l] - RefY[0])}) -
({RefY[2] - RefY[0]) * (SrcY[1l] - SrcY[0])))/denom;
bx = (({SrcX[1l] - SrcX[0]) * (RefX[2] - RefX[0])) - ,
({SrcX[2] - SrcX[0]) * (RefX[1l] - RefXI[0])))/denom;
by = (({(SrcY[1l] - SrcY[O0]

* (RefX[2] - RefX[0])) -
(

)
({SrcY[2] - SrcY[0]) * (RefX[1l] - RefX[0])))/denom;

cx= SrcX[0] - bx*RefY[0] - ax*RefX[0]:

cy= SrcY[0] - by*RefY[0] - ay*RefX[0];

/* Tranfer the coordinate back

TriData->Forward.aX = ax;
TriData->Forward.bX = bx;
TriData->Forward.cX = cx;
TriData->Forward.aY = ay;
TriData->Forward.bY = by;

TriData->Forward.cY = cy;

/* Load the point array for a Reverse Transform

for (ii = 0; ii < 3; ii++)

{
RefX[ii] = TriData->Vertices[ii]->SrcX;
RefY[ii] = TriData->Vertices[ii]->SrcY;
SrcX{ii]l] = TriData->Vertices[ii]->RefX;
SrcY[ii] = TriData->Vertices[ii]->RefY;

}

/* Calculate the Coefficents

denom = ((RefX[2] - RefX[0]) * (RefY[1l] - RefY[0])) -
((RefX[1] - RefX[0]) * (RefY[2] - RefY[0]));

ax = (((SrcX[2] - SrcX[0]) * (RefY[1l] - RefY[0]))
((RefY[2] - RefY[0]) * (SrcX[1l] - SrcX[0])))/denom;

ay = (((SrcY[2] - SrcY[0]) * (RefY[1l] - RefY[O]f) -
({RefY[2] - RefY[O0]) * (SrcY[l] - SrcY[0])))/denom;

bx = (((SrcX[1l] - SrcX[0]) * (RefX[2] - RefX[O])) -
{((SrcX[2] - SrcX[0]) * (RefX[1l] -~ RefX[0])))/denom;

by = (((SrcY[1l] - SrcY[0]) * (RefX[2] - RefX[01)) -
((SrcY[2] - SrcY[0]) * (RefX[1l] - RefX[0])))/denom;

cx= SrcX[0] - bx*RefY[0] - ax*RefX[0];
cy= SrcY[0] - by*RefY[0] - ay*RefX[0];

/* Tranfer the coordinate back

TriData->Reverse.aX = ax;

B-22

TriData—->Reverse.bX = bx;
TriData->Reverse.cX = cXx;
TriData->Reverse.a¥ = ay;
TriData->Reverse.b¥ = by;

TriData->Reverse.cY = cy;

CodeMatch.c

/x+*/

/*

sk ok ok ok ok ke ke ke ok ok sk sk ok ok ok e ke ke sk ok ke ok ke ok sk ke ke ket ke ok Sk ke ke ke ok Sk Sk Sk ke ke ok ke b sk ok ke e o ok ke ke ke ke e
* ok ke ok ok Kok

* k

** 0) NAME: CodeMatchProc

* Kk

%% 1) PURPOSE:

* %

* %

¥ 2) USAGE: '
¥ % CodeMatchProc () ;

¥ %

e x

*% 3) ALGORITHM/METHOD:
Je ok . 1. '

J ok

** 4) LIMITATIONS:

% %

** 5) Create: 15/6/95
% %
*% §) By: Aaron Andrews

*x Pacific Northwest Laboratory
sk *

*% 7)) SRevision$
* *

* Kk 8) Log
* %

o gk vk ke ke ok d ke ke ke ke kR Sk ek ke gk ke ke ke Tk sk sk ok sk ke ok ok vk vk e ke Tk sk ke sk ke e sk etk ke ok vk ke ok ke b ke e ke ok
*ok ok kkkk

.*/

/*=*/

#ifndef lint

static char

sces_info[] = "Id";

#endif

/* System Includes */
/* User Includes */
/* Globals */

/* Externals *x/

extern int
PRISMSErrValue;

extern char
PRISMSErrMsgl[]:

/******************* COdeMatChPrOC ****4***************/

float CodeMatchProc (unsigned char *RefPatch, unsigned char
*SrcPatch, int PatchSize)
{
unsigned
ii,
CodeSize,
Sum = 0;

float
PerfectMatch;

unsigned char
MatchBits;

CodeSize = PatchSize - 2; /* these
should be */

PerfectMatch = CodeSize * CodeSize * 4.0; /* made
global */

for (ii = 0; ii < CodeSize * CodeSize; ii++)

{

MatchBits = (*RefPatch) & (*SrcPatch);
Sum += BitCount (MatchBits);
RefPatch++;

SrcPatch++;

}
return ((double)Sum/PerfectMatch);

XXXX.c

[x+*/

/*
f*****
* kK kK k%

* %k]

** () NAME: ‘CodeUtil

* ok

% 1) PURPOSE:

* %

*% 4) LIMITATIONS:

* Kk

** 5) Create: 27/6/95

* K .

** 6) By: Aaron Andrews

o K Pacific Northwest Laboratory
H ok

**% 7) $Revision$

* % '

** 8) SLog

* K
drhkkhhkhkhkhkhbkhkhbhkdhhhhbkhkhbdhhdhdbhkdhdhhbhhbdhbhhkhbkhbhdrhhhdhhhhdhhhkdhkhhkdhhihhkd
Je % ke ok k% Kk

E 3 /

[x=*/

#ifndef lint

static char

sccs_infol[] = "$IdS";

fendif

/* System Includes */

/* User Includes */
| /* Globais */

/* Externals */

extern int
PRISMSErrValue;

extern char
PRISMSErrMsgl[];

/******************* COdeUtil *******************/

int BitCount (unsigned char x)

B-26

int b;

for (b=0; x != 0; x >>=1) if (x & 01) b++;
return (b); '

}

void ShellSort2(float arrl[}l, unsigned arr2(])
{ +

unsigned n=8,i,Jj,inc;

unsigned v, w;

inc=13;
do {

inc /= 3;

for (i=inc+l;i<=n;i++) {
v arrl[i];
w = arr2[i];
j —
W

hile (arrl[j-inc]>v) {
arrlfj]l=arrl{j-inc];
arr2[jl=arr2[j-inc];
j -= inc;
if (j <= inc) break;

}
arrl[j] = v;
arr2[j] = w;

}
} while {inc >1);

" ComparePatch.c

/x>

/*
khkhkkhkhkhkhkkddrhkhkrbhkbrhdhhhbhhbhhbhhbbhhkhhrhhkhbhkddrhhhdhhdbhhdrdhrhhhkhd
% % k% ok k&

* ok

** 0) NAME: ComparePatch

* Kk :

** 1) PURPOSE: To compare to image patches to find the
degree '

** of simularity between the two.

* Kk

** 2) USAGE:

*k float ComparePatch (float *, float *, int,
int);

* . .

*x factor = ComparePatch (RefPatch, SrcPatch, Mode,
¥ * PatchSize);

J % .

** 3) ALGORITHM/METHOD:

Jr Kk 1.

vk

%% 4) LIMITATIONS:

Je %

** 5) Create: 6/6/95

%

** 6) By: Thomas Lundeen

** Pacific Northwest Laboratory
s %

** 7) SRevision$

%k .

£

%k ke ke ke ke ke s ke ok ke Sk ke gk ek sk ke sk e Sk e ke otk e T ok Sk sk Sk e e sk vk ok vk ke sk sk ke sk ek ke ek sk sk ok ke ke ke ke ke ke ke ke
%k %k ok ok ke ke

* /

[*x=*/

#ifndef lint

static char
sccs_info[] = "$IdS";
#endif

/* System Includes */
#include <stdio.h>

#include <math.h>
#include <malloc.h>

/* User Includes */
#include "AutoReg.h"

float CorMatchProc(float *, float *, int);

/******************* Comparepatch *******************/

float = ComparePatch (void *RefPatch, void * SrcPatch, int
Mode,
int PatchSize)
{
float
MatchValue = 0.0;

switch {Mode)
{
case APD: /* Adjacent Pixel Difference */
MatchValue = ApdMatchProc(RefPatch, SrcPatch,
PatchSize);
break; '
case CODE: /* coded patch method */
MatchValue = CodeMatchProc (RefPatch, SrcPatch,
PatchSize);
break;
case CORRELATE:]
default: /* Correlation */
MatchValue = CorMatchProc(RefPatch, SrcPatch,
PatchSize); :
break;

}

return (MatchValue);

/******************* CorMatChPrOC *******************/

float CorMatchProc (float *RefPatch, flocat *SrcPatch, int
PatchSize) '
{
float
NumPixels,
*RefPtr,
*RefEnd,
*SrcPtr,
Value,
Value2,
SumSgRef =
SumSgSrc =

i
eNe)
oo

- ~

SumCross = 0.0;

RefPatch;

RefPtr =

SrcPtr = SrcPatch;

RefEnd = RefPatch + (PatchSize * PatchSize):;
NumPixels = PatchSize * PatchSize;

while (RefPtr < RefEnd)
{

Value = *SrcPtr;
SumSgSrc += Value * Value;

Value2 = *RefPtr;
SumSgRef += Value2 * Value2;

SumCross += Value * ValueZ2;

RefPtr++;

. SrcPtr++;

}

if ((SumSgRef > 0.0) && (SumSgSrc > 0.0)) _
Value = SumCross/({(float) sqgrt((double) SumSgRef *

SumSqgSrc)) ;

else

Value = 0.0;

return (Valué);

CPCompare.c

J*+%/

/*
**
* %k ko ok kK

* k

** Q) NAME: CPCompare

* %

** 1) PURPOSE: Subroutine for comparing the interest
values for

** sorting the CP data.

* & '

** 2) USAGE:

bl CPCompare () ;
* %

* %

** . 3) ALGORITHM/METHOD:

* % 1.

