

JUL 26 1960

MASTER

X-822

UNCLASSIFIED

OAK RIDGE NATIONAL LABORATORY
Operated By
UNION CARBIDE NUCLEAR COMPANY

URC

POST OFFICE BOX X
OAK RIDGE, TENNESSEE

ORNL
CENTRAL FILES NUMBER

60-7-50

External Distribution Authorized

COPY NO.

45

DATE: July 19, 1960

SUBJECT: APPR-1 Startup Analysis

TO: Distribution

FROM: R. S. Stone

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

UNCLASSIFIED

The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch Legal and Information Control Department.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Introduction

One criterion for an acceptable reactor control system is that the level safety system must be capable of turning the excursion resulting from an uncontrolled rod withdrawal, the so-called "startup accident," without damage to the core.

The APPR-1 control system has been analyzed for its response to such an occurrence.

Method of Calculation

Reactor kinetic and heat transfer equations were written for the reactor core, assuming flat temperature profile in fuel, and uniform temperature in bulk water. Heat transfer across metal-water film was approximated by the formula

$$hA = 104 + 0.043 T_w - 1.10 \times 10^{-3} T_w^2 \frac{\text{BTU}}{\text{sec}^{\circ}\text{F}} \quad (1)$$

Total temperature coefficient was taken to be described by equation

$$\frac{\delta K}{\delta T} = 7.70 (T_w - 57^{\circ}\text{F}) \times 10^{-7}/^{\circ}\text{F} \quad (2)$$

This was divided between metal and water according to the volume displaced by expansion of each per $^{\circ}\text{F}$. By this assumption,

$$\frac{\delta K}{\delta T} \text{ metal} = 2.50 (T_w - 57^{\circ}\text{F}) \times 10^{-8}/^{\circ}\text{F}$$

$$\frac{\delta K}{\delta T} \text{ water} = 7.45 (T_w - 57^{\circ}\text{F}) \times 10^{-7}/^{\circ}\text{F}$$

Neutron lifetime was taken to be $20 \mu \text{ sec.}$ ⁽³⁾

β was assumed to be 0.756%.

Shutdown power = $2/3 \text{ mw}$ at $-4.1\% \Delta k$. ⁽⁴⁾

Initial temperature was taken to be 70°F .

The ORNL Reactor Controls Analog Facility was used to find the response of the system described above to a startup accident. The computer flow sheet

is available as ORNL Drawing C-RC-203.

Results

In order to conserve time (particularly since the simulation was run at 20:1 expanded time), it was assumed that initial run-up was slow enough to maintain equilibrium with delayed neutrons, so that

Power at $-1.0\% \Delta k$ = $\frac{2/3 \times .041}{.01} = 2.23$ mw, and the rod withdrawal was started from that initial condition at the rate of $0.086\%/\text{sec.}$ (4)

The excursion was taken 3 decades at a time, and heating was considered non-existent until the 150 KW level was reached. At this point $\Delta k = 0.7905\%$, slightly past prompt critical.

The last run was taken starting at 150 KW, $\Delta k = 0.7905\%$, and with the heat transfer networks connected. Level scram was set to trip at 15 MW, after which there was a 50 millisecond delay, followed by insertion of rods worth $1.72\%/\text{inch}$ at an acceleration of 0.4 g. (4)

Under these conditions, and with 0.459 sec. water residence time, (3) the reactor got on a 52 millisecond period, and reached a peak power of 61.8 MW. The integral power in the burst was $5.4 \text{ MW sec.} = 5120 \text{ BTU.}$ Heat capacity of the core is $48.2 \frac{\text{BTU}}{\text{OF}}$ (3); so to raise the core to the melting point, neglecting any heat of fusion and assuming zero heat transfer to the water, requires about $(570-70) \times 48.2 = 24,000 \text{ BTU.}$ On this basis the burst has a safety factor of almost 5.

Under the more realistic conditions simulated, the water went to 76.8°F , the metal to 145°F. This is a rise of 75° in fuel temperature, or about $1/7$ the rise allowable before melting.

At $1/10$ normal coolant flow (water residence = 4.59 sec.), the reactor went up on a 56 millisecond period, reaching a peak power of 59.9 MW. Integrated

power was 1.76 MW sec. = 1670 BTU. Water temperature went to 85.8°F, metal to 113°F. Here the accentuated heating of the water brought the temperature coefficient more strongly into play, and gave a safety factor of perhaps 12.

Conclusion

The conclusion can be reached that so far as startup accidents go, the safety system is entirely adequate, at .086%/sec. rod withdrawal, for operation at at least twice the rated power.

References

1. From formula $h = (0.2528 + 2.300 \times 10^{-3} T_w - 2.675 \times 10^{-6} T_w^2)$

$$\left(\frac{T_s}{T_w} \right)^{0.164} \frac{V^{0.654}}{E^{0.346}} \frac{\text{BTU}}{\text{hr ft}^2 \text{ }^{\circ}\text{F}} \quad (4)$$

where T_w = bulk water temperature of fuel, $^{\circ}\text{F}$

T_s = surface temperature of fuel, $^{\circ}\text{F}$

V = coolant velocity in ft/hr

ϵ = coolant channel in ft.

This formula was fitted by R. D. Cheverton to experimental values of W. R. Gambill (private communication).

Surface area of plates taken to be 571 ft².

2. H. W. Giesler, et al; Results and Analysis of the APPR-1 Zero Power Experiments, Part I; APAE Memo No. 61 (November 7, 1956).

3. J. O. Brondel; APPR-1 Reactor Transient Analysis, Basic Kinetic Model and Equations; APAE Memo No. 127, Vol. I (April 25, 1958).

4. J. G. Gallagher and T. M. Silks; Effect of APPR-1 Control Rod Acceleration After Scram on Startup Accident; APAE Memo No. 97 (April 23, 1957).