* %

** 4) LIMITATIONS:

Tk %

** 5) Create: 23/5/95

* %

** 6) By: Thomas Lundeen
* * Pacific Northwest Laboratory
* * ’

** 7) S$Revision$
* % .

** 8) SLog$

* %
**********/**
* Kk k ok k kK

*/

/*=*/

#ifndef lint

static char

sccs_infol[] = "$Ids";

#endif

/* System Includes */
#include <stdio.h>

/* User Includes ‘ */

#include "AutoReg.h"

/******************* CPCompare *******************/

B-31

int CPCompare (CPInfo *CPPtr2, CPInfo *CPPtrl)
{

return {((int) CPPtrl->InterestValue -

{int) CPPtr2->InterestValue);
1

FindBBox.c

/*+*/

/*
dAhkhkhkhhkhkhhkdhkhkhhkhdhdhbhbkhdhhkhbhbdhhhbhbhkhhbdhhbhhohhhkdbhbhbhrhdbrddohhbhbhdhhddhdhhhh
* %k k% k%

* %

*% 0) NAME: FindBBox

* % . i

** 1) PURPOSE: To find the bounding box for a set of
ground '

** control points.

% *

*% 2} USAGE:

* % void FindBBox (GCPInfo *, int *, int *, int *,
int *);

* %

* % FindBBox (GCPData, XMin, XMax, YMin, YMax);
* % ’

** 3) ALGORITHM/METHOD:
* % 1.
* k

** 4) LIMITATIONS:

* %

** 5) Create: 10/5/95

* % .

** 6) By: Thomas Lundeen

** Pacific Northwest Laboratory
* %

** 7)) $Revision$
b %

** 8) SLog$

* % :
dhhkhkhkhkhkkhkhkhkhbhkhkhbhbhhbhhbhbhkdhhdkdbhbhkhbhhhhbhkhrhhbhdbrhbhhkhbhbhhbhhkbhhbhkhdhkhhid
* & kK k kK ’

*/

=%/

#ifndef lint

static char

sccs_infol[] = "SId$";

$endif

/* System Includes */
#include <stdio.h>

/* User Includes */

B-33

#include "AutoReg.h"

void FindBBox (GCPData, XMin, XMax, YMin, YMax, FLAG)
GCPInfo *GCPData; ‘

int *XMin,
*XMax,
*YMin,
*YMax,
FLAG;
{
GCPInfo
*gcpptr;
int
ii,
xmin,
XMax,
ymin,
ymax;
if (FLAG)
{
gepptr = GCPData;
xmin = gcpptr->SrcX;
xmax = gcpptr->SrcX;
ymin = gcpptr->SrcY;

ymax = gcpptr->SrcY¥;

for (gcpptr = gcpptr->Next; gcpptr !'= NULL; gcpptr =
gcpptr->Next)
{
if (gcpptr->SrcX > xmax)
Xxmax = gcpptr->SrcX;

if (gcpptr->SrcX < xmin)
xmin = gcpptr->SrcX;

if (gcpptr->SrcY > ymax)
ymax = gcpptr->SrcY;

if (gcpptr->SrcY < ymin)
ymin = gcpptr->SrcY;

}

else

{
gcpptr = GCPData;

xmin = gcpptr->RefX;

xmax = gcpptr->RefX;
ymin = gcpptr->RefY;
ymax = gcpptr->RefY;

for (gcpptr = gcpptr->Next; gcpptr != NULL; gcpptr =
gcpptr->Next)
{
if (gcpptr->RefX > xmax)
xmax = gcpptr->RefX;

if (gcpptr->RefX < xmin)
xmin = gcpptr->RefX;

if (gcpptr->RefY > ymax)
ymax = gcpptr->RefY;

if (gcpptr->Ref¥Y < ymin)
ymin = gcpptr->RefY;

*XMin = xmin;

*XMax = xXmax;
*YMin = ymin;
*YMax = ymax;

B-35

FindCCPS.c

/*+*/

/*

AR A R EEE RS SS L LSS LS LTI LS EEEETEIIEE SRR SR LRSS S LR E S SR R R 5 5 N
sk ko k Kk ke

ok &

** Q) NAME: FindCCPS

* %

** 1) PURPOSE: To sieve through the image and find all of
the

* x canidate control points.

*k %

**% 2) USAGE:

* % CCPINfo *FindCCPS{image, thres, xmin, xmax,
ymin,

* % ymax, &count);

* %

*% 3} ALGORITHM/METHOD:
e %k 1.
%k

**% 4) LIMITATIONS:

* k

** 5) Create: 11/5/95

J %k)

** 6) By: Thomas Lundeen

* %k Pacific Northwest Laboratory
* %

** 7)) SRevision$
* &

** 8) SLog$

* %

IR R R LR TR LR EREEEEEEEE L LR REEE T LR REER R ERE LR L LT R EEEE R SR L X
* kk ke k ok ok

*/

/*=*/

$#ifndef lint

static char

sccs_info[] = "$IdS";

#endif

/* System Includes */
#include <stdio.h>

#include <malloc.h>
#include <math.h>

/* User Includes */

#include "PRISMSErrors.h"
#include "AutoReg.h"

/* Globals */
/* Externals */

extern int
PRISMSErrValue;

extern char
PRISMSExrrMsgl[];

/******************* FlndCCPS *******************/

CPInfo *FindCCPS(float *image, int width, int hieght, int

Xmin,
int xmax, int ymin, int ymax, int *count, float Threshold)
{ .
CPInfo
*First = NULL,
*Last = NULL,
*CCPList = NULL;
int

CCPCount = 0,
match_ flag,
ii,

33,

kk,

nn,

win offset(8];

unsigned char
BV;

float

Gzero,

DN,

1v,

*pixel ptr,
*pixel ptr2;

int
win3x3([(81[2]= {
i,-1,1,0,1,1,0,1,-1,1,-1,0,-1,-1,0,-1 }i

unsigned char

B-37

patterns[24]= {
10,40,160,130,26,104,161,134,11,44,176,
- 196,131,
14,56,224,15,60,240,195,30,120,225,135 };

/* precompute window offset */

for (kk=0; kk<8; kk++)
win offset[kk] = win3x3[kk][1l]*width+win3x3[kk][0];

for (jj=ymin;jj<= ymax;jj++)
{
pixel ptr = image+jj*width;

for (ii=xmin;ii<=xmax;ii++)

{

BvV= 0;
pixel ptr2 = pixel ptr+ii;
Gzero = *pixel ptr2;

/* examine DN wvalues in a 3x3 subwindow about
central pixel */

for (kk=0;kk<8;kk++)
{
DN= *(pixel ptr2+win_offset[kk]);
/* _
* if DN diff btw center pix & adj pix abv
specifd thresh,
* sum position code
*/
if (fabs(Gzero-DN) > Threshold)
BV+= (unsigned char) {1<<kk);
}
/*
* check to see if calculated bit value matches
an acceptable
' * pattern
*/
match_ flag= 0;

for (kk=0; (kk<24) && (match_ flag.== 0);kk++)
{
if (BV==patterns[kk])
{ /* match found o
if ((CCPList = {(CPInfo *)
malloc(sizeof (CPInfo))) == NULL)
{

*/

PRISMSErrValue = NULL;
{(void) strcpy (PRISMSErrMsg,’

B-38

“for CCP data.");
return (NULL) ;
}

IV= 0.0;
for (nn=0; nn<8; nn++)
IV+= fabs (Gzero-
*(pixel ptr2+win offset[nn]));
CCPList~>XLoc = ii;

CCPList->YLoc = j3:
CCPList->InterestValue = IV;
CCPList->Next = NULL;

if (Last != NULL)
Last->Next = CCPList;
else
First

i

CCPList;

Last = CCPList;
CCPCount++;

}

*count = CCPCount;

return (First);

FindLCPs.c

/x>

/*
hkhkhkdhkhbhdbkddhddbhbbdbdbbdbdbdbhdbdbdbddhhrddhhddrrdddhbbbbdbdhrddbhhrhkt
EX R R & R

* %k

** () NAME: FindLCPs

* %

¥ 1) PURPOSE: To find all of the CCPs around the selected
** GCP within the specified radius squared.
* %

**% 23) USAGE:
* % ' FindLCPs () ;

* %
*

** 3) ALGORITHM/METHOD:
** 1.

* %

** 4) LIMITATIONS:

- %%k

*¥% 5) Create: 22/5/95

* %

** 6) By: Thomas Lundeen

*x Pacific Northwest Laboratory
* %

** 7)) SRevision$

* % '

** 8) Log

* % .

22 S R R E S R R RS TSRS S S R R R R S R R R S R T S SRR R TR LR LR LR RS LRSS RS
% %k k Kk Kk ok Kk

*/'

[*=*/

#ifndef lint

static char

sccs_info[] = "IdS";

$fendif

/*¥ 8ystem Includes */
#include <stdio.h>
/* User Includes */

#include "AutoReg.h"

/*************.****** FlndLCPS *******************/

int FindLCPs (GCPInfo *GCPData, CPInfo *ocpptr, CPInfo
*CCPData,
CPInfo *LCPList, int SearchRadiusSquared)
{
int
LCPCount = 0,
Found,
CCPDist,
OCPXLoc,
OCPYLoc,
XDist,
YDist;

» CPInfo
. *ccpptr;

GCPInfo
*gcpptr;

Found = 0;

OCPXLoc ocpptr->XLoc;
OCPY¥Loc = ocpptr->YLoc;

for (gcpptr = GCPData; gcpptr != NULL; gcpptr = gcpptr-

>Next)
{
if ((OCPXLoc == gcpptr->RefX) && (OCPYLoc == gcpptr-
>RefY))
{
Found = 1;
break;

}

if (!Found)
{ /* Find all the CCPs around the OCP */
/* within the desired search radius */

CCPData; ccpptr != NULL; ccpptr =

for (ccpptr
ccpptr—->Next)
{

XDist = {OCPXLoc - ccpptr->XLoc);
YDist = (OCPYLoc - ccpptr->YLoc);
CCPDist = (XDist * XDist) + (YDist * YDist);

if ((CCPDist < SearchRadiusSquared) && (LCPCount
< 100))
{
LCPList [LCPCount] .XLoc = ccpptr->XLoc;

B-41

LCPList [LCPCount] .YLoc = ccpptr->YLoc;
LCPList [LCPCount] .InterestValue = ccpptr-

>InterestValue;
LCPCount++;

}
}

/* Sort the List relative to the interest value
*/ .

gsort (LCPList, LCPCount, sizeof(CPInfo), CPCompare);

return (LCPCount):;

FindRange.c

ey

/*

ok ok ok e ok ok ke ko sk ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ko ok ok ok ok ok ok ok ok o g ok ok ok ok ok ok ok ok ok K
dok ok ok k Kk ’

* %

** () NAME: FindRange
* %

** 1) PURPOSE:
* %
* %

** 2) USAGE: .
* FindRange () ;

* %
*

** 3) ALGORITHM/METHOD:
* ok 1.

* *

** 4) LIMITATIONS:
* %

** 5) Create: 30/2/94

* %

** 6) By: Thomas F. Lundeen

* % Battelle Laboratories
* %

** 7) $SRevision$
* %

** 8) Log

* %

% e de Je ek ke Sk ke ke e ke e g de koke ke e e de etk ko ke ok Tk ke e ke de ke ke ok sk g ok ke vk gk e ok ke ke ke K ke ke % ke ke ke ke ke ke
* %k %k K kK Kk

*/

[*=*/

#ifndef lint

static char

sccs_info{] = "IdS";

#endif

/* System Includes */

#include <stdio.h>
finclude <math.h>

/* User Includes */

#include "DataSetInfo.h"

/******************* FlndRange *******************/

B-43

FindRange (dsinfo, data, Range, Mean, StdDeviation, Points)
DataSetInfo

*dsinfo;
float
*data,
*Range,
*Mean,
*StdDeviation;
int
Points;
{
register float
*ptr,
*end,
mean,
min,
max,
dif,
value;

float_
dmin,
dmax;

register int
PCount;

ptr
end

data;
data + Points;

min = dsinfo->Maximum;
max dsinfo->Minimum;
mean 0.0;

dif 0.0;

PCount 0;

dmin dsinfo->Minimum;
dmax dsinfo->Maximum;

]

I

]

while (ptr < end)
{
value = *ptr;
- ptr++;

if ((value > dmin) && (value < dmax))
{
if (value < min)
min = value;

if (value > max)

max = value;

mean += value;
PCount++;

}

if (PCount == 1)

{
PRISMSError (-1, "No wvalid data found.\n", NULL):
exit (-1);

}

mean = mean/((float) PCount);
ptr data;

while (ptr < end)
{

value = *ptr;
ptr++;

if ((value > dmin) && (value < dmax))
{ .

value = value - mean;
dif += wvalue * wvalue;

}

*StdDeviation = (float) sqrt(((double) dif)/
((double) PCount - 1));

*Mean = mean;
Range[0] = min;
Range[l] = max;

B-45

FindSearchRadius.c

/*4%/

/*
Fkkkkkkhkkhkhkhkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhk** ok
O

* %

¥ () NAME: FindSearchRadius

* %
*% 1) PURPOSE:
* %
* %

% 2) USAGE:

* ok FindSearchRadius();
* ok : :

* % .

** 3) ALGORITHM/METHOD:
* 1.

* %

** 4) LIMITATIONS:

* %

** 5) Create: 11/5/95
* % .

** §6) By: Thomas Lundeen

**x Pacific Northwest Laboratory
* % .

*% 7)) SRevision$
% %

** 8) Log

* %

R R S A RS E L EE TS EESE SR ESETE RS S LTSS LS EEREE S SRS EEEE LS EREEE LS EEEEEEEE S XS
* %k k Kk kK ok

*/

[*=*/

#ifndef lint

static char '

sccs_info[] = "$Ids";

$endif

/* System Includes */

#include <math.h>

/* User Includes */

#include "AutoReg.h"

/******************* FindsearchRadius *******************/

void FindSearchRadius (CPInfo *0OCPData, int Count,

B-46

int *SearchRadius, int *SearchRadiusSquared)
{
CPInfo
*iiptr,
*Jiptr;

float
avg_sep;

int

min([5],
s€ep,
kk;

/* Find average node-node distance for 5 points closest
to each node */ '
avg_sep=0.0;

for (iiptr=0CPData; iiptr != NULL; iiptr = iiptr—>Néxt)

{ .

for (kk=0;kk<5;kk++)
min[kk] = le5;

for (jjptr=0OCPData; jjptr != NULL; jjptr = jjptr-
>Next)

{ .
if (jjptr != iiptr)
{

sep ((iiptr->XLoc - jjptr->XLoc)
(iiptr->XLoc - jjptr->XLoc))
)

)

* 4+ %l

((iiptr->YLoc - jjptr->YLoc
(iiptr->YLoc - jijptr->YLoc));
if (sep<=min[01})
(
min{4}l=min{31;
min[3]=min[2];
min[2]=min[l];
min[l]=min[0];
min[0]l=sep:;
}
else if (sep <=min[1l])
{
min[4]=min[3];
min[3]=min[2];
min{2]=min{l];
min[l]=sep;
}

else if (sep<=min([2])

B-47

min[4]=min[3];
min[3]=min{2]:;
min[2]=sep;
}
else if (sep<=min[3])
{
min{4]=min[3];
min[3]=sep;
} .
else if (sep<=min[4])
{
min{4]}=sep;
}
}
}
for (kk=0;kk<5;kk++)
avg sep += sqrt(min{kk]);
}

avg _sep /= (5.0 * (float) Count);
kk = (int) (1.2 * 0.5 * avg_sep);

*SearchRadius = kk;
*SearchRadiusSquared = kk * kk;

FreeCPInfo.c

VAR,

/*
hhkhkkhkhkhkhkhhkdhhdhddbhhhhdbbhbhkddbhrhbhbhhbddhkhhdhdhhhkhdrdhhdkhbhrbhdhhhk
%ok ok ok ok)

* % .

** () NAME: FreeCPInfo

* %

** 1) PURPOSE: To step throung and delete the allocated
memory \

* for the control data.

* X

** 2) USAGE:

* % void FreeGCPInfo (GCPInfo *);

* %

**

** 3) ALGORITHM/METHOD:
* ok 1.

* %

** 4} LIMITATIONS:
* % None
* %

*% 5) Create: 23/5/95

* %k

** 6) By: Thomas Lundeen

* % Pacific Northwest Laboratory
* %

¥ 7} SRevision$
s *

** 8) Log

dhkkkkhkhkdhhkrkhkhkdbhkhdhbbkhkhkdbhhbhhbhhbrhbhddbbhbhdhhkhhhkhkhbhhbhhkhhhkhkhdhkhkdkhdx
%* %k Kk ok ok kX

*/

[x=*/

$#ifndef lint

static char
sccs_info[]l = "$IdsS";
#endif

/* System Includes */

$#include <stdio.h>
#include <malloc.h>

/* User Includes * /

#include "AutoReg.h"

/‘******************* FreeGCPInfO *******************/

void FreeCPInfo(CPInfo *CPData)
{
CPInfo
*Next;

while (CPDhata != NULL)
{ .
Next = CPData->Next;
(void) free (CPData):;
CPDhata = Next;

FreeGCPInfo.c

/x4

/*
khkhkhkhkhkhhhkhkddbhkhkdkhhhbdhdbhdbhbhhkhbhhdhdhkhkhkbhbhkrhhkdbhdrdhbhdhkhhhkhhdhhdkhd
* k& ok ok ko

* *)

** 0) NAME: FreeGCPInfo

* %

** 1) PURPOSE: To step throung and delete the allocated
memory

*x for the ground control data.
* %

** 2) USAGE:

*x void FreeGCPInfp (GCPInfo *);

* ok

* %

** 3) ALGORITHM/METHOD:

*x 1.

* %

** 4) LIMITATIONS:

*x None

** ' ‘

** 5) Create: 23/5/95

* % .

** 6) By: Thomas Lundeen :

* ok Pacific Northwest Laboratory

* * ’

** 7) SRevision$

* %

** 8) SLog$

* %
kkkdkkkhkkhhkkhkhdkhkkkkhkhhkhdkhhdhkhhhkhkhkkhkhdhkkhkkdkkkkkkhhkhk*k
% %ok ke ke kK

*/

fFr=*/

$#ifndef lint

static char
sccs_info[] = "SIdS$";
$endif

/* System Includes */

#include <stdio.h>
#include <malloc.h>

/* User Includes */

~ #include "AutoReg.h"

/******************* FreeGCPInfO *******************/

void FreeGCPInfo (GCPInfo *GCPData)
{
GCPInfo
*Next;

while (GCPData != NULL)

{
Next = GCPData->Next;
(void) free(GCPData):;
GCPData = Next;

FreeTriInfo.c

/%% /

/*
hhkhkkhkhkhhkdkhkhhbdhdhkhkdkdhhdbhhhbhhbhbhkhbhdhdrhdhhhbhbhbhdhhhdbhbbhbrhbhhhhhhhdkhkddhdhik
* %k %k %k k ok k

* %

** Q) NAME: FreeTrilInfo

* %

** 1) PURPOSE: To step throung and delete the allocated
memory ,

*x for the ground control data.

* %

** 2) USAGE:

* % void FreeTriInfo (TriInfo *);
* %

* %

** 3) ALGORITHM/METHOD:
* % 1’

* %

** 4y LIMITATIONS:

* ok None
* *

** 5) Create: 23/5/95

* %k

** 6) By: Thomas Lundeen _
* Pacific Northwest Laboratory
* & :

** 7) SRevision$
* %

** 8) SLog$

* %

R A R A R R R R R R R R E R RS E LT EEEELSE L EEE L EESEEE S LS L EEE R XSRS X R
* %k Kk ok k ok o

*/

[*=%/

$#ifndef lint

static char

sccs_info[] = "$Ids";

fendif

/* System Includes */

#include <stdio.h>
#include <malloc.h>

/* User Includes * /

#include "AutoReg.h"

B-53

/'******************* FreeTriInfO A*******************/

void FreeTriInfo(TriangleInfo *TriData)

{ '

Trianglelnfo
*Next;

while (Tribata != NULL)

{
Next = TriData->Next;
(void) free(TriData):;
TriData = Next;

PointInTriangle.c

/x+*/

/*
hhdkhkhkhhkhkkhdhbdbhdhohhbdhrdhdbhhhdhkhkdhohbdhhdhbhbhkddhkdhhhdhhbbbhbhbrbdhhhbdkhk
* %k ok ok Kk k%

sk

** () NAME: PointInTriangle

* %

** 1) PURPOSE: To determine if the specified point is
contained

** withing the triangle as defined by the 4
next

*x GCP entries.

* %

** 2) USAGE:

* . PointInTriangle();
* *

*

** 3) ALGORITHM/METHOD:
* 4 1.

* %

% 4) LIMITATIONS:

* %

** 5) Create: 25/5/95

* %

** 6) By: Thomas Lundeen

*x Pacific Northwest Laboratory
% % ' ’

*% 7)) S$Revision$
* %

** 8) SLog$

* *

LR i I 2 B I R 2 S T T I S I R R i b R R R R S I T R I B S o 3
dkkd ok kK ’

*/

[x=*/

#ifndef lint

static char

sccs_info[]l = "$Id4$";

$fendif

/* System Includes */
/*#include <stdio.h>

/* User Includes * /

#include "AutoReg.h"

B-55

/******************* POlntInTriangle *******************/

int PointInTriangle (TriangleInfo *Triptr, int XLoc, int

YLoc)
{
int
ret = FALSE,
DeltaXl,
DeltaX2,
DeltaY¥Yl,
Delta¥2,
DeltalAx,
DeltaAy;
float
Diff1,
Diff2,
Diff3;
/* Calculate the distances between the first vertex
* / '
/* and the other vertices in the triangle
*/
/*fprintf (stderr, " 0: RefX, RefY = (%d, %d)\n",
Triptr->Vertices[0]->RefX, Triptr->Vertices[0]->RefY);
fprintf (stderr, " 1: RefX, RefY = (. %d, %4)\n",
Triptr->Vertices[1l]->RefX, Triptr->Vertices[1l]->RefY)};
fprintf (stderr, " 2: RefX, RefY = (%4, %d)\n",
Triptr->Vertices[2]->RefX, Triptr->Vertices[2]->RefY);
*/ :
DeltaXl = Triptr->Vertices[l]->RefX - Triptr-
>Vertices[0] ->RefX;
Delta¥Yl = Triptr~>Vertices[l]->RefY - Triptr-
>Vertices[0]->RefY;
DeltaX2 = Triptr->Vertices[2]->RefX - Triptr-
>Vertices[0] ->RefX; :
Delta¥Y2 = Triptr->Vertices{2]->RefY - Triptr-

>Vertices[0]->RefY;

/* Calculate the distance between the point and the

*/

/* first vertex 2
1\.'/

Deltadx = XLoc - Triptr->Vertices[0]->RefX;

DeltaAy = YLoc - Triptr->Vertices[0]->RefY;

/* Determine the

*/

/*fprintf (stderr, "Ax $d, Ay %d, X1 %d, Y1 %d, X2 %d,
Y2 %d\n", DeltaBAx, DeltaAy, DeltaXl, DeltaY¥Yl, DeltaX2, De

ltaY2 });
*/
Diffl = (float) (DeltaXl * DeltaY2) - (DeltaX2 *
Delta¥l); '
Diff2 = (float) ((DeltaAx * Delta¥2) - (DeltaAy *
" DeltaX2))/Diffl; '
Diff3 = (float) ((DeltaAx * Delta¥l) - (DeltadAy *

DeltaXl))/Diffl;

/*fprintf (stderr, "Diffl: %£f, %£f, %f\n", Diffl, Diff2,
Diff3); :
*/
if ((Diff2 >= 0) && (Diff2 <= 1) && (Diff3 >= 0) &&
(Diff3 <= 1)) :
ret = TRUE;

return (ret):

B-57

ProcessApdPatch.c

/*+*/

/* :
dhhkhkhkdhkhkhkhkdbdbhkbhhkhdbhkhkdhdhhbdhhbhhdhhhhhbdbhdrhbdhhhddbhdrrbrhdbbhdkhhkdddrhhdrsx
* %k Kk kK kK

* *

** Q) NAME: ProcessApdPatch

* %

** 1) PURPOSE:

* % Creates a feature vector for the image patch
Patch :

* K using the adjacent pixel difference method.
¥k

** 2) USAGE:

%k ProcessApdPatch();

4 %

* %

¥ ¥ ALGORITHM/METHOD:
* % 1.

I %k

** 4) LIMITATIONS:

Jr Je

* Create: 15/6/95

* *

¥k By: Aaron Andrews

ek Pacific Northwest Laboratory
% K

*x $Revision$

ek

okl Log

d %

ek kahkhkdkhkhkhhkdhdhhhhkhhhbhrbhbddkhbkdhhhbhbbddddbdrdhbhhbddbhbhdbhkdhdkhkhkdkhkhdhkhk
Je %k Kk ok ek Kk

*/

/*=*/

#ifndef lint

static char

sccs_info[] = "$Ids";

#endif

/* System Includes */
#include <stdio.h>
#include <malloc.h>

/* User Includes */

#include'"AutoReg.h"
/* Globals */
/* Externals */

extern int
PRISMSErrValue;

extern char
PRISMSErrMsgl[];

/******************/* ProcessAdeatch *******************/

void *ProcessApdPatch(float *Processed, float *Patch, int
PatchSize)
{

void

*RPatch = NULL;

int
ix, /* counter in x direction */
iy; /* counter in y direction */

float
*PixelPtr, '
DiffSum, /* sum of adjacent pixel differences for a
row/column */ '
DNSum, /*¥ sum of DNs across a row/column */
FVecPtr; / Pointer to APD feature vector */

if (Processed != NULL) /* See if FVecPtr has already
been alloc'ed */
FVecPtr = Processed;

else
{ ‘
if ((FVecPtr = (float *)malloc(2 * PatchSize *
sizeof(flocat))) == NULL)

{
/* print error message */
return (RPatch);
}
} :
RPatch = FVecPtr;
/* First compute APD component for each row in the patch
*/
for (iy = 0; iy < PatchSize; iy++)
{

B-59

PixelPtr = Patch + iy * PatchSize;

a
DiffSum = 0.0;
DNSum = 0.0;
for (ix = 0; ix < PatchSize - 1; ix++)

{
DiffSum += fabs(*PixelPtr - *(PixelPtr + 1));
DNSum += *PixelPtr;
PixelPtr++;

}
DNSum += *PixelPtr;

if (DNSum > 0.0) :
*FVecPtr = DiffSum / DNSum;
else '
*FVecPtr = 0.0;

FVecPtr++;
}

/* Now compute APD component for each column in the
patch */
for (ix = 0; ix < PatchSize; ix++)
{
PixelPtr = Patch + ix;

DiffSum = 0.0;
DNSum = 0.0;
for (iy = 0; iy < PatchSize - 1; iy++)

{
DiffSum += fabs(*PixelPtr - *(PixelPtr +
PatchSize));
DNSum += *PixelPtr:;
PixelPtr += PatchSize;

}

DNSum += *PixelPtr;

if (DNSum > 0.0)
*FVecPtr = DiffSum / DNSum;
else
*FVecPtr = 0.0;

FVecPtr++;
} ’ .
return (RPatch);

ProcessCodePatch.c

/*+%/

/*

R E R R R R SR S R SRR RS S XS TSR RS EE SRR LS RS S LR SRR SR L ST LS EESE SR RS
Kk dok Kok ok)

* %

** 0) NAME: ProcessCodePatch

* %

** 1) PURPOSE:

* % - Encodes each pixel in the image patch (Patch)
according

** to the positions of the 4 most different
surrounding :

** pixels.

* % ’

** 2) USAGE:

* % ProcessCodePatch(};
*

< *

% 3) ALGORITHM/METHOD:
* % 1.

* %

*% 4) LIMITATIONS:

* %k

** 5) Create: 15/6/95

* %

** 6) By: Aaron Andrews

*ox ' Pacific Northwest Laboratory
* %

% 7)) SRevision$
* %

** 8) SLog$

* %

Tk kdkkdkdkdkddkkhkhkk ok ok hkokkk ok k ks dk vk ko k ok ok ok ks ok %k ke ko kb ke ke keotk ke ke %k ok ke ok ek ok
* % %k k% Kx

*/

[*=*/

#ifndef lint

static char

sccs_info[] = "$IdS";

$endif

/* System Includes */
#include <stdio.h>
#include <malloc.h>

/* User Includes * /

B-61

#include "AutoReg.h"
#include "PRISMSErrors.h"

extern int
PRISMSErrValue;

extern char
PRISMSErrMsgl];

/‘******************* ProceSSCOdePatCh *******************/

void *ProcessCodePatch (unsigned char *Processed, float
*Patch, int PatchSize)
{

void

*RPatch = NULL;

int

ix,
iy,
kk,
idx,
count;.

unsigned
loc[8];

unsigned char

*CodedPtr,
*TmpPtr,
code;

float

*PixelPtr,
diff[81,
DN;

if (Processed != NULL) /* See if CodedPtr was
already malloc'ed */ ‘
CodedPtr = Processed;
else

if ((CodedPtr = (unsigned char *)malloc{(PatchSize-
. 2) * (PatchSize - 2)
' * sizeof (unsigned char))) == NULL)

{
PRISMSErrValue = ErrAllocating:;

PRISMSErrMsg{0] = '\0';

B-62

return (RPatch):;

}

RPatch = CodedPtr;
/* Encode all but the perimeter pixels */
for (iy = 1; iy < PatchSize -~ 1; iy++)
{
for (ix = 1; ix < PatchSize - 1; ix++)
{ .
PixelPtr = Patch + iy * PatchSize + ix;
DN = *PixelPtr; /* Central DN value */
PixelPtr -= PatchSize + 1; /* Upper left pixel
relative to DN */
count = 0;

_ /* Compute differences between central pixel
value and */
/* the eight surrounding pixel values.
* / _
for (idx = 0; idx < 3; idx++)
{
diff[count] = fabs(*PixelPtr - DN);
loc[count] = count++;
PixelPtr++;
}

PixelPtr += PatchSize - 3}
diff{count] = fabs(*PixelPtr - DN);
loc[count] = count++;

PixelPtr += 2;
diff[count] = fabs (*PixelPtr - DN);
loc{count] = count++;

PixelPtr += PatchSize - 2;
for (idx = 0; idx < 3; idx++)
{ . .
diff{count] = fabs(*PixelPtr - DN);
loc[count] = count++;
PixelPtr++;
p

/* Sort differences to find the four pixels most

different */ ,
/* from the central pixel.

*/

ShellSort2(diff-1, loc-1);

code = 0;

B-63

for (kk = 4; kk < 8; kk++)
code += (unsigned char) (1 << loc[kk]): /*
Encode according */
/* to position. */
*CodedPtr++ = code;

}

}
return (RPatch);

ProcessPatch.c

[x4/

/*

d %k ok %k ok ke ke ok ke %k ok vk ok sk e vk sk ok dk ke ok ok sk vk vk ok Sk ke e ke sk Sk sk ke sk ke ke gk gk sk ke ke S ek ke ke ke ek b ke e ke ke ke ke ok ke ke
F)k ke k ke k ok

* %

** Q) NAME: ProcessPatch
* %

** 1) PURPOSE:
* %
* %

*% 2) USAGE:

* % ProcessPatch () ;
* %

*

** 3) ALGORITHM/METHOD:
kK 1.

* %

** 4) LIMITATIONS:
* %

*% 5) Create: 13/6/95
* %
** 6) By: Thomas Lundeen

*x Pacific Northwest Laboratory
* %

** 7) $Revision$
* k

** 8) Log

* %

IR 22 2 X R BRSPS EEEEEEETEEEEEEETE RS TR EEEEETETEEEEELEEEEE LR LRSS S
% ok Kk Kk Kk Kk

*/

J*=*/

$ifndef lint

static char

sccs_info[] = "Id"™;

$endif

/* System Includes */

$include <stdio.h>
#include <malloc.h>

/* User Includes */

#include "AutoReg.h"

B-65

/******************* Processpatch *******************/

void *ProcessPatch (void *Processed, float *Patch, int
PatchSize, int Mode)
{ ;

void
*RPatch = NULL;

switch (Mode)
{
case CORRELATE:
RPatch = Patch;
break;
case APD:
RPatch = ProcessApdPatch (Processed, Patch,
PatchSize) ;
break;
case CODE:
RPatch = ProcessCodePatch(Processed, Patch,
PatchSize) ;
~ break;
default:
RPatch = Patch;

}

return (RPatch);

RAGCPFile.c

[x4/

/*
khkkhhkdrdhhbkdhbhbhhhbhhrhhbdbhbhhbdthbhbbdhdhhdrdhbhbddbhhbhdhdbhbdbhbhhhhbbhbhdhbhhhdhrk
%k %k %k e ke o g

* %

** 0) NAME: RAGCPFile

* *
** 1) PURPOSE: To read in the ground control point file.

* %
*% 2) USAGE:
* % GCPInfo *RAGCPFile();

* %k

%k _

** 3) ALGORITHM/METHOD:
* % 1.

* %

** 4) LIMITATIONS:

* %

** 5) Create: 9/5/95

* %

** 6) By: Thomas Lundeen
* ¥ Pacific Northwest Laboratory
* %

** 7) SRevision$
* %

** 8) Log

* %

R R RS E RS EE RS SR RS EEEREESETREEEEEELE S EEEEEEEEL S S S SRR EERE L EE LR S X E KRS
* % %k %k ok kK A

*/

/*=*/

#ifndef lint

static char

sccs_info[] = "Id";

#endif

/* System Includes */

#include <stdio.h>
#include <malloc.h>

/* User Includes * /

#include "AutoReg.h"
#include "PRISMSErrors.h"

B-67

/* Externals */

extern int
PRISMSErrValue;

extern char
PRISMSErrMsg[];

/'******************* RdGCPFlle *******************/

GCPInfo *RAGCPFile(char *FileName)
{
FILE
*fp;

char
Line[512];

int

RefX,
RetfYy,
SrcX,
Srcy,
count;

GCPInfo
*First
*Last
*GCPData;

NULL,
NULL,

]

if ((fp = fopen (FileName, "r")) == NULL)
{
(void) strcpy(PRISMSErrMsg,
"Error opening the ground control point file:
")
(void) strcat(PRISMSErrMsg, FileName);
PRISMSErrValue = -1;
return (NULL);
}

while (fgets(Line, 512, fp) != NULL)
{
if ((Line[0] != '#') && (sscanf(Line, "%d %d %d %d4d",
&RefX, &RefY, &SrcX, &SrcY) == 4))
{ .
if ((GCPData = (GCPInfo *) malloc
{sizeof (GCPInfo)))
== NULL)

{

B-68

(void) strcpy (PRISMSErrMsg, "for the GCP
data."):
PRISMSErrValue = ErrAllocating;
return (NULL);
}

GCPData->RefX = RefX;

GCPData->RefY = RefY;

GCPData->SrcX = SrcX;

GCPData->SrcY = SrcY¥;

GCPDhata->Next = NULL;

if (Last '= NULL)
Last->Next = GCPData;
else

First = GCPData;
Last = GCPData:;

}

(void) fclose(fp):;
return (First);

B-69

RdOCPFile.c

/*+*/

/* :

% ok ok kK sk e ke de T e ke ke ke ke sk e e ke ke ke vk ok e sk sk sk e e e ok ok ke ke e ke ok ke ok %k e ke ok ok ke ok ke b sk sk ke e ke ke ke ok e ke
%k k ok kk k

* %

** Q) NAME: RAOCPFile

* % i

% 1) PURPOSE: To read in the optimum control point file.
* %

** 2) USAGE:

** int RAOCPFile();

* %

* % : .

% 3) ALGORITHM/METHOD:

** 1.

* *

** 4) LIMITATIONS:

* %k

** 5) Create: 9/5/95

* %

** §) By: Thomas Lundeen

** ' Pacific Northwest Laboratory
* K

** 7) $Revision$

* %

** 8) SLog$

* *
hkkhkhkhkkhbhkhkhkhbbbhhbhkhkhbbhkhbhkhbhbhhkhdbhbhhhbdbdhhbhbhbhkdhhbhbhbkrhrhdhhbhbdkhkhhdkhdkk
* ok k ok ok koK

*/

[*=*/

$ifndef lint

static char
sccs_info[] = "SIdS";
#endif

/* System Includes */

#include <stdio.h>
#include <malloc.h>

/* User Includes * /

#include "AutoReg.h"
#include "PRISMSErrors.h"

/* Externals */

B-70

extern int
PRISMSErrValue;

extern char
PRISMSErrMsgl[];

/******************* RdOCPFile *******************/

CPInfo *RdAOCPFile(FileName)
char *FileName;
{
FILE
*fp;

char
Line([512];

int
XLoc,
YLoc;

CPInfo
*Last,
*First,
*CPData;

if ((fp = fopen (FileName, "r")) == NULL)
{ |
(void) strcpy(PRISMSErrMsg,
"Error opening the optimum control point file:

(void) strcat (PRISMSErrMsg, FileName);
PRISMSErrValue = -1;
return (NULL); '

}

Last = NULL;
CpPData = NULL;
First = NULL;
while (fgets(Line, 512, £fp) != NULL)
{ ~ .
if ((Line[O0] !'= '#') && (sscanf(Line, "%d %d",
&XLoc, &YLoc) == 2})
{
if ((CPData = (CPInfo *) malloc
(sizeof (CPInfo))) == NULL)

{

B-71

(void) strcpy(PRISMSErrMsg, "for the OCP
PRISMSErrValue = ErrAllocating;
return (NULL);

}
CPData->XLoc = XLoc;

¢ CPData->YLoc = YLoc;
CPData->InterestValue = 0.0;
CPData->Next . = NULL;

if (Last != NULL)
Last->Next = CPData;
else
First = CPData;

Last = CPData;
}

(void) fclose (fp):;
return (First):

RdRefPatch.c

[*4%/

/ |
Fhkhkhkdrhkrkhkhkdhkhkhbdhdhhhhkdhbdhhhdhhhhhrddhhhhkdhhhkdhhbdbhbhbhbhhhhhbbrhhhdkdkdhhk
* ok Kk k kK %k

* *

** () NAME: ReadRefPatch

* %

*% 1) PURPOSE:

L

* &

% 2) USAGE:

* % ReadRefPatch () ;
* %

* %

** 3) ALGORITHM/METHOD:
* % 1.

* %

** 4) LIMITATIONS:

* %

** 5) Create: 5/6/95

. k%
** 6) By: Thomas Lundeen
* % Pacific Northwest Laboratory
* %

** 7)) SRevision$
* %

** 8) Log

* % .

t AR R S R RS ST EEEE IS LI LSS LS EEESEEEEERSESEEEEEELEEEEEE S EEEEE S XTS5 SRR
* ok ke k ok ok ok .

*/

/*=*/

$#ifndef lint

static char ,

sccs_info[] = "$Ids";

$fendif

/* User Includes */
#include "AutoReg.h"

/******************* ReadRefPatCh *******************/

int ReadRefPatch (DataSetInfo *dsinfo, float *Image, float
*Patch,

int PatchSize, double CenterX, double CenterY,
TriangleInfo *triptr)

B-73

XX,

XSize,
YSize,
XCoor,
YCoor;

double

XStart,
XPos,
YPos;

float
*imageptr,

*patchptr;

patchptr = Patch;

CenterX -= (double) (PatchSize >> 1);
CenterY -= (double) (PatchSize >> 1);
XSize = dsinfo->SubsetLengths [X]:
YSize = dsinfo->SubsetLengths[Y];

XStart = CenterX;
for (yy = 0; yy < PatchSize; yy++)
{

CenterX XStart;
for (xx = 0; xx < PatchSize; =xx++)
{
" XPos = (triptr->Reverse.aX * CenterX) +
(triptr->Reverse.bX * CenterY) +
triptr->Reverse.cX;

YPos = (triptr->Reverse.a¥Y * CenterX) +
(triptr->Reverse.bY * CenterY) +
triptr->Reverse.cY;

XCoor = (int) XPos + 0.5;
YCoor = (int) YPos + 0.5;

if ({XCoor < 0)]| (XCoor >= XSize) ||
(YCoor < 0) || (YCoor >= YSize))

{
return (TRUE);

}

imageptr = Image + ((YCoor * XSize) + XCoor) ;

B-74

*patchptr = *imageptr;
patchptr++;
CenterX += 1.0;
}
CenterY += 1.0;
} .

return (FALSE);

B-75

_RdSrcPatch.c

[*+*/

/* .
Fhikhkddkkdkhhkdhdkhhhdhhhrdhhdbhhkdhhhrdhhhdkdhhhdhdhbdddbdbdrrbdddhrhbrhhrdx
% Kk k% kokk

* %

** Q) NAME: ReadSrcPatch

* %
** 1) PURPOSE:
* %
* %

** 2} USAGE: .
** ReadSrcPatch () ;

*%

* K

** 3) ALGORITHM/METHOD:
* % 1.

* *

** 4} LIMITATIONS:

* %

** ' 5) Create: 5/6/95

* %

** §6) By: Thomas Lundeen

** Pacific Northwest Laboratory
* * .

*% 7} SRevision$
* %

** 8) SLog$

* %
*hkdkdhhkhkhkdhbdbhhbhhkhbhbhbhkdhhkdhbkhbhbhkdbhdbdhhhbhhhdbhhbdbhbdbdhhhhhbhhhkhihhkhhhkhkhdik
* %k k% ok %

*/

/*=*/

#ifndef 1lint

static char

sccs_info[] = "SId";

#endif

/* User Includes */

#include "AutoReg.h"

/******************* ReadSrCPatCh *******************/

int ReadSrcPatch(DataSetInfo *dsinfo, float *Image, float
*Patch, ,
int PatchSize, int CenterX, int CenterxY)

{

B-76

int

HighX,
HighY,
XSize,
YSize,
ii,
33:

float
*imageptr,
*patchptr;

/* Check to make sure all of the data is within

bounds of */

*/

/* the image.

CenterX -= PatchSize >> 1;
CenterY ~—= PatchSize >> 1;
HighX = CenterX + PatchSize;
HighY = CenterY + PatchSize;

XSize. = dsinfo->SubsetlLengthsX]:;

YSize = dsinfo->SubsetLengths[Y];
if ((CenterX < 0) || (CenterY < 0) |
(HighX >= XSize) || (HighY >= YSize))

{
return (TRUE);

}

patchptr = Patch;
for (ii = CenterY; ii < HighY; ii++)
{
imageptr = Image + ((ii*XSize) + CenterX);
for (jj = CenterX; jj < HighX; jj++)
{ .
*patchptr = *imageptr;
imageptr++;
patchptr++;

}

return (FALSE):;

B-77

the

Triangulate.c

Jx%/

I/*

sk e K d ke sk ke Sk ke v ke v ok sk sk ok ke ok sk ok e ket ok ke ke sk ok Sk ke ke ok ke ke e ke b sk ok ke ok ke e sk ke ok e Sk ke ke ke bk ke ke ke ke ke ke
kok ok ok ok ok ko

* %

** (0) NAME: Triangulate2D

* *

** 1) PURPOSE: To find either the 2D convex hull or the 2D
* % Delaunay triangulation of the list of input
*x points. Based on:

* nosort.c

% Watson, D.F., "Computing the n-
dimensional

* % Delaunay tesellation with application to
Voronoi

** prototypes”, The Computer J., 24(2), p
167-162

gk

** 2) USAGE:

** Triangulate2D{();

J X

g

*% 3) ALGORITHM/METHOD:

¥ * l.

¥k

*% 4) LIMITATIONS:

¥ %
“*¥* 5) Create: 18/5/95

* x .

¥* 6) By: John S. Risch

** Pacific Northwest Laboratory

** Modified:

fald Thomas F. Lundeen

* % ‘

** 7) SRevision$

i#* .

** 8) SLog$

* %

Fhkhkhkkhkhkkhhdhhkhkdhhhdhdhhhhkkhkdhkhdhhbhdhkhkhhhkdhhbhdhdhkhkhkhhhkhkhkkhhdhhkkkdhdkkksk
* ok Kk k ok kK

. *'/

/x=*/

$#ifndef lint

static char
sccs_info[] = "IdS";

B-78

#endif

/* System Includes */

#include
#include
#include

<stdio.h>
<stdlib.h>
<math.h>
/*

User Includes

*/

#include "AutoReg.h"

/* Globals */
#define
#define
#define
$define

#define

MIN (a,b)
MAX (a,b)
SQ(x)
RANGE
TSIZE

((((a
({({(a)
{x) *
10.0
75

#define
#define

BIGNUM
EPSILON

/*

Externals

1E37
0.00001

*/

/******************* TriangulateZD *******************/

TriangleInfo

{

*TriangulateZD(GCPInfo *GCPData)

**ccr;
ig, i9,
*id, **tmp,

**wrk, **pts,
i5, i6, i7,
tsz, chl,

double xx,
int i0, i1,
int dim, dm,
int jj, XPos,

bgs, **mxy,
iz, i3, i4,

diml, nts,
YPos;

ill, ii[3]:
**a33s;

GCPInfo
*gcpptr;

TrianglelInfo
*First,
*Last,
*outptr;

int numpts;

dim = 2;
numpts = 0;
chl = 0;

/* allocate and initialize memory */

B-79

mxy = DoubleMatrix (2, dim);

for (i0=0; i0<dim; i0++)
nxy[0] [1i0] = - (mxy[1][i0] = BIGNUM);

diml = dim + 1;
wrk = DoubleMatrix(dim, diml):;

for (i0=0; i0<dim; i0++)
for (i1=0; il<diml; il++)
wrk[i0] [i1l] = -RANGE;

for (i0=0; i0<dim; i0++)
wrk[i0][10] = RANGE * (3 * dim - 1);

/* copy points from input point list to working array */

for (gcpptr = GCPData, nﬁmpts = 0; gcpptr != NULL;
gepptr = gcpptr->Next, numpts++); '

pts = DoubleMatrix (numpts + diml, dim);

for (gcpptr = GCPData, i0 = 0; gcpptr != NULL;
gcpptr = gcpptr—->Next, i0++)

{
pts[i0] [0]= gcpptr->RefX;
pts[i0] [1]= gcpptr->RefY;

for (i1=0; il<dim; il++)
: .

if (mxy[0][il]

mxy[0] [i1]

if (mxy{1][il1]

mxy[1][11]

pts[i0][il])
pts[i0] [i1];
pts[10] [i1])
pts[iO0] [il];

<
>

(bgs=0, 10=0; i0<dim; 1i0++)

mxy[0] [i0] -= mxy[1]1[i0];
if (bgs < mxy[0]1[i0])
bgs = mxy[0] [i0];
} v

bgs *= EPSILON;
srand (367);

for (i0=0; iO<numpts; i0++)
for (i1l=0; il<dim; il++)

B-80

pts[i0]1[il] += bgs * (0.5 - (double)rand() /
OxTEL£f£££fE) ;

for (i0=0; i0<diml; i0++)
for (1il1=0; il<dim; il++)
pts[numpts+i0] [11] = mxy[1][il] + wrk[il][i0]
mxy[0] [i1]; ’ |

FreeMatrixd (mxy);

for (il=1, i0=2; i0<diml; i0++)
il *= 10;

tsz = TSIZE * il;

tmp = IntMatrix(tsz + 1, dim):;
il *= (numpts + 11):

id = IntVect(il);

for (10=0; i0<il; i0++)
id[i0] = 1i0;

a3s = IntMatrix(il,diml);
ccr DoubleMatrix(il,diml) ;

for (a3s[0][0]=numpts, i0=1; i0<diml; i0++)
a3s[0]1{i0] = a3s[0][i0~-1] + 1;

for (ccr[0][dim]=BIGNUM, i0=0; i0<dim; iO0++)
ccr[01[i0] = O;

i4d = 1;
dim - 1;

nts
dm

for (i0=0; iO<numpts; i0++)
{
il = 1i7 = -1;
i9 = 0;
for (ill=0; ill<nts; ill++)
{

il++;

while (a3s[il][0] < 0)
1l++;

xx = ccr[il] [dim];
for (i2=0;i2<dim; 1i2++)

{
XX -= SQ(pts[i0]([i2] - ccrlil][i2]):

B-81

if (xx<0)
goto Corner3;

}

i9--;
id4-—;
id[i4] = i1;

for (i2=0; i2<diml; i2++)
{
ii[0] = O;

if (ii[0] == i2)
11[0]4++;

for (i3=1; i3<dim; i3++)

{

1i[4i3] = 1i[i3-1] + 1;

if (ii[i3] == i2)
1i[i3]++;
}

if (1i7>dm)
{

i8 = i7;

for (i3=0; i3<=i8; i3++)
{
for (i5=0;i5<dim;i5++)
if
(a3s[11] [11[i5]] !'=tmp[i3][i5])
: goto Cornerl;

for (i16=0; i6<dim; i6++)
tmp[i3] [i6] = tmp[iB8][i6];

i7--;
goto Corner?2;
Cornerl:

}

if (++i7 > tsz)
{
fprintf (stderr,

"\ntriangulate 2D: Temporary storage
exceeded - increase TSIZE"):;

exit (1);
}

for (i3=0; i3<dim; i3++)
tmp[i7][i3] = a3s[il][ii[i3]];

Corner?2:

}
a3s[11]1[C] = -1;
Corner3:

}

for (il=0; il<=i7; il++)
{
' if (! (chl && tmp[il] [0] < numpts))

{ . .
for (i2=0; i2<dim; i2++)
{

for (wrkl[i2][dim]=0, i3=0; i3<dim;. i3++)

{

wrk[i2][i3] = pts[tmp[il][i2]][i3] -
pts[i0] [13];
wrk[i2] [{dim] += wrk[i2][i3] *

(pts[tmp[il] [12]] [i3]+pts[i0] [13])/2;
}
}

if (dim < 3)
{ :
' : xx = wrk[0][0] * wrk[1][1] - wrk[1][0] *
wrk[0] [1]; _
: ccr[id([i4]]1[0] = (wrk([0][2] * wrk[1l][1]
- wrk[l]l[2]

* wrk[0][1]) / =xx;
ccr(id{id]]1(1] = (wrk{O]1{0} * wrk[l][2]
- wrk[1][0]
* wrk([0][2]) / xx:
) .
else
{
xx = (wrk[0][0} * (wrk[1][1] * wrk[2][2]
- wrk[2][1] * wrk[1l]1[2]))
- (wrk[O][1] * (wrk[1][O0] *
wrk[(2][2] ’ ‘

B-83

- wrk[2][0] * wrk[1][2]))
+ (wrk[0][2] * (wrk[1l][O] =*
wrk([2][1]

- wrk[2][0] * wrk[1l][11));

ccr[id[id41]1 (0]
=((wrk[O] [3]* (wrk[1] [1]*wrk[2][2]
-wrk[2] [1]*wrk[1][2]))
- (wrk[O][1]*(wrk[1][31*wrk[2][2]
-wrk[2] [3]*wrk[1][2]))
+(wrk[0] [2]*(wrk[1][3]*wrk[2][1]
-wrk[2] [3]*wrk[1][1]1))) / =xx;

cer[id[i4]] [1]1=((wrk[0] [0]*(wrk([1][3]1*wrk[2][2]
-wrk([2] [3]*wrk[1]([2]))
-(wrk[0] [3]*(wrk[1][0]*wrk[2][2]
-wrk[2][0]*wrk([1][2]))
+(wrk([0] [2]* (wrk[1] [0] *wrk([2] [3]
~wrk[2]1 [0 *wrk[1]1[3]))) / =xx;:

ccr[id[1i4]]1[2]1=((wrk[O] [O]*{wrk([1])[1]1*wrk[2][3]

' -wrk[2][1]*wrk[1][3]))
- (wrk[O][1]*(wrk[1][O0]*wrk[2] [3]
-wrk[2][0]) *wxrk[1][3]1))
+(wrk([O0] [3]* (wrk[1][0]
~wrk[2] [0] *wrk[1][1]))

*wrk[2]]1]
)y / XX;

}

for (ccr[id[i4]][dim]=0, i2=0; i2<dim; 1i2++)

{ .
: ccrlid[i4]] [dim] += SQ(pts[iO][1i2] -

ccr[id[i4]1]1([i2]); ' :

a3s[id[i4]]1([i2] = tmp[il][iZ2];

}

a3s[id[id]] [dim] = iO0;
i4++;
19++;
}
)
nts += i9;
} .

FreeMatrixd(wrk);
FreeMatrixi (tmp) ;
FreeVecti(id) ;

FreeMatrixd{ccr);

/* copy points from working arrays to return points
lists */

First = NULL;

Last = NULL;
i0 = -1;
for (ill=0; ill<nts; ill++)
{
i0++;
while (a3s[i0][0] < 0)
10++;

if (a3s[i0][0] < numpts)
{ /* add triangle vertices to output triangle list
*/
outptr = (TriangleInfo *) malloc (sizeof
(TriangleInfo));

for (3jj = 0; jj < 3; jj++)
{ .
(int) pts[(int)a3s[i0]1[§3]11[0]1+0.5;

XPos =
YPos = (int) pts[(int)a3s[iO][j3]]1[1]1+0.5;
for {gcpptr = GCPData;gcpptr != NULL;

gcpptr = gcpptr->Next)
{
if ((gcpptr->RefX == XPos) &&
(gcpptr->RefY == YPos))
{ .

}

outptr->Vertices([jj] = gcpptr;

}

outptr->Vertices[3] outptr->Vertices[0];
outptr->Next

outptr->Forward.aX
outptr->Forward.bX
outptr->Forward.cX
outptr->Forward.ayY
outptr->Forward.by
outptr->Forward.cY
outptr->Reverse.aX
outptr->Reverse.bX
outptr->Reverse.cX
outptr->Reverse.ayY
outptr->Reverse.b¥
outptr->Reverse.cY
outptr->Reverse.cY =

ULL;

]

~e

-

o

(LI T | I TR |

N
0
0
0
0

=0
0.
0
0
0
0
0
0
0

OO OO OO OCODOOO0OO0O

e Ne M Me N N Ne Ne Ny Ny N

B-85

if (Last != NULL)
Last->Next = outptr:;
else
First = outptr;
Last = outptr:;

}

FreeMatrixd (pts):;
FreeMatrixi (a3s);

return (First);

B-86

WrGCPFile.c

/4% /

/*
/***
% %k ok ok kok ok ok

* ¥k _)

** 0) NAME: WrGCPFile

* %

** 1) PURPOSE: To output a set of ground control points to
a : : .

*k ascii file.

* ‘

* %

** 2) USAGE:
* WrGCPFile () ;

* %

* %

% 3) ALGORITHM/METHOD:
Sl 1.

* %

** 4) LIMITATIONS:

* k

** 5) Create: 9/5/95

* %

** 6) By: Thomas Lundeen

*x Pacific Northwest Laboratory
* %

** 7)) S$Revision$
* %

** 8) Log

* %k

[R R R P R X R R R RS SRR R R R R R R R R R TSR R EEEEEREEE RS EEETEEREE LR E L
* Kk Kk k Kk k%

*/

/*=*/

$ifndef lint

static char

sccs_info[]l = "S$IdS";

#endif

/* System Includes */
#include <stdio.h>

/* User Includes */

B-87

#include "AutoReg.h"
#include "PRISMSErrors.h"

/* Externals */

extern int
PRISMSErrvValue;

extern char
PRISMSErrMsg(];

$#ifndef TRUE
#define TRUE 1
¥endif

#ifndef FALSE
#define FALSE 0
#endif

/******************* WrGCPFlle *******************/

int WrGCPFile (Name, GCPData)
char

Name[];

GCPInfo

*GCPData;

{

FILE
*fp;

GCPInfo
*gcpptr;

int

ret = FALSE;

if ((fp = fopen (Name, "w")) == NULL)

ret = TRUE;
(void) strcpy (PRISMSErrMsg,

"Creating the output GCP file: ");
(void) strcat (PRISMSErrMsg, Name);

PRISMSErrValue = -1;
} _

else
{ .
- fprintf (fp,

B-88

"# Ground Control Point file created by the
autoregistration routine\n");

for (gcpptr = GCPData; gcpptr != NULL; gcpptr =
gcpptr->Next) :
{ _
fprintf (fp, "%6d %6d %6d %6d\n",
gcpptr->RefX, gcpptr->Refy,
gcpptr->SrcX, gcpptr->SrcY);
}

{(void) fclose(fp):
}

return {(ret):;

B-89

AutoReg.h

/*+%/

/*
dhkhkkdhhkdhhdhhkdbhbhkhhhhdbhdhhhdbhhbhrbhbhbhbhbhhbdhdhhbhhrdhkhhhhkdkhkdhdkhdhhkdhkhk
Hok ok ke ok kK

E

** Q) Name : AutoReg.h

* % .

** 1) Description : Defines the various subroutines and
data :
*xo structures for the autoregistration
program. ~

&, %

k% 2} SRevision$
* %

*% 3) Log

* %

e % % e e ok ok ok ok o ok ok ok e e e ok ok ok e e ok ok ok ok e ok o ok ok ko ko ok ok ok ok ok ok ok o ok ok o ok ke ok o ok ok
%ok %k %k ok % '

'.k/

Jx=x/

/* User Includes , * /
#include "DataSetInfo.h"
/* Control point information */

typedef struct {
int
XLoc,
YLoc;
float
InterestValue;
void.
*Next;
} CPInfo;

/* Ground Control Point Pairs

*/
typedef struct {
int
SrcX,
Srcy,
RefX,

B-90

RefY;
void

*Next;
} GCPInfo;

/* Transform Coefficents

*/

typedef struct {
double
ax,
bX,
cX,
ay,
bY,
cY;
} TransCoef;

/* Triangle

*[

typedef struct {
GCPInfo
*Vertices[4]:;

TransCoef
Forwaxrd,
Reverse;

void
*Next;
} TriangleInfo;

/* Program Definitions

*/

#define FORWARD 1
$define REVERSE 0
#define CORRELATE O
#define - APD 1
#define CODE 2

/* Boolean Definitions
*/

#ifndef TRUE

#define TRUE 1

#endif

$ifndef FALSE
#define FALSE 0

B-91

#endif

int AutoRegProc(DataSetInfo *, DataSetInfo *, GCPInfo *,
CPInfo =, ot '
float, float, int, int, int, int);:

GCPInfo *RAGCPFile (char *);
int WrGCPFile (char *, GCPInfo *);

CPInfo *RAOCPFile (char *); ‘
CPInfo *FindCCPS(flocat *, int, int, int, int, int, int, int
*, float);

void FindSearchRadius (CPInfo *, int, int *, int *);

void FindBBox (GCPInfo *, int *, int *, int *, int *,
int); »

int FindLCPs (GCPInfo *, CPInfo *, CPInfo *, CPInfo *,
int);

TriangleInfo *Triangulate2D{(GCPInfo: *);

void ‘ CalcTransform(TriangleInfo *);
" int PointInTriangle (TriangleInfo *, int,
int) ;
void FreeTriInfo(TriangleInfo *);
void FreeGCPInfo (GCPInfo *);
void FreeCPInfo(CPInfo *);
int - CPCompare (CPInfo *, CPInfo *);

void FreeVecti (int *);

void FreeMatrixi(int **);

void FreeMatrixd(double **);

int *IntVect (int ncols);

int **IntMatrix(int , int);
double **DoubleMatrix(int , int);

int ReadRefPatch (DataSetInfo *, float *, float *, int,
double, double, TrianglelInfo *);
int ReadSrcPatch(DataSetInfo *, float *, float *, int,
int, _ ‘
int);
void *ProcessPatch (void *, float *, int, int);
float ComparePatch(void *, wvoid *, int, int);

void *ProcessApdPatch(float *Processed, float *Patch, int
PatchSize);

float ApdMatchProc(float *RefFVec, float *SrcFVec, int
PatchSize) ;

B-92

void *ProcessCodePatch (unsigned char *Processed, float
*Patch, int PatchSize);

float CodeMatchProc{unsigned char *RefPatch, unsigned char
*SrcPatch, int PatchSize);
int BitCount (unsigned char Xx):

void ShellSort2(float arrl{], unsigned arr2[]):

B-93

APPENDIX C. DESCRIPTION OF THE IMAGE INTERSECTION MODULE

The purpose of ClipImages is to determine the intersection of two images. It is
assumed that both image files are unwarped right rectangles (Figure C.1). The algorithm
takes the minimum and maximum X,y coordinates of the left, right, top, and bottom bounds
of both images and a file of minimally 4 GCP’s (Ground Control Points). By convention
the origin is assumed to be at the upper left and all input and output has the source image
coordinates first followed by the reference image coordinates. All computations are done in

double precision floating point.

(0.0}

reference image

{719,499)
(0.0}

source image

{719,489)
Reference and source images as upright

rectangles with maximum and minimum samples
and rows.

Figure C.1.

The GCP’s are used to compute a 1st degree affine transformation from the source
to the reference image\. This is the reverse of how resampling is normally done. When the
transformation was done as usual, reference image into source image space, and the‘
intersection coordinates were found in terms of source image space, then when those
coordinates were transfornﬁed back to reference image space for output off-of-image round-
off errors were encountered. This problem was eliminated by finding the intersection in
reference image space (Figure C.2). The accuracy of the source image coordinates depends

on how accurately the GCP’s were selected.

(0.0}
(2.1, 34.3) (724.2 , 42.5)
(719,499)
(-1.3, 536.9) {726.8, 543.1)

Source image warped to and repositioned in reference
image space.

Figure C.2.

Once the source image is warped to reference image space a test is done for the
trivial case where one image is contained completely within the other and, if found, the
comerpoints of the contained image are returned both in source and reference image

coordinates.

If the trivial case is not found the images are assumed to overlap. The reference
image is viewed as a clipping rectangle and the source image’s sides are viewed as a series
of lines to be clipped against the window. Beginning with the top sides and proceeding

clockwise around both images, the source image is clipped against the reference image,

C-2

using the Cohen-Sutherland (see Foley et al. 1994) line clipping algorithm, returning the
endpoints of the clipped source image line. A list of intersection points in reference image
space is kept and, as each side of the source image is clipped, the endpoints are either added
to or replace previously found endpoints in the list.

‘When the last side has been clipped and the list of endpoints is complete it is output both

in reference image space and transformed back into source image space (Figure C.3).

{(2.1,34.3) {719, 41.8)

(0.2, 499) {719, 499)

Source image clipped to reference image.

Figure C.3.

REFERENCES

Foley, J.D., A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips. 1994. Introduction to
Computer Graphics. 2nd ed. Addison Wesley, Reading MA.

C3

